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Definition of Forward and Inverse problems

Wave equation

ǫr (x)utt − ∆u = 0, x ∈ R
3, t ∈ (0,∞) ,

u (x , 0) = 0, ut (x , 0) = δ(x − x0),

• εr (x) is the spatially distributed dielectric constant (i.e., the
relative dielectric permittivity function).
• This PDE cannot be derived from the Maxwell’s system
• Nevertheless, we have made this equation working for our case
• Therefore, this is a simplified mathematical model
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Classic Forward Problem. Let the function εr (x) be known.
Determine the function u(x , t)
Coefficient Inverse Problem. Let Ω be a bounded domain with
the boundary ∂Ω and the source x0 is outside of Ω. Suppose that
εr (x) = 1 outside of Ω and εr (x) is unknown inside of Ω.
Determine εr (x) inside of Ω, assuming that the following function
p is known on the boundary

u |∂Ω×(0,T )= g(x , t)
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• In the traditional experiments people measure the refractive
index n =

√
εr by invasive methods, e.g. Wave Guide Method.

• Let c0 be the speed of light in the vacuum and c be the speed of
light in the inclusion. Then

n =
c0

c
.

• The refractive index shows how the electric wave slows down
when propagating through the inclusion.
• To measure n invasively, the following formula is commonly used

∆t =
d

c0
(n − 1) ,

where d is the thickness of the inclusion and ∆t is the time delay
of the signal due to the inclusion presence.
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• Two well established methods were used in our case to measure
n for self-checking after blind images of n were obtained:
• The Wave Guide Method and the Oscilloscope Method.
• “Semi Blind” means that we knew locations of inclusion.
• However, we did not know values of refractive indexes in
inclusions.
• Semi blind study was carried from the very beginning, i.e.
without any preliminary adaptation.
• Our algorithm does not assume any a priori knowledge of:
• refractive indexes of inclusions;
• locations of inclusions;
• values of refractive indexes outside of inclusions.
• Only value of those indexes in a “far away” zone are assumed to
be known
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• Refractive indexes were measured only after imaging results were
obtained.
· We have completely blind about values of refractive indices
• Subsequent comparison of computational results with
measurements of n was made.
• This comparison with both methods has demonstrated an
excellent accuracy of our imaging results.
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Schematic diagram of the source/detectors configuration

Figure 1. a) The prism depicts our computational domain Ω. This domain is a

part of another prism, which was our holder made out of Styrofoam. Only a

single source location was used. Tomographic measurements of the scattered

time resolved EM wave were conducted on the bottom side of this prism. b)

Schematic diagram of locations of detectors (probes) on the bottom side of the

prism Ω. The distance between neighboring probes was 10 mm.
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Challenges in solution of CIPs

• Solution of any PDE depends nonlinearly on its coefficients.

y ′ − ay = 0 → y (a, t) = Ceat .

• Any coefficient inverse problem is nonlinear.

• Two major challenges in numerical solution of any coefficient
inverse problem: NONLINEARITY and Ill-POSEDNESS.

• Local minima of objective functionals.

• Locally convergent methods: linearizaton, Newton-like and
gradient-like methods.
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• GOAL: QUANTIFIABLE imaging of spatially distributed
dielectric constants
• The main tool: The Beilina-Klibanov globally convergent inverse
algorithm (SIAM J. Scientific Computing, 2008)
• Radiation sources:
• microwave
• acoustical
• infrared/thermo
• THZ (once the technology becomes available)

9 / 45



Applications:

1. MEDICINE
a. medical optical imaging;
b. acoustic imaging.
2. MILITARY
a. humanitarian demining, i.e. cleaning former battlefields from
land mines; checking out the baggage in airports and sea ports
b. detecting targets covered by smog or flames on the battlefield
(via diffuse optics).

10 / 45



The Laplace transform

w(x , s) =

∞∫

0

u(x , t)e−stdt =

∞∫

0

ũ(x , t)e−s2tdt

∆w − s2εr (x)w = −δ (x − x0) ,

∀s > s0 = const. > 0.

lim
|x |→∞

w(x , s) = 0,∀s > s0 = const. > 0.

w(x , s) > 0,∀s > s0.
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THE TRANSFORMATION PROCEDURE

• First, we make the Liouville transform

v =
lnw

s2
,

∆v + s2 |∇v |2 = εr (x) .

• The asymptotic behavior of the function v is

Dα
x Dβ

s v = Dα
x Dβ

s

[
− l (x , x0)

s
+ O

(
1

s2

)]
, s → ∞

• l (x , x0) is the length of the geodesic line connecting points x
and x0.
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• Eliminate the unknown coefficient εr via the differentiation:
∂sεr ≡ 0

q (x , s) = ∂sv (x , s) ,

v (x , s) = −
∞∫

s

q (x , τ) dτ ≈ −
s∫

s

q (x , τ) dτ.

• We call the parameter s > 0 pseudo frequency.
• s is the truncation pseudo frequency.
• This truncation is similar with truncation of high frequencies
which is routinely performed in engineering and everything still
works.
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Approximate nonlinear problem for the function q

• Approximate nonlinear Dirichlet boundary value problem for the
function q is

∆q − 2s2∇q ·
s∫

s

∇q (x , τ) dτ + 2s




s∫

s

∇q (x , τ) dτ




2

= 0.

q (x , s) = ψ (x , s) , ∀ (x , s) ∈ ∂Ω × [s, s] .

• Backwards calculations

εr (x) = ∆v + s2 (∇v)2 ,
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Approximation of the function q

• Layer stripping with respect to the pseudo frequency s.
• On each step the Dirichlet boundary value problem is solved for
an elliptic equation for the function qn.

s = sN < sN−1 < ... < s1 < s0 = s, si−1 − si = h

q (x , s) = qn (x) for s ∈ (sn, sn−1] .

s∫

s

∇q (x , τ) dτ = (sn−1 − s)∇qn (x)+h

n−1∑

j=1

∇qj (x) , s ∈ (sn, sn−1] .

• Dirichlet boundary condition:

qn (x) = ψn (x) =
1

h

sn−1∫

sn

ψ (x , s) ds, x ∈ ∂Ω
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Hence,

L̃n (qn) := ∆qn−2
(
s2 − 2s (sn−1 − s)

)

h

n−1∑

j=1

∇qj (x)


·∇qn−εqn

= 2 (sn−1 − s)
[
s2 − s (sn−1 − s)

]
(∇qn)

2 − 2sh2




n−1∑

j=1

∇qj (x)




2

,

s ∈ (sn−1, sn]

Introduce the s-dependent Carleman Weight Function Cnµ (s) by

Cnµ (s) = exp [µ (s − sn−1)] , s ∈ (sn, sn−1] ,

where µ >> 1 is a parameter.
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• Multiply the equation by Cnµ (s) and integrate with respect to
s ∈ [sn, sn−1] .

Ln (qn) := ∆qn − A1n (µ, h)

(
h

n−1∑

i=1

∇qi (x)

)
· ∇qn − κqn

= 2
I1n (µ, h)

I0 (µ, h)
(∇qn)

2 − A2n (µ, h) h2

(
n−1∑

i=1

∇qi (x)

)2

,

where

I0 (µ, h) =

sn−1∫

sn

Cnµ (s) ds =
1 − e−µh

µ
,
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I1n (µ, h) =

sn−1∫

sn

(sn−1 − s)
[
s2 − s (sn−1 − s)

]
Cnµ (s) ds,

A1n (µ, h) =
2

I0 (µ, h)

sn−1∫

sn

(
s2 − 2s (sn−1 − s)

)
Cnµ (s) ds,

A2n (µ, h) =
2

I0 (µ, h)

sn−1∫

sn

sCnµ (s) ds.

• Important observation:

|I1n (µ, h)|
I0 (µ, h)

≤ 4s̄2

µ
, for µh > 1.
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• When approximating functions qn, we modify equations for them
via introducing the so-called tail functions Vn,i

• First, we choose V1,0 (x) . We can either choose V1,0 (x) ≡ 0, or
we can choose

V1,0 (x) =
lnw1,0 (x , s)

s2 = −|x − x0|
s

− ln (4π |x − x0|)
s2

• Both choices work well, although the second one provides a
faster convergence
• w1,0 (x , s) is the solution of the elliptic forward problem for w
with εr = 1, i.e. the same as the value of εr outside of the domain
of interest Ω
• q0

1,1 := 0
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• Step n1, n ≥ 1. First, iterate with respect to the nonlinear term.
Suppose that functions q1, ..., qn−1, q

0
n,1 := qn−1 ∈ C 2+α(Ω) and

the tail function Vn,0(x , s) ∈ C 2+α(Ω) are constructed. Then we
solve iteratively the following Dirichlet boundary value problems,
k = 1, 2, ...

∆qk
n,1 − A1n


h

n−1∑

j=1

∇qj


 · ∇qk

n,1 − εqk
n,1 + A1n∇qk

n,1 · ∇Vn,0

= 2
I1n
I0

(
∇qk−1

n,1

)2
− A2nh

2




n−1∑

j=1

∇qj (x)




2

+ 2A2n∇Vn,0 ·


h

n−1∑

j=1

∇qj (x)


− A2n (∇Vn,0)

2 ,

qk
n,1 = ψn (x) , x ∈ ∂Ω

• qn,1 := limk→∞ qk
n,1 in the C 2+α(Ω) norm
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• Calculate ε
(n,1)
r (x) via backwards calculations

• Solve the hyperbolic forward problem with εr (x) := ε
(n,1)
r (x) ,

calculate the Laplace transform and obtain the function wn,1 (x , s)
• Find a new approximation for the tail function

Vn,1 (x) =
lnwn,1 (x , s)

s2

• Step ni , i ≥ 2, n ≥ 1. We now iterate with respect to the tails.
Suppose that functions qn,i−1,Vn,i−1 (x , s) ∈ C 2+α

(
Ω
)

are
constructed.
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Then solve the boundary value problem

∆qn,i − A1n


h

n−1∑

j=1

∇qj


 · ∇qn,i − κqn,i + A1n∇qn,i · ∇Vn,i−1

= 2
I1n
I0

(∇qn,i−1)
2 − A2nh

2




n−1∑

j=1

∇qj (x)




2

+ 2A2n∇Vn,i−1 ·


h

n−1∑

j=1

∇qj (x)


− A2n (∇Vn,i−1)

2 ,

qn,i (x) = ψn (x) , x ∈ ∂Ω

• Calculate ε
(n,i)
r (x) via backwards calculations
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• Solve the hyperbolic forward problem with εr (x) := ε
(n,i)
r (x) ,

calculate the Laplace transform and obtain the function wn,1 (x , s)
• Find a new approximation for the tail function

Vn,i (x) =
lnwn,i (x , s)

s2

• Iterate with respect to i until a certain convergence criterion is
satisfied at i := mn

• Then set

qn := qn,mn , ε
(n)
r (x) := ε

(n,mn)
r (x) ,Vn+1,0 (x) :=

lnwn,mn (x , s)

s2
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• Proceed with qn+1 until a certain stopping rule is reached
• While convergence with respect to the nonlinear term can be
analytically proven, convergence with respect to tail is established
only numerically
• The stopping rule is in an agreement with our global
convergence theorem
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• Below we assume that 1 ≤ εr (x) ≤ d , where the number d > 1
is known
• It is important that a smallness condition is NOT imposed on the
number d − 1
• K = K (d , s,Ω) ≥ 1 is a constant depending on the an upper
bound d of an addmissible set of parameters, on the regularization
parameter s and on the domain Ω
• The next is a brief version of the most recent (February 2010)
and the strongest formulation of our global convergence theorem
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Theorem (global convergence) Let Ω ⊂ R3 be a bounded domain
with the boundary ∂Ω ∈ C 3. Denote ε∗r (x) ∈ C 2

(
R

3
)

the exact
coefficient (it is unknown) with the properties: 1 ≤ ε∗r (x) ≤ d in
Ω, ε∗r (x) = 1 outside of Ω. Let the small number h be the step
size of our layer stripping procedure and the small number σ > 0
be the level of error in the available data. Let β = s − s be the
length of the s-interval we consider. Assume that

s2β ≤ d and h + σ <
1

K
.

Assume that the first approximation for the tail function is

V1,0 (x) ≡ 0. Let ε
(n)
r (x) be the approximation for our coefficient

due to the above iterative process. Then the following convergence
estimate holds

max
Ω

∣∣∣ε(n)
r − ε∗r

∣∣∣ ≤ (Knh)n (h + σ) .
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• It follows from this convergence estimate that, for sufficiently
small h, the difference between exact ε∗r (x) and the approximate

ε
(n)
r (x) solutions decreases on first few iterations with n such that

1 ≤ n ≤ n0 :≈ 1

h
· 1

Ke

• Next, this difference increases with iterations for n > n0

• Therefore one should stop iterations at n ≈ n0

• This is exactly what we observe in computations and it is in the
full agreement with the regularization theory
• This theorem is verified numerically for both experimental and
computationally simulated data
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a) b)

Figure 2. Imaging example from computationally simulated data. a) Exact
image. b) Computed image. Locations of inclusions as well as the value of
εr (x) = 4 in them are accurately imaged. The value εr (x) = 1 outside of

inclusions is also imaged accurately.
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Scheme of the experiment

a) b)

Figure 3. a) Picosecond Pulse Generator 10070A and b) Tektronix DSA70000

Series Real Time Oscilloscope
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Data processing

• A radically new data pre-processing procedure was developed
• The pre-processed data were used as an input for Dirichlet
boundary conditions ψn (x) , x ∈ ∂Ω
• The standard Fast Fourier Transform was only a preliminary step
for data pre-processing
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Figure 4. Samples of curves for measured signals: reference medium (top) and

the medium with inclusion (bottom). Both on the same location of the

detector. The signal before the burst is a parasitic one. The time step in

measuremens was 20 picoseconds=0.02 nanosecond. The total burst takes

1200 picoseconds=1.2 nanoseconds, and this is our measured input data, which

we pre-process before using it as boundary conditions for elliptic equations of

our globally convergent method.
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Approximate Inverse Fourier transform
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Figure 5. Samples of experimental curves after cleaning some noise via the

Fourier transform: reference medium (top) and the medium with inclusion

present (bottom). Both for the same location of the detector.
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A New Data Pre-Processing procedure
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a) b)

Figure 6. This figure explains the idea of the immersing procedure in the time
domain. a) Resulting superimposed experimental curves obtained from curves

on Figures 4-a), b). The red curve is for the reference signal and the blue curve
is for the signal with a dielectric inclusion present, both at the same location
xm ∈ P of the probe number m. b) The red curve displays computationally

simulated data uref (xm, t). The blue curve
uincl (xm, t) = uref (xm, t − ∆tm)Km

exp/M
m
exp represents a sample of the immersed

experimental data in the time domain at the same probe location xm ∈ P. It is
only the blue curve with which we work further. The red curve is displayed for

the illustration purpose only.
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Further Data Pre-Processing in the Laplace Domain

a) b) c) d)

Figure 7. Let wincl (x , s) be the Laplace transform of the pre-processed data in time
domain with inclusion present and ewincl (x , s) = − (lnwincl (x , s)) /s

2. a) The function
ewincl (x , s), s = 7.5. b) The function − (lnwsim (x , s)) /s2 is depicted, where

wsim (x , s) is the Laplace transform (7) of the function usim (x , t) for a computationally
simulated data. Figure 7-b) is given only for the sake of comparison with Figure 7-a).

c) The function ewsmooth (x , s) resulting from fitting of a) by the Lowess Fitting
procedure in the 2-D case, see MATLABR 2009a. d) The final function ewimmers (x , s).
Values of ewimmers (x , s) are used to produce the Dirichlet boundary conditions ψn(x)

for our elliptic PDEs of the globally convergent algorithm.
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Numerical simulation

• Our goal was to image: (1) locations of inclusions and (2) most
importantly, the value of the refractive index n =

√
εr in them.

• Therefore shapes of imaged inclusions are NOT of our concern.
• The 4 cm wooden cube (inclusion #1) was sequentially placed in
three different positions: (a) on the center line connecting the tip
of the EM wave generator with the center of the bottom side of
the prism, (b) a little bit off the center line and (c) very much off
the center line.
• The 6 cm wooden cube (inclusion #2) was sequentially placed in
three different positions: (a) on the center line connecting the tip
of the EM wave generator with the center of the bottom side of
the prism and (b) a little bit off the center line.
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Results of reconstruction: inclusion number 1.

a) n = 2.16 b) n = 2.27 c) n = 2.15 d) n = 2.0
Figure 8. Computed images of several locations of the 4 cm cube in semi-blind

testing (see above for details). The cube is: a) on the center line, b) on the

center line, but measured on the second day of experiments, c) a small shift off

the center line, d) a large shift of the center line. Imaged values of the

refractive index are displayed. Note that in d) the wave amplitude has decayed

quite significantly at the inclusion location compared with the center line.

Hence, the energy of the signal there was much less than on the center line.

See Tables 1 and 2 for the accuracy of this imaging.

36 / 45



Results of reconstruction: inclusion number 2.

a) n = 1.73 b) n = 1.79
Figure 9. Computed images of two locations of the 6 cm cube in semi-blind

testing (see above for details). The cube is: a) on the center line and b) a

small shift off the center line. Imaged values of the refractive index are

displayed. See Tables 1 and 2 for the accuracy of this imaging.
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The Accuracy of Blind Imaging Results

Table 1. Comparison of Blind Imaging Results of the Refractive
Index n With Measurements by the Waveguide Method.

Cube Blindly imaged n Measured n Imaging error Measurement error
4 cm, Fig. 8a 2.16 2.07 4.3% 11%
4cm, Fig. 8b 2.27 2.07 10% 11%
4cm, Fig. 8c 2.15 2.07 3.9% 11%
4 cm, Fig. 8d 2 2.07 3.5% 11%
6 cm, Fig. 9a 1.73 1.71 1% 3.5%
6 cm, Fig. 9b 1.79 1.71 5% 3.5%
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The Accuracy of Blind Imaging Results

Table 2. Comparison of Blind Imaging Results of the Refractive
Index n With Measurements by the Oscilloscope Method.

Cube Blindly imaged n Measured n Imaging error Measurement error
4 cm, Fig 8a 2.16 2.17 0.5% 6%
4 cm, Fig. 8b 2.27 2.17 4.6% 6%
4 cm, Fig. 8c 2.15 2.17 1% 6%
4 cm, Fig. 8d 2 2.17 7.8% 6%
6 cm, Fig. 9a 1.73 1.78 2.8% 6%
6 cm, Fig. 9b 1.79 1.78 0.56% 6%
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Robustness of Our Algoritm

We had four sources of error in the data for our algorithm:

Our Partial Differential Equation cannot be derived from the
Maxwell system

Our theory does not work for the case of discontinuous
function εr (x)

The natural measurement noise

The modeling error due to the data pre-processing

Thus, the accuracy of imaging results points towards a high
degree of robustness of our globally convergent algorithm
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SUMMARY

• An excellent accuracy of our blind testing completely validates the
above globally convergent algorithm
• A radically new and very effective data pre-processing procedure was
invented and successfully applied to get a suitable input data for that
numerical method.
• Although the measured refractive indexes in two cubes differ by 21%
only (2.07/1.71-1), our algorithm has confidently differentiated between
them in six our of six available experimental cases (100%).
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• The case of back reflected data is duable by a modification of
the globally convergent method. Mr. A. Kuzhuget, a doctoral
student of Klibanov, has obtained some promising results already,
although not from experimental data yet.
• Back reflected data are more practical.
• Back reflected data should lead to imaging of both dielectric and
metallic inclusions, including semi-metallic ones.
• Radiation sources: microwave, acoustical, infrared/thermo, THZ
(once the technology becomes available).
• Potential applications are listed above.
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