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Introduction

Presentation is based on the paper

L. Beilina, M. V. Klibanov, A posteriori error estimates for the
adaptivity technique for the Tikhonov functional and global
convergence for a coefficient inverse problem, submitted for
publication, 2009, available on-line at
http://www.ma.utexas.edu/mp arc, 2009.

New a posteriori error estimate for the Tikhonov functional.

Formulate an adaptive algorithm.

Present efficiency of adaptivity technique for one CIP.
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Statement of forward problem

As the forward problem, we consider the Cauchy problem for a
hyperbolic PDE

c (x) utt = ∆u in R3 × (0,∞) , (1)

u (x , 0) = 0, ut (x , 0) = δ (x − x0) . (2)

Equation (1) governs propagation of acoustic and electromagnetic
waves. In the acoustical case 1/

√
c(x) is the sound speed. In the

2-D case of EM waves propagation, the dimensionless coefficient
c(x) = εr (x), where εr (x) is the relative dielectric function of the
medium. Let Ω ⊂ R3 be a convex bounded domain with the
boundary ∂Ω ∈ C 3. Assume that the coefficient c (x) is

c (x) ∈ [1, d ] , d = const. > 1, c (x) = 1 for x ∈ R3�Ω, (3)

c (x) ∈ C 2
(
R3
)
. (4)
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Inverse Problem

We consider the following
Inverse Problem. Suppose that the coefficient c (x) satisfies (3)
and (4), where the number d > 1 is given. Assume that the
function c (x) is unknown in the domain Ω. Determine the
function c (x) for x ∈ Ω, assuming that the following function
g (x , t) is known for a single source position x0 /∈ Ω

u (x , t) = g (x , t) ,∀ (x , t) ∈ ∂Ω × (0,∞) . (5)
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Remarks

In applications the assumption c (x) = 1 for x ∈ R3�Ω
means that the target coefficient c (x) has a known constant
value outside of the medium of interest Ω.
The function g (x , t) models time dependent measurements of
the wave field at the boundary of the domain of interest. In
practice measurements are performed at a number of
detectors, of course. In this case the function g (x , t) can be
obtained via one of standard interpolation procedures.
The question of uniqueness of this Inverse Problem is a well
known long standing open problem. It is addressed positively
only if the function δ (x − x0) in (2) is replaced with a
function f (x) such that f (x) 6= 0,∀x ∈ Ω. Corresponding
uniqueness theorems were proven via the method of Carleman
estimates. 6 / 63



Introduction
Statements of forward and inverse problems

Frechét Derivatives
A Posteriori Error Estimates in The Adaptivity

The Adaptive Algorithm
Numerical Studies

State and adjoint problems and their Frechét derivatives
The Frechét derivative of the Tikhonov functional

Frechét Derivatives

The first step of the adaptivity is the calculation of the
Frechét derivative of the Tikhonov functional. To do this, we
need, to calculate Frechét derivatives of state and adjoint
initial boundary value problems.

To achieve the latter, we need in turn to establish a certain
smoothness of solutions of state and adjoint initial boundary
value problems.

This smoothness cannot be guaranteed for the solution of the
problem (1), (2) because of the δ− function in the initial
condition.
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Hence, we assume that the δ-function in condition (2) is replaced
with a regularized one,

u (x , 0) = 0, ut (x , 0) = δθ (x − x0) , (6)

where

δθ (x − x0) =

{
Cθ exp

(
1

|x−x0|
2−θ2

)
, |x − x0| < θ

0, |x − x0| ≥ θ

}
,

∫

Rm

δθ (x − x0) dx = 1,

(7)

where θ > 0 is so small that δθ (x − x0) = 0 for x ∈ Ω.
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Introduce the set Y of functions c (x) satisfying the following
conditions

Y =

{
c ∈ C

(
R3
)
, c − 1 ∈ H1

(
R3
)
, c (x) = 1 in R3�Ω

cxi
∈ L∞ (Ω) , c (x) ∈ (1 − ω, d + ω) for x ∈ Ω

}
,

(8)
where ω ∈ (0, 1) is a small positive number. Let T = const. > 0.
It follows from results of Chapter 4 of [Ladizenskaja] that the
solution of the problem (1), (6) u ∈ C∞

(
R3 × [0,T ]

)
,∀c ∈ Y .
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State and adjoint problems and their Frechét derivatives

Let the function c ∈ Y . Since c (x) = 1 outside of the domain
Ω, then, given the function g in (5), one can uniquely solve
the initial boundary value problem (1), (5), (6) in the domain(
R3�Ω

)
× (0,T ) . Thus, we can uniquely find the function u

in this domain.

Let Ω1 be a convex bounded domain such that
Ω ⊂ Ω1, ∂Ω ∩ ∂Ω1 = ∅, ∂Ω1 ∈ C∞ and δθ (x − x0) = 0 in
Ω1. Denote QT = Ω1 × (0,T ) ,ST = ∂Ω1 × (0,T ) .

We assume that there exists a function a ∈ C∞
(
Ω1

)
such

that a |∂Ω= 0, ∂na |∂Ω= 1.
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Smooth extensions for boundary conditions

Let g̃ (x , t) = u |ST
, p(x , t) = ∂nu |ST

. Since the function u can
be uniquely determined in

(
R3�Ω

)
× (0,T ) , then functions g̃ , p

can also be uniquely determined. It turns out that classic theorems
about existence of solutions of initial boundary value problems for
hyperbolic PDEs require that the boundary condition should have
a sufficiently smooth extension inside the domain of interest, see,
e.g., [Lad,Evans].
Hence, we assume that there exist two functions F ,W such that

F ,W ∈ H5 (QT ) , (9)

∂nF |ST
= p (x , t) , ∂nW |ST

= g̃ (x , t) , (10)

F (x , t) = W (x , t) = 0 for x ∈ Ω, (11)

∂j
tF (x , 0) = 0 in Ω1, j = 0, ..., 3. (12)

11 / 63



Introduction
Statements of forward and inverse problems

Frechét Derivatives
A Posteriori Error Estimates in The Adaptivity

The Adaptive Algorithm
Numerical Studies

State and adjoint problems and their Frechét derivatives
The Frechét derivative of the Tikhonov functional

State and adjoint problems

Consider now solutions u and λ of the following initial boundary
value problems (we do not use a new notation for u for brevity),

c (x) utt = ∆u in QT ,

u (x , 0) = ut (x , 0) = 0,

∂nu |ST
= p (x , t) ;

(13)

c (x)λtt = ∆λ in QT ,

λ (x ,T ) = λt (x ,T ) = 0,

∂nλ |ST
= (g̃ − u |ST

) zε (t) .

(14)

We call these problems the “state problem” and the “adjoint
problem”, respectively.
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In (14) zε (t) is a cut-off function, which is introduced to ensure
that compatibility conditions at ST ∩ {t = T} are satisfied. Here
ε > 0 is a small number. So, we choose such a function zε that

zε ∈ C∞ [0,T ] , zε (t) =





1 for ∈ [0,T − ε]
0 for t ∈

(
T − ε

2 ,T
]

between 0 and 1 for t ∈
(
T − ε,T − ε

2

)



 .
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We now reformulate for our specific needs a result, which follows
immediately from Theorems 5 and 6 in section 7.2 of [Evans].
Consider the following initial boundary value problem

c (x) vtt = ∆v + f in QT ,

v (x , 0) = vt (x , 0) = 0,

∂nv |ST
= y (x , t) ∈ L2 (ST ) ,

(15)

where the function f ∈ Hk (QT ) , k ≥ 0. The weak solution
v ∈ H1 (QT ) of this problem satisfies the following integral identity
for all functions r ∈ H1 (QT ) with r (x ,T ) = 0
∫

QT

(−c (x) vtrt + ∇v∇r) dxdt −

∫

ST

yrdxdt −

∫

QT

frdxdt = 0. (16)
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Assume that there exists such an extension P(x , t) of the function
y (x , t) from the boundary ST in the domain QT that
P ∈ Hk+2 (QT ) , ∂nP |ST

= y (x , t) ,P (x , t) = 0 for x ∈ Ω, and in

the case k ≥ 2 let ∂j
tP (x , 0) = 0, j = 0, ..., k and

∂i
t f (x , 0) = 0, i = 0, ..., k − 2. Consider the function v − P .

Dividing both sides of equation (15) by c (x) and using above cited
theorems and the formula c−1∆v = ∇ ·

(
c−1∇v

)
−∇

(
c−1
)
∇v ,

we obtain that actually the weak solution v ∈ Hk+1 (QT ) and the
following estimate holds

‖v‖Hk+1(QT ) ≤ B
[
‖P‖Hk+2(QT ) + ‖f ‖Hk(QT )

]
. (17)

Here and below B = B (Y ,QT , a (x)) and

C = C
(
B , zε, ‖F‖H5(QT ) , ‖W ‖H5(QT )

)
are different positive

constants depending on listed parameters.
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Consider functions û = u − F , λ̂ = λ− (W − a (x) u) zε and
substitute them in (13), (14). Then, using (9)-(12), (15) and (17),
we obtain that functions u, λ ∈ H4 (QT ) and

‖u‖H4(QT ) ≤ B ‖F‖H5(QT ) , ‖λ‖H4(QT ) ≤ B
(
‖F‖H5(QT ) + ‖W ‖H5(QT )

)
.

(18)
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Introduce the set Z of functions defined in Ω1,

Z =
{
f : f ∈ C

(
Ω1

)
∩ H1 (Ω1) , ∂xi

f ∈ L∞ (Ω1)
}
.

Define the norm in Z as

‖f ‖Z := ‖f ‖
C(Ω1) +

3∑

i=1

‖∂xi
f ‖L∞(Ω1)

. (19)

Then Z is a Banach space, since convergence in the norm ‖·‖Z

implies convergence in both spaces C
(
Ω1

)
and H1 (Ω1) . Let Ỹ be

the set of restrictions of all functions of the set Y on the domain
Ω1. Then it follows from (8) and (19) that Ỹ is an open set in the
space Z and

c1 (x)−c2 (x) ∈ Z ′ := {f ∈ Z : f (x) = 0 in Ω1�Ω} , ∀c1, c2 ∈ Ỹ .
(20)
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Frechét derivatives of state and adjoint problems with

respect to the coefficient c (x)

Theorem 3.1. Assume that initial conditions (2) are replaced with
initial conditions (6), where the function δθ (x − x0) is defined in
(7). Let domains Ω,Ω1 and the function a (x) be those specified
above and δθ (x − x0) = 0 in Ω1. Assume that there exist functions
F ,W satisfying conditions (9)-(12). Consider the set Ỹ as an
open set in the space Z . Let operators A1 : Ỹ → H1 (QT ) and
A2 : Ỹ → H1 (QT ) map every function c ∈ Ỹ in the weak solution
u (x , t, c) of the problem (13) and the weak solution λ (x , t, c) of
the problem (14) respectively, where in (14) u |ST

:= u (x , t, c) |ST
.
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Then in fact functions u (x , t, c) , λ (x , t, c) ∈ H4 (QT ) and each
of the operators A1 and A2 has the Frechét derivative
A′

1 (c) (b) = ũ (x , t, c , b) ∈ H1 (QT ) and

A′
2 (c) (b) = λ̃ (x , t, c , b) ∈ H1 (QT ) at each point c ∈ Ỹ , where

b(x) ∈ Z ′ is an arbitrary function. In fact, functions ũ,λ̃
∈ H2 (QT ) and they are solutions of the following initial boundary
value problems

c (x) ũtt = ∆ũ − b (x) utt (x , t, c) , in QT ,

ũ (x , 0) = ũt (x , 0) = 0, ∂nũ |ST
= 0;

(21)
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c (x) λ̃tt = ∆λ̃− b (x)λtt (x , t, c) , in QT ,

λ̃ (x ,T ) = λ̃t (x ,T ) = 0, ∂nλ̃ |ST
= −zεũ |ST

.
(22)

Denote

A3 (c) (x) :=

T∫

0

(utλt) (x , t, c) dt, x ∈ Ω,∀c ∈ Ỹ .

Then the operator A3 : Ỹ → C
(
Ω
)
.
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Proof. The validity of the statement about the smoothness of
functions u, λ follows from (18).
In the proof we will use definition of the Frechet derivative:

Definition 1. Let X ,Y be two Banach spaces, M ⊆ X be an open
set and the operator F : M → Y . We say that this operator has the
Frechet derivative F ′(x) at the point x ∈ M if there exists such a
linear operator F ′(x) ∈ L (X ,Y ) that for all h such that x + h ∈ M

F (x + h) − F (x) = F ′(x) (h) + α (x , h) , (1)

where

lim
‖h‖X→0

‖α (x , h)‖Y

‖h‖X

= 0. (2)

Suppose now that conditions of Definition 1 are satisfied. Suppose
that x ∈ M is such that {z : ‖x − z‖ < ε} ⊂ M.
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Consider vectors h ∈ {h ∈ X : ‖h‖ < 1} and let t ∈ R, |t| < ε be a
parameter. Then x + th ∈ M and by (1), (2)

F (x + th) − F (x) = F ′(x) (th) + α (x , th) (3)

and since limt→0 ‖th‖ = ‖h‖ limt→0 |t| = 0, then by (2)

lim
t→0

‖α (x , th)‖Y

|t| ‖h‖X

= 0. (4)

Dividing both sides of (3) by t and using (4), we obtain

lim
t→0

F (x + th) − F (x)

t
= F ′(x) (th) /t = F ′(x)(h). (5)
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Now we apply above described definition for Frechet derivative to
our case. Consider an arbitrary function c ∈ Ỹ . It follows from (8)
that there exists a sufficiently small number ε1 ∈ (0, 1) such that
1 − ω (1 − ε1) ≤ c (x) ≤ d + ω (1 − ε1) . Let the function b ∈ Z ′

be such that ‖b‖
C(Ω1) < ε1ω, where the set Z ′ is defined in (20).

Then c + b ∈ Ỹ . By (17)-(21) the function ũ ∈ H2 (QT ) and

‖ũ‖H2(QT ) ≤ B ‖F‖H5(QT ) · ‖b‖Z . (23)

Denote

uc+b (x , t) : = u (x , t, c + b) , uc (x , t) := u (x , t, c) ,

u1 : = u1 (x , t, c , b) =
(
uc+b − uc − ũ

)
(x , t) .

Hence, u1 ∈ H2 (QT ) .
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We now figure out the equation for the function u1. By (19) and
(27)

∆u1 = (c + b) uc+b
tt − cuc

tt − cũtt − buc
tt

= (c + b) uc+b
tt − (c + b) uc

tt − cũtt

= (c + b)
(
uc+b − uc − ũ

)
tt

+ bũtt = (c + b) u1tt + bũtt .

Hence, the function u1 is the solution of the following intial
boundary value problem

(c + b) u1tt = ∆u1−bũtt ; u1 (x , 0) = u1t (x , 0) = 0, ∂nu1 |ST
= 0.

(24)
Hence, (17), (23) and (24) imply that

‖u1‖H1(QT ) ≤ C ‖b‖2
Z . (25)
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Hence,

lim
‖b‖Z→0

(
‖u1‖H1(QT )

‖b‖Z

)
=

lim
‖b‖Z→0

(
‖u (x , t, c + b) − u (x , t, c) − ũ (x , t, c , b)‖H1(QT )

‖b‖Z

)
= 0.

(26)

Note that we set Ai : Ỹ → H1 (QT ) , i = 1, 2 instead of
Ai : Ỹ → H2 (QT ) only for the sake of the estimate (25). Since
the function ũ (x , t, c , b) depends linearly on b, then (25) and (26)
imply that the function ũ is indeed the Frechét derivative of the
operator A1 at the point c .
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Hence, we now can consider the function ũ (x , t, c , b) for any
b ∈ Z ′.

The proof for the operator A2 is similar.

it follows from (18) and the embedding theorem that
functions u, λ ∈ C 1

(
QT

)
, which implies the statement about

the operator A3. �
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How to derive equation (21) ?

If we replace h with b and t with τ in the definition of the Frechet
derivative, we have

(c + τb) uc+τb
tt = ∆uc+τb. (6)

Consider (
d

dτ
uc+τb

)
|τ=0= ũ (x , t) . (7)

To find the left hand side of (7), just differentiate (6) formally with
respect to τ. Let Uc+τb = ∂τuc+τb. By (7) Uc+τb |τ=0= ũ (x , t) .
Hence, by (6)

buc+τb
tt + (c + τb)Uc+τb

tt = Uc+τb. (8)

Now we set in (8) τ := 0 and obtain equation (21):

cũtt = ∆ũ − cuc
tt , (9) 27 / 63
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The Frechét derivative of the Tikhonov functional

Assume that conditions of Theorem 3.1 hold. We define the
Tikhonov functional E : Ỹ → R as

E (c) =
1

2

∫

ST

(u |ST
− g̃(x , t))2zε (t)dxdt+

1

2
α

∫

Ω

(c−cglob)2 dx ,∀c ∈ Ỹ ,

where α ∈ (0, 1) is the regularization parameter and cglob ∈ Ỹ is
the approximation for the exact solution c∗ obtained on the
globally convergent stage, see the end of section 2. We use the
domain Ω rather than Ω1 in the second integral term because of
(20).
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Consider the associated Lagrange functional L (c) ,

L (c) = E (c) +

∫

QT

(−c (x) utλt + ∇u∇λ)dxdt −

∫

ST

pλdxdt,

u := u (x , t, c) ∈ H4 (QT ) , λ := λ (x , t, c) ∈ H4 (QT ) ,

(27)

where functions u (x , t, c) and λ (x , t, c) are solutions of initial
boundary value problems (13), (14). The reason why we consider
L (c) is that we want to simplify the calculation of the Frechét
derivative of E (c) . By (13), (14) and (16) the integral term in the
first line of (29) equals zero. Hence,

L (c) = E (c) implying that L′ (c) = E ′ (c) ,∀c ∈ Ỹ ,

where L′ (c) and E ′ (c) are Frechét derivatives of functionals L (c)
and E (c) respectively.
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To obtain the explicit expression for L′ (c), we need to vary in (29)
the function c via considering c + b ∈ Ỹ for b ∈ Z ′ and then to
single out the term, which is linear with respect to b. When
varying c , we also need to consider respective variations of
functions u and λ in (29), since these functions depend on c as
solutions of state and adjoint problems (13) and (14). By Theorem
3.1, linear, with respect to c , parts of variations of u and λ are
functions ũ (x , t, c , b), λ̃ (x , t, c , b) .

30 / 63



Introduction
Statements of forward and inverse problems

Frechét Derivatives
A Posteriori Error Estimates in The Adaptivity

The Adaptive Algorithm
Numerical Studies

State and adjoint problems and their Frechét derivatives
The Frechét derivative of the Tikhonov functional

Theorem 3.2. Assume that conditions of Theorem 3.1 hold. Then
for every function c ∈ Ỹ

E ′ (c) = L′ (c) = α (c − cglob) −

T∫

0

utλtdt,

E ′ (c) ∈ C
(
Ω
)
.

(28)
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State and adjoint problems and their Frechét derivatives
The Frechét derivative of the Tikhonov functional

Proof.

We have

L (c) = E (c) +

∫

QT

(−c (x) utλt + ∇u∇λ)dxdt −

∫

ST

pλdxdt,

u := u (x , t, c) ∈ H4 (QT ) , λ := λ (x , t, c) ∈ H4 (QT ) .

(29)

But here functions u = uc = u (x , t, c) and λ = λ (x , t, c) depend
on c , because they are solutions of (19) and (20).
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State and adjoint problems and their Frechét derivatives
The Frechét derivative of the Tikhonov functional

Now, consider in (29) L (c + b)− L (c) = E (c + b)−E (c), we get

L (c + b) − L (c) = E (c + b) − E (c)

+

∫

QT

[− (c + b) (x) (utλt) (x , t, c + b) + (∇u∇λ) (x , t, c + b)] dxdt

−

∫

ST

pλ (x , t, c + b) dxdt

−

∫

QT

[−c (x) (utλt) (x , t, c) + (∇u∇λ) (x , t, c)] dxdt+

∫

ST

pλ (x , t, c) dxdt.
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State and adjoint problems and their Frechét derivatives
The Frechét derivative of the Tikhonov functional

Then single out the part which is linear with respect to b and thus
obtain L′ (c) (b) :

L′ (c) (b) = E ′ (c) (b) =

∫

Ω


α (c − cglob) −

T∫

0

utλtdt


 b (x) dx

+

∫

QT

(
−cut λ̃t + ∇u∇λ̃

)
dxdt −

∫

ST

pλ̃dxdt

+

∫

QT

(−cλt ũt + ∇λ∇ũ) dxdt −

∫

ST

(g̃ − u |ST
) zε1 (t) ũdxdt,

∀c ∈ Ỹ ,∀b ∈ Z ′,

(30)
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State and adjoint problems and their Frechét derivatives
The Frechét derivative of the Tikhonov functional

ũ and λ̃ are solutions of problems (21) and (22) respectively.

Since ũ (x , 0) = λ̃ (x ,T ) = 0, then (13), (14) and (16) imply
that second and third lines in (30) equal zero, which proves
the first line of (28).

The validity of the second line of (28) follows from the
statement of Theorem 3.1 about the operator A3. �
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A Posteriori Error Estimates in The Adaptivity

We work only with piecewise linear finite elements, because
they are used in our computations.

Consider a finite element mesh with the maximal grid step
size h. Let the function f ∈ Z and let f I be its standard
interpolant on this mesh. From standard interpolation
estimates follows that

∥∥∥f − f I
∥∥∥

C(Ω1)
≤ K ‖∇f ‖L∞(Ω1)

h, (31)

where the positive constant K = K (Ω1) depends only on the
domain Ω1.
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We introduce the space of finite elements Ch with the norm
‖·‖Ch

:= ‖·‖
C(Ω) .

Since dimCh <∞, then all norms in this space are equivalent.
Also, Ch ⊂ Z as a set. Hence, if the function c̃(x) is defined
in Ω1 and is such that

c̃ (x) ∈ Ch for x ∈ Ω1; c̃ (x) ∈ (1 − ω, d + ω) in Ω;

c̃ (x) = 1 in Ω1�Ω, then c̃ (x) ∈ Ỹ .
(32)
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In Theorem 4.1 we assume that state and adjoint problems are
solved exactly for the case when the coefficient belongs to Ch.
Theorem 4.1. Assume that conditions of Theorem 3.1 hold.
Suppose that there exists a minimizer cα ∈ Ỹ of the functional
E (c) on the set Vr as well as a minimizer cαh ∈ Ỹ of E (c) on the
set Vr ∩ Ch (also, see (37)). Assume also that state and adjoint
problems (13) and (14) are solved exactly for both coefficients cα

and cαh.
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Then the following approximate error estimate for the above
defined Tikhonov functional is valid

|E (cα) − E (chα)| ≤
(
A (Ω)K

∥∥E ′ (cαh)
∥∥

C(Ω)

)
‖∇cα‖L∞(Ω) h,

where A (Ω) is the volume of the domain Ω,K is the interpolation
constant from (31) and by (28)

E ′ (cαh) = α (cαh − cglob) −

T∫

0

(utλt) (x , t, cαh) dt, (33)

where functions u (x , t, cαh) ∈ H4 (QT ) and
λ (x , t, cαh) ∈ H4 (QT ) are solutions of problems (13) and (14)
respectively with c := cαh.
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Proof. Since the function chα is a minimizer of E (c) on Vr ∩ Ch,
then

E ′ (cαh) (b) = 0, ∀b ∈ Ch. (34)

Now we use the Galerkin orthogonality . We have splitting ,

cα − chα =
(
cα − c I

α

)
+
(
c I
α − chα

)
.

Since, c I
α − chα ∈ Ch, then by (34) E ′ (cαh)

(
c I
α − chα

)
= 0. Hence,

E ′ (cαh) (cα − chα) = E ′ (cαh)
(
cα − c I

α

)
. (35)
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By Theorem 3.2 the function E ′ (cαh) ∈ C
(
Ω
)
. Using (31), (??),

(33) and (35), we obtain the following approximate error estimate

‖E (cα) − E (chα)‖ ≤ ‖E ′(cαh)(cα − c I
α)‖

≤ ‖cα − c I
α‖C(Ω)

∫

Ω

‖α(cαh − cglob) −

T∫

0

(utλt)(x , t, cαh)dt‖dx

≤ (A(Ω)K‖E ′(cαh)‖C(Ω))‖∇cα‖L∞(Ω)h. �

(36)
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While it was assumed in Theorem 4.1 that state and adjoint
problems (13) and (14) are solved exactly, in the computational
practice they are solved approximately with a small error. Hence, it
is desirable to express a posteriori error estimate through these
approximate solutions. This is done in Theorem 4.2.
Theorem 4.2. Assume that conditions of Theorem 3.1 hold.
Suppose that there exists a minimizer cα ∈ Ỹ of the functional
E (c) on the set Vr as well as a minimizer cαh ∈ Ỹ of E (c) on the
set Vr ∩ Ch. Suppose that state and adjoint problems (13) and
(14) are solved exactly for c := cα and that they are solved
computationally with an error for c := cαh. Let functions
uh := uh (x , t, cαh) ∈ H1 (QT ) , λh := λh (x , t, cαh) ∈ H1 (QT ) be
those approximate solutions. Suppose that functions
uht , λht ∈ L∞ (QT ) .
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Let functions u := u (x , t, cαh
) , λ := λ (x , t, cαh) ∈ H4 (QT ) (see

(18)) be exact solutions of problems (13) and (14) with c := cαh.
Assume that

‖u − uh‖H1(QT ) + ‖λ− λh‖H1(QT ) ≤ ζ, (37)

where ζ ∈ (0, 1) is a small number.
Then the following approximate a posteriori error estimate is valid

|E (cα) − E (chα)| ≤ K
(
A (Ω) ‖D (cαh)‖L∞(Ω) + Cζ

)
‖∇cα‖L∞(Ω) h,

(38)
where the positive constant C was introduced in section 3 and

D (cαh) := α (cαh − cglob) −

T∫

0

(uhtλht) (x , t, cαh) dt. (39)
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Proof. Since functions uht , λht ∈ L∞ (QT ) and functions
cαh, cglob ∈ Ỹ , then by (39) the function D (cαh) ∈ L∞ (Ω) . Next,
using (41) and (45), we obtain the following approximate error
estimate

|E (cα) − E (chα)| ≤ |E ′(cαh)(cα − c I
α)|

≤ |D(cαh)(cα − c I
α)| + ‖[E ′(cαh) − D(cαh)](cα − c I

α)|

= ‖J1‖ + ‖J2‖

(40)
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It follows from (31), (39) and (40) that

|J1| ≤
(
A (Ω)K ‖D (cαh)‖L∞(Ω)

)
‖∇cα‖L∞(Ω) h. (41)

We now estimate |J2| in (40). It follows from (31), (33), (39) and
(40) that

|J2| ≤ K ‖∇cα‖L∞(Ω) h

∫

Ω

∣∣∣∣∣∣

T∫

0

[(utλt) − (uhtλht)] (x , t, cαh) dt

∣∣∣∣∣∣
dx
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We have (utλt) − (uhtλht) = (ut − uht)λt + uht (λt − λht) . Next,
by (24) and (37)

‖uh‖H1(QT ) ≤ ‖uh − u‖H1(QT ) + ‖u‖H1(QT ) ≤ ζ + B ‖F‖H5(QT ) .
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Hence, since ζ ∈ (0, 1), we obtain, using the Cauchy-Schwarz
inequality that

∫

Ω

∣∣∣∣∣∣

T∫

0

[(utλt) − (uhtλht)] (x , t, cαh) dt

∣∣∣∣∣∣
dx

≤ ‖u − uh‖H1(QT ) ‖λ‖H1(QT ) + ‖uh‖H1(QT ) ‖λ− λh‖H1(QT ) ≤ Cζ.

(42)

Hence,
|J2| ≤ CK ‖∇cα‖L∞(Ω) ζh.

Combining this with (40) and (41), we obtain (38). �
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Mesh Refinement Recommendation.

Assume that conditions of Theorem 4.2 hold and that the function
D (cαh) (x) ∈ C

(
Ω
)
. It follows from this theorem and Remark 4.1

that the mesh should be refined in such a subdomain of the
domain Ω where values of the function |D (cαh) (x)| are close to
the number

max
Ω

|D (cαh) (x)| = max
Ω

∣∣∣∣∣∣
α (cαh − cglob) (x) −

T∫

0

(uhtλht) (x , t, cαh) dt

∣∣∣∣∣∣
.
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Remarks
The Adaptive algorithm

Remarks on adaptivity

We solve approximately the following equation with respect to
the function cαh

(x) ,

α (cαh − cglob) (x) −

T∫

0

(uhtλht) (x , t, cαh) dt = 0. (43)

For each new mesh we first linearly interpolate the function
cglob (x) on it.

On each mesh we iteratively update approximations cn
h of the

function cαh via the quasi-Newton method with the classic
BFGS update formula with the limited storage [Nocedal].
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Remarks
The Adaptive algorithm

Denote

gn(x) = α(cn
h − cglob) (x) −

∫ T

0
(uhtλht) (x , t, cn

h ) dt,

where functions uh (x , t, cn
h ) , λh (x , t, cn

h ) are computed via
solving state and adjoint problems with c := cn

h .
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Remarks
The Adaptive algorithm

Tne Adaptive algorithm

Step 0. Choose an initial mesh Kh in Ω1 and an initial time
partition J0 of the time interval (0,T ) . Start with
the initial approximation c0

h = cglob and compute the
sequence of cn

h via the following steps:
Step 1. Compute solutions uh (x , t, cn

h ) and λh (x , t, cn
h ) of

state and adjoint problems of (13) and (14) on Kh

and Jk .
Step 2. Update the coefficient c := cn+1

h on Kh.
Step 3. Stop computing cn

h if either ||gn||L2(Ω1) ≤ θ1 or
norms ||gn||L2(Ω1) are stabilized. Otherwise set
n := n + 1 and go to step 1. Here θ1 is the tolerance
in quasi-Newton updates. In our computations we
took θ1 = 10−5.
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Remarks
The Adaptive algorithm

Step 4. Compute the function Bh (x) ,

Bh (x) =

∣∣∣∣∣∣
α (cαh − cglob) (x) −

T∫

0

(uhtλht) (x , t, cαh) dt

∣∣∣∣∣∣
.

Next, refine the mesh at all points where

Bh (x) ≥ β1 max
Ω

Bh (x) . (44)

Here the tolerance number β1 ∈ (0, 1) is chosen by
the user.
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Remarks
The Adaptive algorithm

Step 5. Construct a new mesh Kh in Ω1 and a new time
partition Jk of the time interval (0,T ). On Jk the
new time step τ should be chosen in such a way that
the CFL condition is satisfied. Interpolate the initial
approximation cglob from the previous mesh to the
new mesh. Next, return to step 1 and perform all
above steps on the new mesh.

Step 6. Stop mesh refinements if norms defined in step 3
either increase or stabilize, compared with the
previous mesh, see Table 1 in section 6 for details.
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Hybrid method
Forward problem
Simulated exact solution
Results of the globally convergent method
Synthesis of the globally convergent algorithm with the adaptivity
Convergence results in adaptive method
Results of reconstruction using an adaptive algorithm
Results of reconstruction using an adaptive algorithm

Hybrid method

(a) GFDM (b) G = GFEM ∪ GFDM (c) GFEM = Ω
The computational domain for the forward problem in our test is G
= [−4.0, 4.0] × [−5.0, 5.0]. This domain is split into a finite
element domain GFEM := Ω = [−3.0, 3.0] × [−3.0, 3.0] and a
surrounding domain GFDM with a structured mesh,
G = GFEM ∪ GFDM .
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Hybrid method
Forward problem
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Results of the globally convergent method
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Forward problem

c (x) utt −△u = 0, in G × (0,T ),

u(x , 0) = 0, ut(x , 0) = 0, in G ,

∂nu
∣∣
∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣∣
∂G1

= −∂tu, on ∂G1 × (t1,T ),

∂nu
∣∣
∂G2

= −∂tu, on ∂G2 × (0,T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0,T ),

(45)

where f (t) is the plane wave defined as

f (t) =
(sin (st−π/2) + 1)

10
, 0 ≤ t ≤ t1 :=

2π

s
,T = 17.8t1.
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Simulated exact solution

t = 0.5 t = 3.7 t = 5.9 t = 6.9

t = 7.5 t = 8.5 t = 9.6 t = 11.2

Figure: Isosurfaces of the simulated exact solution to the forward problem
(45) at different times with a plane wave initialized at the top boundary.
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Hybrid method
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Results of reconstruction in the globally convergent method

a) c9,2 b) c10,2 c) c11,2

Figure: Spatial distributions of some functions cn,k . The function c11,2 is
taken as the final result. The maximal value of c11,2 (x) = 3.8 within
each imaged inclusion.

57 / 63



Introduction
Statements of forward and inverse problems

Frechét Derivatives
A Posteriori Error Estimates in The Adaptivity

The Adaptive Algorithm
Numerical Studies

Hybrid method
Forward problem
Simulated exact solution
Results of the globally convergent method
Synthesis of the globally convergent algorithm with the adaptivity
Convergence results in adaptive method
Results of reconstruction using an adaptive algorithm
Results of reconstruction using an adaptive algorithm

Convergence results in globally convergent method

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

4.5

 

 
q

10,1

q
11,1

q
12,1

exact

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 

 

q
1

q
2

q
3

q
4

q
5

q
6

q
7

q
8

q
9

q
10

q
11

q
12

q
13

q
14

q
15

a) b)

Figure: a) The one-dimensional cross-sections of the image of the
function cn,k computed for corresponding functions qn,1 along the vertical
line passing through the middle of the right small square; b) Computed
L2 -norms of the Fn,k = ||qn,k |∂Ω −ψn||L2(−3,3).
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Adaptivity technique

On all refined meshes we have used a cut-off parameter Ccut for
the reconstructed coefficient cαh. So that we re-define cαh as

cαh (x) :=

{
cαh (x) , if |cαh (x) − cglob (x) | ≥ Ccut

cglob (x) , elsewhere.

We choose Ccut = 0 for m < 3 and Ccut = 0.3 for m ≥ 3, where m
is the number of iterations in the quasi-Newton method on each
mesh. Hence, the cut-off parameter ensures that we do not go too
far from our good first guess for the solution cglob (x) .
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Convergence results in adaptive method

n 4608 elements 5340 elements 6356 elements 10058 elements 14586 elements
1 0.0992683 0.097325 0.0961796 0.0866793 0.0880115
2 0.0988798 0.097322 0.096723 0.0868341 0.0880866
3 0.0959911 0.096723 0.0876543
4 0.096658

Table: Norms ||u |ΓT
−g ||L2(ΓT ) on adaptively refined meshes. Here

ΓT = Γ × (0,T ) and n is the number of updates in the quasi-Newton
method. These norms generally decrease as meshes are refined. Then
they slightly increase on the 4th refinement. Thus, using this table, we
conclude that on the four times refined mesh we get the final solution of
our inverse problem.
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Results of reconstruction using an adaptive algorithm

a) 4608 elements b) 5340 elements c) 6356 elements

d) 4608 elements e) 5340 elements f) 6356 elements
61 / 63



Introduction
Statements of forward and inverse problems

Frechét Derivatives
A Posteriori Error Estimates in The Adaptivity

The Adaptive Algorithm
Numerical Studies

Hybrid method
Forward problem
Simulated exact solution
Results of the globally convergent method
Synthesis of the globally convergent algorithm with the adaptivity
Convergence results in adaptive method
Results of reconstruction using an adaptive algorithm
Results of reconstruction using an adaptive algorithm

Results of reconstruction using an adaptive algorithm

g) 10058 elements h) 14586 elements

i) 10058 elements j) 14586 elements
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Adaptively refined meshes a)-c),g),h) and corresponding images
d)-f), i),j) on the second stage of our two-stage numerical
procedure. In a) the same mesh was used as one on the globally
convergent stage. Comparison of d) with Fig. 2-c) (for
c11,2 = cglob) shows that the image was not improved compared
with the globally convergent stage when the same mesh was used.
However, the image was improved due to further mesh
refinements. Fig. j) displays the final image obtained after four
mesh refinements. Locations of both inclusions as well as 4:1
inclusions/background contrasts in them are imaged accurately.
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