
Lecture 1. Introduction to well- and ill-posed problems.

November 19, 2009

1 Mathematical background

Definition 1.2.1. Let Ω ⊆ Rn be a domain, and u (x) , x = (x1, . . . , xn) ∈ Rn is a m times
continuously differentiable function defined on Ω. Denote

Dαu =
∂|α|u

∂xα1
1 . . . xαn

n

the partial derivative of order |α| = α1 + . . . + αn, where α = (α1, . . . , αn) is a multi-index,
and αi are non-negative integer numbers.

Definition 1.2.2. Denote Cm
(
Ω̄

)
a set of functions u defined on the closure Ω̄ of the

open set Ω, such that the function u is m times continuously differentiable, and its norm is
given by

‖u‖Cm(Ω̄) =|α|≤mx∈Ω̄ sup |Dαu (x)| <∞.

Definition 1.2.3. A set supp u = {x : u (x) 6= 0} ∩ Ω, where u (x) is a continuous
function defined on an open set Ω, is called a support of this function.

Definition 1.2.4. Denote Cm
0 (Ω) a set of all m times continuously differentiable func-

tions whose support is compact in Ω ⊂ Rn. By analogy, denote C∞
0 (Ω) a set of infinitely

times differentiable functions.
Definition 1.2.5. Denote Wk,p (Ω) , (1 ≤ p <∞, k ≥ 0) a set of all functions belonging

to the space Lp (Ω) together with their generalized derivatives Dαu of order |α| ≤ k. This
set is called the Sobolev space. In this space, the norm is given by

‖u‖W k,p(Ω) = (

(∫
Ω

(
|α|≤k |Dαu|2

)p/2
)
dx)1/p

Definition 1.2.6. In the specific case p = 2, we denote a Hilbert space Hk (Ω) =
W k,2 (Ω) with the inner product

(u, v)Hk(Ω) =|α|≤k (Dαu,Dαv) =|α|≤k

∫
Ω

DαuDαvdx.
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Definition 1.2.7. Denote Cα
(
Ω̄

)
, 0 < α < 1 a set of all continuous functions u defined

on Ω̄, such that

‖u‖Cα = ‖u‖C0 + sup
x,y∈Ω, x 6=y

|u (x)− u (y)|
|x− y|α

<∞,

where ‖u‖C0 = supx∈Ω |u (x)| .
Definition 1.2.8. Denote Ck+α

(
Ω̄

)
, where k is a positive integer and α ∈ (0, 1), a

Hölder space with the norm

‖u‖Ck+α = ‖u‖Ck + max
|α|=k

|Dαu|C0,α <∞.

If α = 0, these are Banach spaces. Note that if the domain Ω is unbounded, then we
have to assume the boundedness of the functions and their derivatives of order k + α. In
this case, the set Ck+α

(
Ω̄

)
is not a Banach space.

Definition 1.2.9. A pair (X, τ), where τ is a topology in X, i.e., it is a family of
subsets of the set X, such that: (1) an empty set and the whole set X belong to τ , (2) the
intersection of any finite number of set on τ belongs to τ , is said to be a topological space.
For convenience, the topological space is denoted as X.

Definition 1.2.10. A topological space X is called a Hausdorff space if for any elements
x ∈ X, y ∈ X, there exist their non-intersecting vicinities.
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2 Ill-Posedness

Let U, F be the topological spaces, and A be an operator acting from U in F . Consider an
operator equation

A (u) = f, u ∈ U, f ∈ F. (1.1)

Definition 1.2.1. (Hadamard, 1932) The problem (1.1) is said to be well-posed in the
sense of Hadamard if the following conditions are fulfilled.

1. For any f ∈ F there exists an element u ∈ U , such that A (u) = f , i.e., the range
R (A) of the operator A coincides with the whole space F .

2. A solution u of the equation (1.1) is uniquely determined by the element f . In other
words, there exists the inverse A−1 of the operator A.

3. The solution u depends continuously on the element F . In other words, the operator
A−1 is continuous.

If at least one of these conditions is not fulfilled, the problem is said to be ill-posed in
the sense of Hadamard.

Clearly, the problem (1.1) is well-posed in the sense of Hadamard if and only if there
exists the continuous inverse A−1 of the operator A defined on the whole space F .

A typical example of an ill-posed problem is given by the operator equation (1.1) whose
operator is linear and compact. In this case, the inverse A−1 cannot be defined on the whole
space F . Furthermore, it is not continuous even on the set AU . In general, the inverse A−1

of the operator A generated by an applied problem cannot be defined on the whole space F .
In other words, the third Hadamard’s condition is extremely strong.

3 Examples of ill-posed problems

3.1 Example 1. Hadamard example - Caushy problem for the
Laplace equation

Hadamard presented an exmaple o an ill-posed problem for PDE which in his opinion did
not correspond to any real physical formulation.

The solution is unique.
But it have not continuous dependence on its data.
Let

u = u(x, y),4u = 0, y > 0, u(x, 0) = 0,
∂

∂y
u(x, 0) = α sin(nx), x ∈ [0, π], (1)

The Caushy problem (1) has the solution
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u(x, y) =
α

n
sinh(ny) sin(nx). (2)

For any pair of functional spaces Ck, Lp, H
l
p,W

l
p and any ε > 0, c > 0, y > 0 it is possible

to choose α and n such that
||αsin(nx)|| < ε, (3)

but
||α
n

sinh(ny) sin(nx)|| > c (4)

since
lim
n→0

||α
n

sinh(ny) sin(nx)|| = ∞. (5)

This problem does not depends continuously on its data and hence is not well-posed.

3.2 Example 2. The differentiation problem.

Suppose the function f(x) is given with a noise. In other words, the given function is

fδ (x) = f (x) + δf(x), x ∈ [0, 1]

‖δf‖C[0,1] ≤ δ,

where δ is small and this number is the level of noise. Then the problem of calculating f ′δ (x)
is ill-posed. Indeed, let for example

δf(x) =
sinnx

n
.

Then

‖δf‖C[0,1] ≤
1

n

and is small for large n. However, f ′δ (x)− f ′ (x) = cosnx and is certainly not small.
The differentiation problem can be reduced to an equivalent problem of solving the inte-

gral equation of the first kind, assuming that f (0) = 0, i.e. f (0) is known,

fδ (x) =

x∫
0

f ′δ (y) dy. (1)

Hence the problem is to find the solution f ′δ (y) of equation (1), assuming that fδ (x) is
known.

By the way, there exists a simple method of regularization of the differentiation problem.
Indeed,

f ′δ (x) ≈ f (x+ h)− f (x)

h
+
δf(x+ h)− δf(x)

h
.
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We want to make small the following∣∣∣∣f ′δ (x)− f (x+ h)− f (x)

h

∣∣∣∣ ≤ 2δ

h
.

Hence, we should take h = h (δ) such that

lim
δ→0

2δ

h (δ)
= 0.

We can take then h (δ) = δµ, where µ ∈ (0, 1) . Hence, h (δ) is the regularization parameter
here. Basically it says that the mesh step size cannot be too small.

3.3 Example 3. Solution of the integral equation of the first kind.

First, some well known facts. Let G,Ω ⊂ Rn be two bounded domains. Let K (x, y) ∈
C

(
G× Ω

)
, x ∈ G, y ∈ Ω be a function. Consider the integral operator K : C

(
Ω

)
→ C

(
G

)
defined as

(Kf) (x) =

∫
Ω

K (x, y) f (y) dy, x ∈ G.

Then it is known from the Functional Analysis (somewhere where Fredholm’s theory is
studied) that K is a compact operator. Consider two equations

f (x) +

∫
Ω

K (x, y) f (y) dy = g (x) , in the case Ω = G, f =? (2)

(2) is called integral equation of the second kind. This equation is a standard thing in the
theory of elliptic and parabolic PDEs. The Fredholm theory works for (2). It basically says
that if solution of (2) is unique, then the existence theorem holds. Furthermore, solution of
(2) is stable, i.e.

‖f‖C(Ω) ≤ C ‖g‖C(Ω) ,

again if uniqueness theorem can be proven for (2).
Now we consider another type of integral equations, in which it is not necessary that

Ω = G. ∫
Ω

K (x, y) f (y) dy = g (x) , x ∈ G, f =? (3)

This is the so-called integral equation of the first kind. Tikhonov has started his theory on
the basis of (3).

I now show that the problem (3) is ill-posed. Let Ω = (0, 1) , G = (a, b) . Consider instead
of f the function

fn (x) = f (x) + sinnx. (4)
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Then ∫
Ω

K (x, y) fn (y) dy = gn (x) ,

where gn (x) = g (x) + pn(x), where

pn(x) =

∫
Ω

K (x, y) sinnydy.

By the Lebesque lemma limn→∞ ‖pn‖C[a,b] = 0.However, it is clear from (4) that ‖fn (x)− f (x)‖C[0,1] =
‖sinnx‖C[0,1] is not small for large n.

3.4 Example 4.

Coefficient Inverse Problems are ill-posed. The proof of this statement follows from regularity
estimates for solutions of PDEs and is therefore space consuming.

Forward ,or operator A is compact:
A(x)=y , where A is compact operator (linear or nonlinear).
It is known that:
a. Domain of values of compact operator does not have inner points: And thus it is

impossible to prove existence theorem.
b. Because of a) compact operator does’t have continuous inverse operator.
Indeed, the following result shows that even for a linear operator, the solvability of the

equation (1.1) in the whole space and the continuity of the inverse A−1 are closely connected.
Theorem 1.2.1. (Ivanov, 1978) Let A be a linear injective continuous operator with the

domain D (A) = U and with the range R (A) ⊆ F , where U, F are Banach spaces. Then the
inverse A−1 of the operator A is bounded if and only if R (A) = R (A) .

Thus if the inverse A−1 is unbounded, then the range R (A) of the operator A is not
closed in F , i.e., the operator equation is not solvable in the whole space Ḟ .

Numerous problems of linear algebra, applicable analysis, calculus of variations, control
theory, signal processing, imaging, etc. are proven to be ill-posed in the sense of Hadamard.
As such, they should be excluded from consideration within the framework of classical math-
ematics. Meanwhile, they are of particular interest to scientists and practitioners. To elimi-
nate such a discrepancy, the concept of conditional correctness was introduced by Tikhonov.
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4 Conditional correctness

Definition 1.2.2. (Tikhonov, 1943) The problem (1.1) is said to be well-posed in the sense
of Tikhonov (or conditionally well-posed) if the following conditions are fulfilled.

1. It is known a priori that there exists a solution of this problem and it belongs to a
certain set M ⊂ U , i.e., f ∈ N = AM.

2. This solution is unique on the set M , i.e., the inverse A−1 is defined on this set.

3. The inverse A−1 of the operator A is continuous on N . The set M is called a correctness
set.

The concepts of correctness by Hadamard and Tikhonov are fundamentally different.
Unlike Hadamard’s definition, the solvability of the operator equation (1.1) in the whole
space U is not required by Tikhonov’s definition. Furthermore, the continuity condition
for A−1 is required only on the correctness set M . Therefore, the problems satisfying all
conditions indicated in Definition 1.2.2 are also called the conditionally well-posed problems.

According to Tikhonov, any compact set of U can be taken as a correctness set M . In
connection with this, Tikhonov pointed to the following general topological theorem that
establishes the stability result.

Theorem 1.2.2. (Dunford, 1962) Let U be a topological space, F be a topological Haus-
dorff space, and M ⊂ U be a compact set. If a continuous one-to-one operator A maps the
set M onto a set N ⊂ F , then the inverse A−1 is continuous on N in a relative topology.

Due to this theorem, the third condition in Definition 1.2.2 follows from the second one.
This fact is widely exploited in the theory of coefficient inverse problems (see, e.g., (Lavren-
tiev, 1986) and (Isakov, 1998) for establishing the stability results followed the uniqueness
theorem. Furthermore, the continuity condition in Theorem 1.2.1 can be weakened.

Definition 1.2.3. An operator A is closed if its graph {(u,Au) : u ∈ D (A)} is closed in
the topological product U × F.

Theorem 1.2.3. (Ivanov, 1962) Let U, F be topological Hausdorff spaces satisfying the
first axiom of countability, and A be a close one-to-one operator acting from U to F . let
D (A) be the domain of the operator A, M = D (A) ∩K,N = AM ⊂ F . Then the set N is
closed on F , and the inverse A−1 is continuous on N in a relative topology.

In practice, the right-hand side f of the equation (1.1) is usually determined from mea-
surements. Specifically, instead of the element f ∈ N , a certain approximation f̄ of f is
given. If F is a metric space, then the deviation estimate is given by ρF

(
f, f̄

)
≤ δ, δ > 0.

Since there are no effective criteria of belonging the element f̄ to the set N = AM , the
element A−1f̄ may not exist. Because of this, both theorems 1.2.1 and 1.2.2 can not, in
general, be used for constructing the efficient algorithms for the numerical solution of the
problem 1.1.

The theory of regularization (see, e.g., (Tikhonov, 1977), (Ivanov, 1978), (Bakushinsky,
1994)) allows for constructing such algorithms. The core of this theory is the concept of
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regularizability in the sense of Tikhonov. Consider a certain operator F (e.g., F = A−1)
acting from a metric space F into a metric space U . Assume that this operator is defined
on a subset D ⊆ F , and it is not continuous. We wish to compute the approximate values
of F given the pair

(
f̄ , δ

)
.

Definition 1.2.4. An operator F is called regularizable on D if there exists a parametric
operator Rδ defined on F × {0 < δ ≤ δ0}, such that

lim
δ→0

sup
{
ρU

(
Rδ

(
f̄
)
,F (f) : ρF

(
f̄ , f

)
≤ δ

)}
= 0, ∀f ∈ D.

In this case, the operator Rδ is called the regularizing algorithm for computing the values of
F , and the element Rδ

(
f̄
)

is called the approximate solution of this problem.
There exist both the regularizable and non-regularizable operators (see (Bakushibsky,

1994) for details). As an example, consider a linear one-to-one operator A acting from V b
a

into L̄2 (a, b), where V b
a is a space of all functions with bounded variations on the interval

(a, b). Clearly, the operator A−1 cannot be regularizable on AV b
a ⊆ L2, because the space

V b
a is not separable, whereas the space L2 is separable. In the theory of regularization, there

is a general criterion of regularizability in linear normed spaces.
Theorem 1.2.4. (Vinokurov, 1971) An operator F acting from a linear normed space

F into a separable linear normed space U is regularizable on D ⊆ F if and only if it is a
pointwise limit (on D) of a sequence of continuous operators Fα defined on F.

In particular, all operators are regularizable if they are the pointwise limits of continuous
operators. This criterion establishes the close connection between the problem of construct-
ing the regularizing algorithms and the problem of constructing a family of approximating
continuous operators for F .

Definition 1.2.5. A family {Fα} of continuous operators Fα on F , where α runs over
an ordered number set, such that

lim
α→∞

ρU (Fα (f) ,F (f)) = 0,∀f ∈ D,

is called the family of approximating operators.
Once such a family is constructed, based on Theorem 1.2.3, one can make a transition

from Fα to Rδ specifying the function α (δ), so that the family Fα(δ)

(
f̄
)

= Rδ

(
f̄
)

satisfies
the definition 1.2.4.

Theorem 1.2.5. (Baksushinsky, 1994) Suppose the operator F is approximated on D
by operators Fα satisfying the Lipschitz condition, i.e., for all f1, f2 ∈ F

ρU (Fα (f1) ,Fα (f2)) ≤ CαρF (f1, f2) .

Then one can choose the function α = α (δ), so that the operator Fα(δ) generates the regu-
larizing algorithm for F on D.

Thus, within the framework of Tikhonov’s regularization, knowledge of the pair
(
δ, f̄

)
and choosing the function α (δ) are necessary for constructing any regularizing algorithm.

There is another way for constructing the regularizing algorithms. This way utilizes the
concept of quasisolution. Now assume that the operator F = A−1, where A is the continuous
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one-to-one operator in the equation (1.1). For brevity, assume that U and F are Banach
spaces, and M is a compact set in U.

Definition 1.2.6. (Ivanov, 1962) Any element ū ∈M of the set

Argmin {‖A (u)− f‖ : u ∈M}

is called a quasisolution of the equation 1.1.
By virtue of continuity of the operatorA, the functional ‖A (u)− f‖ is continuous. Hence,

the quasisolution exists for any f ∈ F . It coincides with the classical solution if f ∈ AM .
Consider the operator Rδ

(
f̄
)

= ū, where ū ∈ M is a quasisolution, i.e., a minimizer of the
functional

{∥∥A (u)− f̄
∥∥ : u ∈M

}
.

Theorem 1.2.6. The operator Rδ

(
f̄
)

generates the regularizing algorithm for A−1 on
the set AM.

Clearly, if the compacts set M can be established a priori, the method of quasisolutions
is advantageous, because it does not require knowledge of δ, i.e., the operator Rδ does not
depend explicitly on this parameter. Furthermore, one can obtain the error estimate of
quasisolutions. Indeed, since ‖Aū− Au0‖ ≤

∥∥Aū− f̄
∥∥ +

∥∥f̄ − f0

∥∥ ≤ 2δ, where Au0 = f0,
then sup {‖ū− u0‖ : z0 ∈M} ≤ ω (2δ, A−1, N), where N = AM.

5 Examples of inverse problems

Let us consider some examples of inverse problems.
Example 1.
Let q(x) be continuous function for all x ∈ R and u(x, t) is the Cauchy problem solution

ux − uy + q(x)u = 0, (x, y) ∈ R2,

u(x, 0) = ϕ(x), x ∈ R.
(6)

The problem (6) is well-posed for known functions q, ϕ.
It is necessary to demand the continuous differentiability of ϕ(x) for existing classical

solution (i.e. solution and its partial derivatives are continuous in R2). Suppose that ϕ(x) is
continuously differentiable. Let us consider the problem of finding function q(x) by knowing
information about solution of (6):

u(0, y) = ϕ(y), y ∈ R. (7)

Indeed the solution of (6) is known:

u(x, y) = ϕ(x+ y)exp

(∫ x

x+y

q(ξ)dξ

)
, (x, y) ∈ R2. (8)

It follows from (7) that

ψ(y) = ϕ(y)exp

(∫ 0

y

q(ξ)dξ

)
, y ∈ R. (9)
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Therefore the solution to the inverse problem exists if and only if
1. ψ(y) is continuously differentiable for y ∈ R.
2. If

ψ(y)

ϕ(y)
> 0, y ∈ R; ψ(0) = ϕ(0). (10)

Thus the solution of inverse problem is given by formula

q(x) = − ∂

∂x

(
ln
ψ(y)

ϕ(y)

)
, x ∈ R. (11)

Example 2.
It is necessary to find initial state of bounded heated bar, if the boundary value problem

solution

ut = uxx, 0 < x < π, t > 0,

u(0, t) = u(, t) = 0, t > 0,

u(x, 0) = ϕ(x), 0 ≤ x ≤ π,

(12)

is known in fixed moment t = T :

u(x, T ) = ψ(x), 0 ≤ x ≤ π. (13)

Using Fourier method the solution of (12) has the form

u(x, t) =
∞∑

n=1

e−n2tϕn sinnx. (14)

Here ϕn are Fourier coefficients of function ϕ(x):

ϕ(x) =
∞∑

n=1

ϕn sinnx. (15)

Let t = T in (14) we obtain

ψ(x) =
∞∑

n=1

e−n2Tϕn sinnx, x ∈ [0, π]. (16)

Therefore
ψ(x) = ψne

−n2T , n = 1, 2, ..., (17)

where ψn are Fourier coefficients of function ψ(x). The coefficients ϕn, n = 1, 2, ... uniquely
define function ϕ(x) ∈ L2. Notice, that in this case the boundary condition (14) holds in
the following sense

lim
t→+0

∫ π

0

[u(x, t)− ϕ(x)]2dx = 0. (18)

From (18) follows that the solution of inverse problem (12) exists if and only if, when
∞∑

n=1

ψ2
ne

2n2T <∞ (19)
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