Lecture 4. Tikhonov method for equations with convex
functional. Local strict convexity of the Tikhonov
functional for non-linear operators.

January 14, 2010

1 Tikhonov method for equations with convex func-
tional
Tikhonov scheme allows to construct approximation methods for solution of equation F'(z) =
0 not only for special case of operator F', when F' = Az — f.
In this lesson we will analyze more common case when functional ® is convex, but not

necessary quadratic. As before, we assume that F' = F(Ny, N2). If equation have form
Ax = f, then corresponding functional

1
o(x) = 5lAz — /I,

is convex and class of operator equations which we are interested in, is not empty. This class
is extension of class F'(Ny,0). Differentiating Tikhonov functional

Ba(2) = ol|Az — flf}, + sallz — wolf},
gives as
! (z) = ¥'(x) + alx — x0),x € H.
Because functional ® is convex, we have
(®'(z) — @'(y), 2 — y)m, = 0,Vx,y € Hi.

Thus,

(P4 (2) = @), @ = y)m, = allz = ylfy,, Yo,y € Hi. (1)
Equation (2) says that functional ®,, is strongly convex in H; for Va > 0. from theory of
convex optimization is known that in this case exists unique global minimizer of this problem
which realizes minimum of functional ®, in H;.

D, (xy) = xlenlgl O, (x),a > 0. (2)
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In optimization theory there exists a lot of minimization methods for strongly convex
functionals. In all algorithms we face out with two difficulties:

- first problem is that there are not convergence estimates of z, to * when o — 0.

- second problem is that iterative processes are less effective with reducing of parameter
« since these processes requires increasing of optimization iterations when o — 0.

Let us clarify this on one example when we apply gradient method for minimizing of
functional ®,:

o € Hy : 2y = 2 — 9. (2,),n =0,1, ... (3)

Because of (3) and necessary minimum condition
Q! (1) = ¥ (24) + a(xq —29) = 0,n =0,1, ...
we have

||xn+1 - J"a”%h = ||"En —Ta — '7/((1);(1:71) - (P,(a(wa)))“%h
= ||zn — Tallm, — 27((1);(13%) - (I)/a@oz)vxn — To)m (4)
+ PP (2n) — O (za) |7, -

Remind that
() = F¥(x)F(z), x € H;.

Following estimate takes place

19 (20) — P (a)l 7,
' (z,) — V(2o + |z — 20|l
F (@)l oo [|F (2n) = F ()],
() = F7 ()| Lo m) || F(2a) |
+ allzn — zollm,
< (VT + Vo[ F(@a) |1, + @)@ — ol |-

By definition of z,,
Do) = <|F ()P, + Lllva — ol < Bl — o)
o(ta) = SIIF (@)l + Sllza = zoll, < ®al2, — 20),

and thus
|1F (@)l < Va®a(ay, — zo)n, (6)
From estimates (5) and (6) follows that
||<I>;(xn) - q)iy(xa”ﬁ{l < LHxn - xaHHw
L= N2+ Nyllat, — aollm v+ a.

Substituting estimates (5) and (7) in (4) and using (2) we can get

|2+t = 2allfr, < V1 —2va + 2L |00 — 2o |, (8)
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We see that for Vy > 0 in (8) 1 — 2ya + v*L? > 0. Value of v we should choose like that
expression 1 — 2ya + 72L? should be small. We can require that

1 —2ya+~2L* < 1.

For this it is sufficient that following condition should be fullfilled

2a
0<7<ﬁ‘ 9)

In the case that (9) is true we have

[l = zallfy, < V1= 2ya+72L2wo — 2all1,q" (),

10
g(@) = V1 =270 +72L%, q(a) € (0,1). 1o

From (10) follows that defined by (3) sequence x,, converges to x, as geometric progression.
Then minimal value its achieved at v = «L~? and corresponding minimal value of 1 —
2va + y2L? is equal to 1 — a?/L?. Thus, when o — 0 then g(a) — 1 for any choice of v
from condition (9). Because of this we need to make more iterations in minimizing of our
functional.

1.1 Convexity of Tikhonov functional for linear operators

Let H; and H, be two real valued Hilbert spaces. Denote norms in these spaces as ||o||, and
|®]|, . Let the operator F': H; — H,. Consider a general equation

F(x) =0,z € H;. (11)
An important case of this equation is
F(z)=Ax — f, A€ L(Hy,Hy);z € Hy, f € H. (12)
Thus, we will discuss now the linear operator equation
Az = f,x € Hy,A € L(Hy, Hs), f € Hs. (13)

In other words, A : Hy — Hs is a bounded linear operator. In the case of ill-posed problems
A is a compact operator. Therefore, a bounded inverse A~! does not exist. Thus, we need
to consider the Tikhonov functional ®, to approximately solve equation (3), where

1 o
0o (2) = = [|[Az = f5+ 5 |z = zolf} - (A)
2 2

Here z( is a certain a priori chosen vector. In computational practice usually x( is a good
approximation for the correct solution.



We now establish the strict convexity of ®, (z). This is an important property. Indeed,
it is well known that a strictly convex functional can have at most one point of minimum.
Now, if dim H; < oo, then this minimum exists. Indeed, it is clear that

| |1|i1rn o, (z) = 0.
T 1*00

On the other hand,

W7, el
2 2
In other words, ®, (0) has a certain bounded value. Hence, by the Weierstrass theorem a
minimizer z,, of ®, (z) exists and by Theorem 1 this minimizer is unique: the uniqueness is
because ®,, (z) is strictly convex.

Definition 1. Let U C H; be convex set and the operator G : U — Hy (G is not
necessary linear). The operator G has the Frechet derivative G’ (x) € L (Hy, Hy) at the
point z € U if the following representation is valid

@, (0)

G(z+h)—G(z) =G () (h) + ox (|h]l,) ,¥h € Hi, (100)

where
oz ([IRl))]],

im = 0. 101
Irl—0  [[All; (101)

In other words, the difference G (x +h) — G () is a linear operator G’ (z) (h) plus a
function, whose norm us much smaller than |||, for sufficiently small ||A||, . This is the full
similarity with the conventional definition of the differential.

Furthermore, it follows from (100) and (101) that in order to figure out the Frechet
derivative G’ (z) (h) at the point x, one should consider the difference G (x + h) — G (x) and
consider the linear, with respect to h, part of this difference. So, this part is a good candidate
for being the Frechet derivative: do not forget that we also need to prove (101).

Definition. Let U C H; be convex set and let the functional ® : U — R has the Frechet
derivative @' (x) for all x € U. This functional is called strictly convex on the set U with the
strict convexity parameter x if

O (z+y)—®(x)— () (y) > r|yll},Ve,y € U such that = +y € U. (B)

Theorem 1. Suppose that the operator A in (138) is linear and bounded. Then the
functional @, is strictly convex on the space Hy with the strict convexity parameter /2.

Proof. First, we consider the Frechet derivative @ (z) of the functional &, (x). So,
by the above rule, we need to consider the difference ®, (z + h) — @, (), single out its
linear part (with respect to h) and prove (101) for the rest. Let (,), and (,), be scalar
products in Hy and H, respectively. Since we have real valued Hilbert spaces, then (a,b), =
(b,a), ,Ya,b e Hy, k =1,2. Hence,

1
@a(x—i—h)—d)a(x):§(A:U+Ah,Ax+Ah)2+%(x—l—h,x—i—h)l
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1

9 (A:L’,ASU)2 - 5 (SL’,%)I (C>

1
= [(Az, Ah), + o (x, h),] + [5 (Ah, Ah), + % (h,h),| -
Since A is bounded operator, than

< 5 (1A +a) [IAll;

DO | —

1 Q
‘5 (Ah, Ah)2 + ) (h, h)1

Hence,

1 1 o
lim —— 4| = (Ah, AR), + = (h,h
Iall,—o0 [[R ], {{2( )25 )1”

1
< 5 dim ([[A] +a)[[n]l; = 0.

Therefore, it follows from (100), (101) and (C) that

&, (0)(h) = (Az, Ah), + o (z,h),
or ¢ (z)(h) = ((AA*+a)x,h),.

Hence, ¢/ (z) = (AA* + al) x, where [ is the identity operator on H;.
Now, we are ready to use (B) to prove the strict convexity of ®,. We have

Co (2 +y) = Do () — O (2) (y)

1
=5(Ax+Ay,Ax+Ay)2+g(fc+y,w+y)1

2
1 Qo
_5 (Avax)Q - 5 (xvx)l - (Avay)2 - (w7y>1
1 o o

2
We have used here the fact that (Ay, Ay), > 0. O

2 Existence of minimizer

As before we assume that there exists Frechet derivative of functional ®,(z) and F €
(N17N2)-
We assume that
[|F(z")|]| <0,0 < < 1. (14)

We also assume that the operator F' has the Fechet derivative F'(z) for z € Vi(a*) =
{||lx — 2*|| < 1} and this derivative is Lipschitz continuous or

[F' ()| < N, [[F'(2) = F'(y)l| < Nafle —yl|. (15)



We now assume that

|Zgop — ™| < 6",y = const. € (0,1), (16)

a = 6" uy = const. € (0,min (p1,2 (1 — pq))) (17)

Lemma A minimizer x, of the functional ®, (x) on the space Hy exists for any value
of the regularization parameter «. For any r > 0 denote V, (x,) ={x € Hy : ||x — x| < r}.
Assume that conditions (16), (17) hold. Then Ty € V. g5 (Ta) and x* € V(1+\/§)5u1 (q) -

Let 8y € (0,1) be any number. Then there exists a sufficiently small number g = dq (1, p12, 51) €
(0,1) such that if 0 € (0,00), then =*, Zgioh € Vaya (Ta) -
Proof.
Since dim H < oo, then lim g —o Po () = oo implies the existence of a minimizer x,.
Since @, (r4) < ®, (*) then

* 2y 4 1 . o, 6% + ad?
Co(2") = @(2") + S|l — 2|l = SIIF @) + Slla* — 2gopl| < ————,  (18)
2 2 2 2
and then 52 52
1
D0 (1) < Bofa) = T (19)
and thus 52 52
p1
By, (4) < +TO‘ < s (20)
Why % < ad* ?
Since v = 02, then
aéi’“ — gh2—2(1-pm)
J
By (17) pa < 2(1 — pq) . Hence pg — 2 (1 — p1) < 0. Hence,
lim §#2 20— — o, (D)

6—0

But in Lemma we talk about sufficiently small dy. Hence, it follows from (D) that if &y is
sufficiently small, then for § € (0,dy) we have

Oé(sQMl

52

= #2207 > 1 — ™ > 6%

Then, by the definition of ®,(x,) we have

o 1 «
Dalra) = B(za) + Sl1a — Tl = 5| F @)l + 51l — 2yl < ad™. (21)



It follows from this equation that
1 2 2p1
SIF @I < ag?s (22)

and o
§||xa — Taol|? < @b, (23)

From the last inequality we get that
Hl’a — xglob” < \/5(5'“1. (24)
Using this estimate, we obtain

170 = Zgion|| < |[Za = Zgrop|| + [|20 — 27|
< V261 4 5m (25)
= (1+V2)0" < o = B16*.

Why (1+v2)0" < o = B0%7
Since ps < py, then
615,“2

6—0

(1+v2)ém

and ¢ is sufficiently small. Thus
515/12
—>1
(1 ++/2)dm

and thus
B10#2 > (1 +V2)0M.

Theorem Assume that conditions (16), (17) hold. Then there exists numbers [ =
B1 (N1, No) € (0,1) and 61 = 01 (1, o, No, 51) € (0,1) depending only on listed parameters
such that if p = By, then for any § € (0,01) the functional J, is strictly convex in the neigh-
borhood V, (x) of the point x, with the strict convexity parameter k = a/4. Furthermore,
by Lemma 2.1 points Ty, v* € V, (z4) .

Proof. Let ; € (0,1) be the number which we will choose below in this proof, p = 1«
and z,y € V, (x,) be two arbitrary points. By (2.9)

(Jo (@)= T (). x—y) = alz—y|*+ (F"(z)
= allz -y’ + (F* (z)
+(F" (x) F(y) = F" (y) F' (y),x —y).

Denote Ay = (F"* (z) F (x) — F™* () F (y) ,x —y), As = (F™* (x) F (y) — F" (y) F' (y) ,x — y)
and estimate A, Ay from the below.



) Since Ay = A; — (F* () F' (z) (v —y) ,x —y) + (F™* () F' (z) (x —y) ,x —y), then we

Ay

+ 0+

we can rewrite A; as

A = (P <x>/<F' (y+0(z—y)— F (@) (@ —y)dd.z — )

+(F" (2) F'(2) (x —y) ,x —y).

We obtain
(@) [ (Fly+ 6w — ) ~ F@)(o— )b,z —y
< |IF <x>||/||[F'<y+e<x—y>>—F' @) (& — )| 8- |z — ]
< NN / (v + 0z — ) — 2)(z —y)db - ||z — y]
L 5
< §N1N2H5’3—3/H :
2= / F'(y + 0(x — y)) — F'(2))(x — )db.
Hence,

(F’*(SL’) /[F’(y +0(x —y)) — F'(2)|(x — y)db, z — y)
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= |(F"(@)z, 2 —y)| < [[F"@)]| - [[]] - 1z =y
= [1F"@I - M= - [l =yl

We have used here that for every bounded linear operator A we have ||A*|| = || 4] .
Also,

(F" (2) F' (@) (x = y) o —y) = (F (@) (x = ), F' (@) (x = ), = | F' (@) (z = )]l =

Hence, 4, > N1 N, ||z — y||* /2. Now we estimate A,
[As| < IIF W)l |1F'(2) = F' (9)ll |z = yll < Naflz =yl |1F ()],

Since
1E W)y < [1F(y) = F (@a)lly + |1F (xa)lly < Nilly — 2ol + [|1F (za)ll5
since
[F(y) — F(za)|l2 < (zeﬂvl,%) [F' (@)Dl — wall < Nilly — zal|,
then

|[As] < N[l = ylI* (N1 ly = zall + | F (2a)ll2) -

By (14), (15) and Lemma || F (z4)||y < [|[F (za) — F (2*)]], + 6 < /4Ny + 0.
Hence,
Ay > =Na[lz =yl (N1 [ly — wall + afi Ny +6).

Combining this with (26) and the above estimate for A;, we obtain

(@, () =@, (y),x —y) >

NN
lz = y)I* |o = 12 2z =yl = NiNa ||y — zal| = Na (NiaBy +6)| .
We have by Lemma
lz—yll _llz—oataa—yll _ohtabh _ o
2 2 2
and thus
m_
NlNQM + N1N2||y — ZL‘QH + N2 (Nloéﬁl + 5)

< a1 NaNy + afi NaNy + a1 NaNy + Nad
S BC‘CﬁlNQNl + N25

0.

(30)

(31)

(32)

(33)

Choose 1 = f1 (N1, N2) € (0,1) such that 35, NoN; < 1/4. Given this 3, choose §; =

01 (11, pta, N1, Na) € (0,1) so small that
Nod < 6" /4 = /4

(34)

and 26" < (10" = B1a, V4§ € (0,d1) . Then we have that a/4 + a/4 = /2 in (33) and thus

from (31) we have o — /2 = /2.
0J



