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Householder Transformations

A Householder transformation (or reflection) is a matrix of the form
P = I − 2uuT where ‖u‖2 = 1. It is easy to see that P = PT and
P · PT = (I − 2uuT )(I − 2uuT ) = I − 4uuT + 4uuTuuT = I , so P is a
symmetric, orthogonal matrix. It is called a reflection because Px is
reflection of x in the plane through 0 perpendicular to u.
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Given a vector x , it is easy to find a Householder reflection P = I − 2uuT

to zero out all but the first entry of x : Px = [c , 0, . . . , 0]T = c · e1. We
do this as follows. Write Px = (I − 2uuT )x = x − 2u(uT x) = c · e1 so
from that equation we get u = 1

2(uT x)
(x − ce1), i.e., u is a linear

combination of x and e1. Since ‖x‖2 = ‖Px‖2 = |c |, u must be parallel
to the vector ũ = x ± ‖x‖2e1, and so u = ũ/‖ũ‖2. One can verify that
either choice of sign yields a u satisfying Px = ce1, as long as ũ 6= 0. We
will use ũ = x + sign(x1)e1, since this means that there is no cancellation
in computing the first component of u. Here, xk is to be the pivot
coordinate in the vector x after which all entries are 0 in matrix A. In
summary, we get

ũ =








x1 + sign(x1) · ‖x‖2
x2
...
xn








with u =
ũ

‖ũ‖2
.

We write this as u = House(x). (In practice, we can store ũ instead of u
to save the work of computing u, and use the formula
P = I − (2/‖ũ‖22)ũũT instead of P = I − 2uuT .)
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Idea of Householder transformation

We show how to compute the QR decomposition of a 5-by-4 matrix A
using Householder transformations. This example will make the pattern
for general m-by-n matrices evident. In the matrices below, Pi is an
orthogonal matrix, x denotes a generic nonzero entry, and o denotes a
zero entry.
1. Choose P1 so

A1 ≡ P1A =









x x x x
o x x x
o x x x
o x x x
o x x x









.
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2. Choose P2 =

[
1 0
0 P ′

2

]

so

A2 ≡ P2A1 =









x x x x
o x x x
o o x x
o o x x
o o x x









.

3. Choose P3 =







1
0

1
0 P ′

3






so

A3 ≡ P3A2 =









x x x x
o x x x
o o x x
o o o x
o o o x









.
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4. Choose P4 =







1
1 0

1
0 P ′

4






so

R̃ := A4 ≡ P4A3 =









x x x x
o x x x
o o x x
o o o x
o o o o









.

Here, we have chosen a Householder matrix P ′
i to zero out the

subdiagonal entries in column i ; this does not disturb the zeros already
introduced in previous columns.
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Idea of Householder transformation

We observe that we have performed decomposition

A4 = P4P3P2P1A. (1)

Let us denote the final triangular matrix A4 as R̃ ≡ A4. Then using (1)
we observe that matrix A is obtained via decomposition

A = PT
1 PT

2 PT
3 PT

4 R̃ = QR , (2)

which is our desired QR decomposition. Here, the matrix Q is the first
four columns of PT

1 PT
2 PT

3 PT
4 = P1P2P3P4 (since all Pi are symmetric),

and R is the first four rows of R̃ .
⋄
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Here is the general algorithm for QR decomposition using
Householder transformations.

ALGORITHM QR factorization using Householder reflections:

for i = 1 to min(m − 1, n)
ui = House(A(i : m, i))
P ′

i = I − 2uiu
T
i

A(i : m, i : n) = P ′

iA(i : m, i : n)
end for
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QR decomposition using Householder reflections

We can use Householder reflections to calculate the QR factorization of
an m-by-n matrix A with m ≥ n.

Let x be an arbitrary real m-dimensional column vector of A such
that ||x|| = |α| for a scalar α.

If the algorithm is implemented using floating-point arithmetic, then
α should get the opposite sign as the k-th coordinate of x, where xk
is to be the pivot coordinate after which all entries are 0 in matrix
A’s final upper triangular form, to avoid loss of significance.
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Then, where e1 is the vector (1, 0, ..., 0)T , || · || is the Euclidean norm and
I is an m-by-m identity matrix, set

v = x+ αe1,

α = −sign(x1)||x||,

u =
v

‖v‖ ,

Q = I − 2uuT .

In the case of complex A set

Q = I − (1 + w)uuH ,

where w = xHu/uHx and where xH is the conjugate transpose
(transjugate) of x,
Q is an m-by-m Householder matrix and

Qx = (α, 0, · · · , 0)T .
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QR decomposition using Householder reflections.

Example

Let us calculate the decomposition of

A =





12 −51 4
6 167 −68
−4 24 −41



 .

First, we need to find a reflection that transforms the first column of
matrix A, vector x = a1 = (12, 6,−4)T , to
‖x‖ e1 = ‖a1‖ e1 = (14, 0, 0)T .
Now,

v = x+ αe1,

where
α = −sign(x1)||x||,

and
u =

v

‖v‖ .
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Example

Here, ||x || =
√

122 + 62 + (−4)2 = 14,

α = −sign(12)||x|| = −14 for x = a1 = (12, 6,−4)T

Therefore

v = x+ αe1 = (−2, 6,−4)T = (2)(−1, 3,−2)T

and u = v
‖v‖ = 1√

14
(−1, 3,−2)T , and then

Q1 = I − 2√
14
√
14





−1
3
−2




(
−1 3 −2

)

= I − 1

7





1 −3 2
−3 9 −6
2 −6 4





=





6/7 3/7 −2/7
3/7 −2/7 6/7
−2/7 6/7 3/7



 .
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Example

Now observe:

A1 = Q1A =





14 21 −14
0 −49 −14
0 168 −77



 ,

so we already have almost a triangular matrix. We only need to zero the
(3, 2) entry.
Take the (1, 1) minor, and then apply the process again to

A′ = M11 =

(
−49 −14
168 −77

)

.

By the same method as above we first need to find a reflection that
transforms the first column of matrix A′, vector x = (−49, 168)T , to
‖x‖ e1 = (175, 0)T .
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Example

Here, ||x || =
√

(−49)2 + 1682 = 175,

α = −sign(−49)||x|| = 175 and x = (−49, 168)T .

Therefore

v = x+ αe1 = (−49, 168)T + (175, 0)T = (126, 168)T ,

||v|| =
√
1262 + 1682 =

√
44100 = 210 and

u = v
‖v‖ = (126/210, 168/210)T = (3/5, 4/5)T .
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Example

Q ′
2 = I − 2

(
3/5
4/5

)
(
3/5 4/5

)

or

Q ′
2 = I − 2

(
9/25 12/25
12/25 16/25

)

=

(
7/25 −24/25

−24/25 −7/25

)

Finally, we obtain the matrix of the Householder transformation Q2 such
that

Q2 =

[
1 0
0 Q ′

2,

]

to get

Q2 =





1 0 0
0 7/25 −24/25
0 −24/25 −7/25.
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Example

Now, we have obtained Q2A1 = R which will be upper triangular matrix
R . Thus, R = Q1A1 and the matrix Q in QR decomposition of A can be
obtained as follows:

Q2Q1A = R ,

QT
1 QT

2 Q2Q1A = QT
1 QT

2 R

A = QT
1 QT

2 R = QR ,

withQ = QT
1 QT

2 .

Q = QT
1 QT

2 =





6/7 69/175 −58/175
3/7 −158/175 6/175
−2/7 −6/35 −33/35
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Example

Then

Q = QT
1 QT

2 =





0.8571 0.3943 −0.3314
0.4286 −0.9029 0.0343
−0.2857 −0.1714 −0.9429





R = Q2A1 = Q2Q1A = QTA =





14 21 −14
0 −175 70
0 0 35



 .

The matrix Q is orthogonal and R is upper triangular, so A = QR .

17 / 77



Orthogonal matrices
Moore-Penrose pseudoinverse

Example

Compute QR decomposition of the matrix A using Householder
reflections:

A =





4 4 3
0 3 1
3 4 7
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Example

First, we need to find a reflection that transforms the first column of
matrix A

A =





4 4 3
0 3 1
3 4 7





We have:
u = x+ αe1,

where x = (4, 0, 3)T , α = −sign(4) · ||x ||

v =
u

‖u‖ .

Here,
α = −5.

Therefore
u = (−1, 0, 3)T , ||u|| =

√
10.

and v = 1√
10
(−1, 0, 3)T , and then 19 / 77
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Example

P1 = I − 2√
10
√
10





−1
0
3




(
−1 0 3

)

= I − 1

5





1 0 −3
0 0 0
−3 0 9





=





4/5 0 3/5
0 1 0

3/5 0 −4/5



 .

Now observe:

P1A =





5 5.6 6.6
0 3 1
0 −0.8 −3.8



 ,

so we already have almost a triangular matrix. We only need to zero the
(3, 2) entry.
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Example

Take the (1, 1) minor, and then apply the process again to

A′ = M11 =

(
3 1

−0.8 −3.8

)

.

We have:
u = x+ αe1,

where x = (3,−0.8)T , α = −sign(3) · ||x ||

v =
u

‖u‖ .

Here,
α = −3.1048.

Therefore
u = (−0.1048,−0.8)T , ||u|| = 0.8068.

and v = 1
0.8068 (−0.1048,−0.8)T ,
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Example

and then

P ′
2 = I − 2

0.651

(
−0.1048
−0.8

)
(
−0.1048 −0.8

)

= I − 2

0.651

(
0.011 0.0838
0.0838 0.64

)

=

(
0.9662 −0.2575
0.2575 −0.9662

)

.

Then the second matrix of the Householder transformation is

P2 =





1 0 0
0 0.9662 −0.2575
0 −0.2575 −0.9662





Now, we find

R = P2P1A =





5 5.6 6.6
0 3.1046 1.9447
0 0.0005 3.4141



 .
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Tridiagonalization using Householder transformation

This procedure is taken from the book: Numerical Analysis, Burden and
Faires, 8th Edition.
In the first step, to form the Householder matrix in each step we need to
determine α and r , which are given by:

α = −sgn(a21)

√
√
√
√

n∑

j=2

a2j1;

r =

√

1

2
(α2 − a21α);
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From α and r , construct vector v :

v (1) =







v1
v2
...
vn






,

where v1 = 0; , v2 =
a21−α
2r , and

vk =
ak1
2r

for each k = 3, 4..n

Then compute:
P(1) = I − 2v (1)(v (1))T

and obtaing matrix A(1) as

A(1) = P(1)AP(1)
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Having found P(1) and computed A(1) the process is repeated for
k = 2, 3, ..., n as follows:

α = −sgn(ak+1,k)

√
√
√
√

n∑

j=k+1

a2jk ;

r =

√

1

2
(α2 − ak+1,kα);

v
(k)
1 = v

(k)
2 = .. = v

(k)
k = 0;

v
(k)
k+1 =

ak+1,k − α

2r

v
(k)
j =

ajk
2r

for j = k + 2; k + 3, ..., n

P(k) = I − 2v (k)(v (k))T

A(k+1) = P(k)A(k)P(k)
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Example 1

Example

In this example, the given matrix A is transformed to the similar
tridiagonal matrix A1 by using Householder Method. We have

A =





5 1 0
1 6 3
0 3 7



 ,
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Example

Steps:
1. First compute α as

α = −sgn(a21)

√
√
√
√

n∑

j=2

a2j1 = −
√

(a221 + a231) = −
√

(12 + 02) = −1.

2. Using α we find r as

r =

√

1

2
(α2 − a21α) =

√

1

2
((−1)2 − 1 · (−1)) = 1.
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Example

3. From α and r , construct vector v :

v (1) =







v1
v2
...
vn






,

where v1 = 0; , v2 =
a21−α
2r , and

vk =
ak1
2r

for each k = 3, 4..n
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Example

To do tridiagonal matrix we compute:

v1 = 0,

v2 =
a21 − α

2r
=

1− (−1)

2 · 1 = 1,

v3 =
a31
2r

= 0.

and we have

v (1) =





0
1
0



 ,
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Example

Then compute matrix P(1)

P(1) = I − 2v (1)(v (1))T

and

P(1) =





1 0 0
0 −1 0
0 0 1





After that we can obtain matrix A(1) as

A(1) = P(1)AP(1) =





5 −1 0
−1 6 −3
0 −3 7.





30 / 77



Orthogonal matrices
Moore-Penrose pseudoinverse

Example 2

Example

In this example, the given matrix A is transformed to the similar
tridiagonal matrix A2 by using Householder Method. We have

A =







4 1 −2 2
1 2 0 1
−2 0 3 −2
2 1 −2 −1






,
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Example

Steps:
1. First compute α as

α = −sgn(a21)

√
√
√
√

n∑

j=2

a2j1 = (−1) ·
√

(a221 + a231 + a241)

= −1 · (12 + (−2)2 + 22) = (−1) ·
√
1 + 4 + 4 = −

√
9 = −3.

2. Using α we find r as

r =

√

1

2
(α2 − a21α) =

√

1

2
((−3)2 − 1 · (−3)) =

√
6.
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Example

3. From α and r , construct vector v :

v (1) =







v1
v2
...
vn






,

where v1 = 0; , v2 =
a21−α
2r , and

vk =
ak1
2r

for each k = 3, 4..n
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Example

To do that we compute:

v1 = 0,

v2 =
a21 − α

2r
=

1− (−3)

2 ·
√
6

=
2√
6

v3 =
a31
2r

=
−2

2 ·
√
6
=

−1√
6

v4 =
a41
2r

=
2

2 ·
√
6
=

1√
6
.

and we have

v (1) =








0
2√
6

−1√
6
1√
6







,
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Example

Then compute matrix P(1)

P(1) = I − 2v (1)(v (1))T = I − 2 ·








0
2√
6

−1√
6
1√
6







·
[

0 2√
6

−1√
6

1√
6

]

and

P(1) =







1 0 0 0
0 −1/3 2/3 −2/3
0 2/3 2/3 1/3
0 −2/3 1/3 2/3







After that we can obtain matrix A(1) as

A(1) = P(1)AP(1)
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Example

Thus, the first Householder matrix:

P(1) =







1 0 0 0
0 −1/3 2/3 −2/3
0 2/3 2/3 1/3
0 −2/3 1/3 2/3






,

A(1) = P(1)AP(1) =







4 −3 0 0
−3 10/3 1 4/3
0 1 5/3 −4/3
0 4/3 −4/3 −1






,
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Example

Next, having found A(1) we need to construct A(2) and P(2). When k = 2
we have following formulas:

α = −sgn(a3,2)

√
√
√
√

4∑

j=3

a2j2 = −sgn(1)
√

a23,2 + a24,2 = −
√

1 +
16

9
= −5

3
;

r =

√

1

2
(α2 − a3,2 · α) =

√

20

9
;

v
(2)
1 = v

(2)
2 = 0;

v
(2)
3 =

a3,2 − α

2r
=

2√
5

v
(2)
4 =

a4,2
2r

=
1√
5
.

and thus new vector v will be: v (2) = (0, 0, 2√
5
, 1√

5
)T and the new

Householder matrix P(2) will be
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Example

P(2) = I−2v (2)(v (2))T = I−2







0 0 0 0
0 0 0 0
0 0 4/5 2/5
0 0 2/5 1/5






=







1 0 0 0
0 1 0 0
0 0 −3/5 −4/5
0 0 −4/5 3/5







and thus

A(2) = P(2)A(1)P(2) =







4 −3 0 0
−3 10/3 −5/3 0
0 −5/3 −33/25 68/75
0 0 68/75 149/75






,

As we can see, the final result is a tridiagonal symmetric matrix which is
similar to the original one. The process finished after 2 steps.
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Given’s Rotation

A Givens rotation is represented by a matrix of the form

G (i , j , θ) =
















1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1
















where c = cos(θ) and s = sin(θ) appear at the intersections i-th and j-th
rows and columns.
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That is, the non-zero elements of Givens matrix is given by:

gk k = 1 for k 6= i , j (3)

gi i = c (4)

gj j = c (5)

gj i = −s (6)

gi j = s for i > j (7)

(sign of sine switches for j > i)
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Given’s Rotation

The product G (i , j , θ)x represents a counterclockwise rotation of the
vector x in the (i , j) plane of θ radians, hence the name Givens rotation.
When a Givens rotation matrix G multiplies another matrix, A, from the
left, GA, only rows i and j of A are affected. Thus we restrict attention
to the following problem. Given a and b, find c = cosθ and s = sinθ such
that [

c −s
s c

] [
a
b

]

=

[
r
0

]

.

Explicit calculation of θ is rarely necessary or desirable. Instead we
directly seek c , s, and r . An obvious solution would be

r =
√

a2 + b2 (8)

c = a/r (9)

s = −b/r . (10)
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Given’s Rotation to get upper Triangular matrix

Example

Given the following 3x3 Matrix, perform two iterations of the Given’s
Rotation to bring the matrix to an upper Triangular matrix.

A =





6 5 0
5 1 4
0 4 3





In order to form the desired matrix, we must zero elements (2,1) and
(3,2). We first select element (2,1) to zero. Using a rotation matrix of:

G1 =





c −s 0
s c 0
0 0 1
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Example

We have the following matrix multiplication:

A1 = G1 · A =





c −s 0
s c 0
0 0 1









6 5 0
5 1 4
0 4 3



 (11)

Here, a = 6, b = 5 and we can compute r , c , s as:

r =
√

62 + 52 = 7.8102

c = 6/r = 0.7682

s = −5/r = −0.6402

Plugging in (11) computed values for c and s and performing the matrix
multiplication (11) we get:

A1 =





7.8102 4.4813 2.5607
0 −2.4327 3.0729
0 4 3
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Example

We now want to zero element (3,2) to finish off the process. Using the
same idea as before, we have a rotation matrix of:

G2 =





1 0 0
0 c −s
0 s c





We have to do the following matrix multiplication:

A2 = G2 · A1 =





1 0 0
0 c −s
0 s c









7.8102 4.4813 2.5607
0 −2.4327 3.0729
0 4 3



 (12)

with a = −2.4327, b = 4. Thus, we can compute new r , c , s:

r =
√

(−2.4327)2 + 42 = 4.6817 (13)

c = −2.4327/r = −0.5196 (14)

s = −4/r = −0.8544 (15)
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Example

Plugging in (12) these values for c and s and performing the
multiplications gives us a new matrix:

R = A2 =





7.8102 4.4813 2.5607
0 4.6817 0.9664
0 0 −4.1843
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Calculating the QR decomposition

Example

This new matrix R is the upper triangular matrix needed to perform an
iteration of the QR decomposition. Q is now formed using the transpose
of the rotation matrices in the following manner:
Q = GT

1 G
T
2

We note that
G2G1A = R
GT
1 G

T
2 G2G1A = GT

1 GT
2 R

and thus
A = GT

1 G
T
2 R = QR

with
Q = GT

1 G
T
2 .

Performing this matrix multiplication yields:

Q =





0.7682 0.3327 0.5470
0.6402 −0.3992 −0.6564

0 0.8544 −0.5196
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Example

Obtain QR decomposition of the matrix A

A =





4 4 3
3 3 1
0 4 7





using Given’s rotation.
Hint: [

c −s
s c

] [
a
b

]

=

[
r
0

]

.

We directly seek c , s, and r :

r =
√

a2 + b2 (16)

c = a/r (17)

s = −b/r . (18)
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Example

To obtain QR decomposition of the matrix A

A =





4 4 3
3 3 1
0 4 7





using Given’s rotation we have to zero out (2, 1) and (3, 2) elements of
the matrix A.
1. First, we zero out element (2, 1) of the matrix A.
To do that we compute c , s from the known a = 4 and b = 3 as

[
c −s
s c

]

·
[
a
b

]

=

[
r
0

]

to get:

r =
√

a2 + b2 =
√

42 + 32 = 5,

c = a/r = 0.8,

s = −b/r = −0.6.
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Example

The first Given’s matrix will be

G1 =





c −s 0
s c 0
0 0 1





or

G1 =





0.8 0.6 0
−0.6 0.8 0
0 0 1





Then

G1 · A =





5 5 3
0 0 −1
0 4 7
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Example

2. Next step is to construct second Given’s matrix G2 in order to zero out
(3, 2) element of the matrix G1 · A.
To do that we compute c , s from the known a = 0 and b = 4 as

[
c −s
s c

]

·
[
a
b

]

=

[
r
0

]

to get formulas:

r =
√

a2 + b2 =
√

02 + 42 = 4,

c =
a

r
= 0,

s =
−b

r
= −1.
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Example

Thus, the second Given’s matrix will be

G2 =





1 0 0
0 c −s
0 s c





or

G2 =





1 0 0
0 0 1
0 −1 0
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Example

Then upper triangular matrix R in the QR decomposition will be

R = G2 · G1 · A =





5 5 3
0 4 7
0 0 1





Then A = GT
1 · GT

2 · R = QR will be QR decomposition of the matrix A
with Q = GT

1 · GT
2 given by

Q =





0.8 0 0.6
0.6 0 −0.8
0 1 0
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Example

We will construct a lower triangular matrix using Given’s rotation
from the matrix

A =





5 4 3
4 6 1
3 1 7



 .

53 / 77



Orthogonal matrices
Moore-Penrose pseudoinverse

Given’s matrix for j < k

function [G] = GivensMatrixLow(A, j,k)

a = A(k , k)
b = A(j , k)
r = sqrt(a2 + b2);
c = a/r ;
s = −b/r ;
G = eye(length(A));
G (j , j) = c ;
G (k , k) = c ;
G (j , k) = s;
G (k , j) = −s;
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>>G1up = GivensMatrixLow(A,2,3)

G1 =





1.000000000000000 0 0
0 0.989949493661166 −0.141421356237310
0 0.141421356237310 0.989949493661166





>> A1 =G1*A

A1 =





5.000000000000000 4.000000000000000 3.000000000000000
3.535533905932737 5.798275605729690 −0.000000000000000
3.535533905932738 1.838477631085023 7.071067811865475
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>>G2 = GivensMatrixLow(A1,1,3)

G2 =





0.920574617898323 0 −0.390566732942472
0 1.000000000000000 0

0.390566732942472 0 0.920574617898323





>> A2=G2*A1

A2 =





3.222011162644131 2.964250269632601 −0.000000000000000
3.535533905932737 5.798275605729690 −0.000000000000000
5.207556439232954 3.254722774520597 7.681145747868607
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>>G3 = GivensMatrixLow(A2,1,2)

G3 =





0.890391914715406 −0.455194725594918 0
0.455194725594918 0.890391914715406 0

0 0 1.000000000000000





>> A3=G3*A2

A3 =





1.259496302198541 0 −0.000000000000000
4.614653291088246 6.512048806713364 −0.000000000000000
5.207556439232954 3.254722774520597 7.681145747868607
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Rank-deficient Least Squares Problems

Proposition

Let A be m by n with m ≥ n and rank A = r < n. Then there is
an n − r dimensional set of vectors that minimize ||Ax − b||2.
Proof

Let Az = 0. Then of x minimizes ||Ax − b||2 then x + z also
minimizes ||A(x + z)− b||2.
This means that the least-squares solution is not unique.
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Moore-Penrose pseudoinverse for a full rank A

Definition

Suppose that A is m by n with m > n and has full rank with
A = QR = UΣV T being a QR and SVD decompositions of A,
respectively. Then

A+ ≡ (ATA)−1AT = R−1QT = VΣ−1UT

is called the Moore-Penrose pseudoinverse of A. If m < n then
A+ ≡ AT (AAT )−1.
The pseudoinverse of A allows write solution of the full-rank
overdetermined least squares problem as x = A+b. If A is square
and a full rank then this formula reduces to x = A−1b. The A+ is
computed as pinv(A) in Matlab.
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A+ ≡ (ATA)−1AT = ((QR)TQR)−1(QR)T = (RTQTQR)−1(QR)T

= (RTR)−1RTQT = R−1QT ;

A+ ≡ (ATA)−1AT = ((UΣV T )TUΣV T )−1 · (UΣV T )T

= (VΣUTUΣV T )−1VΣUT = (VΣ2V T )−1VΣUT = VΣ−1UT
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Moore-Penrose pseudoinverse for rank-deficient A

Definition

Suppose that A is m by n with m > n and is rank-deficient with
rank r < n. Let A = UΣV T = U1Σ1V

T
1 being a SVD

decompositions of A such that

A =[U1,U2]

[
Σ1 0

0 0

]

[V1,V2]
T = U1Σ1V

T
1

Here, size(Σ1) = r × r and is nonsingular, U1 and V1 have r
columns. Then

A+ ≡ V1Σ
−1
1 UT

1

is called the Moore-Penrose pseudoinverse for rank-deficient A.
The solution of the least-squares problem is always x = A+b, when
A is rank-deficient then x has minimum norm.
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The next proposition states that if A is nearly rank deficient then the
solution x of Ax = b will be ill-conditioned and very large.
Proposition

Let σmin > 0 is the smallest singular value of the nearly rank deficient A.
Then

1. If x minimizes ||Ax − b||2, then ||x ||2 ≥ |uT
n b|

σmin
where un is the last

column of U in SVD decomposition of A = UΣV T .

2. Changing b to b + δb can change x to x + δx where ||δx ||2 can

be estimated as ||δb||2
σmin

, or the solution is very ill-conditioned.

Proof

1: We have that for the case of full-rank matrix A the solution of Ax = b
is given by x = (UΣV T )−1b = VΣ−1UTb. The matrix A+ = VΣ−1UT

is Moore-Penrose pseodoinverse of A. Thus, we can write also this
solution as x = VΣ−1UTb = A+b.
Then taking norms from both sides of above expression we have:

||x ||2 = ||Σ−1UTb||2 ≥ |(Σ−1UTb)n| =
|uTn b|
σmin

, (19)

where |(Σ−1UTb)n| is the n-th column of this product.
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2. We apply now (19) for ‖x + δx‖ instead of ‖x‖ to get:

||x + δx ||2 = ||Σ−1UT (b + δb)||2 ≥ |(Σ−1UT (b + δb))n|

=
|uTn (b + δb)|

σmin

=
|uTn b + uTn δb|

σmin

.
(20)

We observe that
|uT

n b|
σmin

+
|uT

n δb|
σmin

≤ ||x + δx ||2 ≤ ||x ||2 + ||δx ||2.
Choosing δb parallel to un and applying again (19) for estimation of ‖x‖2
we have

||δx ||2 ≥
||δb||2
σmin

. (21)
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In the next proposition we prove that the minimum norm solution x is
unique and may be well-conditioned if the smallest nonzero singular value
is not too small.
Proposition

When A is exactly singular, then x that minimize ||Ax − b||2 can be
characterized as follows. Let A = UΣV T have rank r < n. Write svd of
A as

A =[U1,U2]

[
Σ1 0
0 0

]

[V1,V2]
T = U1Σ1V

T
1

Here, size(Σ1) = r × r and is nonsingular, U1 and V1 have r columns.
Let σ = σmin(Σ1).Then

1. All solutions x can be written as x = V1Σ
−1
1 UT

1 + V2z

2. The solution x has minimal norm ||x ||2 when z = 0. Then

x = V1Σ
−1
1 UT

1 and ||x ||2 ≤ ||b||2
σ

.

3. Changing b to b + δb can change x as ||δb||2
σ

.
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Proof
We choose the matrix Ũ such that [U, Ũ] = [U1,U2, Ũ] be an m ×m
orthogonal matrix. Then

||Ax − b||22 = ||[U1,U2, Ũ]T (Ax − b)||22

=

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣





UT
1

UT
2

ŨT



 (U1Σ1V
T
1 x − b)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

2

2

= ||[I r×r ,Om×(n−r), 0m×m−n]T (Σ1V
T
1 x − [U1,U2, Ũ]T · b)||22

= ||[Σ1V
T
1 x − UT

1 b;−UT
2 b;−ŨTb]T ||22

= ||Σ1V
T
1 x − UT

1 b||22 + ||UT
2 b||22 + ||ŨTb||22

1. Then ||Ax − b||2 is minimized when Σ1V
T
1 x − UT

1 b = 0. We can also
write that the vector x = (Σ1V

T
1 )−1UT

1 b + V2z or
x = V1Σ

−1
1 UT

1 b + V2z is also solution of this minimization problem,
because V T

1 V2z = 0 since columns of V1 and V2 are orthogonal.
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2. Since columns of V1 and V2 are orthogonal, then by Pythagorean
theorem we have that ‖x‖22 = ||V1Σ

−1
1 UT

1 b||2 + ||V2z ||2 which is
minimized for z = 0.
3. Changing b to δb in the expression above we have:

||V1Σ
−1
1 UT

1 δb||2 ≤ ‖V1Σ
−1
1 UT

1 ‖2 · ‖δb‖2 = ‖Σ−1
1 ‖2 · ‖δb‖2 =

||δb||2
σ

,

(22)
where σ is smallest nonzero singular value of A. In this proof we used
properties of the norm: ‖QAZ‖2 = ‖A‖2 if Q,Z are orthogonal.
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How to solve rank-deficient least squares problems using

QR decomposition with pivoting

QR decomposition with pivoting is cheaper but can be less accurate than
SVD technique for solution of rank-deficient least squares problems.
If A has a rank r < n with independent r columns QR decomposition can
look like that

A = QR = Q ·





R11 R12

0 0
0 0



 .

(23)

with nonzingular R11 is of the size r × r and R12 is of the size r × (n− r).
We can try to get

R =





R11 R12

0 R22

0 0



 , (24)

where elements of R22 are very small and are of the order ε‖A‖2.
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If we set R22 = 0 and choose [Q, Q̃] which is square and orthogonal then
we will minimize

‖Ax − b‖22 =
∥
∥
∥
∥

[
QT

Q̃T

]

(Ax − b)

∥
∥
∥
∥

2

2

=

∥
∥
∥
∥

[
QT

Q̃T

]

(QRx − b)

∥
∥
∥
∥

2

2

=

∥
∥
∥
∥

[
Rx - QTb

- Q̃T b

]∥
∥
∥
∥

2

2

= ‖Rx − QTb‖22 + ‖Q̃Tb‖22.

(25)

Here we again used properties of the norm: ‖QAZ‖2 = ‖A‖2 if Q,Z are
orthogonal.

68 / 77



Orthogonal matrices
Moore-Penrose pseudoinverse

Let us now decompose Q = [Q1,Q2] with x = [x1, x2]
T and

R =

[
R11 R12

0 0

]

(26)

such that equation (25) becomes

‖Ax − b‖22 =
∥
∥
∥
∥

[
R11 R12

0 0

]

·
[

x1
x2

]

−
[

QT
1 b

QT
2 b

]∥
∥
∥
∥

2

2

+ ‖Q̃Tb‖22

= ‖R11x1 + R12x2 − QT
1 b‖22 + ‖QT

2 b‖22 + ‖Q̃Tb‖22.
(27)

We take now derivative with respect to x to get (‖Ax − b‖22)′x = 0. We
see that minimum is achieved when

x =

[
R−1
11 (Q

T
1 b − R12x2)
x2

]

(28)

for any vector x2. If R11 is well-conditioned and R−1
11 R12 is small than the

choice x2 = 0 will be good one.
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The described method is not reliable for all rank-deficient least squares
problems. This is because R can be nearly rank deficient for the case
when no R22 is small. In this case can help QR decomposition with
column pivoting: we factorize AP = QR with permutation matrix P . To
compute this permutation we do as follows:
1. In all columns from 1 to n at step i we select from the unfinished
decomposition of part A in columns i to n and rows i to m the column
with largest norm and exchange it with i-th column.
2. Then compute usual Householder transformation to zero out column i
in entries i + 1 to m.
Recent research is devoted to more advanced algorithms called
rank-revealing QR algorithms which detects rank more faster and more
efficient.
C. Bischof, Incremental condition estimation, SIAM J.Matrix Anal.Appl.,
11:312-322, 1990.
T.Chan, Rank revealing QR factorizations, Linear Algebra Applications,
88/89:67-82, 1987.
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Nonsymmetric eigenvalue problems

The algorithms for the eigenproblem can be divided into two groups:
direct methods and iterative methods.

We will consider only direct methods for computation of all
eigenvalues and possibly, all eigenvectors (not iterative). However,
we will still iterate. Typically used on dense matrices. Direct - since
the method never fails to converge.

Main direct method is QR iteration. No global convergence proof
for this method.

Iterative methods are applied to sparse matrices.

Algorithms will involve transforming the matrix A into canonical
forms. From these forms is easy to compute eigenvalues.

71 / 77



Orthogonal matrices
Moore-Penrose pseudoinverse

Canonical Forms

DEFINITION. The polynomial p(λ) = det(A− λI ) is called the
characteristic polynomial of A. The roots of p(λ) = 0 are the
eigenvalues of A.
Since the degree of the characteristic polynomial p(λ) equals n, the
dimension of A, it has n roots, so A has n eigenvalues.

DEFINITION. A nonzero vector x satisfying Ax = λx is a (right)
eigenvector for the eigenvalue λ. A nonzero vector y such that
y∗A = λy∗ is a left eigenvector. (Recall that y∗ = (ȳ)T is the conjugate
transpose of y .)
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DEFINITION. Let S be any nonsingular matrix. Then A and B = S−1AS
are called similar matrices, and S is a similarity transformation.
PROPOSITION. Let B = S−1AS , so A and B are similar. Then A and B
have the same eigenvalues, and x (or y) is a right (or left) eigenvector of
A if and only if S−1x (or S∗y) is a right (or left) eigenvector of B .

Proof. Using the fact that det(X · Y ) = det(X ) · det(Y ) for any square
matrices X and Y , we can write

det(A− λI ) = det(S−1(A− λI )S) = det(B − λI ).

So A and B have the same characteristic polynomials. Ax = λx holds if
and only if S−1AS

︸ ︷︷ ︸

B

S−1x
︸ ︷︷ ︸

x∗

= λ S−1x
︸ ︷︷ ︸

x∗

or B(S−1x) = λ(S−1x). Similarly,

y∗A = λy∗ if and only if y∗SS−1AS = λy∗S or (S∗y)∗B = λ(S∗y)∗. �
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THEOREM. Jordan canonical form. Given A, there exists a nonsingular S
such that S−1AS = J, where J is in Jordan canonical form. This means
that J is block diagonal, with J = diag(Jn1(λ1), Jn2(λ2), . . . , Jnk (λk)) and

Jni (λi ) =









λi 1 0
. . .

. . .

. . . 1
0 λi









ni×ni

.

J is unique, up to permutations of its diagonal blocks.

For a proof of this theorem, see a book on linear algebra such as
[F. Gantmacher. The Theory of Matrices, vol. II (translation). Chelsea,
New York, 1959] or [P. Halmos. Finite Dimensional Vector Spaces. Van
Nostrand, New York, 1958].
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Each Jm(λ) is called a Jordan block with eigenvalue λ of algebraic
multiplicity m.

If some ni = 1, and λi is an eigenvalue of only that one Jordan
block, then λi is called a simple eigenvalue.

If all ni = 1, so that J is diagonal, A is called diagonalizable;
otherwise it is called defective.

An n-by-n defective matrix does not have n eigenvectors. Although
defective matrices are ”rare” in a certain well-defined sense, the fact
that some matrices do not have n eigenvectors is a fundamental fact
confronting anyone designing algorithms to compute eigenvectors
and eigenvalues.

Symmetric matrices are never defective.
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PROPOSITION.

A Jordan block has one right eigenvector, e1 = [1, 0, . . . , 0]T , and
one left eigenvector, en = [0, . . . , 0, 1]T .

Therefore, a matrix has n eigenvectors matching its n eigenvalues if
and only if it is diagonalizable.

In this case, S−1AS = diag(λi ). This is equivalent to
AS = S diag(λi ), so the i-th column of S is a right eigenvector for
λi .

It is also equivalent to S−1A = diag(λi )S
−1 , so the conjugate

transpose of the ith row of S−1 is a left eigenvector for λi .

If all n eigenvalues of a matrix A are distinct, then A is
diagonalizable.
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Proof. Let J = Jm(λ) for ease of notation. It is easy to see Je1 = λe1
and eTn J = λeTn , so e1 and en are right and left eigenvectors of J,
respectively. To see that J has only one right eigenvector (up to scalar
multiples), note that any eigenvector x must satisfy (J − λI )x = 0, so x
is in the null space of

J − λI =









0 1
. . .

. . .

. . . 1
0









.

But the null space of J − λI is clearly span(e1), so there is just one
eigenvector. If all eigenvalues of A are distinct, then all its Jordan blocks
must be 1-by-1, so J = diag(λ1, . . . , λn) is diagonal. �
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