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Acoustic wave propagation

The scalar wave equation modeling acoustic wave propagation in a bounded domain
Q c RY, d = 2,3, with boundary T, takes the following form:

1 &%p .
?W_Ap:f’ in Qx(0,T),
op

.0)=0 2
P(-,0)=0, =

Pl =0, on F'x (0, T),

(,0)=0, in Q, @

where p(x,t) € R is the pressure satisfying homogeneous boundary and initial conditions,
c(x) is the wave speed depending on x € Q, t is the time variable and T is a final time, and
f(x,t) is a given source function.
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Inverse acoustic scattering

Our goal is to find the function c(x) which minimizes the quantity

17 < 1
E@.c)=5 [ [ (0 —BPamdnat+ 37 [ (- o) ax, @

where p is observed data at Xqps, p satisfies (1) and thus depends on ¢, dops = D §(Xops) IS
a sum of multiples of delta-functions §(xops) corresponding to the observation points, and ~
is a regularization parameter (small).
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To approach this minimization problem, we introduce the Lagrangian

1
L(u) = E(p,¢) = ((;3PP, D)) + ((VP. Vi) = ((F, ¢)).
where u = (p, ¢, ¢), and search for a stationary point with respect to u satisfying Vu
L'(u;0) =0, 3

where L’ (u; -) is the Jacobian of L at u, and we assume that ¢(-,T) = @(-, T) = 0 and
p(-,0) = p(+,0) = 0, together with homogeneous Dirichlet boundary conditions.
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The equation (3) expresses thatin Q x (0,T)

1 0%
9P Ap = f 4
2 o p ; 4
1 9%p ~
202 Ap = —(p—P)dobs, (5)
2 [T op oy
_ et = 0 6
e—co)t 5 [ , ©)

together with homogeneous boundary and initial conditions.

A posteriori error estimation for an inverse scattering problem



Finite element discretization.

To formulate the finite element method for (3) we introduce the finite element spaces V,, W,f
and W,? defined by :

Vi = {VELQ):v €PyK),VK € Kp},

WP = {peHYQxJ):p(-,0)=0,p|r =0},

W# = {peHYQxJ):p(T)=0,¢|r =0},

WP = {v € WP :v|cyy € P1(K) x P1(J),VK € Ky, VI € Jc},
W7 = {veW?:v|kyx € Pi(K) x P1(J),VK € Ky, VI € J},

where P, (K) and P1(J) are the set of linear functions on K and J, respectively.
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The finite element method now reads: Find ¢, € Vi, ¢n € W/, pp, € Wﬁ, such that

L/(Qomphvch)((ﬁvﬁﬂé)zo VEGVh7§5€WI-|>\75€Wr?' (7)
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A posteriori error estimation for the
Lagrangian

We obtain an a posteriori error estimate for error in the Lagrangian by noting that

L(u) — L(un)

14
/—L(eu—i-(l—e)uh)de
o de

1
/ L’(eu + (1 — €)up; u — up)de
0

L'(up;u —up) + R,

where R is a second order remainder term.
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Using now the Galerkin orthogonality
L/(Uh;l:l) =0 Vu € Uy

with the splitting
U —Up = (U —up) + (U — up),

where u,'] € Uy denotes an interpolant of u, and neglecting the term R, we get the following

error representation:
L(u) — L(up) =~ L"(up;u — uf), (8)

involving the residual L’ (up; -) with u — u,'] appearing as a weight.
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Derivation of an a posteriori error
estimate for the Lagrangian

Using the Galerkin orthogonality (3) and the splitting
¢—¢n=(p—pp)+(ph—en), P—pn=(P—Ph)+ (P, —Pn), C—Ch=(c—ch)+(c,—Ch),
where (¢}, pl,, cl,) denotes an interpolant of (¢, p,c) € W x WP x V, and neglecting the
term R, we get:

e~ L'(¢h, Pn, Cn)(® — ¢, P — P, € —ch) = (I + 1o +13), 9)
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where

18@ go 0|
= // Ao — i) gth-i-v(@—%olh)vloh

(e — soh)) dxt,

T
L = / /(ph_ﬁ)(p_p“&obs dxdt

1 O9pp O(p — Ph)
_ S % dxdt
* / /( 2ot o TVenvie- ph) | et

h

I3 = / /a“"h (x,0) aphg Yc—cl) dxdt

+ w/ﬂ(ch—co)(c—ch) dx.
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To estimate |; we integrate by parts in the first and second terms to get:

|/ / <c12 aatgh _@L)_Aph(@_‘PL)—f(sﬂ—chO dxdt
h
Z/o /@K ggh (¢ — pp) dsdt (10)

- Z/ 5 120 0] — b)) o,

LY

J’_

where the terms ng; and [aph] appear during the integration by parts and denote the

derivative of py, in the outward normal direction ng of the boundary 9K of element K, and
the jump of the derivative of py, in time, respectively.
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In the second term of the (10) we sum over the element boundaries, and each internal side
S € Sy, occurs twice. Denoting by 9spy the derivative of a function py, in one of the normal
directions of each side S, we can write

> ome- ) ds—Z/ ospn] (¢ — eh) ds, (a1
K

K Ong

where [8spp] is jump in the derivative dsp, computed from the two triangles sharing S.
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We distribute each jump equally to the two sharing triangles and return to a sum over
elements edges oK :

;/S[asph]-(cp dsfz h‘/ [0sPn] (v — ¢h) hi ds. (12)

We formally set dx = hy ds and replace the integrals over the element boundaries 9K by
integrals over the elements K, to get:

/a [0sPn] (2 — h) P dis

<cC maxh 1/|85ph [l(¢ —¢h)| dx, (13)

where [9spn] |y = maxscok [9spn)|s:
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In a similar way we can estimate the third term in (10):

[6“ (t } (0 — oh)(t) dx| <

Ch
Z [ ||| - o] rox
< //—T | [Opng, ]|+ | — )] et
- c/ a7 lmndl It — )] v
where
oon,] =max (| 0]« [ B )] ). 1)
[0Pnt] = [OPny ] on . (15)
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Substituting both above expressions for the second and third terms in (10), we get:
T

C / / |2
o Ja

+ C//maxh [[0spn]] - 2|

Qscok X h ot2
82
o & Lt tamar

otz

1 9%pn

1] ST

IN

— App — f
Pn 8t2

+h?|DZ |> dxdt

+ h?|DZ |> dxdt

+h2|D§<p|> dxdt,
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where we used standard interpolation estimates for ¢ — @L, and C denotes interpolation

constants. Next, the terms 68 Ph and Apy, disappears in the first integral in (16) (pp is

dep A

. . - . . 2 o 2o

continuous piecewise linear function). We estimate 2 ~ (5] and D2y ~ =] to get:
ot ks h

1] < c/ /m (2 & +h? [af’:h]> dxdt (16)
+ C/ /erg%ﬁhk asph]|-<72 [%] +h? [a{]> dxdt
+ / / 771 [0Pn] <72 [%] +h2 [n] dxdt.
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We estimate I, similarly to I;. To estimate |3 we use a standard approximation estimate of
the form ¢ — ¢/, &~ hDxc to get:

asﬂh X,t) Opn(x, )|
[l3] < C3 ot h - |Dxc| dxdt
—i—'y/ |cn —co{ -h - |Dxc| dx
5% (x,t) Opn(x, t)‘ end | gt
- ch h
+w/|ch—co|h- M
Q h
Opn(x,t) Opn(x,t)
h . hat ’-|[ch]| dxdt

+7/Q{ch—co{-|[ch]{ dx.

A posteriori error estimation for an inverse scattering problem



Error representation

Defining the residuals

1 _ 1 _
Roy = [fl, Re, =5 max h?{[dspn]], Res = 2™ Y [9pnd] |
~ 1 1
Rer = [pn=Bl:Re, = 5 max | [Dsien] ], Rm:ﬁT *[oend]]
2 |O¢n| |Opn
Ra = gala| [ | Ree = lon—col
and interpolation errors in the form
_ O O _cr|[%Pn Pn
= o %] +ChHan} o =cr || %] +ChHan} ’
Oc = C|[Ch”7
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we obtain the following a posteriori estimate

T T T
le] < / /Rplgw dxdt+/ /szaw dxdt+/ /Rp3a¢ dxdt +
o Ja o Ja o Ja
T T T
+ / / Ry, op dxdt + / / Ry,op dxdt + / / Ryyop dxdt
o Ja o Ja o Ja
T
-+ / / R(;lO'c dxdt — / RCZUC dx
o Ja Q
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An a posteriori error estimate for
parameter identification

Now we present a more general a posteriori error estimate, which may be used to estimate
the error in the parameter identification. This estimate involves the solution G of the problem:

_L”(uh; Gv L~J) = (ﬂ), G) VU7 (17)

where ¢ acts as given data, and L (u; -, -) is the Hessian of the Lagrangian at u, which

expresses the sensitivity of the Jacobian L’(u; -) with respect to changes in u. Assuming
this problem can be solved, we obtain choosing here U = u — uy, and using the fact that
L"(u;a,G) is symmetric in U and 0, the following error representation:

((#,u —up)) = —L" (un; u — up, G)
—L'(u; G) + L'(up; G) +R
L'(up;0) + R = L'(up; G — 0') + R,

where G' is an interpolant of (i and again R is a second order remainder.
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Neglecting R we obtain the following analog of (8)
(%, u—up)) =~ L' (up; G — @),
with @ replacing u in the second argument.

The concrete form of this estimate is the same as that given above for the Lagrangian with
only u replaced by { in the weights. Compare with a posteriori error for Lagrangian:

1
e = L(u) — L(un) /0 %L(eu + (1= )up)de

1
/ L/ (et + (1 — €)un; U — up)de
0

L'(up;u —up) +R.
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We will consider now scalar wave equation in the form

a—rr — Ap =f, in Qx (0,T),

o
ot
Pl =0, on 'x (0,T),

(,0)=0, in Q, (18)

where we define a =

e
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The Hessian for the acoustic wave
equation

In the acoustic case the second derivative L’ takes the form

L”(u;G,0) = —((eDP, Dg)) + ((VP, VE))
+ (P, B))sos — ((2DP, Dyp))
— ((eDp, D)) + ((VP, VE)) — ((aDp, Dp))
— ((&Dp, D@)) — ((aDp, Dy)) + v(&, &),

and the Hessian problem takes the following strong form:

aD*$ = AP+ Pag, +D%pd =,
aD?p — AP +D%pa = 4y, (19)
T T
/ D?¢p dt+/ @D%pdt +ya = s,
0 0

together with initial and boundary conditions.
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Algorithm

To get error estimator, we solve iteratively system (19). The iterative algorithm is:

9 Find (p, «, v), using quasi-Newton method, where p is solution of the state problem,
 is solution of the adjoint problem and « are discrete values of the identification
parameter found from the optimality condition.
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Algorithm

To get error estimator, we solve iteratively system (19). The iterative algorithm is:

9 Find (p, «, v), using quasi-Newton method, where p is solution of the state problem,
 is solution of the adjoint problem and « are discrete values of the identification
parameter found from the optimality condition.

9 Choose guess for ¢ = (v1, 12, ¥3), for example, ¢ = (0,0, 1).
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Algorithm

To get error estimator, we solve iteratively system (19). The iterative algorithm is:

9 Find (p, «, v), using quasi-Newton method, where p is solution of the state problem,
 is solution of the adjoint problem and « are discrete values of the identification
parameter found from the optimality condition.

9 Choose guess for ¢ = (v1, 12, ¥3), for example, ¢ = (0,0, 1).
9 From third equation of system (19) eliminate & using equation

)
G = 6% 4 (s — [ D% dt — ™) (20)
0

with already computed (p, «, ).

L.Beilina, A posteriori error estimation for an inverse scattering problem




Algorithm

To get error estimator, we solve iteratively system (19). The iterative algorithm is:

9 Find (p, «, v), using quasi-Newton method, where p is solution of the state problem,
 is solution of the adjoint problem and « are discrete values of the identification
parameter found from the optimality condition.

9 Choose guess for ¢ = (v1, 12, ¥3), for example, ¢ = (0,0, 1).
9 From third equation of system (19) eliminate & using equation

)
G = 6% 4 (s — [ D% dt — ™) (20)
0

with already computed (p, «, ).
Q From second equation eliminate p solving scalar wave equation

aD?p — Ap = v, — D?pi (21)
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Algorithm

To get error estimator, we solve iteratively system (19). The iterative algorithm is:

9 Find (p, «, v), using quasi-Newton method, where p is solution of the state problem,
 is solution of the adjoint problem and « are discrete values of the identification
parameter found from the optimality condition.

9 Choose guess for ¢ = (v1, 12, ¥3), for example, ¢ = (0,0, 1).
9 From third equation of system (19) eliminate & using equation

)
G = 6% 4 (s — [ D% dt — ™) (20)
0

with already computed (p, «, ).
Q From second equation eliminate p solving scalar wave equation
aD?p — Ap = 1, — D?pé (21)
9 From first equation eliminate ¢ solving scalar wave equation

aD?@ — AG = 1 — sy (22)
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Algorithm

To get error estimator, we solve iteratively system (19). The iterative algorithm is:

9 Find (p, «, v), using quasi-Newton method, where p is solution of the state problem,
 is solution of the adjoint problem and « are discrete values of the identification
parameter found from the optimality condition.

9 Choose guess for ¢ = (v1, 12, ¥3), for example, ¢ = (0,0, 1).
9 From third equation of system (19) eliminate & using equation

)
G = 6% 4 (s — [ D% dt — ™) (20)
0

with already computed (p, «, ).
Q From second equation eliminate p solving scalar wave equation

aD?p — AP = ¢, — D?pd @y
9 From first equation eliminate ¢ solving scalar wave equation
aD?@ — AG = Y1 — Pogy, (22)

@ Repeat steps 2 — 4 until desired convergence is achieved.
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A two-dimensional photonic crystal.

We show the square lattice of a crystal from above. Material is a square lattice of columns
with wave speed c(x). The material is homogeneous in the z direction and periodic along x

and y with lattice constant a.
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Applications of photonic crystals

@ Reflecting dielectric, which reflects light (to control light
propagation in the microwave regime with wavelengths from 1
mm to 10 cm);

\
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Applications of photonic crystals

@ Reflecting dielectric, which reflects light (to control light
propagation in the microwave regime with wavelengths from 1
mm to 10 cm);

® Resonant cavity, which traps light (placement of the defects to
serve as a resonant cavity which are crucial components of
laser systems);

\
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Applications of photonic crystals

@ Reflecting dielectric, which reflects light (to control light
propagation in the microwave regime with wavelengths from 1
mm to 10 cm);

® Resonant cavity, which traps light (placement of the defects to
serve as a resonant cavity which are crucial components of
laser systems);

® Waveguide, which transports the light (using line defects to
guide light from one location to another): optoelectronic circuit,
fiber-optic network.

\
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Hybrid FEM/FDM method

A S EE““““EEEEEEEEE“““““““““
EEE b

A
rGr
il

Hybrid mesh is a combination of an structured mesh, where FDM is applied, and an
unstructured mesh, where we use FEM, with a thin overlapping of structured elements.
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Adaptively refined computational
meshes for reconstruction of the lower
columns in square lattice.

§§ : g\ 3 - XE :
éi §g SSNS N i

& L Rl . T

625 nodes 809 nodes 1263 nodes 2225 nodes

1152 elements 1520 elements 2428 elements 4352 elements

Www.ntnu.no \\ L.Beilina, A posteriori error estimation for an inverse scattering problem




Solution to the forward problem
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Reconstruction of the lower columns in
square lattice.

o] £0] [ OO

8 Q.N. it. 4 Q.N. it. 5Q.N. it 6 Q.N.it.
625 nodes 809 nodes 1263 nodes 2225 nodes

We show reconstructed parameter c¢(x), indicating domains with a given parameter value:
red color corresponds to the maximum parameter value (c=4) on the corresponding
meshes, and blue color - to the minimum (c=1).

L.Beilina, A posteriori error estimation for an inverse scattering problem



opt.it. | 625 nodes 809 nodes 1263 nodes | 2225 nodes

1 0.0118349 0.0108764 0.0108764 0.010476
2 0.0095824 0.00987447 | 0.00965067 | 0.00954041
3 0.00822312 | 0.00709372 | 0.00558728 | 0.00769998
4 0.00748565 | 0.00318215 | 0.00273809 | 0.00313069
5 0.00619674 | 0.00291434

6 0.00528474

7 0.00471419

8 0.00354939

9

10

Table: ||p — pobs|| ON adaptively refi ned meshes in reconstruction of the
lower columns in square lattice. Number of stored corrections in
guasi-Newton method is m = 15. Computations was performed with
noise level o = 0 and regularization parameter ¢ = 0.1.

L.Beilina, A posteriori error estimation for an inverse scattering problem



o,e | 10~° 104 103 102 101

0 0.00630036 | 0.00630536 | 0.00475773 | 0.0046071 . | 0.00313069
0.01 | 0.00650122 | 0.00642409 | 0.00489691 | 0.00425432 | 0.00317147
0.03 | 0.00671315 | 0.00644934 | 0.00572624 | 0.00427946 | 0.00317955
0.05 | 0.0068622 | 0.00661597 | 0.00639352 | 0.00428971 | 0.00318703
0.07 | 0.00731985 | 0.00598225 | 0.00631647 | 0.00462458 | 0.00312281
0.1 | 0.00672832 | 0.00618862 | 0.00673036 | 0.00467998 | 0.00331152
0.2 | 0.00702925 | 0.00696454 | 0.00640261 | 0.00448304 | 0.0037926

Table: ||p — pobs|| for the best reconstraction of the lower columns in
square lattice. We present results for different noise levels o and
regularization parameters e.
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Lo-norms in space of adjoint problem
solution

- L L L L L L L L L 25 L L . . . . . . .
(] 100 200 300 400 500 600 700 800 900 1000 o 100 200 300 400 500 600 700 80 900 1000

noise o = 0.07 noise o0 =0

L,-norms in space of adjoint problem solution Ay, in reconstruction of the lower columns in
square lattice. on different optimization iterations. Here the x-axis denotes time steps on
[0,25.0].
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Adaptively refined computational
meshes for reconstruction of the upper
columns in square lattice.

SRS S g s § s §
625 nodes 844 nodes 1592 nodes 1945 nodes

1152 elements 1590 elements 3086 elements 3792 elements
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o,e | 10~° 104 103 102 101

0 0.00548847 | 0.00549544 | 0.00549544 | 0.00512397 | 0.00340977
0.01 | 0.00547518 | 0.00549755 | 0.00489691 | 0.0055677 | 0.00345097
0.03 | 0.00545709 | 0.00550747 | 0.00572624 | 0.0055182 | 0.0040041
0.05 | 0.00548414 | 0.00548424 | 0.00639352 | 0.0055076 | 0.00357293
0.07 | 0.00544183 | 0.00544645 | 0.00631647 | 0.00552189 | 0.00353966
0.1 | 0.00543398 | 0.00548045 | 0.00673036 | 0.00552947 | 0.00430008
0.2 | 0.00561054 | 0.00561999 | 0.00640261 | 0.00566159 | 0.00386997

Table: ||p — pobs|| for the best reconstraction of the upper columns in
square lattice. We present results for different noise levels o and
regularization parameters e.
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Lo-norms in space of adjoint problem
solution

Loptit
15 6.optit
10 optit

0 10 20 N0 40 S0 60 70 @0 90 1000 -

Wl o 0 20 a0 a0 e w0 70 w0 90 10
W

noise o = 0.07 noise 0 = 0

L,-norms in space of adjoint problem solution A, in reconstruction of the upper columns in
square lattice. on different optimization iterations. Here the x-axis denotes time steps on
[0,25.0].
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Reconstruction of the upper columns in
square lattice.

AN e

9 Q.N. it 10 Q.N. it. 10 Q.N. it. 10 Q.N.it.
625 nodes 844 nodes 1592 nodes 1945 nodes

Reconstructed parameter c(x) computed with wave frequency w = 25 on different
adaptively refined meshes after different number of quasi-Newton iterations. We show
parameter c(x), indicating domains with a given parameter value: red color corresponds to
the maximum parameter value (c=4) on the corresponding meshes, and blue color - to the

minimum (c=1).
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