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Globally convergent method

A numerical method X is globally convergent if:

1. A theorem is proved claiming convergence to a good approximation

for the correct solution regardless on a priori availability of a good

guess

2. This theorem is confirmed by numerical experiments for at least one

applied problem
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Challenges in solution of CIP

• Solution of any PDE depends nonlinearly on its coefficients.

y′ − ay = 0 → y (a, t) = Ceat.

• Any coefficient inverse problem is nonlinear.

• Two major challenges in numerical solution of any coefficient inverse

problem: NONLINEARITY and Ill-POSEDNESS.

• Local minima of objective functionals.

• Locally convergent methods: linearizaton, Newton-like and

gradient-like methods.
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A hyperbolic equation

c (x)utt = ∆u− a(x)u in Rn × (0,∞) , n = 2, 3,

u (x, 0) = 0, ut (x, 0) = δ (x− x0) .

INVERSE PROBLEM. Let Ω ⊂ Rn be a bounded domain. Let one of

coefficientsc (x) or a(x) be unknown inΩ but it is a given constant

outside ofΩ. Determine this coefficient inΩ, given the functiong (x, t) ,

u (x, t) = g (x, t) , x ∈ ∂Ω, t ∈ (0,∞)

Similarly for the parabolic equation

c (x) ũt = ∆ũ− a(x)ũ in Rn × (0,∞) ,

ũ (x, 0) = δ (x− x0) .
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Applications

1. MEDICINE

a. medical optical imaging;

b. acoustic imaging.

2. MILITARY

a. identification of hidden targets, like, e.g. landmines; improvised

explosive devices via electric or acoustic sensing.

b. detecting targets covered by smog or flames on the battlefield (via

diffuse optics).
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Laplace transform:

w(x, s) =

∞∫

0

u(x, t)e−stdt =

∞∫

0

ũ(x, t)e−s
2tdt

∆w −
[
s2c (x) + a(x)

]
w = −δ (x− x0) , (1)

∀s > s0 = const. > 0.

lim
|x|→∞

w(x, s) = 0, ∀s > s0 = const. > 0. (2)

w(x, s) > 0, ∀s > s0.
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THE TRANSFORMATION PROCEDURE.

First, we eliminate the unknown coefficient from the equation:

v = lnw.

∆v + |∇v|2 = s2c (x) + a(x) in Ω,

• Let, for examplec(x) =? For simplicity leta(x) = 0. It follows from
works of V.G. Romanov that

Dα
xD

β
s (v) = Dα

xD
β
s

[
−sl (x, x0)

g (x, x0)

(
1 +O

(
1

s

))]
, s→ ∞.

• Introduce a new function
ṽ =

v

s2

. Then

ṽ (x, s) = O

(
1

s

)
, s→ ∞.
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• Eliminate the unknown coefficientc (x) via the differentiation:

∂sc(x) ≡ 0

q (x, s) = ∂sṽ (x, s) ,

ṽ (x, s) = −
∞∫

s

q (x, τ) dτ ≈ −
s∫

s

q (x, τ) dτ + V (x, s) .

• V (x, s) is the tail function,V (x, s) ≈ 0. But still we iterate with

respect to the tail.

• This truncation is similar to the truncation of high frequencies.
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• Obtain Dirichlet boundary value problem for the nonlinear equation

∆q − 2s2∇q ·
s∫

s

∇q (x, τ) dτ + 2s




s∫

s

∇q (x, τ) dτ




2

(3)

+2s2∇q∇V − 2s∇V ·
s∫

s

∇q (x, τ) dτ + 2s (∇V )
2

= 0,

q (x, s) = ψ (x, s) , ∀ (x, s) ∈ ∂Ω × [s, s] . (4)

• Backwards calculations

c (x) = ∆ṽ + s2 (∇ṽ)2 ,
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How To Solve the Problem (3), (4)?

• Layer stripping with respect to the pseudo frequencys.

• On each step the Dirichlet boundary value problem is solved for an

elliptic equation.

s = sN < sN−1 < ... < s1 < s0 = s, si−1 − si = h

q (x, s) = qn (x) for s ∈ (sn, sn−1] .

s∫

s

∇q (x, τ) dτ = (sn−1 − s)∇qn (x) + h

n−1∑

j=1

∇qj (x) , s ∈ (sn, sn−1] .

• Dirichlet boundary condition:

qn (x) = ψn (x) , x ∈ ∂Ω,
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ψn (x) =
1

h

sn−1∫

sn

ψ (x, s) ds.
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Hence,

L̃n (qn) := ∆qn − 2
(
s2 − 2s (sn−1 − s)

)

h

n−1∑

j=1

∇qj (x)


 · ∇qn

+2
(
s2 − 2s (sn−1 − s)

)
∇qn · ∇V (x, s) − εqn

= 2 (sn−1 − s)
[
s2 − s (sn−1 − s)

]
(∇qn)2 − 2sh2



n−1∑

j=1

∇qj (x)




2

+4s∇V (x, s) ·


h

n−1∑

j=1

∇qj (x)


− 2s [∇V (x, s)]

2
, s ∈ (sn−1, sn]

Introduce thes-dependent Carleman Weight FunctionCnµ (s) by

Cnµ (s) = exp [µ (s− sn−1)] , s ∈ (sn, sn−1] ,

whereµ >> 1 is a parameter.
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• Multiply the equation byCnµ (s) and integrate with respect tos ∈
[sn, sn−1] .

Ln (qn) := ∆qn −A1n (µ, h)

(
h

n−1∑

i=1

∇qi (x)
)

· ∇qn − εqn

= 2
I1n (µ, h)

I0 (µ, h)
(∇qn)2 −A2n (µ, h)h2

(
n−1∑

i=1

∇qi (x)
)2

+2A1n (µ, h)∇V (x, s) ·
(
h

n−1∑

i=1

∇qi (x)
)

−A2n (µ, h)∇qn · ∇V (x, s) − A2n (µ, h) [∇V (x, s)]
2
,

where

I0 (µ, h) =

sn−1∫

sn

Cnµ (s) ds =
1 − e−µh

µ
,
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I1n (µ, h) =

sn−1∫

sn

(sn−1 − s)
[
s2 − s (sn−1 − s)

]
Cnµ (s) ds,

A1n (µ, h) =
2

I0 (µ, h)

sn−1∫

sn

(
s2 − 2s (sn−1 − s)

)
Cnµ (s) ds,

A2n (µ, h) =
2

I0 (µ, h)

sn−1∫

sn

sCnµ (s) ds.

• Important observation:

|I1n (µ, h)|
I0 (µ, h)

≤ 4s̄2

µ
, for µh > 1.
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• Iterative solution for everyqn

∆qink −A1n


h

n−1∑

j=1

∇qj


 · ∇qink − εqink +A1n∇qink · ∇V in =

2
I1n (µ, h)

I0 (µ, h)

(
∇qin(k−1)

)2

−A2nh
2



n−1∑

j=1

∇qj (x)




2

+2A2n∇V in ·


h

n−1∑

j=1

∇qj (x)


−A2n

(
∇V in

)2
, k ≥ 1,

qink (x) = ψn (x) , x ∈ ∂Ω

• Hence, we obtain the function

qin = lim
k→∞

qink, in C2+α
(
Ω
)
.
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CONVERGENCE THEOREM.

• First, Schauder Theorem. Consider the Dirichlet boundary value

problem

∆u+
3∑

j=1

bj(x)uxj
−m(x)u = f (x) , x ∈ Ω,

u |∂Ω= g (x) ∈ C2+α (∂Ω) .

Let

bj ,m, f ∈ Cα
(
Ω
)
, d (x) ≥ 0; max

(
|bj |α , |m|α

)
≤ 1,

Then

|u|2+α ≤ K
[
‖g‖C2+α(∂Ω) + |f |α

]
,

whereK = K (Ω) = const. ≥ 1.
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Global Convergence Theorem. Let Ω ⊂ R3 be a convex bounded

domain with the boundary∂Ω ∈ C3. Let the exact coefficient

c∗ (x) ∈ C2(R3), c∗ ∈ [2d1, 2d2] and c∗ (x) = 2d1 for x ∈ R3�Ω,

where numbersd1, d2 > 0 are given. For any functionc (x) ∈ Cα
(
R3
)

such thatc (x) ≥ d1 in Ω andc (x) = 2d1 in R3�Ω consider the solution

uc(x, t) of the original Cauchy problem. LetC∗ = const. ≥ 1 be a

constant bounding certaon functions associated with the solution of this

Cauchy problem. Letwc (x, s) ∈ C3
(
R3� {|x− x0| < γ}

)
, ∀γ > 0 be

the Laplace transform ofuc(x, t) and

Vc (x) = s−2 lnwc (x, s) ∈ C2+α
(
Ω
)

be the corresponding tail function.

Suppose that the cut-off pseudo frequencys is so large that for any such

functionc (x) the following estimates hold

|V ∗|2+α ≤ ξ, |Vc|2+α ≤ ξ,

whereξ ∈ (0, 1) is a sufficiently small number.
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Let V1,1 (x, s) ∈ C2+α
(
Ω
)

be the initial tail function and let

|V1,1|2+α ≤ ξ.

Denoteη := 2 (h+ σ + ξ + ε) . LetN ≤ N be the total number of

functionsqn calculated by the algorithm of section 5. Suppose that the

numberN = N (h) is connected with the step sizeh viaN (h)h = β,

where the constantβ > 0 is independent onh. Letβ be so small that

β ≤ 1

384KC∗s2
.

In addition, let the numberη and the parameterµ of the CWF satisfy the

following estimates

η ≤ η0 (K,C∗, d1, s) = min

(
1

16KM∗
,
3

8
d1

)
= min

(
1

256KC∗s2
,
3

8
d1

)
,

µ ≥ µ0 (C∗, K, s, η) = max

(
(C∗)2

4
, 48KC∗s2,

1

η2

)
.
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Then for each appropriaten the sequence
{
qkn,1

}∞
k=1

converges in

C2+α
(
Ω
)

and the following estimates hold

|qn − q∗n|2+α ≤ 2KM∗

(
1√
µ

+ 3η

)
, n ∈

[
1, N

]
,

|qn|2+α ≤ 2C∗, n ∈
[
1, N

]
,

|cn − c∗|α ≤ η

2 · 9n−1
+

23

8
η, n ∈

[
2, N

]
. (5)

In addition, functionscn,k (x) ≥ d1 in Ω andcn,k (x) = 2d1 outside of

Ω.
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Brief Outline of the Proof

q̃kn,1 = qkn,1 − q∗n, q̃n,i = qn,i − q∗n,

Ṽn,k = Vn,k − V ∗, c̃n,k = cn,k − c∗, ψ̃n = ψn − ψ
∗

n

H̃n,i (x) = Hn,i (x) −H∗ (x, sn) , H̃n (x) = Hn (x) −H∗ (x, sn) ,

Sequentially estimate norms
∣∣q̃kn,1

∣∣
2+α

,|q̃n,i|2+α from the above using
Schauder theorem. Subtracting the equation forq∗1 from the equation for
qk1,1, we obtain forx ∈ Ω

∆q̃k1,1 − εq̃k1,1 +A1,1∇V1,1∇q̃k1,1 = 2
I1,1

I0
∇q̃k−1

1,1

(
∇qk−1

1,1 + ∇q∗1
)

−A1,1∇Ṽ1,1∇q∗1 −A2,1∇Ṽ1,1 (∇V1,1 + ∇V ∗) + εq∗1 − F1,

q̃11,1 (x) = ψ̃1 (x) , x ∈ ∂Ω.
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∣∣∣∣2
I1,1

I0

∣∣∣∣ ≤
C

µ
<< 1.

• Thus the term responsible for the nonlinearity is small.
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WHY THE FINITE ELEMENT ADAPTIVE METHOD SHOULD BE NEXT?

|cn − c∗|α ≤ η

2 · 9n−1
+

23

8
η, n ∈

[
2, N

]
. (5)

• The estimate (5) is typical for ill-posed problems.

• (5) tells us that our globally convergent numerical method can be

categorized as the so-called “stabilizing method”.

• The notion of stabilizing numerical methods was introducedin the field

of ill-posed problems by one of classics Dr. Anatoly B. Bakushinskii

(Moscow, Russia) inComputational Mathematics and Mathematical

Physics, 1998, 2000.
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• A numerical method for an ill-posed problem is calledstabilizingif

limn→∞ ‖xn − x∗‖ = O (σ + ∆) ,

whereσ > 0 is an error in the data and∆ > 0 is a parameter which can

be chosen small in a ”smart” choice.

• In our case∆ = h+ ξ

• As soon as the procedure (5) is stabilized, we have a good

approximationcN for the exact solutionc∗.

• Thus, on the FIRST globally convergent stage of our procedure we got a

good first guess for the solution.

23



IDEA:

• Use a locally convergent numerical method on the SECOND stage.

• This method should be independent on the parameter∆ = h+ ξ.

• This method should take the the functioncN as the first guess.

• We have chosen Finite Element Adaptive Method for the secondstage.
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Two step procedure.

STEP 1. To get the first approximation using the globally convergent

method.

The first approximation is exactly what a locally convergentmethod

needs.

STEP 2. To use the adaptivity technique to improve the first

approximation.

The solution taken from the globally convergent method would be a first

guess.

The adaptivity does not depend on the tail.
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THE ADAPTIVITY AS THE SECOND STAGE

OF THE 2-STAGE GLOBALLY CONVERGENT PROCEDURE

DenoteQT = Ω × (0, T ) , ST = ∂Ω × (0, T ) .

• Functional spaces

H2
u (QT ) = {f ∈ H2(QT ) : f(x, 0) = ft(x, 0) = 0},

H1
u(QT ) = {f ∈ H1(QT ) : f(x, 0) = 0},

H2
ϕ(QT ) = {f ∈ H2(QT ) : f(x, T ) = ft(x, T ) = 0},

H1
ϕ(QT ) = {f ∈ H1(QT ) : f(x, T ) = 0},

U = H2
u(QT ) ×H2

ϕ(QT ) × C2(Ω),

U = H1
u(QT ) ×H1

ϕ(QT ) × L2(Ω),

U
1

= L2 (QT ) × L2 (QT ) × L2 (Ω) .
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• Finite dimensional subspaces of finite elements

W u
h ⊂ H1

u (QT ) ,Wϕ
h ⊂ H1

ϕ (QT ) , Vh ⊂ L2 (Ω) ,

Uh ⊂ U,Uh = W u
h ×W

ϕ
h × Vh.

• Since all norms in finite dimensional spaces are equivalent,set for

convenience‖·‖Uh
:= ‖·‖

U
1 .

• Tikhonov regularization functional:

E(c) =
1

2

∫

ST

(u |ST
− g(x, t))2dσdt+

1

2
γ

∫

Ω

(c− cglob)
2 dx.

• cglob is the solution obtained on the globally convergent stage.

• γ ∈ (0, 1) is the regularization parameter.
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• To calculate the Frechet derivative ofE(c), introduce the Lagrangian.

• To be 100% rigorous, we need to assume in the Lagrangian that

variations of state and adjoint operators actually depend on c and depend

on each other. This would make things more complicated. We currently

are working on this extension.

• However, to simplify things, we assume in this presentationthat these

functions are mutually independent. In particular, we assume that

E(c) := E(u, c), where functionsu andc can be varied independently on

each other.

• Many authors also use this kind of assumption.
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• Given the datag = u |ST
for the inverse problem, one can uniquely

determine the normal derivativep (x, t) ,

∂u

∂n
|ST

= p (x, t) .

Let v = (c, u, ϕ) . Then we define the Lagrangian as

L(v) = E(u, c) +

∫

QT

ϕ · (cutt − ∆u) dxdt, ∀ϕ ∈ H2
ϕ (QT ) .

Clearly

L(v) = E(u, c).

The integration by parts leads to

L(v) = E(u, c) −
∫

QT

c(x)utϕtdxdt+

∫

QT

∇u∇ϕdxdt−
∫

ST

pϕdSdt.
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We search for a stationary point of the functionalL(v), v ∈ U satisfying

L′(v) (v) = 0, ∀v̄ = (ū, ϕ̄, c̄) ∈ U

whereL′(v)(·) is the Frechet derivative ofL at the pointv.

L′(v) (v) =

∫

Ω

c̄


γ (c− c0) −

T∫

0

utϕtdt


 dx−

∫

QT

c(x) (ϕtut + utϕt) dxdt

+

∫

QT

(∇u∇ϕ+ ∇u∇ϕ) −
∫

ST

pϕdσdt+

∫

ST

(u|ST
− g) udσdt = 0,

∀v̄ = (u, ϕ, c) ∈ U.
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Integration by parts leads to

L′(v) (v) =

∫

Ω

c̄


γ (c− c0) −

T∫

0

utϕtdt


 dx+

∫

QT

ϕ̄ (cutt − ∆u) dxdt

+

∫

QT

ū (cϕtt − ∆ϕ) dxdt+

∫

ST

ϕ̄ [∂nu− p] dσdt

+

∫

ST

((u|ST
− g) + ∂nϕ) udσdt,

∀v̄ = (u, ϕ, c) ∈ U.
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We obtain for the minimizerv = (c, u, ϕ) :

• The state problem is:

cutt −△u = 0, (x, t) ∈ QT ,

u(x, 0) = ut(x, 0) = 0,

∂nu |ST
= p (x, t) .

• The adjoint problem, which should be solved backwards in time, is:

cϕtt −△ϕ = 0, (x, t) ∈ QT ,

ϕ(x, T ) = ϕt(x, T ) = 0,

∂ϕ

∂n
|ST

= (g − u) (x, t) , (x, t) ∈ ST .
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And the gradient with respect to the unknown coefficient c should be
equal to zero:

γ(c− cglob) −
∫ T

0

utϕt dt = 0, x ∈ Ω. (6)

How to Find the Minimizer Which Would Approximately Guarantee
(6)?

• We solve (6) iteratively.

• Let un = u (x, t, cn) , ϕn = ϕ (x, t, cn) be solutions of state and adjoint
problems withc := cn.

• Set
c0 := cglob,

cn =
1

γ

∫ T

0

∂tun−1 · ∂tϕn−1 dt+ cglob, x ∈ Ω.

• We have computationally observed convergence of this procedure in
terms of a stabilizing procedure introduced above
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A POSTERIORI ERROR ESTIMATE FOR THE LAGRANGIAN

• Let v ∈ U andvh ∈ Uh be the local minimizers ofL on the spacesU

andUh respectively (recall thatUh ⊂ U as a set),

‖v − v∗‖U , ‖vh − v∗‖U ≤ δ << 1,

wherev∗ is the exact solution of our inverse problem.

• We assume that such local minimizersv, vh exist

• For any vectorw ∈ U
1

letwIh be the interpolant ofw via finite elements

of Uh.

• Using the Galerkin orthogonality with the splitting

v − vh = (v − vIh) + (vIh − vh), we obtain the following error

representation:

L(v) − L(vh) ≈ L′ (vh) (v − vIh),
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involving the residualL′(vh)(·) with v − vIh appearing as the
interpolation error.

• It turns out that an approximate error estimate from the above for the
Lagrangian is

|L(v) − L(vh)| ≈
∣∣L′ (vh) (v − vIh)

∣∣

≤ V (Ω) max |[ch]| ·


γmax

Ω
|c− cglob| +

T∫

0

max
Ω

|uht| |ϕht| dt


 . (7)

• Thus, we refine the mesh in regions where

γ |c− cglob| (x) +

T∫

0

|uht| |ϕht| (x, t) dt

≥ β


γmax

Ω
|c− cglob| +

T∫

0

max
Ω

|uht| |ϕht| dt


 ,
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whereβ = const. ∈ (0, 1) is a parameter which we choose in

computational experiments.

• We have chosen in our computations:

β =





0.1 on the coarse mesh,

0.2 on first two refinements,

0.6 on the refinementn ≥ 3.




.
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A POSTERIORI ERROR ESTIMATE FOR THE UNKNOWN COEFFICIENT

• In a paper

L. Beilina and C. Johnson “ A posteriori error estimation in

computational inverse scattering”,Math. Models and Methods in Applied

Sciences, V. 15, pp. 23-37, 2005.

a posteriori error estimate for the unknown coefficient in the adaptivity

was introduced.

• This estimate was based on the so-called “error estimator”,which was

denoted asψ (x) .

• The meaning ofψ (x) was not explained analytically and we are

unaware about other references where this meaning would be explained

for inverse problems.

• We provide this explanation below.
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• Let ((·, ·)) be the inner product inU
1
.

• LetL′′ (vh) (v, ṽ) be the Hessian, i.e., the second Frechet derivative of

the LagrangianL, at the pointvh, wherevh is the local minimizer ofL on

the spaceUh.

• Consider solutioñv of the following so-called “Hessian problem”

−L′′ (vh) (v, ṽ) = ((ψ, v)) , ∀v ∈ Uh.

• ψ ∈ U is a function of our choice.

• Suppose that for anyψ ∈ U there exists such a solutioñv = ṽψ ∈ U

that‖ṽψ − v∗‖U ≤ δ.
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• Then

((ψ, v − vh)) = −L′′(vh)(v − vh, ṽψ)

= −L′(v)(ṽψ) + L′(vh)(ṽψ) +R = L′ (vh)(ṽψ) +R,

whereR ≈ 0 is the reminder term, which is of the second order of

smallness with respect to‖v − vh‖U . Thus, we ignoreR.

• Splitting: ṽψ = ṽIψ +
(
ṽψ − ṽIψ

)
, L′ (vh)

(
ṽIψ

)
= 0.

• Thus, we have obtained the following analog of a posteriori error

estimate for the error in the Lagrangian

((ψ, v − vh)) ≈ L′(vh)(ṽψ − ṽIψh). (8)

• We conclude, that the concrete form of the estimate (8) is thesame as

one for the LagrangianL(v) with only v − vIh replaced with̃vψ − ṽIψh.

39



• Let {ψk}Mk=1 ⊂ Uh be an orthonormal basis in the finite dimensional
spaceUh.

• Let Ph : U
1 → Uh be the operator of the orthogonal projection of the

spaceŪ1 on the subspaceUh. Represent̄U1 = Uh +G, where the
subspaceG is orthogonal toUh. We have
v − vh = (Phv − vh) + (v − Phv) , wherev − Phv ∈ G and
Phv − vh ∈ Uh. Therefore ((ψk, v − Phv)) = 0.

• Hence, numbers((ψk, v − vh)) = ((ψk, Phv − vh)) are Fourier
coefficients of the vector function with respect to the orthonormal basis
{ψk}Mk=1 in the spaceUh. Thus,

[Phv − vh]
2

=
M∑

k=1

|((ψk, v − vh))|2 ≤
M∑

k=1

∣∣L′(vh)(ṽψk
− ṽIψkh

)
∣∣2 ,

[Phv − vh] ≤
(

M∑

k=1

∣∣L′(vh)(ṽψk
− ṽIψkh

)
∣∣2
)1/2

.
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• In summary, estimates
∣∣∣L′(vh)(ṽψk

− ṽIψkh
)
∣∣∣ from the above for all

k = 1, ...,M would provide us with an estimate of the difference between

theU
1
-projection (i.e.,L2−like projection) of our target minimizer of the

Lagrangian on the subspace of finite elements and the minimizer of this

Lagrangian on the subspaceUh, which will be found in computations.

• Thus, assuming the existence of the solution of the Hessian problem,

and using (7), we obtain the following approximate error estimate for the

unknown coefficient

‖Phc− ch‖ ≤MCV (Ω) max |[c̃h]|·


γmax

Ω
|c− cglob| +

T∫

0

max
Ω

|uht| |ϕht| dt


 .
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A globally convergent numerical method and adaptivity in 2-d

(a)G = GFEM ∪GFDM (b)GFEM = Ω

Figure 1:

1-a. The forward problem forc(x)utt = ∆u, c (x) ≥ const. > 0 is solved in the bigger rectangle to
generate the boundary data for the inverse problem. The datafor the inverse problem are generated at the
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boundary of the smaller square. 1-b. The correct image. The unknown coefficientc(x) = 1 in the
background andc(x) = 4 in two inclusions. A priori knowledge of neither backgroundnor inclusions
nor values of the unknown coefficientc(x) is not assumed and the coefficientc(x) is the target of
solution by the globally convergent numerical method. Applications: Imaging of antipersonnel land
mines in which casec(x) := ε (x) , the spatially distributed dielectric permittivity; also acoustical
imaging of land mines, in which case1/

p

c(x) is the speed of sound.
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Forward problem solution
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t = 0.5 t = 3.7 t = 5.9 t = 6.9

t = 7.5 t = 8.5 t = 9.6 t = 11.2

Figure 2: Isosurfaces of the simulated exact solution to theforward prob-

lem with a plane wave initialized at the top boundary.
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a) c9,2 b) c10,2 c) c11,2 d) c12,2

Figure 3:Spatial distribution ofch after computingqn,k;n = 9, 10, 11, 12, wheren is number of
the computed functionq for the case of Fig. 1b. We have incorporated 5% random noise in the data. While
values of the unknown coefficientc(x) are correctly reconstructed both inside and outside inclusions,
locations of inclusions need to be enhanced. Thus, using ourglobally convergent method, we got a good
first approximation for the solution of the inverse problem.And now we need to enhance it using a locally
convergent adaptivity technique. The resulting method is atwo-stage procedure: global convergence on
the first stage and a more detailed enhancement on the second.
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a) 4608 el. b) 5340 el. c) 6356 el. d) 10058 el. e) 14586 el.

f)4608 el. g) 5340 el. h) 6356 el. i) 10058 el. j) 14586 el.

Figure 4:

Adaptively refined computational meshes: withσ = 5% - on a),b),c),d),e), and correspondingly spatial
distribution of the parameterch: with σ = 5% - on f),g),h),i),j) when the first guess was taken from the
globally convergent numerical method (Fig. 3). Upper figures represent refined meshes and lower figures
represent corresponding images. The final image (j) displays correctly located inclusions and the function
c both inside and outside of them.
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A globally convergent numerical method and adaptivity in 3-d

(a)G = GFEM ∪GFDM (b)GFEM = Ω

Figure 5:

The forward problem is solved in the larger rectangular prizm depicted on Fig. 5a. The plane wave is
falling from the top.
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A globally convergent numerical method in 3-d

Figure 6:

The image of Fig. 6 reconstructed by the globally convergentnumerical method. This image corresponds
to the functionq12 in the globally convergent method. The maximal computed value of the coefficient
c(x) = 3.66 inside of inclusions depicted here andc (x) = 1 outside. Recall that correct values are
c (x) = 4 inside of inclusions andc (x) = 1 outside. Both locations of inclusions and values of the
unknown coefficientc (x) inside of them need to be enhanced by the adaptivity technique.
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it. n i=1 i=2 i=3

1 0.0522995 0.0522995

2 0.0523043 0.0521772

3 0.0535235 0.053353

4 0.0516891 0.0556757

5 0.0467661 0.091598

6 0.0466467 0.0440336 0.0464053

Table 1: Test 1. ComputedL2 norms of theFn,i =||qn,i|∂Ω − ψn||L2(∂Ω)

with µ = 100.
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it. n i=1 i=2 i=3

7 0.0486575 0.0657632

8 0.0631762 0.0892608

9 0.0852419 0.111969

10 0.0914603 0.106285

11 0.090428 0.104433

12 0.11104 0.133783

Table 2: Test 1. ComputedL2 norms of theFn,i =||qn,i|∂Ω − ψn||L2(∂Ω)

with µ = 100.

Conclusion: we should stop atn ≤ 7, because norms start to grow at

n=8. This is one of the key ideas of the stopping criterion forstablizing

algorithms in ill-posed problems.
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Adaptivity in 3-d

Since the adaptivity is a locally convergent numerical method, we take the

starting point on the coarse mesh from the results of Test 1 ofthe globally

convergent method and with the plane wave initialized at thetop

boundary of the computational domainG. More precisely, we present two

set of tests where the starting point for the coefficientc(x) in the adaptive

algorithm on the coarse mesh isc4,2, andc7,2, correspondingly.

At the boundary datag = u |∂Ω we use three noise levels:0%, 3%, and

5% correspondingly. In all tests letΓ be the side of the cubeΩ, opposite

to the side from which the plane wave is launched andΓT = Γ × (0, T ) .
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Test 1.

c4,2 ≈ 1.2

Figure 7:

The starting point for the coefficientc(x) in the adaptive algorithm.
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σ = 3%
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a)xy-projection b)zx-projection c)zy-projection d)c ≈ 1.3

e)xy-projection f)zx-projection g)zy-projection h)c ≈ 1.7

i) xy-projection j)zx-projection k)zy-projection l)c ≈ 3.7

Figure 8:
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σ = 5%
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a)xy-projection b)zx-projection c)zy-projection d)c ≈ 1.5

e)xy-projection f)zx-projection g)zy-projection h)c ≈ 1.62

i) xy-projection j)zx-projection k)zy-projection l)c ≈ 4.0

Figure 9:
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Mesh σ = 3% q.N.it. CPU time (s) min CPU time/node (s)

9375 0.030811 3 26.2 0.0028

10564 0.029154 3 29.08 0.0028

12001 0.035018 3 32.91 0.0027

16598 0.034 8 46.49 0.0028

Mesh σ = 5% q.N.it. CPU time (s) min CPU time/node (s)

9375 0.0345013 3 26.53 0.0028

10600 0.0324908 3 29.78 0.0028

12370 0.03923 2 34.88 0.0028

19821 0.0277991 8 53.12 0.0027

Table 3: Test 2.2:||u |ΓT
−g||L2(ΓT ) on adaptively refined meshes with

different noise levelσ in data.
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Test2

c7,2 ≈ 1.8

Figure 10:

The starting point for the coefficientc(x) in the adapt. algorithm.
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σ = 0% σ = 3% σ = 5%

a) 9375 nodes b) 9375 nodes c) 9375 nodes

d) 9583 nodes e) 9569 nodes f) 9555 nodes

Figure 11: Test 2.3: reconstruction parameter on differentadaptively re-

fined meshes.
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σ = 0% σ = 3% σ = 5%

g) 13245 nodes h) 10290 nodes i) 10191 nodes

j) 15983 nodes k) 13556 nodes l) 13565 nodes

Figure 12: Test 2.3: reconstruction parameter on differentadaptively re-

fined meshes.
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Work in progress

We eliminate two assumptions of our adaptivity technique. Rather, we

prove them now: These are:

1. The assumption of the existence of the minimizer.

2. We now can estimate the accuracy of the reconstruction of the

coefficient without using a Hessian but rather via a new idea.
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