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Explicit solution of the wave equation for the plane wave

x = (x , y , z) , z is the vertical coordinate looking upwards.
Consider the wave equation in the domain

R3
a = {z < a} , a = const. ≥ 0.
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Neumann boundary condition

utt = △u, in R3
a × (0,T ),

u (x, 0) = ut (x, 0) = 0,

uz (x , y , a, t) = f (t) .

Obviously that the function u is independent on x , y , because f is
independent on x , y . So, u = u(z , t)

w (z , s) =

∞∫

0

ue−stdt := Lu,

f̃ (s) =

∞∫

0

fe−stdt.
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Then

wzz − s2w = 0, z ∈ (−∞, a) ,

wz(a, s) = f̃ (s) .

Solution of the ODE is

w = C1e
−sz + C2e

sz .

But since limz→−∞ e−sz = ∞, then C1 = 0. Now we should find
C2. Changing C2 a little bit, we can write

w = C exp (s (z − a)) = C exp (−s |z − a|) , for z < a.

Since wz(a, s) = f̃ (s) , then C = f̃ (s) /s. Hence

w =
f̃ (s)

s
exp (−s |z − a|) .
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Rules of the Laplace transform operator

L

f̃ (s)

s
= L




t∫

0

f (τ) dτ


 ,

p̃ (s) g̃ (s) = L




t∫

0

p (τ) g (t − τ) dτ


 .

The inverse Laplace transform of exp (−s |z − a|) is
δ (t − |z − a|) = δ (t − a + z) .
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By these rules the inverse Laplace transform of the function w is

u(z , t) =

t∫

0




τ∫

0

f (r) dr


 δ (t − τ − a + z) dτ

= H (t − a + z)

t−a+z∫

0

f (r) dr ,

where H is the Heaviside function,

H (p) =

{
1, if p > 0,
0, if p < 0.
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Then

u(z , t) =





0, if t < a − z ,
t−a+z∫

0

f (τ) dτ, if t > a − z .
(1)

For example, consider the case of the truncated sinusoid,

f (t) =

{
sin (ωt) , if t ∈

(
0, 2π

ω

)
,

0, if t > 2π
ω .

(2)

For this function f let’s calculate

t∫

0

f (τ) dτ = g (t) .
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Case 1. t ∈ (0, 2π/ω] . Then

g (t) =

t∫

0

f (τ) dτ =

t∫

0

sin (ωτ) dτ = −
1

ω
cos (ωτ) |t0=

1 − cos (ωt)

ω
.

Case 2. t > 2π/ω. Then

g (t) =

t∫

0

f (τ) dτ =

2π/ω∫

0

sin (ωτ) dτ +

t∫

2π/ω

0 · dτ =

=

2π/ω∫

0

sin (ωτ) dτ =
1 − cos (2π)

ω
= 0.
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Therefore we obtain

g (t) =

t∫

0

f (τ) dτ =

{
1−cos(ωt)

ω , if t ∈
(
0, 2π

ω

]
,

0, if t > 2π
ω .

Hence, it follows from (1) that for the function f in (2) the
solution of our initial boundary value problem is
Then

u(z , t) =





0, if t < a − z ,
(1−cos ω(t−a+z))

ω , if t ∈
(
a − z , a − z + 2π

ω

)
,

0, if t > a − z + 2π
ω .

(3)

By the way

u(z , t) ≥ 0,max u(z , t) =
2

ω
. (4)
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Solution of the wave equation in our computations

Consider the domain

G = {(x , y , z) ∈ [−3.0, 3.0] × [−2.0, 2.0] × [−5.0, 5.0]} .

Let ∂G1 and ∂G2 be respectively top and bottom sides of the
prism G and ∂G3 = ∂G� (∂G1 ∪ ∂G2) be the rest of the boundary
of the domain G . We have numerically solved the following initial
boundary value problem for T = 12
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utt = △u, in G × (0,T ),

u(x , 0) = 0, ut(x , 0) = 0, in G ,

∂nu
∣∣
∂G1

= sin (ωt) , if t ∈

(
0,

2π

ω

)
,

∂nu
∣∣
∂G1

= −∂tu, if t ∈

(
2π

ω
,T

)
,

∂nu
∣∣
∂G2

= −∂tu, on ∂G2 × (0,T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0,T ).

(5)

Then the above function u (z , t) satisfies these conditions. Hence,
it is solution of the problem (5). But we should take a = 5 in (3).
Therefore, the solution of the problem (5) is the function (3).
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Dirichlet Boundary Condition

Let

utt = △u, in R3
a × (0,T ),

u (x, 0) = ut (x, 0) = 0,

u (x , y , a, t) = f (t) .

Then

wzz − s2w = 0, z ∈ (−∞, a) ,

w(a, s) = f̃ (s) .

Solution of the ODE is

w = C1e
−sz + C2e

sz .

But since limz→−∞ e−sz = ∞, then C1 = 0. Now we should find
C2. Changing C2 a little bit, we can write

w = C exp (s (z − a)) = C exp (−s |z − a|) , for z < a.
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Hence,
w(a, s) = f̃ (s) = C .

Hence,
w = f̃ (s) exp (−s |z − a|) .

Again calculating the inverse Laplace transform, we obtain

u (z , t) =

t∫

0

f (τ) δ (t − τ − a + z) dτ = f (t − a + z)H (t − a + z) .
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Consider now the case

f (t) =

{
sin (ωt) , if t ∈

(
0, 2π

ω

)
,

0, if t > 2π
ω .

.

Then

u (z , t) =





0, if t ∈ (0, a − z) .

sinω (t − a + z) , if t ∈
(
a − z , a − z + 2π

ω

)
,

0, if t > a − z + 2π
ω .

(6)
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Consider now the problem

utt = △u, in G × (0,T ),

u(x , 0) = 0, ut(x , 0) = 0, in G ,

u
∣∣
∂G1

= sin (ωt) , if t ∈

(
0,

2π

ω

)
,

u
∣∣
∂G1

= −∂tu, if t ∈

(
2π

ω
,T

)
,

∂nu
∣∣
∂G2

= −∂tu, on ∂G2 × (0,T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0,T ).

(7)

Then the function (6) satisfies conditions (7). Hence, this function
is the solution of this problem.
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Hybrid method

(a) GFDM (b) G = GFEM ∪ GFDM (c) GFEM = Ω
The computational domain for the forward problem in our test is G

= [−4.0, 4.0] × [−5.0, 5.0]. This domain is split into a finite
element domain GFEM := Ω = [−3.0, 3.0] × [−3.0, 3.0] and a
surrounding domain GFDM with a structured mesh,
G = GFEM ∪ GFDM .
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Comparison of the exact and computed solutions on

different meshes when c = 1
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Exact solution (6) compared with the computed solution of the
problem (7) in one point (0.5,3.7), which is located at the top of
the domain. 18 / 21
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Forward problem

c (x) utt −△u = 0, in G × (0,T ),

u(x , 0) = 0, ut(x , 0) = 0, in G ,

∂nu
∣∣
∂G1

= f (t) , on ∂G1 × (0, t1],

∂nu
∣∣
∂G1

= −∂tu, on ∂G1 × (t1,T ),

∂nu
∣∣
∂G2

= −∂tu, on ∂G2 × (0,T ),

∂nu
∣∣
∂G3

= 0, on ∂G3 × (0,T ),

(1)

where f (t) is the plane wave defined as

f (t) =
(sin (st−π/2) + 1)

10
, 0 ≤ t ≤ t1 :=

2π

s
,T = 17.8t1.
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Simulated exact solution

t = 0.5 t = 3.7 t = 5.9 t = 6.9

t = 7.5 t = 8.5 t = 9.6 t = 11.2

Figure: Isosurfaces of the simulated exact solution to the forward

problem on the mesh with mesh size h = 0.125 at different times with a

plane wave initialized at the top boundary.

21 / 21


	Verifying the Accuracy of the Solution of the Wave Equation
	Neumann boundary condition
	Rules of the Laplace transform
	Exact solution
	Dirichlet Boundary Condition

	Numerical Studies
	Hybrid method
	Simulated exact solution


