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‘ Globally convergent method I

A numerical method X is globally convergent if:

1. Atheorem is proved claiming convergence to a good appration
for the correct solution regardless on a priori availapibt a good

guess

2. This theorem is confirmed by numerical experiments foeast one
applied problem



‘ Challengesin solution of Cl PI

Solution of any PDE depends nonlinearly on its coefficients.

at

y —ay=0—y(a,t)=Ce
Any coefficient inverse problem is nonlinear.

Two major challenges in numerical solution of any coefficiemerse
problem: NONLINEARITY and llI-POSEDNESS.

Local minima of objective functionals.

Locally convergent methods: linearizaton, Newton-likel an
gradient-like methods.



A hyperbolic equation
c(x)uy = Au —a(x)uinR™ x (0,00) ,n = 2,3,

u (x,0) =0,us (z,0) =9 (x — ) .

INVERSE PROBLEM. LetQ2 C R" be a bounded domain. Let one of
coefficientsc (x) or a(x) be unknown i) but it is a given constant
outside of(). Determine this coefficient i€, given the functiory (z, 1) ,

u(x,t) =g (x,t),x € 0Q,t € (0,00)
Similarly for the parabolic equation
c(z)u; = Au— a(z)uin R™ x (0,00),

u(x,0) =0 (x —xq) .



‘ Applications.

1. MEDICINE

a. medical optical imaging;
b. acoustic imaging.

2. MILITARY

a. identification of hidden targets, like, e.g. landminesprovised
explosive devices via electric or acoustic sensing.

b. detecting targets covered by smog or flames on the balii¢éia
diffuse optics).



Laplace transform:

o O

w(x,s) = /u(:v,t)e_Stdt: /ﬂ(w,t)e_82tdt

0 0

Aw — [s°c(x) +a(z)| w = =6 (x — x0),
Vs > sg = const. > 0.

lim w(zx,s) =0,Vs > sqg = const. > 0.

|z[—o00

w(z,s) > 0,Vs > sg.

(1)

(2)



‘ THE TRANSFORMATION PROCEDURE. .

First, we eliminate the unknown coefficient from the equatio
v = Inw.
Av + |Vo|” = s%¢(z) + a(z) in Q,

e Let, for example:(x) =7 For simplicity leta(z) = 0. It follows from
works of V.G. Romanov that

DeDB(v) = D2DP [— sl (@, o) (1 +0 (1»] 5 — 00,

g(x,xo) S

e Introduce a new function

. Then



e Eliminate the unknown coefficient(x) via the differentiation:
Osc(x) =0
q(x,s) =0sv(x,s),

v(x,s) —7oq(a:,7‘)d7'%/Sq(a:,T)dTJrV(a:,s).

e VV (z,5) is the tail functionV (x,s) ~ 0. But still we iterate with
respect to the tall.

e This truncation is similar to the truncation of high frequess.



e Obtain Dirichlet boundary value problem for the nonlineguation

Aq — 25*Vq - /Vq (x,7)dT + 2s /Vq (x,7)dT (3)

+25°VqVV —2sVV - /Vq (z,7)dr + 25 (VV)? =0,

q(z,s) =1 (z,s), V(z,s) € 00 x [s,5]. (4)
e Backwards calculations

¢(z) = AT+ s2 (VD)?,



‘ How To Solve the Problem (3), (4)? I

e Layer stripping with respect to the pseudo frequescy

e On each step the Dirichlet boundary value problem is soleeaif
elliptic equation.

S=SN < SN_1<..<81<S8 =5,8_1—58=~h

q(x,s) =qn(x) fors € (s,, Sn_1] -

n—1

/Vq z,7)dT = (81 — S) V@ (x +hZVq3 .S € (Sp, Sn_1] -

71=1

e Dirichlet boundary condition:

qn (x) =, (x),x € 09,
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Hence,

L (qn) == Agn — 2 (s* — 25 (sp—1 — 5)) (h z_: Vg; (a;)) - Va,

+2 (s* — 25 (sp—1 — 8)) Vg, - VV (2,35) — egn

=2 (sp—1 —5) [8° — s (sp—1 — 5)] (Vgn)” — 2sh? (Z Vg, (:U))

j=1
+4sVV (x,5) (h Z Vg, (z ) —25[VV (2,5)]%,5 € (Sn_1, Sn]

Introduce thes-dependent Carleman Weight Functioy), (s) by

Crp (s) =exp (s —sn—1)],5 € (Sn, Sn—1]

wherey >> 1is a parameter.
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e Multiply the equation by’,, , (s) and integrate with respect toc

[Sna Sn—l] .

1=1

I, (@, b 2 9 — i
=22k (iff hf (Vau)? — Asn (i, 1) (Zw <x>>

+2A1, (u, h) VV (2,5) - (h z_: Vi (:1:))

— Ao (s h) Vg - VV (2,3) — Az (11, h) [VV (2,3)]%,

where
1 — e Hh

Io (i, h) = / Crpu(s)ds = . :
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AQn (:uv h) —

e Important observation:

[ L1n (1, 1))
[O (:u? h)

2

T () / SCny, (8) ds.

4—2
< i, for uh > 1.
]
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e |terative solution for every,,

n—1
Aq;k — A | A Z Vg | - quiq,k - 5@7%1@ - Alnquk : VVW% =

g=1

Iy (1, R ;
’ Ilo ((:, h)) (an<k—1>) ~ Azl quﬂ

1240, VV - [ 0N Vg, () | = Asn (V) k> 1,

qhy (1) =¥, (), € 09
e Hence, we obtain the function

¢, = lim ¢, inC**(Q).

k— o0

15



‘ CONVERGENCE THEOREM. .

e First, Schauder Theorem. Consider the Dirichlet boundatyer
problem

Let
bj,m, fe€C*(Q),d(z)>0; max(|b;],|m|,) <1,

Then
ulyya < K [I9llcaraon +1fla]
whereK = K (2) = const. > 1.
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Global Convergence Theorem. Let) C R? be a convex bounded
domain with the boundar§) € C?. Let the exact coefficient

c* (z) € C*(R?), c* € [2dy,2d5] and c* (z) = 2d; for x € R3\ Q,
where numbers, d, > 0 are given. For any function (z) € C* (R?)
such thatc (z) > dy in Q andc (z) = 2d; in R3\ £ consider the solution
u.(x,t) of the original Cauchy problem. Lét* = const. > 1 be a
constant bounding certaon functions associated with tih&isa of this
Cauchy problemLetw, (z, s) € C* (R*\ {|z — zo| < ~}),Vy > 0 be
the Laplace transform ofu.(x, t) and

Ve (z) =5 ?Inw. (z,35) € C*t* (Q) be the corresponding tail function.
Suppose that the cut-off pseudo frequenis/so large that for any such
functionc (x) the following estimates hold

|V*‘2—|—0z < 57 “/;‘24—@ < 57

where¢ € (0, 1) is a sufficiently small number.
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Let V1 1 (z,35) € C?T (Q) be the initial tail function and let

‘V1,1|2_|_a < S

Denoten :=2(h+ 0 + £ +¢). Let N < N be the total number of
functionsg,, calculated by the algorithm of section 5. Suppose that the
numberN = N (h) is connected with the step sizevia N (h) h = 3,
where the constant > 0 is independent oh. Let3 be so small that
1

= 384K (C*5?
In addition, let the numben and the parameter of the CWF satisfy the
following estimates

13 1 3
<o (K,C*, dy,5) = mi °dy ) = mi 2 d
n <o (K07, dvss) mm(lGKM*’S 1) mm(256KC*§2’8 1)’

1

N2
. JA8K(C*3?, —) .

MZMO(O*aKwS?n)_maX( 2
Ui
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Then for each appropriate the sequencéqjj,l}f:l converges in
C?*te (Q) and the following estimates hold

1 _
an — @ lon, < 2KMT (—+3n),n€ 1, N|,
24 \/,TL [ }

|Qn|2_|_a <2C*, n € [1,N] ;

\cn—c\a§2.9n_1+877,77,6[2,]\[}. (5)
In addition, functions:,, . (z) > d; in Q andc, . (z) = 2d; outside of

Q.
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Brief Qutline of the Proof '

"’k) _ k‘ >k -~ _ k
qn,l - qn,l —dpn, 4n,g = dng — Qp,

‘772,,]{3 — Vn,k — V*a En,k — Cnk — C*v Jn — @n T @:,
H,;(x) =H,,;(x)— H" (x,s,), Hy,(z)=H,(x)—H"(x,s,),
Sequentially estimate normg;, |, ,|¢n.il,., from the above using
Schauder theorem. Subtracting the equatioryfdrom the equation for
gt 1, we obtain forz € O

I _ x
Aff€ —€q11+A1 1V 1Vq11—2 11Vq11 (Vqlf’ll—FVql)

— A1,1V‘71,1qu — A2,1V‘71,1 (VV1,1 + VV*) + €q>f — 7,

qu,l (z) = ¢ (z),x € ON.
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C
< — << 1

I
‘2 1,1
v

Iy

e Thus the term responsible for the nonlinearity is small.
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WHY THE FINITE ELEMENT ADAPTIVE METHOD SHOULD BE NEXT?'

\cn—c\a§2.9n_1+877,716[2,]\[}. (5)

e The estimate (5) is typical for ill-posed problems.

e (5) tells us that our globally convergent numerical methad be
categorized as the so-called “stabilizing method”.

e The notion of stabilizing numerical methods was introduicethe field
of ill-posed problems by one of classics Dr. Anatoly B. Bakuskii
(Moscow, Russia) ilomputational Mathematics and Mathematical
Physics 1998, 2000.
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e A numerical method for an ill-posed problem is call&dbilizingif
lim, o |70 —2*|| = O (0 + A),

whereos > 0 is an error in the data anfl > 0 is a parameter which can

be chosen small in a "smart” choice.

elnourcaseA = h + ¢

e As soon as the procedure (5) is stabilized, we have a good
approximationc; for the exact solutior*.

e Thus, on the FIRST globally convergent stage of our procetue got a
good first guess for the solution.

23



IDEA: .

e Use a locally convergent numerical method on the SECONDestag
e This method should be independent on the param&terh + &.

e This method should take the the functieg as the first guess.

e \We have chosen Finite Element Adaptive Method for the sestagk.

24



Two step procedure. I

STEP 1. To get the first approximation using the globally esgent
method.

The first approximation is exactly what a locally convergerthod
needs.

STEP 2. To use the adaptivity technique to improve the first
approximation.

The solution taken from the globally convergent method wdaé a first
guess.

The adaptivity does not depend on the tail.

25



THE ADAPTIVITY ASTHE SECOND STAGE '
OF THE 2-STAGE GLOBALLY CONVERGENT PROCEDURE '

Denote@r = Q2 x (0,7T),S7 =00 x (0,T).

e Functional spaces

H (Qr) ={f € H*(Qr) : f(2,0) = fi(x,0) = 0},
H,(Qr)={f € H(Qr): f(x,0) =0},
H(Qr) ={f € H*(Qr) : f(=,T) = fi(z,T) = 0},
H,(Qr)={f € H(Qr): f(z,T) =0},

U= H(Qr) x H3(Qr) x C*(%),

U = H,(Qr) x Hy(Qr) x La(),

26



¢ Finite dimensional subspaces of finite elements
Wy C H, (Qr), Wy C Hy (Qr), Vi C L2 (Q),

U, CU,Up =W x W x V.

¢ Since all norms in finite dimensional spaces are equivasattor
convenience|-||;; = |||z -

e Tiknonov regularization functional:

E(c) = %/(u 5. — g(z,t))*dodt + %’y/(c — Cqiop)? dez.

S Q
® c 4100 IS the solution obtained on the globally convergent stage.

e v € (0,1) is the regularization parameter.

27



e To calculate the Frechet derivative Bf ¢), introduce the Lagrangian.

e To be 100% rigorous, we need to assume in the Lagrangian that
variations of state and adjoint operators actually depeandand depend
on each other. This would make things more complicated. ke otly
are working on this extension.

e However, to simplify things, we assume in this presentatinat these
functions are mutually independent. In particular, we assthat

E(c) := E(u, c), where functions: andc can be varied independently on
each other.

e Many authors also use this kind of assumption.
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e Given the datg = u |s,.for the inverse problem, one can uniquely
determine the normal derivatiye(x, t) ,

ou
a_n ‘ST_ p(a?,t) .

Letv = (¢, u, ). Then we define the Lagrangian as
L(v) = E(u,c) + / @ - (cuy — Au) dadt, Ve € Hg (Qr) -

Qr

Clearly
L(v) = E(u,c).

The integration by parts leads to

L(v) = E(u,c) — /c(:v)utgotdxdt+/Vquod:Edt— /pgodet.
QT QT ST

29



We search for a stationary point of the functioddb), v € U satisfying
L'(v) () =0, Vo= (u,p,¢) €U

whereL’(v)(-) is the Frechet derivative df at the point.

L' (v) (7) = / 2y (c— o) — /T wpppdt| dz — / (@) (ortts + wiB,) dedt

Q _ i Qr

- / (VuVp + VuVey) — / ppdodt + / (ulsy — g) udodt =0,
Qr St ST

Vo = (u,p,¢) € U.
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Integration by parts leads to

L' (v) (7) = / G|y (c—co) — /T weppdt | da + / 3 (cuy — Au) dedt

Q _ i Qr

— / U (cprr — Ap) dedt + / @ [Onpu — p] dodt

QT ST
+ /((UIST — g) + On) udodt,
ST
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We obtain for the minimizev = (¢, u, ¢) :

e The state problem is:
cuy — Au =0, (x,t) € Qr,
u(x,0) = u(x,0) =0,

Ontt |s.= p(x,t).
e The adjoint problem, which should be solved backwards irfiist
coy — N =0, (x,t) € Qr,
gp(ac,T) — Spt(xaT) = 0,
a—n |ST: (g _ u) (xat) ) (:Evt) S ST-

32



And the gradient with respect to the unknown coefficient adhbe
equal to zero:

T
o= o) — [ wprdt =0z €0 6)
0

How to Find the Minimizer Which Would Approximately Guarantee
(6)?
e \We solve (6) iteratively.
oletu, =u(z,t,c,),pn = (x,t, c,) be solutions of state and adjoint
problems withc := ¢,.
o Set
Co ‘= Cglob,
1

T
Cn — ;/ atun—l . atgpn—l dt + Cglob, T € 92
0

¢ \We have computationally observed convergence of this piuresin
terms of a stabilizing procedure introduced above
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A POSTERIORI ERROR ESTIMATE FOR THE LAGRANGIAN'

e Letv € U andw;, € U;, be the local minimizers of on the space&
andU;, respectively (recall thal/,, ¢ U as a set),

v — vz, lon — V'l <0 << 1,
wherev™* Is the exact solution of our inverse problem.

e \We assume that such local minimizers,;, exist

e For any vectomw € U let w? be the interpolant ofy via finite elements
of Uy,.

¢ Using the Galerkin orthogonality with the splitting
v—vp = (v—v})+ (vi — vy), we obtain the following error
representation:

L(v) — L(vn) = L' (vp) (v = vy),
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involving the residual’ (vy,)(-) with v — v} appearing as the

interpolation error.

e |t turns out that an approximate error estimate from the alfovthe

Lagrangian is

e Thus, we refine the mesh in regions where

>

<V () max ||cp]| -

T
Ve — cqop] (@) + / un| [onel (2, 1) dt
0

L(v) = L(vp)| = |L' (vn) (

T
’ymﬁax|c — Cglob| + /mﬁax [une| | one| dt
0

T
fymﬁax lc — cgion| + /mﬁax [une| | one| dt
0

35

v — U,

)

(7)



wheres = const. € (0, 1) is a parameter which we choose in
computational experiments.

e \We have chosen in our computations:

0.1 on the coarse mesh, )
6 =< 0.2 on first two refinements, ; .
0.6 on the refinement > 3.

\ /
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A POSTERIORI ERROR ESTIMATE FOR THE UNKNOWN COEFFICI ENT'

e INn a paper

L. Beilina and C. Johnson “ A posteriori error estimation in
computational inverse scatterindglath. Models and Methods in Applied
Sciences V. 15, pp. 23-37, 2005.

a posteriori error estimate for the unknown coefficient ia #uaptivity
was introduced.

e This estimate was based on the so-called “error estimatdgrich was
denoted a% (x) .

e The meaning of) () was not explained analytically and we are
unaware about other references where this meaning woulgdaieed
for inverse problems.

e \We provide this explanation below.
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o Let ((-,-)) be the inner product i .

e Let L” (vp,) (U, v) be the Hessian, i.e., the second Frechet derivative of
the Lagrangian., at the point;,, wherewv,, Is the local minimizer ofL on
the spacd/,,.

e Consider solutionw of the following so-called “Hessian problem”
—L" (vp,) (1,0) = ((x,0)), VO € Uy,

e 1) € U is a function of our choice.

e Suppose that for any € U there exists such a solution= v, € U
that|[vy, — v*||z < 6.
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e Then
(Y, v —wvp)) = =L"(vp) (v — vp, y)
= —L'(v)(¥y) + L' () (@) + R = L' (v,)(3y) + R,

whereR =~ 0 is the reminder term, which is of the second order of
smallness with respect o — v, ||z . Thus, we ignoreR.

e Splitting: vy, = ), + (% — %) L’ (vp) ( w) = 0.
e Thus, we have obtained the following analog of a posteriware
estimate for the error in the Lagrangian

(1,0 = vn)) = L' (v8) (g — Dyp,)- (8)

e We conclude, that the concrete form of the estimate (8) iS#mee as
one for the Lagrangia (v) with only v — v, replaced witho,, — v,
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o Let {wk}ﬁil C Uy, be an orthonormal basis in the finite dimensional
spacaly,.

oleth : U - U}, be the operator of the orthogonal projection of the
spacel/! on the subspadg;,. Represent/! = U;, + G, where the
subspacé- is orthogonal tdJ;,. We have

v—vp, = (Ppv—vp) + (v — Ppv), wherev — Pyv € G and

Prv — vy, € Uy. Therefore ((¢yr, v — Ppv)) = 0.

e Hence, number§yr,v — vy)) = (Y, Pov — vy,)) are Fourier
coefficients of the vector function with respect to the orthional basis
{4}, in the spacé/;,. Thus,

M
thu—fvh Z\ wk,v—vh Z ka _U¢kh)‘27

1/2
[Ph’U — ’Uh (Z ‘L ’Uh ’ka U¢kh)‘2> .

40



e INn summary, estimates#L’(vh)(%k — %kh)‘ from the above for alll

k =1,..., M would provide us with an estimate of the difference between
theUl-projection (i.e.,Lo—like projection) of our target minimizer of the
Lagrangian on the subspace of finite elements and the miarmfzhis
Lagrangian on the subspatl, which will be found in computations.

e Thus, assuming the existence of the solution of the Hessarigm,
and using (7), we obtain the following approximate erromaate for the
unknown coefficient

T
IPuc — cnll < MCV () max |[&]] 7mgx|c—cglob|+/mﬁax\uht|\gpht\dt
0

41



A globally convergent numerical method and adaptivity in 2-d
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Figure 1

1-a. The forward problem fot(x)utr = Awu, c(x) > const. > 0 is solved in the bigger rectangle to
generate the boundary data for the inverse problem. Thefolatiae inverse problem are generated at the



boundary of the smaller square. 1-b. The correct image. Thaawn coefficient(x) = 1 in the
background and(x) = 4 in two inclusions. A priori knowledge of neither backgroumar inclusions
nor values of the unknown coefficieatx) is not assumed and the coefficiefits) is the target of
solution by the globally convergent numerical method. Aggdions: Imaging of antipersonnel land
mines in which case(z) := ¢ (x) , the spatially distributed dielectric permittivity; also@ustical
imaging of land mines, in which cad¢’ \/c(x) is the speed of sound.
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Forward problem solution I
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t=17.5 t =8.5 t=9.6 t=11.2

Figure 2: Isosurfaces of the simulated exact solution tdah&ard prob-
lem with a plane wave initialized at the top boundary.

45



b) c10.2 C)C11.2 d) c12.2

Figure 3ZSpatiaI distribution ot;, after computingy,, »;n = 9, 10, 11, 12, wheren is number of
the computed function for the case of Fig. 1b. We have incorporated 5% random noidesidata. While
values of the unknown coefficientx) are correctly reconstructed both inside and outside inohss
locations of inclusions need to be enhanced. Thus, usinglobally convergent method, we got a good
first approximation for the solution of the inverse probleknd now we need to enhance it using a locally
convergent adaptivity technique. The resulting methodtis@stage procedure: global convergence on
the first stage and a more detailed enhancement on the second.
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‘ A globally convergent numerical method and adaptivity in 3-d I

Y N G

Al
%
L3

)G =Gremy UGrpy (B)Greym =0

Figure 5:

The forward problem is solved in the larger rectangularmrdepicted on Fig. 5a. The plane wave is
falling from the top.
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‘ A globally convergent numerical method in 3-d I

S

Figure 6:

The image of Fig. 6 reconstructed by the globally convergemierical method. This image corresponds
to the functiong; 5 in the globally convergent method. The maximal computedevalf the coefficient
c(x) = 3.66 inside of inclusions depicted here andx) = 1 outside. Recall that correct values are

c (x) = 4 inside of inclusions and (x) = 1 outside. Both locations of inclusions and values of the
unknown coefficient (x) inside of them need to be enhanced by the adaptivity teckniqu
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it.n | i=1 =2 1=3
0.0522995| 0.0522995
0.0523043| 0.0521772
0.0535235| 0.053353
0.0516891| 0.0556757
0.0467661| 0.091598
0.0466467| 0.0440336| 0.0464053

O 0o A W DN P

Table 1: Test 1. Computelk, norms of theF,, ; =||gn.:lo0 — ¥n |1, (00)
with 1 = 100.
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it. n | 1I=1 1=2 1=3
7 0.0486575| 0.0657632
8 0.0631762| 0.0892608
9 0.0852419| 0.111969
10 | 0.0914603| 0.106285
11 | 0.090428 | 0.104433
12 | 0.11104 0.133783

Table 2: Test 1. Computetl, norms of theF,, ; =||gn.ilo0 — ¥nllL,09)
with 1 = 100.

Conclusion: we should stop at < 7, because norms start to grow at

n=8. This is one of the key ideas of the stopping criterionstablizing
algorithms in ill-posed problems.
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Adaptivity in 3-d I

Since the adaptivity is a locally convergent numerical rodttwe take the
starting point on the coarse mesh from the results of Testthheofjlobally
convergent method and with the plane wave initialized atape
boundary of the computational domath More precisely, we present two
set of tests where the starting point for the coefficignt) in the adaptive
algorithm on the coarse meshdsz, andcy 2, correspondingly.

At the boundary data = u |9 we use three noise levelg%, 3%, and
5% correspondingly. In all tests |ét be the side of the culi@, opposite
to the side from which the plane wave is launched Bad=T" x (0, 7).
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C4,2 ~ 1.2

Figure 7:

The starting point for the coefficientx) in the adaptive algorithm.
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0:3%'
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P

Yy

S hii—

a) ry-projection b)zzx-projection  c)zy-projection dy ~ 1.3

e) xy-projection f)zzx-projection g)zy-projection  h)e~ 1.7

1) zy-projection j)zz-projection K)zy-projection Ne ~ 3.7

Figtége 8:



0:5%'
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a) ry-projection b)zzx-projection  c)zy-projection

e) xy-projection f)zx-projection g)zy-projection

1) zy-projection j)zz-projection K)zy-projection Ne =~ 4.0

Figtége 9:



Mesh | o =3% | g.N.it. | CPU time (s)| min CPU time/node (s)
9375 | 0.030811 3 26.2 0.0028
10564 | 0.029154 3 29.08 0.0028
12001 | 0.035018 3 32.91 0.0027
16598 0.034 8 46.49 0.0028
Mesh | o =5% | g.N.it. | CPU time (s)| min CPU time/node (s)
9375 | 0.0345013| 3 26.53 0.0028
10600 | 0.0324908, 3 29.78 0.0028
12370 | 0.03923 2 34.88 0.0028
19821 | 0.0277991 38 53.12 0.0027

Table 3: Test 2.2|u |r —g||r,(r) ON adaptively refined meshes with
different noise levet in data.
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cro ~ 1.8

Figure 10:

The starting point for the coefficien{x) in the adapt. algorithm.
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o= 0% o= 3% o= 5%

a) 9375 nodes b) 9375 nodes c) 9375 nodes
R N

i/i =~ @ ~J ‘

d) 9583 nodes e) 9569 nodes f) 9555 nodes

Figure 11: Test 2.3: reconstruction parameter on diffeest@ptively re-
fined meshes.
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o= 0% o = 3% o= 5%

1) 10191 nodes

~
@
&
N <~
) 15983 nodes k) 13556 nodes ) 13565 nodes

Figure 12: Test 2.3: reconstruction parameter on diffeest@ptively re-
fined meshes.
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‘Work In progress.

We eliminate two assumptions of our adaptivity techniguathier, we
prove them now: These are:

1. The assumption of the existence of the minimizer.

2. We now can estimate the accuracy of the reconstructiomeof t
coefficient without using a Hessian but rather via a new idea.
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