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Abstract

This thesis consists of eight papers primarily concerned with the quanti-
tative study of the spectrum of certain differential operators. The majority
of the results split into two categories. On the one hand Papers B–E concern
questions of a spectral-geometric nature, namely, the relation of the geometry
of a region in d-dimensional Euclidean space to the spectrum of the associ-
ated Dirichlet Laplace operator. On the other hand Papers G and H concern
kinetic energy inequalities arising in many-particle systems in quantum me-
chanics.

Paper A falls outside the realm of spectral theory. Instead the paper is
devoted to a question in convex geometry. More precisely, the main result of
the paper concerns a lower bound for the perimeter of inner parallel bodies of
a convex set. However, as is demonstrated in Paper B the result of Paper A
can be very useful when studying the Dirichlet Laplacian in a convex domain.

In Paper B we revisit an argument of Geisinger, Laptev, and Weidl for
proving improved Berezin–Li–Yau inequalities. In this setting the results
of Paper A allow us to prove a two-term Berezin–Li–Yau inequality for the
Dirichlet Laplace operator in convex domains. Importantly, the inequality
exhibits the correct geometric behaviour in the semiclassical limit.

Papers C and D concern shape optimization problems for the eigenvalues
of Laplace operators. The aim of both papers is to understand the asymptotic
shape of domains which in a semiclassical limit optimize eigenvalues, or eigen-
value means, of the Dirichlet or Neumann Laplace operator among classes of
domains with fixed measure. Paper F concerns a related problem but where
the optimization takes place among a one-parameter family of Schrödinger
operators instead of among Laplace operators in different domains. The main
ingredients in the analysis of the semiclassical shape optimization problems
in Papers C, D, and F are combinations of asymptotic and universal spec-
tral estimates. For the shape optimization problem studied in Paper C, such
estimates are provided by the results in Papers B and E.

Paper E concerns semiclassical spectral asymptotics for the Dirichlet Lapla-
cian in rough domains. The main result is a two-term asymptotic expansion
for sums of eigenvalues in domains with Lipschitz boundary.

The topic of Paper G is lower bounds for the ground-state energy of the
homogeneous gas of R-extended anyons. The main result is a non-trivial lower
bound for the energy per particle in the thermodynamic limit.

Finally, Paper H deals with a general strategy for proving Lieb–Thirring
inequalities for many-body systems in quantum mechanics. In particular,
the results extend the Lieb–Thirring inequality for the kinetic energy given
by the fractional Laplace operator from the Hilbert space of antisymmetric
(fermionic) wave functions to wave functions which vanish on the k-particle
coincidence set, assuming that the order of the operator is sufficiently large.
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Sammanfattning

Denna avhandling utgörs av åtta artiklar vars huvudsakliga tema är kvan-
titativa resultat om spektrumet av differentialoperatorer. Merparten av resul-
taten faller i en av två kategorier. Å ena sidan handlar Artikel B till och
med E om frågor av spektralgeometrisk karaktär, specifikt relationen mellan
formen av ett område i d-dimensionellt Euklidiskt rum och spektrumet av den
associerade Dirichlet-Laplaceoperatorn. Å andra sidan handlar Artiklarna G
och H om begränsningar för den kinetiska energin av mångpartikelsystem
inom kvantmekanik.

Artikel A faller utanför spektralteori och handlar istället om ett problem
inom konvex geometri. Mer precist, handlar artikeln om en undre begränsning
för måttet av ytan av de inre parallela kropparna av ett konvext område. Hur
som helst är artikelns huvudresultatet användbart för att studera Dirichlet-
Laplaceoperatorn i konvexa områden, vilket demonstreras i Artikel B.

I Artikel B återvänder vi till ett argument av Geisinger, Laptev, och
Weidl för att bevisa förbättrade Berezin–Li–Yau-olikheter. I detta samman-
hang tillåter resultaten i Artikel A oss att bevisa en tvåterms-Berezin–Li–Yau-
olikhet för Dirichlet-Laplaceoperatorn på konvexa områden. Av stor vikt för
de tillämpningar vi har i åtanke är att oliheten uppvisar korrekt geometriskt
beteende i den semiklassiska gränsen

I Artiklarna C och D studeras geometriska optimeringsproblem för egen-
värden av Laplaceoperatorer. Specifikt handlar båda artiklarna om den asymp-
totiska formen av de områden som i en semiklassisk gräns optimerar egenvär-
den, eller medelvärden av egenvärden, av Dirichlet- eller Neumann-Laplace-
operatorn inom klasser av områden med fixerat mått. Artikel F behandlar ett
likartat optimeringsproblem men där optimieringen sker över en en-parameter
familj av Schrödingeroperatorer istället för bland Laplaceoperatorer i olika
områden. De huvudsakliga ingredienserna i analysen av de semiklassiska op-
timeringsproblem som studeras i Artiklarna C, D och F är kombinationer av
asymptotiska och universella spektraluppskattningar. För det problem som
studeras i Artikel C bevisas spektraluppskattningar av denna form i Arti-
kel B och Artikel E.

Artikel E handlar om semiklassisk asymptotik för Dirichlet-Laplacianen
i icke-reguljära områden. Huvudresultatet är en asymptotisk utveckling till
andra ordning för summan av egenvärden i områden med Lipschitz rand.

Temat för Artikel G är undre begränsningar för grundtillståndsenergin av
den homogena gasen av R-utvidgade anyoner. Huvudresultatet av artikeln är
en icke-trivial undre begränsning för energin per partikel i den termodyna-
miska gränsen.

Slutligen handlar Artikel H om en generell metod för att bevisa Lieb–
Thirring-olikheter för mångpartikelsystem i kvantmekanik. Som en tillämp-
ning av den generella metoden utvidgas Lieb–Thirring-olikheten för den frak-
tionella Laplaceoperatorn från Hilbertrummet av antisymmetriska (fermions-
ka) vågfunktioner till vågfunktioner som försvinner på k-partikeldiagonaler,
under antagandet att ordningen av operatorn är tillräckligt hög.
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Part I

Introduction and summary





1 Introduction

How is the sound of a drum or a bell affected by its shape?
How many integer lattice points are there in a disk of radius r centred at the origin?
How does the distribution of heat in an object evolve with the passage of time?
Why is quantum mechanical matter stable?

It is far from apparent that the mathematics involved in investigating these
questions are even remotely related. Nonetheless, all of the questions can be nat-
urally formulated in the language of spectral theory. The results contained in this
thesis concern, in one way or other, questions of a spectral-theoretical nature. Some
of these questions are motivated mainly by intrinsic mathematical interest, while
others arise in the theory of many-particle systems in quantum mechanics.

This first chapter is intended as a brief and informal introduction to the kind
of questions that will be discussed in the remainder of the thesis. Our aim is to
keep the discussion as non-technical as possible. Precise definitions will be left until
Chapter 2.

From strings and drums via blackbody radiation to quantum
mechanics

To understand the relationship between the geometry and spectral properties of
an operator is among the oldest and arguably one of the most fascinating prob-
lems in mathematical analysis. Already the Pythagoreans understood the effect
that changing the length of a string had on the tone that it produced. The natu-
ral higher-dimensional generalization, which is a long-standing problem of spectral
theory, is to understand the relationship between the shape of a domain Ω ⊂ Rd
and the eigenvalues of the associated Dirichlet Laplace operator. Indeed, these
eigenvalues are in one-to-one correspondence with the oscillating frequencies of a
vibrating membrane whose boundary is held fixed. In two dimensions the picture
to have in mind is that of the fundamental frequency and overtones of a drum with
drumhead in the shape of Ω ⊂ R2. In three or higher dimensions the corresponding
analogy is more difficult to visualize. However, already in the case of dimension two
understanding the relation between the shape of Ω and the corresponding eigen-
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4 CHAPTER 1. INTRODUCTION

values (or frequencies) is an extremely difficult problem. In fact, it is only in very
special cases that the eigenvalues can be completely determined.

The correspondence between the frequencies of normal modes of oscillating sys-
tems and the eigenvalues of differential operators was first studied during the late
18-th century. Important contributions were made by a number of mathemati-
cians and physicists, notably d’Alembert, Fourier, and Laplace. In particular, they
considered oscillating membranes and vibrating strings but also more general oscil-
lations of elastic bodies. Moreover, the theory that was developed extends to the
more subtle oscillations of light and radiation present in the theory of electromag-
netism. As a result the study of spectral properties of differential operators was
found incredibly important.

Hearing the shape of a drum

In applications of spectral theory one is most often concerned with what is called the
direct problem, that is, to determine the spectrum of a given operator. Naturally
one can turn this question around and ask whether if given the spectrum, one can
determine the operator. A problem of this type will be referred to as an inverse
problem. In the setting of vibrating two-dimensional membranes one such problem
was popularized by Kac in his celebrated 1966 lecture Can one hear the shape of
a drum? See also Kac’ paper [52] for the lecture in written form. Formulated in
terms of spectral theory, the task is to reconstruct a domain Ω ⊂ R2 from the
eigenvalues of the associated Dirichlet Laplacian.

Not long before Kac’ lecture it had been observed by Milnor [82] that there
exist two different 16-dimensional tori whose Laplacian eigenvalues coincide. Con-
sequently, one cannot distinguish these two manifolds knowing only their respective
spectrum. The problem in its two-dimensional form did not see a solution until al-
most 30 years later when Gordon, Webb, and Wolpert [37] found a manner in which
to apply ingenious ideas of Sunada [95] and Bérard [3] to construct pairs of differ-
ent planar polygons whose Dirichlet Laplacians have identical eigenvalues. For an
example of two such polygons see Figure 1.1. Two domains with this property are
called isospectral. Consequently, the answer to Kac’ question is negative no, one
cannot hear the shape of a drum.

Even though the result of Gordon, Webb, and Wolpert conclusively answers
the question posed in Kac’ lecture this is fortunately not the end of the story.
For instance, it is natural to ask what geometric properties of Ω can be deduced
from the associated eigenvalues. Indeed, if one considers the isospectral domains in
Figure 1.1 one can easily verify that they have the same area, the same perimeter,
and the same number of corners with a given angle. Are these quantities observable
from the associated eigenvalues? Already at the time of Kac’ lecture it had been
known for more than 50 years that one can hear the size of a drum. Indeed, this
follows from a conjecture made by Rayleigh already in 1900 and proved twelve years
later by Weyl [101]. Specifically, the conjecture of Rayleigh states that the number
of eigenvalues of the Dirichlet Laplace operator on Ω ⊂ Rd less than λ grows in
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Figure 1.1: Two isospectral and non-congruent polygons constructed in [37].

proportion to the measure of Ω as λ tends to infinity, up to comparatively small
errors [87].

Part of the results of this thesis concern recovering geometric properties of do-
mains which solve certain geometric extremal problems in terms of the eigenvalues
of an associated Laplace operator. In a sense, the question asked is whether the
knowledge that the domain solves a spectral shape optimization problem yields
sufficient additional information to solve the inverse spectral problem.

Blackbody radiation and the ultraviolet catastrophe

The conjecture of Rayleigh was, however, not motivated by the oscillations of vibrat-
ing drums, but by the theory of electromagnetic radiation. Specifically, Rayleigh
was analysing how the intensity of the radiation emitted by a blackbody at fixed
temperature depends on the radiation wavelength. To determine the relation he
needed to count the number of standing electromagnetic waves at a certain fre-
quency. In essence, this problem is the same as counting the number of normal
modes with a given frequency for a vibrating membrane. Through explicit calcu-
lations Rayleigh was able to deduce that for a blackbody with the shape of a box
this number can be well approximated in terms of the volume of the blackbody as
the frequency becomes large. Based on calculations in this special case Rayleigh
conjectured that the approximation was valid for blackbodies of arbitrary shape.
This is precisely the conjecture alluded to above.

Although the law derived by Rayleigh succeeds in accurately describing the ra-
diation in the regime of large wavelengths, it fails to do so when the wavelength
becomes small. The law predicts that the intensity diverges to infinity as the wave-
length goes to zero when, in fact, the intensity should tend to zero in this limit. The
failure of the law is not due to any error in Rayleigh’s derivation, but stems from
fundamental problems in the laws of classical mechanics. Ultimately a law that ac-
curately reproduced experimental data was proposed by Planck, which importantly
avoided the so-called ultraviolet catastrophe present in the result of Rayleigh. The
derivation of Planck relied on the revolutionary assumption that electromagnetic
radiation could only be absorbed or emitted in certain discrete quantities propor-
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tional to its frequency. This assumption is one of the fundamental building blocks
in the theory that was to grow out of Planck’s ideas, namely, quantum mechanics.

Quantum mechanics and the semiclassical limit

It is quite remarkable that the considerations of Rayleigh remain important in the
quantum mechanics that emerged from the failure of the classical mechanics in
which his analysis was based. Indeed, the differential operators that describe the
vibrating membrane play a central role in quantum mechanics. In the Schrödinger
picture of quantum mechanics the time evolution of a quantum state is determined
in terms of such operators. Moreover, the energy levels of a particle, or a system
of particles, obeying the laws of quantum mechanics are given by the eigenvalues
of these operators.

According to quantum mechanics the quantities in which electromagnetic radi-
ation can be absorbed or emitted are proportional to its frequency. The propor-
tionality constant is known as Planck’s constant and usually denoted by h. By
formally letting h tend to zero the theory approaches, to a certain extent, that
described by classical mechanics. Here our interest will often be directed towards
questions concerning this so-called semiclassical limit. In the language of spectral
theory such analysis typically corresponds to understanding the asymptotic distri-
bution of eigenvalues. In particular, the conjecture by Rayleigh discussed earlier
is a problem of this character. The remarkable work done by Weyl in his proof
of Rayleigh’s conjecture importantly marks the starting point for the development
of mathematical tools dedicated to analysing the semiclassical limit. The resulting
field of mathematics, which goes under the name semiclassical analysis, is today an
important and highly active branch of spectral theory. Moreover, the theory has
been found highly useful also in other areas of mathematics and physics.

The results of this thesis fall into one of two categories, each of which is to
some extent related to the semiclassical limit of quantum mechanical systems. The
first category concerns problems in the intersection of spectral theory and geome-
try. Here our interest lies in geometric extremal problems for eigenvalues and their
behaviour in a semiclassical limit. The second category features bounds for the
kinetic energy of certain many-particle quantum mechanical systems with focus on
the behaviour of the energy as the number of particles tends to infinity. Although
the two sets of problems might appear fairly different, we will see that the math-
ematics involved in the analysis has a common basis and many of the techniques
and ideas can naturally be translated between the two topics.



2 Background

In this chapter we take a step back and recall some basic concepts and fundamental
theorems which lay the foundation of the spectral theory relevant for the thesis.

The main topic of this thesis concerns the quantitative study of the spectrum of
certain differential or pseudodifferential operators in L2(Ω), where Ω ⊆ Rd is either
the full space or a bounded subset with Lipschitz boundary. The aim of Section 2.1
is to give the reader not familiar with spectral theory a brief introduction to the
basics of the subject. The reader who already feels comfortable with spectral theory
for self-adjoint operators in Hilbert spaces can move on to Section 2.2 directly.

2.1 Spectral theory for self-adjoint operators

We begin by giving a quick background on spectral theory for self-adjoint operators
in Hilbert spaces. As this is a very broad subject it is impossible to cover even
the smallest portion without leaving completely the scope of this thesis. Here we
restrict ourselves to the bare minimum of what is necessary to understand the
results obtained in the thesis. For the same reason it is assumed that the reader
has some familiarity with basic Sobolev space theory and functional analysis. Our
presentation largely follows the lecture notes of Lundholm [72] but adapted to the
context at hand. For more comprehensive introductions to spectral theory of self-
adjoint operators the reader is referred to [10, 24, 88].

Self-adjoint operators

Let H be a Hilbert space with inner product 〈 · , · 〉H and norm ‖ · ‖H .(1) An
operator L in H is a linear mapping L : D(L) → H , where D(L) ⊆ H is the
domain of L. Here we always work with operators whose domain is dense in H .
For an operator L define its operator norm

‖L‖ = sup
{
‖Lu‖H : u ∈ D(L), ‖u‖H = 1

}
.

(1)Here 〈 · , · 〉H is conjugate-linear in the fist argument and linear in the second. Other con-
ventions appear in the literature but this is the most common within mathematical physics.

7
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If ‖L‖ <∞ the operator L is said to be bounded and otherwise unbounded. The set
of densely defined operators in H is denoted by L(H ) and the subset of bounded
operators by B(H ). Without loss of generality assume that D(L) = H for any
L ∈ B(H ).

An operator L ∈ L(H ) is called closed if its graph,
{

(u, v) ∈ D(L)×H : v = Lu
}
,

is a closed subspace of H ×H . Moreover, L ∈ L(H ) is said to be closable if
there exists a closed extension of L, i.e. a closed operator L̂ : D(L̂)→H such that
D(L̂) ⊃ D(L) and L̂|D(L) = L. Every closable operator L ∈ L(H ) has a smallest
closed extension, namely, its closure L̄.

For L ∈ L(H ) define its adjoint L∗ as the operator with domain

D(L∗) =
{
u ∈H : sup

v∈D(L), ‖v‖H =1
|〈u, Lv〉H | <∞

}

such that the formula 〈L∗u, v〉H = 〈u, Lv〉H holds for all u ∈ D(L∗) and v ∈ D(L).
That this indeed defines a unique operator is a consequence of Hahn–Banach’s
theorem and the Riesz representation theorem.

An operator L ∈ L(H ) is called symmetric (or hermitian) if the associated
sesquilinear form

q : D(L)×D(L)→ C
(u, v) 7→ 〈u, Lv〉H

(2.1)

is such that q(u, v) = q(v, u) for all u, v ∈ D(L). Every symmetric operator is
closable.

An operator L ∈ L(H ) is called self-adjoint if L = L∗, i.e. if L is symmetric
and D(L) = D(L∗). An operator L ∈ L(H ) is called essentially self-adjoint if
it is symmetric and has a unique self-adjoint extension, in which case L̄ = L∗.
In particular, any bounded densely defined symmetric operator is essentially self-
adjoint.

In the context of this thesis we are mainly concerned with symmetric operators
which are bounded from below, 〈u, Lu〉H ≥ −c‖u‖2H . Such operators always
have self-adjoint extensions and, moreover, there exists a somewhat distinguished
extension called the Friedrichs extension which we define shortly.

Quadratic forms and the Friedrichs extension
As a consequence of the Reisz representation theorem there is a one-to-one corre-
spondence between bounded sesquilinear forms on H ×H and B(H ) (see e.g. [10,
Theorem 2.4.6]). By the polarization identity it suffices to consider the quadratic
form of L defined by u 7→ q(u, u) = 〈u, Lu〉H . As the risk of confusion is minimal,
we use the same notation for both a quadratic form and its associated sesquilinear
form. Also for unbounded operators it can be both useful and convenient to study
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the associated quadratic form. In fact, all operators encountered in this thesis are
defined through a quadratic form.

A quadratic form q : D(q)→ C, D(q) ⊆H , is called hermitian if q : D(q)→ R,
non-negative if q(u) ≥ 0, and positive if q(u) > 0 for all u ∈ D(q) \ {0}. For two
hermitian forms q1, q2 we say that q1 ≥ q2 if D(q1) ⊆ D(q2) and q1(u) ≥ q2(u) for
all u ∈ D(q1). A hermitian form q is semi-bounded (from below) if there exists a
constant c ∈ R such that q(u) ≥ −c‖u‖2H for all u ∈ D(q), i.e. if q ≥ −c where the
right-hand side should be interpreted as the quadratic form u 7→ −c‖u‖2H .

To any semi-bounded form q ≥ −c we can associate the positive form q̃(u) =
q(u)+(1+c)‖u‖2H . A semi-bounded form q is called closed if D(q) is complete with
respect to the norm ‖u‖q =

√
q̃(u). A form q is called closable if it has a closed

extension q̂, i.e. there exists a closed form q̂ such that D(q) ⊂ D(q̂) and q̂|D(q) = q.
The smallest such extension q̄ is called the closure of q.

An operator L ∈ L(H ) is symmetric if q in (2.1) is hermitian. We can thus
define a partial ordering on the set of symmetric operators by comparing their
quadratic forms. A symmetric operator L ∈ L(H ) is called non-negative or semi-
bounded (from below) if q is non-negative or semi-bounded, respectively.

One of the main reasons to go through quadratic forms when working with
symmetric operators is the following theorem

Theorem 2.1 (see e.g. [10]). If L ∈ L(H ) is self-adjoint and semi-bounded, then
there exists a unique closed quadratic form qL such that D(L) ⊆ D(qL) and

〈u, Lv〉H = qL(u, v), for all u ∈ D(qL), v ∈ D(L).

Conversely, if q : D(q)→ R, D(q) ⊆H , is a densely defined closed quadratic form,
then q is the quadratic form of a unique self-adjoint operator.

Moreover, the operator and the associated quadratic form satisfy the same great-
est lower bound

inf
u∈D(L)

〈u, Lu〉H
‖u‖2H

= inf
u∈D(qL)

qL(u)
‖u‖2H

.

The key observation of the theorem is that, in contrast to operators, a form
cannot be closed while failing to represent a unique self-adjoint operator.

Let L ∈ L(H ) be self-adjoint and semi-bounded. By Theorem 2.1 there exists
a unique closed quadratic form qL associated to L. The domain of this quadratic
form D(qL) is called the form domain of L.

We are now ready to state the Friedrichs extension theorem.

Theorem 2.2 (The Friedrichs extension; see e.g. [88, Theorem X.23]). Let L be a
semi-bounded symmetric operator. Then q defined by (2.1) is a closable quadratic
form and its closure q̄ is the quadratic form of a unique self-adjoint operator L̂
called the Friedrichs extension of L. L̂ is a semi-bounded extension of L, with the
same lower bound as that of L. Furthermore, L̂ is the largest among all self-adjoint
extensions of L and the only one such that D(L̂) ⊆ D(q̄).
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The spectrum

The purpose of this section is to define the spectrum of an operator L ∈ L(H )
and recall a number of important results in the setting of self-adjoint operators. In
particular, we discuss a splitting of the spectrum of a self-adjoint operator into two
disjoint parts: the discrete and essential spectrum.

Definition 2.3 (Spectrum of a linear operator). For L ∈ L(H ) we say that λ ∈ C
is in σ(L) the spectrum of L if the operator

L− λIdH

fails to have a bounded inverse.

If (u, λ) ∈ (H \ {0}) × C is such that (L − λIdH )u = 0 then λ is called
an eigenvalue of L and u a corresponding eigenvector (or eigenfunction). The
subspace of all eigenvectors corresponding to an eigenvalue λ is called the eigenspace
associated to λ. The dimension of the eigenspace, i.e. dim ker(L− λIdH ), is called
the (geometric) multiplicity of the eigenvalue λ.

A closed symmetric operator L is self-adjoint if and only if its spectrum is a
subset of the real line. In fact, the spectrum of a closed symmetric operator consists
of either all of C, the set {λ ∈ C : Imλ ≥ 0}, the set {λ ∈ C : Imλ ≤ 0}, or a
subset of the real line (see e.g. [88, Theorem X.1]).

Definition 2.4 (Essential and discrete spectrum). Let L ∈ L(H ) be self-adjoint.
The discrete spectrum of L denoted by σd(L) is defined as the set of isolated eigen-
values of L with finite multiplicity. Moreover, σe(L) the essential spectrum of L is
defined by σe(L) = σ(L) \ σd(L).

In the applications considered here interest is mainly focused on the bottom of
the spectrum, inf σ(L), or the discrete spectrum. The following theorem provides a
very useful variational characterization of eigenvalues below the essential spectrum.

Theorem 2.5 (The min-max principle; see e.g. [88, Theorem XIII.1]). Assume that
L ∈ L(H ) is self-adjoint and semi-bounded from below. For k ∈ N define λk(L) by

λk(L) = sup
H⊂D(L)

dimH≤k−1

inf
u∈H⊥\{0}

〈u, Lu〉H
‖u‖2H

= inf
H⊂D(L)
dimH≥k

sup
u∈H\{0}

〈u, Lu〉H
‖u‖2H

.

Then for fixed k, one of two cases occur :

(i) The operator L has (at least) k eigenvalues counted with multiplicity below
inf σe(L), and λk(L) is the k-th such eigenvalue.

(ii) λk(L) = inf σe(L), in this case λk′(L) = λk(L), for all k′ ≥ k, and L has at
most k − 1 eigenvalues counted with multiplicity below λk(L).
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Moreover, given a symmetric semi-bounded operator L the λk obtained through
the variational procedure in Theorem 2.5 coincide with those of the Friedrichs
extension of L. In particular,

inf
u∈D(L)

〈u, Lu〉H
‖u‖2H

is the bottom of the spectrum of the Friedrichs extension of L. Similarly, if one
replaces 〈u, Lu〉H by qL(u), then the subspaces of the operator domain D(L) can
be replaced by subspaces of the form domain D(qL) without further altering the
statement (see [88, Theorem XIII.2]).

For the applications we have in mind here Theorem 2.5 provides an indispensable
tool when analysing the spectrum of the operators we are interested in.

Let L ∈ L(H ) be self-adjoint and semi-bounded from below with either purely
discrete spectrum or a number of eigenvalues below σe(L). For such L we write
{λk(L)}k≥1 for the increasingly ordered sequence of eigenvalues (finite or infinite)
counted with multiplicity taken into account. When there is no risk of confusion
we write simply λk and leave the dependence on L implicit.

The spectrum of Laplace and Schrödinger operators
With the concepts discussed above in hand we are ready to recall a number of
well-known results concerning the spectrum of the Schrödinger operator

H = −∆ + V (2.2)

defined as a self-adjoint operator in L2(Ω), where Ω ⊆ Rd and the (electric) scalar
potential V : Ω→ R are assumed to be sufficiently regular.

The largest part of the thesis (Papers B–E) is concerned with the simplest pos-
sible case, when Ω ⊂ Rd is bounded and V is identically zero. That is, when H
is a Laplace operator −∆ in L2(Ω). Specifically, our interest lies in understand-
ing spectral properties of such operators in terms of the geometry of Ω. Paper F
concerns problems related to the operator H with V (x) = |x|2 in L2(R2). In both
settings the spectrum of the operator is purely discrete, and the focus of the papers
is towards the behaviour of λk(H) in the limit as k tends to infinity.

In Paper G a generalization of H to the setting of many-body quantum me-
chanics is considered for which V ≡ 0 but the Laplacian is replaced by a magnetic
operator (−i∇+A)2 with a non-trivialmagnetic vector potential A : Ω→ Rd. How-
ever, a substantial part of the analysis is based on proving that the quadratic form
of the operator can be bounded from below by that of a non-magnetic Schrödinger
operator. The setting in Paper H is similarly many-body quantum mechanics but
the operator of concern is not the differential operator in (2.2) but the fractional
Laplace operator (see (5.7) below). In both of these papers the main interest lies
in the behaviour of the infimum of the spectrum (the ground-state energy) as the
number of particles tends to infinity.
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Since the magnetic potential considered in Paper G is too singular to be covered
by standard results, the present discussion is restricted to the case of the non-
magnetic operator (2.2). However, much of what is discussed carries over under mild
conditions on the magnetic potential (see e.g. [28, 29]). For instance, the results
on the semi-boundedness of H = −∆ + V carries over to (−i∇ + A)2 + V when
A ∈ L2

loc(Rd) by Theorem 2.5 and the diamagnetic inequality [67, Theorem 7.21]:
∣∣∇|u(x)|

∣∣ ≤ |(−i∇+ A(x))u(x)|, for almost every x ∈ Rd.

For further reference, let qH denote the quadratic form associated to the differ-
ential expression H in (2.2),

qH(u) =
∫

Ω

(
|∇u(x)|2 dx+ V (x)|u(x)|2

)
dx. (2.3)

Schrödinger operators on Rd

If Ω = Rd, V ∈ L1
loc(Rd), and the form qH with D(qH) = C∞0 (Rd) is semi-bounded,

then it is closable (see e.g. [80]). Thus if this is the case Theorem 2.1 provides us
with a self-adjoint operator in L2(Rd). Defining x± = (|x| ± x)/2(2) we have

Theorem 2.6 (see e.g [67]). Assume that V ∈ L1
loc(Rd) and, for some ε > 0,

V− ∈





Ld/2(Rd) + L∞(Rd), if d ≥ 3,
L1+ε(R2) + L∞(R2), if d = 2,
L1(R) + L∞(R), if d = 1.

Then the quadratic form qH defined in (2.3) is semi-bounded from below. Thus it
is the quadratic form of a self-adjoint operator H in L2(Rd).

Furthermore, if

|{x ∈ Rd : V (x) < −δ}| <∞, for all δ > 0, (2.4)

then σe(H) ⊆ [0,∞).

By replacing V in the last part of the theorem by V − c one obtains a similar
statement for potentials V such that lim inf |x|→∞ V (x) = c (or the equivalent of
the weaker condition in (2.4)).

An almost direct corollary of Theorem 2.6 is the following well-known result
when the potential is unbounded at infinity.

Corollary 2.7. Let V satisfy the assumptions in the first part of Theorem 2.6.
If lim|x|→∞ V (x) = ∞ then σ(H) consists of an infinite number of eigenvalues of
finite multiplicity, accumulating only at infinity.

The condition on V in Corollary 2.7 is sufficient but far from necessary for the
spectrum of H to be discrete. For weaker criterion and a detailed discussion of this
topic see [80].

(2)Note that x+ and x−, the positive resp. negative part of x, are both non-negative.
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Laplace and Schrödinger operators in domains

If the open set Ω is not the whole space Rd we consider two different self-adjoint
realizations of H: the Dirichlet and the Neumann realization. Assume that V ∈
L2

loc(Ω) and that Ω is bounded and has Lipschitz boundary.
The Dirichlet operator : Under the assumptions above −∆ + V is well defined as
a symmetric operator with domain C∞0 (Ω). If qH is semi-bounded from below
Theorem 2.2 yields a self-adjoint operator in L2(Ω). This operator is the Dirich-
let realization of the Schrödinger operator H. If the potential V is regular (say
bounded) the form domain of the operator is H1

0 (Ω).
The Neumann operator : The Neumann realization is obtained similarly but starting
from the quadratic form qH with D(qH) = C∞(Ω). If this quadratic form is semi-
bounded and closable an application of Theorem 2.1 yields a self-adjoint operator.
This operator is the Neumann realization of the Schrödinger operator H. If the
potential V is regular (say bounded) these assumptions are fulfilled and the form
domain of the operator is H1(Ω).

As mentioned above the majority of this thesis concerns the simplest possible
case of (2.2), namely, when V is identically zero. The resulting operators are the
Dirichlet and Neumann Laplace operators. To distinguish between the operators
we write −∆D

Ω for the Dirichlet realization and −∆N
Ω for the Neumann realization.

For later purposes we recall that the Laplace operator obeys the following scaling
relation σ(∆D/N

tΩ ) = t−2σ(∆D/N
Ω ), for t > 0.

The following theorem can be found in almost any textbook on spectral theory,
see for instance [10, 67].

Theorem 2.8. Let Ω ⊂ Rd be open and |Ω| < ∞. Then σ(−∆D
Ω) is discrete and

consists of positive eigenvalues of finite multiplicity, accumulating only at infinity.

For the Neumann Laplacian things are more complicated. Indeed, the statement
obtained by simply replacing −∆D

Ω by −∆N
Ω in Theorem 2.8 is false. In fact, a

remarkable result of Hempel, Seco, and Simon [44] states that given any closed
set S ⊂ [0,∞) there exists a bounded open and connected set Ω ⊂ Rd for which
σe(−∆N

Ω) = S. For precise conditions ensuring that the spectrum of −∆N
Ω is discrete

we refer to [80]. For our purposes the following will be sufficient

Theorem 2.9. Let Ω ⊂ Rd be open and bounded with Lipschitz boundary. Then
σ(−∆N

Ω) is discrete and consists of non-negative eigenvalues of finite multiplicity,
accumulating only at infinity.

These theorems follow from the compactness of the embedding of the Sobolev
spaces H1(Ω) and H1

0 (Ω) into L2(Ω) combined with the following result.

Theorem 2.10 (see e.g. [10, Theorem 10.1.5]). The spectrum of a semi-bounded
self-adjoint operator L ∈ L(H ) is discrete if and only if the embedding of the form
domain D(qL) ↪→H is compact.
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Theorems 2.8 and 2.9 extend with only small changes to the Dirichlet and
Neumann realizations of the Schrödinger operator H = −∆ +V in L2(Ω), Ω ( Rd,
if V is sufficiently regular. Naturally, if V is non-positive the spectrum can become
negative. That the spectrum of H is discrete if Ω satisfies the assumptions of
Theorems 2.8 or 2.9 follows from Theorem 2.10 and the fact that the form domain
of H coincides with that of the corresponding Laplacian. That the form domain
remains the same can be verified under fairly weak assumptions on V but this will
not be of any large importance here.

2.2 Weyl’s law and semiclassical asymptotics

In this section we turn our attention to the asymptotic behaviour of the spectrum of
the Schrödinger operator H = −h2∆ +V , h > 0, in the semiclassical limit h→ 0+.
Again our focus is on Laplace operators in domains and Schrödinger operators in
the full space Rd.

Laplace operators

In the case of Laplace operators in a bounded domain Ω ⊂ Rd the dependence
on the parameter h becomes trivial. The corresponding limit to consider is the
asymptotic growth of λk(−∆D/N

Ω ) as k → ∞. However, instead of considering the
asymptotic behaviour of the eigenvalues directly it is convenient to consider the
eigenvalue counting function

N(λ;−∆D/N
Ω ) = #

{
k ∈ N : λk(−∆D/N

Ω ) < λ
}
, λ > 0,

in the limit λ → ∞. Note that N(λ;−∆D/N
Ω ) is equal to the number of negative

eigenvalues of −h2∆D/N
Ω − 1, by setting h = 1/

√
λ.

The first result in this direction is the Weyl law [101] stating that

N(λ;−∆D/N
Ω ) = ωd

(2π)d |Ω|λ
d/2 + o(λd/2), as λ→∞. (2.5)

Here and in what follows ωd denotes the volume of the d-dimensional unit ball. Both
Weyl’s original proof and subsequent ones typically assume the boundedness of Ω
and some regularity of its boundary. That (2.5) holds for the Dirichlet Laplacian
without any regularity assumptions was shown by Rozenblum [90] (see also [9]).
For the Neumann case, see e.g. [17, 19]. Note that in the Neumann case additional
assumptions on Ω are necessary since otherwise the spectrum can fail to be discrete.

It was conjectured by Weyl [102] that the asymptotic formula (2.5) could be
refined. Specifically, he conjectured the validity of the two-term asymptotic expan-
sion

N(λ;−∆D/N
Ω ) = ωd

(2π)d |Ω|λ
d/2 ± 1

4
ωd−1

(2π)d−1H
d−1(∂Ω)λ(d−1)/2 + o(λ(d−1)/2) (2.6)
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as λ→∞, where the second term comes with a plus in the Neumann case and a mi-
nus in the Dirichlet case. Here and in what follows Hm denotes the m-dimensional
Hausdorff measure.

Using detailed microlocal analysis, Ivrii in 1980 proved that if the boundary of
Ω is smooth and the measure(3) of all periodic geodesic billiards is zero then (2.6)
holds [51]. Although one can hope to reduce the regularity assumptions in Ivrii’s
result the assumption that the measure of all periodic billiards is zero appears
necessary. Indeed, it is known to be necessary for the corresponding result on
manifolds (see e.g. [92]). However, it is believed that the billiard assumption is
true for any smooth domain in Rd, but so far this has only been proved in special
cases [98].

In the applications that we have in mind the a priori assumptions on the domain
Ω are minimal, and in particular much weaker than those of Ivrii. The domains
considered here typically arise as a solution of a spectral shape optimization problem
for which a priori no regularity is known (see Chapter 3). Moreover, it will often
be important for us to obtain precise bounds for the remainder term in asymptotic
expansions, not only for a single domain but within a family of domains. For
such purposes the techniques used by Ivrii in his proof of Weyl’s conjecture are
unfortunately not very applicable.

Prior to Ivrii’s proof of (2.6), and in support of Weyl’s conjecture, refined asymp-
totic expansions were obtained for certain smooth functions of the eigenvalues in-
stead of the counting function. Indeed, one of the main sources of difficulties in
proving (2.6) is the discontinuity of the counting function. An important example
of such asymptotic formulae is the short-time limit for the trace of the heat kernel
associated to −∆D/N

Ω :

Tr
(
et∆

D/N
Ω
)

=
∑

k≥1
e−tλk = (4πt)−d/2

(
|Ω| ±

√
π

2 H
d−1(∂Ω)t1/2 + o(t1/2)

)
, (2.7)

as t → 0+. Which is valid under appropriate assumptions on Ω (see e.g. [11]). As
in (2.6) the second term comes with a plus in the Neumann case and with a minus
in the Dirichlet case.

In this thesis we often encounter a certain family of regularizations of the count-
ing function. For γ ≥ 0 and λ ≥ 0, define the Riesz mean

Tr(−∆D/N
Ω − λ)γ− =

∑

λk<λ

(λ− λk)γ . (2.8)

In a certain sense the Riesz means interpolate between the counting function and
the trace of the heat kernel. For γ = 0, (2.8) is precisely the counting function.
Setting γ = tλ, with t > 0, and dividing (2.8) by λγ , one in the limit λ → ∞
obtains the trace of the heat kernel Tr(et∆

D/N
Ω ).

(3)In terms of the natural measure on the co-tangent bundle.
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The corresponding two-term asymptotic expansion in the limit λ→∞ reads

Tr(−∆D/N
Ω − λ)γ− = Lcl

γ,d|Ω|λγ+d/2 ±
Lcl
γ,d−1
4 Hd−1(∂Ω)λγ+(d−1)/2 + o(λγ+(d−1)/2).

(2.9)
Here and in what follows Lcl

γ,d denotes the semiclassical Lieb–Thirring constant

Lcl
γ,d = Γ(γ + 1)

(4π)d/2Γ(γ + d/2 + 1) .

Since Lcl
0,d = ωd/(2π)d the expansion (2.9) for γ = 0 matches that in (2.6). Note

that (2.6) implies (2.9) which, in turn, implies (2.7). However, the reverse implica-
tions are false.

In Paper E the asymptotic expansion (2.9) is proved to be valid for the Dirichlet
Laplacian and γ = 1 under the assumption that Ω ⊂ Rd is bounded with Lipschitz
boundary.

From the definition it is rather intuitive that the Riesz means can be consid-
ered as regularizations of the counting function. Before moving on we recall the
Aizenman–Lieb indentity [1] which clarifies in which sense this intuition is valid.
For 0 ≤ γ < γ′ and λ ≥ 0 it holds that

Tr(−∆D/N
Ω −λ)γ

′

− = B(1+γ, γ′−γ)−1
∫ ∞

0
τγ
′−γ−1 Tr(−∆D/N

Ω − (λ−τ))γ− dτ. (2.10)

Here B denotes the Euler Beta function

B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt = Γ(x)Γ(y)

Γ(x+ y) ,

for x, y with positive real part. That is, one can write any Riesz mean as an integral
of Riesz means of lower order. In particular, if one can compute the counting
function one can also compute any Riesz mean. This identity will be used frequently
in several of the papers included in the thesis.

Returning briefly to the question of Kac [52] mentioned in Chapter 1 we note
that the validity of any of the two-term asymptotic expansions discussed in this
section implies that one can hear the perimeter of a drum.

Schrödinger operators

Consider the Schrödinger operator H = −h2∆+V in L2(Rd). If the spectrum of H
is purely discrete one can naturally consider the asymptotics of the corresponding
counting function or Riesz means as we did for the Laplace operator above. Such
will be the case for the problem considered in Paper F.

However, in applications to quantum mechanics it is often the case that V decays
at infinity and σe(H) = [0,∞). Our interest is then directed towards the number
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and moments of the negative eigenvalues in the limit h→ 0+. Note that this can be
equivalently formulated in terms of the asymptotics for the eigenvalues of −∆+βV
in the limit of large coupling constant β →∞.

Let {λk(h, V )}k≥1 denote the negative eigenvalues of H = −h2∆ + V ordered
increasingly and counted with multiplicity. Let N(h;V ) denote the number of such
eigenvalues.

Under appropriate conditions on V it holds that

N(h;V ) = ωd
(2π)d

∫

Rd
V (x)d/2− dxh−d + o(h−d), as h→ 0+. (2.11)

The expansion (2.11) was first proved by Birman in [7] for Schrödinger operators
in bounded domains, or potentials V having compact support. The result has since
seen a large number of extensions, see e.g. [67, 88]. If d ≥ 3 the asymptotic formula
is valid for all V such that the right-hand side is finite. In one or two dimensions
the problem is more subtle and additional assumptions are necessary [8].

Formally, one obtains (2.5) from (2.11) by setting

V (x) =
{−1, for x ∈ Ω,
∞, for x ∈ Ωc.

For the moments of the negative eigenvalues of H it holds under appropriate
assumptions on V that, for γ ≥ 0 and as h→ 0+,

TrHγ
− =

∑

k≥1
|λk(h, V )|γ = Lcl

γ,d

∫

Rd
V (x)γ+d/2

− dxh−d + o(h−d). (2.12)

By rewriting the integral in (2.11) (or more generally (2.12)) as an integral over
the classical phase-space,

Lcl
γ,d

∫

Rd
V (x)γ+d/2

− dxh−d =
∫∫

Rd×Rd
(|ξ|2 + V (x))γ−

dx dξ

(2πh)d ,

the expansion can be given the semiclassical interpretation that each quantum state
occupies a phase-space volume of size (2πh)d.

2.3 Universal spectral inequalities

In the last section of this chapter our focus shifts from the asymptotic estimates
discussed in the previous section to universal bounds. That is, inequalities valid for
all values of the spectral parameter and not only asymptotically.

Our discussion concerns the deep fact that the leading order term in the asymp-
totic expansions of Section 2.2 in certain cases provides a valid bound for the
spectral quantity in question, possibly up to a multiplicative universal constant.
Again our discussion is restricted to the case of Laplace operators in domains and
Schrödinger operators in Rd.
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The first two results concern the Dirichlet and Neumann Laplacian, respectively,
and go back to work of Berezin [4] (see also [63]). For the Dirichlet Laplacian an
equivalent result was obtained by Li and Yau [62]. Similarly, Kröger proved an
equivalent inequality in the case of the Neumann Laplacian [55]. For the inequalities
as stated here see [56].

Theorem 2.11 (The Berezin–Li–Yau inequality). Let Ω ⊂ Rd be an open set of
finite measure. Then the following inequality holds

Tr(−∆D
Ω − λ)− ≤ Lcl

1,d|Ω|λ1+d/2 for all λ ≥ 0.

Theorem 2.12 (The Kröger inequality). Let Ω ⊂ Rd be a bounded open set with
Lipschitz boundary. Then the following inequality holds

Tr(−∆N
Ω − λ)− ≥ Lcl

1,d|Ω|λ1+d/2 for all λ ≥ 0.

That is, for the Dirichlet Laplace operator the leading term in the asymptotic
expansion in (2.9) serves as an upper bound for the trace, while for the Neumann
realization the same quantity constitutes a valid lower bound. Consequently, the
constants in both inequalities are sharp.

The Aizenman–Lieb identity (2.10) implies that Theorems 2.11 and 2.12 gener-
alize to higher order Riesz means; for all γ ≥ 1 and λ ≥ 0,

Tr(−∆D
Ω − λ)γ− ≤ Lcl

γ,d|Ω|λγ+d/2,

Tr(−∆N
Ω − λ)γ− ≥ Lcl

γ,d|Ω|λγ+d/2.
(2.13)

Again we emphasize that the term in the right-hand side of either inequality
in (2.13) is the leading order term in the asymptotic expansion (2.9).

As a further corollary of Theorems 2.11 and 2.12 there exist inequalities of
the form (2.13) also for γ < 1, however, not necessarily with the semiclassical
constant Lcl

γ,d. It follows from results of Li–Yau [62] and Kröger [55] that

N(λ;−∆D
Ω)≤

(2 + d

d

)d/2 ωd
(2π)d |Ω|λ

d/2 and N(λ;−∆N
Ω)≥ d

2 + d

ωd
(2π)d |Ω|λ

d/2,

(2.14)
for all λ ≥ 0 (as stated here see [56]). An important and long-standing conjecture
going back to Pólya [85] is that both inequalities remain valid if the right-hand side
is replaced by the leading order Weyl term (2.5), i.e. with the factors ((2 +d)/d)d/2
and d/(2 + d) removed.

The main result of Paper B is an improvement of the first inequality in (2.13)
for γ ≥ 3/2 when Ω is convex. Similar improvements of Theorems 2.11 and 2.12
will be important ingredients in Papers C and D.
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Turning our attention to Schrödinger operators we have

Theorem 2.13 (The Lieb–Thirring inequality). Fix d ∈ N and let γ satisfy

γ ≥ 1/2 if d = 1,
γ > 0 if d = 2,
γ ≥ 0 if d ≥ 3.

There exists a positive constant Lγ,d such that for any V , with V− ∈ Lγ+d/2(Rd),

Tr(−∆ + V )γ− ≤ Lγ,d
∫

Rd
V (x)γ+d/2

− dx. (2.15)

For γ = 0 the left-hand side of (2.15) should be interpreted as the number of
negative eigenvalues of −∆ + V . We emphasize that if applied to −h2∆ − V the
right-hand side of the inequality in Theorem 2.13 coincides with that in (2.12), up
to a multiplicative constant.

For γ > max{1−d/2, 0}, Theorem 2.13 was obtained by Lieb and Thirring [70].
The endpoint case γ = 0 and d ≥ 3 was obtained independently by Cwikel [20],
Lieb [65], and Rozenblum [89, 91]. The inequality in this case is called the Cwikel–
Lieb–Rozenblum inequality. The final endpoint case γ = 1/2 and d = 1 was proved
by Weidl [99].

For γ = 0, d = 2 or γ ∈ [0, 1/2), d = 1 the inequality is false. This follows
from the existence of at least one negative eigenvalue as soon as the potential V
fails to be non-negative and the behaviour of such eigenvalues in the weak coupling
limit [93].

Although the question for which γ, d the Lieb–Thirring inequality is valid has
been completely answered, the question of determining the sharp constants Lγ,d
remains an intriguing open problem which has received a great deal of interest.
From the asymptotic expansion (2.12) it is clear that any constant for which the
inequality (2.15) is valid must satisfy Lγ,d ≥ Lcl

γ,d. In fact, it was conjectured by
Lieb and Thirring [70] that Lγ,d = Lcl

γ,d for certain combinations of γ and d. For
d ≥ 1 and γ ≥ 3/2 the conjecture is known to be true [1, 58, 70]. For d = 1 and
γ < 3/2 or d ≥ 2 and γ < 1 it is known that Lγ,d/Lcl

γ,d > 1 [41, 42, 70]. Moreover,
Hundertmark, Lieb, and Thomas [49] proved that L1/2,1 = 2Lcl

1/2,1. For the best
currently known constants we refer to [32, 48, 65].

The inequality in Theorem 2.13 with γ = 1 was a crucial ingredient in Lieb and
Thirring’s proof of the stability of quantum mechanical matter [66, 69]. The in-
equality used in their proof is rather a dual version of the inequality which provides
a lower bound for the quantum-mechanical kinetic energy of a many-body quan-
tum state in terms of its one-particle density (see Theorem 4.1). Kinetic energy
inequalities of this form will be the topic of Papers G and H.





3 Spectral shape optimization

The present chapter is intended as a very brief introduction to the theory of spectral
shape optimization. This will be the main topic of both Papers C and D, and the
aim of the chapter is to provide some motivation and background for the questions
considered there.

A shape optimization problem is a variational problem where given a class of
sets A, called the admissible class, and a cost functional F : A → R one wishes to
solve the optimization problem

inf{F(Ω) : Ω ∈ A}. (3.1)

A set in A is called extremal or optimal for (3.1) if it realizes the infimum.
Problems of this form arise naturally in a large number of applications, partic-

ularly in engineering sciences but also elsewhere. Questions that the theory aims
to address are for instance:
• What is the best shape for the wings of an aeroplane?
• How should one shape an iron beam to obtain maximal rigidity?
• What shape should an object moving through a fluid have to minimize the
resistance?

Here we consider shape optimization problems where the cost functional F is
given in terms of the eigenvalues of a differential operator. A problem of this type
will here be referred to as a spectral shape optimization problem. During recent
years this has been a very active field of research and it would be impossible for
us to give a complete review of the existing results and literature. Our short
discussion is limited to what is necessary to understand the main motivation and
ideas underlying the results obtained as a part of this thesis. For the current state
of art the reader is referred to [45].

Problems of this type have a long history. Already in 1877 Rayleigh [86] con-
jectured that the first eigenvalue of the Dirichlet Laplacian in a planar domain of
unit area, was minimized by the disk. In the 1920’s this conjecture was proved
independently by Faber [27] in R2 and Krahn [53, 54] in all dimensions: among all
domains of unit measure the first eigenvalue of the Dirichlet Laplacian is minimized
by the ball. Krahn also proved that the second eigenvalue of the Dirichlet Laplacian
is minimized by the disjoint union of two balls of equal measure [54].

21
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Naturally, one may ask the corresponding question for the Neumann Laplacian.
In this case the problem to consider is to maximize the eigenvalues. Since the first
eigenvalue of the Neumann Laplacian is always zero, the first interesting problem
is the maximization of the second eigenvalue. Here Szegő [96] and Weinberger [100]
showed that the ball is again optimal. The problem of maximizing the second non-
trivial Neumann eigenvalue was settled only recently by Bucur and Henrot [14]. As
in the Dirichlet case the optimal domain is the disjoint union of two balls of equal
measure.

For the problem of minimizing λk(−∆D
Ω), with k ≥ 3, among domains of fixed

measure there was until recently very little known. Even the most basic questions
such as existence of minimizers remained unanswered. For the relaxed problem of
minimizing λk(−∆D

Ω) within the larger class of quasi-open sets(1) the existence of
minimizers was recently settled [12, 81]. However, if such a minimizer is in fact
open remains an important unsolved problem. One might hope that the lack of
theoretical results in this area is a result of missing some key idea or simply a
lack of techniques. However, numerical computations suggest that the minimizers
for larger k may look rather wild and need not have any natural symmetries (see
e.g. [45]). Ultimately this makes a precise characterization unlikely to be possible.

To the author’s knowledge the Neumann problem for higher eigenvalues remains
completely open. A major difficulty in proving existence results corresponding to
those in the Dirichlet case lies in that while the form domain of the Dirichlet
Laplacian H1

0 (Ω) embeds into the larger function space H1(Rd) (by extension by
zero), this is not the case for the Neumann problem.

Shape optimization in the semiclassical limit

For our discussion it is convenient to reformulate the optimization of eigenvalues
in terms of the counting function. For λ > 0 and a class of admissible domains A
consider the shape optimization problems

sup{N(λ;−∆D
Ω) : Ω ∈ A, |Ω| = 1} (3.2)

and
inf{N(λ;−∆N

Ω) : Ω ∈ A, |Ω| = 1}. (3.3)

Clearly if one can solve one of these problems for all λ one can solve the corre-
sponding problem formulated for the eigenvalues. In fact, it suffices to solve (3.2),
or (3.3), for the discrete set of λ given by

λDk(A) = inf{λk(−∆D
Ω) : Ω ∈ A, |Ω| = 1},

resp.
λNk (A) = sup{λk(−∆N

Ω) : Ω ∈ A, |Ω| = 1}.
(1)A set Ω ⊂ Rd is quasi-open if it is open up to a set of arbitrarily small capacity [16].
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Assuming that at least one such domain exists, denote by ΩDλ(A), resp. ΩNλ (A),
any solution of the shape optimization problem (3.2), resp. (3.3). That is, any
domain which realizes the supremum or infimum, respectively. All statements made
here concerning ΩD/Nλ (A) are to be interpreted as valid independently of the choice
of extremal domain. Depending on the class of admissible domains A the existence
of such domains can pose a very difficult question.

In the results of this thesis our interest will not be towards answering ques-
tions regarding the existence of extremal domains of (3.2), (3.3), or related shape
optimization problems. Rather our focus is directed towards the behaviour of the
extremal domains in the semiclassical limit. Heuristically, the reason one might
expect the optimizing domains to exhibit some structure in this limit is the refined
Weyl law (2.6). While the leading term in the asymptotics of N(λ;−∆D

Ω) as λ→∞
is fixed due to the constraint |Ω| = 1, maximizing the second term leads to mini-
mizing Hd−1(∂Ω) among Ω ∈ A under the constraint |Ω| = 1. If the ball of unit
measure is in A then the isoperimetric inequality implies that it provides the unique
solution to this problem. The analogous argument applies to the Neumann case
by remembering that the sign of the second term in the asymptotics is reversed.
A major difficulty in making this heuristic argument rigorous is that one requires
the asymptotic expansion (2.6) not only for a fixed domain Ω, but for the family
of domains ΩD/Nλ (A) with a priori no information concerning their geometry.

The first result in this direction was obtained in 2013 by Antunes and Freitas [2].
Their result concerns the shape optimization problem in (3.2) with

A =
{

Ω ⊂ R2 : Ω = (0, a)× (0, a−1), a ≥ 1
}
, (3.4)

i.e. the class of unit area rectangles. The main result of [2] is that in the semiclassical
limit any optimal rectangle will converge to the unit square, in the sense that the
corresponding side-lengths converge to 1. Note that the unit square is the unique
solution to the isoperimetric problem in the class A, and hence the result agrees
with our heuristic argument.

Since the strategy developed by Antunes and Freitas is employed in Papers C, D,
and F we recall it in some detail. The strategy is split into several steps. Although
the strategy is applicable in a variety of settings, for simplicity, we formulate it here
only for the problem considered in [2].

Within the class of admissible domains A in (3.4) it is not difficult to prove the
existence of an optimal domain for the shape optimization problem in (3.2) for any
fixed λ ≥ 0. Consequently it makes sense to consider the asymptotic behaviour of
optimal rectangles in the limit λ→∞.

Let λk(a), for a ≥ 1, denote the k-th eigenvalue of the Dirichlet Laplacian in
the rectangle Ra = (0, a) × (0, a−1). Let R(λ) denote any rectangle realizing the
supremum in the shape optimization problem and let a(λ) denote the corresponding
side-length, so that R(λ) = Ra(λ).
Step 1: (A priori bound for the rate of degeneracy) The goal of the first step is
to prove that the geometry of extremal domains cannot degenerate arbitrarily fast.



24 CHAPTER 3. SPECTRAL SHAPE OPTIMIZATION

Such non-degeneracy will be important in the next step of the proof but is often
rather easily obtained. For the problem in [2] it is suffices to note that λ1(a) =
π2(a2 + a−2) is greater than λ if a ≥

√
λ/π. Consequently, the counting function

N(λ; ∆D
Ra

) is zero if a ≥
√
λ/π. Noting that N(λ;−∆D

R1
) ≥ 1 for λ > λ1(1) = 2π2

one concludes that a(λ) <
√
λ/π for all λ > 2π2. (This bound is also important

when proving the existence of optimal rectangles for fixed λ ≥ 0.)
Step 2: (Reducing the class of admissible domains) The goal of the second step
is to prove that it suffices to consider the optimization in a compact subset of A.
In essence, the aim is to bootstrap the a priori bound from Step 1 to conclude
that the geometry does not degenerate. This is achieved by proving spectral esti-
mates reproducing correctly the first term of the Weyl asymptotics, and up to a
multiplicative constant also the second term.

There exist positive constants c1, c2, b0 such that for any unit area rectangle Ra,
with a ≥ 1, the inequality

N(λ;−∆D
Ra) ≤ Lcl

0,2λ− c1bH1(∂Ra)λ1/2 + c2b
2a2, (3.5)

holds for all λ ≥ 0 and b ∈ [0, b0] (see [36, Lemma 2.1]). Note that the first term
in (3.5) matches that in (2.6). Moreover, up to a multiplicative constant, the same
holds for the second term which is crucial for the proof.

By optimality of R(λ) and (3.5),

N(λ;−∆D
R1) ≤ N(λ;−∆D

R(λ)) ≤ Lcl
0,2λ− c1bH1(∂R(λ))λ1/2 + c2b

2a(λ)2.

By (2.6) with Ω = R1, this inequality implies that

Lcl
0,2λ−

Lcl
0,1
4 H

1(∂R1)λ1/2 + o(λ1/2) ≤ Lcl
0,2λ− c1bH1(∂R(λ))λ1/2 + c2b

2a(λ)2.

Rearranging, assuming that λ > 2π2, using the bound from Step 1, and choosing b
sufficiently small one concludes that

a(λ) ≤ C + o(1), as λ→∞.
As a result it suffices to consider the optimization in a bounded family of rectangles.
Step 3: (Uniform two-term spectral asymptotics) The third step is to prove that
the two-term asymptotic expansion in (2.6) is valid with a uniform remainder term
on any compact subset of A. Specifically, our aim is to prove uniform two-term
asymptotics on the compact subset found in Step 2.

For the class A in (3.4) this is not a very difficult step in the proof. Indeed,
since the eigenvalues of the Dirichlet Laplacian on Ra are given by

π2(j2a2 + k2a−2), for j, k ∈ N,

the problem is equivalent to counting integer lattice points in a quarter ellipse.
For this problem precise asymptotic formulae are well-known in the number theory
literature (see e.g. [50]).
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Step 4: (Identifying the limiting geometry) The final step is to combine what has
been proved in Steps 2 and 3 to conclude that any optimal rectangle converges to
the square. The idea is to repeat the argument of Step 2, but with the bound (3.5)
replaced by the two-term expansion obtained in Step 3. By the maximality of R(λ)
it holds that

N(λ;−∆D
R1) ≤ N(λ;−∆D

R(λ)).

By Step 2 the optimal rectangle R(λ) remains in a compact subset of A. Conse-
quently, Step 3 implies that, as λ→∞,

Lcl
0,2λ−

Lcl
0,1
4 H

1(∂R1)λ1/2 + o(λ1/2) ≤ Lcl
0,2λ−

Lcl
0,1
4 H

1(∂R(λ))λ1/2 + o(λ1/2).

After rearranging one finds that

H1(∂R(λ)) ≤ H1(∂R1) + o(1), as λ→∞.

Since the square is the unique minimizer of the perimeter among domains in A the
claimed convergence follows.

Although the outline given here is for the specific problem studied in [2] the
strategy can be adapted to many similar problems. However, there are several
parts of the proof which for more general problems present substantial challenges.

Firstly, the argument in Step 2 proving that optimal rectangles are uniformly
bounded is highly non-trivial. Indeed, the two-term bound (3.5) is a stronger bound
than that conjectured by Pólya mentioned in Section 2.3. As the Pólya conjecture
remains a challenging open problem it is not reasonable to believe that a similar
argument can be applied for general classes of admissible domains. Secondly, even
if such a bound holds true the argument of Step 2 implies that the perimeter of the
optimal domains remain uniformly bounded. Without additional constraints on A
or stronger a priori information about optimizers this is not sufficient to imply the
desired compactness. Furthermore, proving uniform two-term asymptotic expan-
sions on compact subsets of more general classes A poses a considerable challenge.

A recurring idea in the results of the thesis will be that spectral shape op-
timization problems with cost functions depending nicely on several eigenvalues
can be expected to be more well behaved than the shape optimization problem
for the individual eigenvalues. For instance, one can replace the counting function
by Riesz means (2.8), see Papers C and F. The main ingredients of the strategy
outlined above remain the same: spectral bounds capturing the correct asymptotic
behaviour and uniform two-term asymptotic expansions.

As outlined the strategy is adapted to asymptotic shape optimization problems
for which the leading term in the asymptotic expansion of the cost function is
fixed by a constraint. Here this role was played by the area (or volume) constraint
|Ω| = 1. The general strategy can without much trouble be adapted to problems
of similar nature but where this constraint is replaced by different ones.
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For problems where the first term is not fixed by the constraint a similar, yet
somewhat simpler, strategy can be employed (see e.g. [13, 33]). Indeed, the impor-
tant term in the asymptotics is now that of leading order which in general is easier
to analyse. The goal of Step 2 is achieved by proving that, up to a multiplicative
constant, the leading term in the asymptotic expansion provides a uniform inequal-
ity (cf. Theorems 2.11, 2.12 and 2.13). Similarly, Step 3 is reduced to proving
leading order asymptotics with uniform remainder.

Relation to universal spectral inequalities
Naturally, there is a close relationship between spectral shape optimization and
geometric spectral inequalities. For instance, the sharp constant in the inequality

N(λ;−∆D
Ω) ≤ LDd |Ω|λd/2

is by definition given by

LDd = sup
{N(λ;−∆D

Ω)
|Ω|λd/2 : λ ≥ 0, Ω ⊂ Rd open

}
.

By scaling of Laplacian eigenvalues this is for a fixed λ equivalent to (3.2) with
A chosen as the class of open subsets of Rd. By (2.5) and (2.14) it follows that
Lcl

0,d ≤ LDd ≤ (d+2
d )d/2Lcl

0,d. Analogously, the sharp constant in the inequality
N(λ;−∆N

Ω) ≥ LNd |Ω|λd/2 can be written in terms of the shape optimization prob-
lem (3.3). As mentioned in Section 2.3 Pólya conjectured that LDd = LNd = Lcl

0,d.
In a recent paper Colbois and El Soufi [18] showed that

lim
λ→∞

sup{N(λ;−∆D
Ω) : Ω ⊂ Rd open, |Ω| = 1}

λd/2
= LDd , (3.6)

and
lim
λ→∞

inf{N(λ;−∆N
Ω) : Ω ⊂ Rd open, |Ω| = 1}

λd/2
= LNd . (3.7)

Therefore, to prove (or disprove) Pólya’s conjecture it suffices to compute the lead-
ing order behaviour of (3.2) and (3.3) as λ tends to infinity. In an upcoming paper
Freitas, Lagacé, and Payette [34] revisit and refine this argument.

Colbois and El Soufi [18] formulate their results and proofs in terms of the eigen-
values, but they can equivalently be formulated in terms of the counting functions.
The key insight in [18] is that the functions, defined for η ≥ 0,

fD(η) = sup{N(η2/d ;−∆D
Ω) : Ω ⊂ Rd open, |Ω| = 1},

fN (η) = inf{N(η2/d ;−∆N
Ω) : Ω ⊂ Rd open, |Ω| = 1}

are superadditive and subadditive, respectively. Indeed, since the class of admissible
domains is closed under taking disjoint unions

fD(η) ≥ sup{N(η2/d ;−∆D
Ω) : Ω ⊂ Rd open, |Ω| = µ}

+ sup{N(η2/d ;−∆D
Ω) : Ω ⊂ Rd open, |Ω| = 1− µ},

(3.8)
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for any µ ∈ [0, 1]. By scaling behaviour of Laplacian eigenvalues (3.8) implies that

fD(η) ≥ fD(µη) + fD((1− µ)η) for all µ ∈ [0, 1],

which is the claimed superadditivity. The analogous argument proves the subad-
ditivity of fN . The equalities in (3.6) and (3.7) thus follow from Fekete’s lemma:
if f : R+ → R is measurable and subadditive (superadditive), then limx→∞ f(x)/x
exists and is equal to infx>0 f(x)/x (supx>0 f(x)/x) [47].

There is a technical point that should be addressed. Namely, in the proof of sub-
resp. superadditivity we used that the disjoint union of two optimal domains in the
shape optimization problem with smaller measure could be used as a competitor
in the original problem. A priori optimal domains need not exist and, moreover, if
they do their disjoint union might not be well defined as a domain of Rd. Indeed, it
could be the case that one of the optimizers is dense in Rd. For the Dirichlet case
it follows from results in the existing literature [12, 15, 81] that these problems do
not occur. For the Neumann problem the corresponding result is to the author’s
knowledge not known. However, the problem can be circumvented by considering
almost minimizers for the shape optimization problem [18].

If one ignores issues concerning the existence of bounded extremal domains, the
ideas of Colbois and El Soufi lift almost directly to shape optimization problems
for Riesz means. Set

fD,γ(η) = η−2γ/d sup{Tr(−∆D
Ω − η2/d)γ− : Ω ⊂ Rd open, |Ω| = 1},

fN ,γ(η) = η−2γ/d inf{Tr(−∆N
Ω − η2/d)γ− : Ω ⊂ Rd open, |Ω| = 1}.

Arguing as in (3.8) and using the behaviour of Laplacian eigenvalues under scaling
one concludes that fD,γ is superadditive while fN ,γ is subadditive. Applying Fekete’s
lemma yields that the limits

LDd,γ = lim
η→∞

fD,γ(η)
η

and LNd,γ = lim
η→∞

fN ,γ(η)
η

are well defined. Moreover, the limits are the sharp constants in the inequalities

Tr(−∆D
Ω − λ)γ− ≤ LDd,γ |Ω|λγ+d/2 and Tr(−∆N

Ω − λ)γ− ≥ LNd,γ |Ω|λγ+d/2.

Recall that for γ ≥ 1 the sharp constant in both these inequalities is Lcl
γ,d (see

Theorems 2.11 and 2.12). However, for γ ∈ [0, 1) the best constants are to the
author’s knowledge unknown.

Also for the inequalities of Theorem 2.13 one can formulate the corresponding
result. For γ, d as in Theorem 2.13 and V1, V2 ∈ Lγ+d/2(Rd),

lim
|x|→∞

Tr(−∆Rd −V1( · +x)−V2( · −x))γ− = Tr(−∆Rd −V1)γ−+ Tr(−∆Rd −V2)γ−,

see e.g. [23, 24, 39]. As a consequence one can prove the superadditivity of the
function

gγ(η) = sup
{

Tr(−∆Rd − η1/(γ+d/2)V )γ− : ‖V ‖γ+d/2
Lγ+d/2(Rd) = 1

}
.
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Therefore, Fekete’s lemma implies that the limit

lim
η→∞

gγ(η)
η

= Lγ,d

exists and coincides with the sharp constant in the Lieb–Thirring inequality

Tr(−∆ + V )γ− ≤ Lγ,d
∫

Rd
V (x)γ+d/2

− dx.

It should however be noted that if the sharp constant in any of the inequalities
discussed in this section is not the semiclassical one, then the solutions of the corre-
sponding shape optimization problem must in a sense degenerate in the semiclassical
limit. For definiteness we sketch the argument only for the case of the Dirichlet
Laplacian and the shape optimization problem for the counting function (3.2).

Assume that the conjecture of Pólya is false, then there exists a λ0 and a domain
Ω0, with |Ω0| = 1, such that

N(λ0 ;−∆D
Ω0) ≥ (Lcl

0,d + δ)λd/20

for some δ > 0. We claim that this contradicts the existence of a maximizing
domain of the shape optimization problem with any component of measure much
larger than λ−d/2 for λ large enough. Note that a maximizing domain cannot have
connected components of measure smaller than ωdλ1(B1)d/2λ−d/2. Indeed, by the
Faber–Krahn inequality, |Ω|2/dλ1(−∆D

Ω) ≥ ω
d/2
d λ1(−∆D

B1
), the first eigenvalue of

a component of this size is greater than λ, and hence one can construct a better
candidate by removing the component in question and rescaling the remaining
domain.

Assume for contradiction that Ω∗ is an isolated component of a maximizer for
λ� λ0. By (2.5) and the assumption |Ω∗| � λ−d/2,

N(λ;−∆D
Ω∗) = Lcl

0,d|Ω∗|λd/2 + o(|Ω∗|λd/2).

Let Ω(λ) be the disjoint union of M =
⌊
|Ω∗|(λ/λ0)d/2

⌋
copies of (λ0/λ)1/2Ω0 and

a ball of radius r chosen so that |Ω(λ)| = |Ω∗|. Then

N(λ;−∆D
Ω(λ)) =

M∑

j=1
N(λ0 ;−∆D

Ω0) +N(λ;−∆D
Br )

≥ (Lcl
0,d + δ)λd/20 M = (Lcl

0,d + δ)|Ω∗|λd/2 +O(1).

For large enough λ it would thus be better to replace Ω∗ with a large number of
small copies of Ω0. This contradicts that Ω∗ was a component of a maximizing
domain.



4 Mathematical aspects of many-body quantum
mechanics

In the final chapter of this introduction we recall some elements of the mathematical
framework of quantum mechanics. Again the discussion is kept as brief as possible
and focuses only on what is necessary to understand the results of the thesis and
how it connects to what has been discussed above. For more extensive introductions
to the mathematics of quantum mechanics the reader is referred to, for instance, [21,
66, 68, 97]. Since the results obtained do not concern quantum dynamics we keep
our discussion to the stationary case, that is, we ignore all dependence on time. Our
discussion is also restricted to the setting where the number of particles is given,
but typically in the limit as this number tends to infinity.

Wave functions and particle statistics

In many-body quantum mechanics a state of N quantum particles in Rd is de-
scribed by a normalized wave function Ψ ∈ L2(RdN ;C).(1) The modulus squared
of the wave function |Ψ(x)|2 is interpreted as the probability density of finding the
particles at x = (x1, . . . ,xN ). Here and in what follows boldface symbols denote
individual particle positions x1, . . . ,xN ∈ Rd, while upright symbols denote the cor-
responding vector in the N -particle configuration space x = (x1, . . . ,xN ) ∈ RdN .
This notational convention is followed also in Papers G and H.

If the N particles are indistinguishable then a permutation of two particle posi-
tions should not affect the density. That is, for any indices j 6= k, the wave function
Ψ should satisfy

|Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN )|2 = |Ψ(x1, . . . ,xk, . . . ,xj , . . . ,xN )|2.

For Ψ this leaves the possibility of the exchange resulting in a phase change

Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN ) = eiαπΨ(x1, . . . ,xk, . . . ,xj , . . . ,xN ),

(1)Here we consider only C-valued wave functions but in general one should consider functions
with values in Cq . For instance, this is the case if one takes particle spin into account.

29
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where α ∈ [0, 2) is called the statistics parameter. It can be shown that the exchange
phase is necessarily independent of which particle pair is exchanged.

For particles propagating in three or higher dimensions the only logically con-
sistent choices of the statistics parameter are α = 0 and α = 1 corresponding to the
subspace of symmetric and antisymmetric wave functions, respectively. In what
follows these two subspaces will be denoted by L2

sym(RdN ) and L2
asym(RdN ). Parti-

cles whose wave functions are in L2
sym(RdN ) are called bosons while those described

by wave functions in L2
asym(RdN ) are called fermions. The properties of these two

species of quantum particles are fundamentally different and exhibit highly diverse
behaviour. The symmetry of the bosonic wave functions leads to phenomena such
as the coherent propagation of light and Bose–Einstein condensation. The anti-
symmetry of fermionic wave functions,

Ψ(x1, . . . ,xj , . . . ,xk, . . . ,xN ) = −Ψ(x1, . . . ,xk, . . . ,xj , . . . ,xN ), (4.1)

is the mathematical embodiment of the Pauli exclusion principle which is crucial
for the structure of atoms, conduction bands, the Fermi sea, etc.

In two dimensions, however, there is the logical possibility of quantum particles
(or quasiparticles) with any statistics parameter. Such particles are called anyons
and are the topic of Paper G. For a thorough discussion of the mathematics behind
the logical possibility for anyons in low dimensions we refer to the lecture notes by
Lundholm [72] (see also [61, 84]).

The energy of a quantum state

In appropriately chosen units, the total energy of a quantum state Ψ is given by the
quadratic form of a self-adjoint operator. For non-interacting particles the operator
in question is the direct sum of N copies of the same operator acting in each particle
separately. For non-relativistic particles subject to the external potential V , the
non-interacting energy of a state Ψ is given by

〈
Ψ,

N∑

j=1
(−∆xj + V (xj))Ψ

〉
. (4.2)

Here −∆xj is the operator acting as the Laplacian in the j-th copy of Rd and as
the identity in the rest. The two terms of the operator represent the kinetic and
the potential part of the energy, respectively. If the particles are further subject to
an external magnetic field the Laplacian term for each particle should be replaced
by the corresponding magnetic operator.

For relativistic particles the sum of Laplacians in (4.2) should be replaced
by
∑
j(−∆xj )1/2. Although our main interest in this thesis concerns the non-

relativistic case, the results of Paper H concern kinetic energy bounds in the many-
body setting for the fractional Laplace operator.
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For particles with pair-interaction the operator in (4.2) is replaced by

N∑

j=1
(−∆xj + V (xj)) +

∑

1≤j<k≤N
W (xj ,xk).

Here the extra term corresponds to the pairwise interactions of different particles
via the scalar pair-potential W . Similarly, one can consider models with n-particle
interactions by adding terms of the form W (xj1 , . . . ,xjn) and summing over all
choices of n distinct particle indices.

It is also possible to define operators with magnetic interactions by replacing the
kinetic energy by corresponding magnetic versions where the magnetic potential,
and thus also the corresponding magnetic field, depends on the positions of the
particles. A particular case of magnetically interacting particles arises naturally
when considering anyons.

The magnetic gauge picture of anyons

For non-interacting bosonic or fermionic particles the energy can be completely
understood in terms of the one-body operator. This is due to the fact that both
the subspaces of symmetric, resp. antisymmetric, wave functions in L2(RdN ) are
tensor products of the corresponding one-particle spaces. However, for anyons such
a correspondence is not available due to the more complicated nature of the Hilbert
space of wave functions satisfying the anyonic exchange relation. Technically, one
should not consider functions but rather elements of the Hilbert space of square
integrable sections of a certain complex line bundle, for details see [72].

However, through a singular gauge transformation it is possible to model anyons
as magnetically interacting bosons [72, 77, 83]. The corresponding model for anyons
is called the magnetic gauge picture. The model described by a many-body operator
in the Hilbert space of sections of the appropriate line bundle is referred to as the
anyonic gauge picture. More precisely, the non-relativistic kinetic energy of anyons
with statistics parameter α is unitarily equivalent to the magnetically interacting
kinetic energy

N∑

j=1
(−i∇xj + αAj(xj))2,

acting on bosonic wave functions. Here Aj : R2 → R2 is the singular magnetic
potential

Aj(x) =
∑

k 6=j

(x− xk)⊥
|x− xk|2

,

where x⊥ denotes the vector x rotated by π/2 counterclockwise around the origin,
that is (x, y)⊥ = (−y, x). The corresponding magnetic field Bj = curl Aj is identi-
cally zero away from the xk, for k 6= j, while at each particle position xk there is
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an Aharonov–Bohm type magnetic field (a non-trivial magnetic field concentrated
at a single point).

It was proved by Lundholm and Solovej [78] that the natural form domain of
this operator is obtained by taking the closure of corresponding quadratic form
initially defined on C∞0 (R2N \44 ) ∩ L2

sym(R2N ) where

44 = {(x1, . . . ,xN ) ∈ R2N : xi = xj for some j 6= k}.

Many-body Lieb–Thirring inequalities

In this thesis our concern is mostly directed towards one of the most fundamental
properties of a many-body quantum mechanical system, namely, its ground-state
energy defined as the bottom of the spectrum of the corresponding many-body
operator. In fact, our focus is lower bounds for this energy which display the
correct asymptotic behaviour with respect to N in the limit as the particle number
tends to infinity.

Since there are approximately N ∼ 1023 particles in a single gram of matter the
many-body limit is highly relevant in applications. Moreover, as the many-body
operators become increasingly difficult to analyse when the particle number grows
large it is important to develop rigorous approximations which capture the relevant
asymptotic behaviour.

Define the one-body density %Ψ : Rd → [0,∞) associated to a quantum state
Ψ ∈ L2(RdN ), with ‖Ψ‖L2(RdN ) = 1, by

%Ψ(x) =
N∑

j=1

∫

Rd(N−1)
|Ψ(x1, . . . ,xj−1,x,xj+1, . . . ,xN )|2

∏

k 6=j
dxk.

Note that %Ψ ∈ L1(Rd) with normalization chosen so that ‖%Ψ‖L1(Rd) = N , and∫
Ω %Ψ(x) dx is the expected number of particles in Ω ⊂ Rd.

Naturally, it is not possible to recover Ψ from its one-body density. However,
the potential energy of a state Ψ can be computed knowing only %Ψ,

〈
Ψ,

N∑

j=1
V (xj)Ψ

〉
=
∫

Rd
V (x)%Ψ(x) dx.

To give an approximation of the kinetic energy of Ψ in terms of %Ψ is unfortunately
far from simple. Similarly, it is difficult to precisely understand the contribution to
the energy from particle interactions in terms of %Ψ.

The main topic of this subsection is a many-body version of the Lieb–Thirring
inequality of Theorem 2.13 with γ = 1. The content of the inequality is a lower
bound for the non-relativistic kinetic energy of a fermionic wave function Ψ in terms
of its one-body density.
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Theorem 4.1 (The many-body Lieb–Thirring inequality; see [69, 70]). For all
N ≥ 1 and any Ψ ∈ H1(RdN ), with ‖Ψ‖L2(RdN ) = 1, satisfying (4.1) it holds that

〈
Ψ,

N∑

j=1
(−∆xj )Ψ

〉
≥ C

∫

Rd
%Ψ(x)1+2/d dx. (4.3)

Here C > 0 is a universal constant independent of N and Ψ.

Theorem 4.1 was first obtained by Lieb and Thirring through Theorem 2.13 with
γ = 1 and a duality argument. As mentioned in Section 2.3 the inequality (4.3) was
a crucial ingredient in their proof of the stability of quantum mechanical matter [69,
70].

The integral of the one-body density on the right-hand side of (4.3) is, up to a
multiplicative constant, the so-called Thomas–Fermi approximation of the kinetic
energy. For background and details on Thomas–Fermi theory, see e.g. [64, 66] and
references therein. However, it is in the context of this thesis worth noting that the
core of the theory lies in a semiclassical approximation.

We emphasize that without the antisymmetry condition (4.1) an inequality of
the form (4.3) cannot hold with a constant independent of N . In fact, the best one
can obtain is 〈

Ψ,
N∑

j=1
(−∆xj )Ψ

〉
≥ C

N2/d

∫

Rd
%Ψ(x)1+2/d dx.

That this is the best possible behaviour can be seen by considering the bosonic wave
function Ψ(x1, . . . ,xN ) =

∏N
j=1 u(xj), for any u ∈ H1(Rd) which is normalized

in L2(Rd) (see e.g. [67]).
It is an interesting question whether one can replace the antisymmetry condition

in Theorem 4.1 by different assumptions. For instance, for a system of interacting
bosons with a sufficiently strong repulsion between the particles one might expect
similar inequalities to hold (see e.g. [74]).

In a similar direction Lundholm and Solovej [77] proved Lieb–Thirring inequal-
ities for anyons by utilizing that the magnetic interaction is strong enough to im-
ply exclusion principles effectively replacing that for fermions (see also [76]). The
strategy developed by Lundholm and Solovej provides a rather simple yet powerful
machinery for proving many-body kinetic energy or Lieb–Thirring inequalities by
combining local uncertainty and exclusion principles with a clever geometric cov-
ering argument. This strategy will be the core of the analysis in Papers G and H.
For a description of the main steps of the strategy we refer to Section 3 of Paper H.





5 Summary of results

With the exception of Paper A, the results of this thesis can be split into two
separate categories:

I. Papers B, C, D, and E focus on the relation between the shape of a domain
Ω ⊂ Rd and the spectrum of the Dirichlet or Neumann Laplace operator
defined in L2(Ω). More precisely, the focus of the results revolves around
sharp estimates and shape optimization in the semiclassical regime, i.e. in
the limit of large eigenvalues. Paper F concerns a related problem but where
the optimization over the shape of a domain is replaced by an optimization
problem within a one-parameter family of Schrödinger operators.

II. Papers G and H concern problems linked more directly to many-body quan-
tum mechanics. Specifically, the results concern Lieb–Thirring inequalities
and related energy estimates for wave functions describing indistinguishable
particles satisfying exclusion principles weaker than (4.1).

Summary of Paper A
A bound for the perimeter of inner parallel bodies
Journal of Functional Analysis (2016).

In Paper A we study the size of the perimeter of the inner parallel sets of a convex
set Ω ⊂ Rd. That is, we are interested in the set of points in Ω which are a certain
distance t > 0 from the boundary of Ω. Specifically, we are concerned with how
the size of this set varies with t, and our goal is to find a sharp lower bound for its
(d− 1)-dimensional measure.

Although the topic of the paper lies outside the main theme of this thesis,
our interest in the problem stems from applications within spectral theory. In
particular, the results obtained are crucial ingredients in Papers B and C. However,
the problem has connections and applications also in other parts of mathematics.
For instance, it is closely connected to the Eikonal abrasion model [26].

35
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Let Ωt denote the inner parallel set of Ω ⊂ Rd at distance t ≥ 0, which is defined
by

Ωt = {x ∈ Ω : dist(x, ∂Ω) ≥ t}.
If Ω is bounded then Ωt = ∅ for t large enough. Define rin(Ω) the inradius of Ω
by rin(Ω) = sup{t > 0 : Ωt 6= ∅}. The inradius can equivalently be defined as
the radius of the largest ball contained in Ω or the supremum of the distance from
x ∈ Ω to ∂Ω.

The main result of Paper A is the following theorem

Theorem 5.1. Let Ω ⊂ Rd be a bounded convex domain with inradius r. Then,
for any inner parallel set Ωt, t ≥ 0, it holds that

Hd−1(∂Ωt) ≥
(

1− t

r

)d−1

+
Hd−1(∂Ω). (5.1)

Moreover, this bound is proved to be sharp and exact conditions for equality
are established.

The question of whether a bound similar to (5.1) was valid for arbitrary two-
dimensional convex domains was posed by Geisinger, Laptev, and Weidl in [35]
which motivated the analysis in Paper A. In fact, the results of Paper B are almost
entirely based on combining Theorem 5.1 with the techniques and results of [35].
It is natural to ask if one can find corresponding lower bounds for the perimeter of
inner parallel sets when Ω is not assumed to be convex. However, such bounds would
necessarily need to involve further geometric quantities or additional assumptions
on either Ω or the smallness of t.

When working with inner parallel sets one encounters two main difficulties.
Firstly the regularity of ∂Ωt can be, and most often is, worse than that of ∂Ω.
Secondly given a set Ω and a positive number t there is only rarely (even in the
restricted convex case) a unique set Ω̃ such that Ω̃t = Ω, i.e. the inverse problem
does not have a unique solution.

The key idea that goes into the proof of Theorem 5.1 is nonetheless to turn
the problem around and look at an inverse problem. Namely, given a convex set Ω
and a positive number t we construct a ‘maximal’ solution to the inverse problem.
Specifically, we find a maximizing set of the optimization problem

sup
{
Hd−1(∂Ω̂) : Ω̂ convex and Ω̂t = Ω

}
. (5.2)

That is, given Ω and t ≥ 0 we construct a convex set Ω̃ such that Ω̃t = Ω and for
any other convex set satisfying Ω̂t = Ω it holds that Hd−1(∂Ω̂) ≤ Hd−1(∂Ω̃). By
proving that the inequality (5.1) holds for the inner parallel body of Ω̃ at distance t
the statement of Theorem 5.1 follows. The techniques used to solve the optimization
problem (5.2) and the proof of the inequality for the extremal set Ω̃ are based on
elementary convex geometry. In particular, the proofs make use of the theory of
mixed volumes and properties of the support function of a convex body.
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Summary of Paper B
On the remainder term of the Berezin inequality on a convex domain
Proceedings of the American Mathematical Society (2017).

Paper B uses the main result of Paper A to improve upon certain results obtained
by Geisinger, Laptev, and Weidl in [35]. In that paper the authors derive improved
versions of the Berezin–Li–Yau inequality,

Tr(−∆D
Ω − λ)γ− ≤ Lcl

d,γ |Ω|λγ+d/2,

by subtracting positive terms of lower order in λ from the right-hand side of the
inequality. Similar improvements of this inequality have been the topic of several
recent papers. The main result of Paper B is also a result in this direction under
an additional convexity assumption and for γ ≥ 3/2.

Theorem 5.2. Let Ω ⊂ Rd, d ≥ 2, be a bounded convex domain. For γ ≥ 3/2
there exists a constant c(γ, d) > 0 such that

(i) if λ ≤ π2

4rin(Ω)2 , then

Tr(−∆D
Ω − λ)γ− = 0;

(ii) if λ > π2

4rin(Ω)2 , then

Tr(−∆D
Ω − λ)γ− ≤ Lcl

γ,d|Ω|λγ+d/2 − c(γ, d)Lcl
γ,d−1Hd−1(∂Ω)λγ+(d−1)/2.

For planar convex domains this result was proved under an additional geometric
assumption in [35]. Namely, they assumed that

H1(∂Ωt) ≥
(

1− 3t
w(Ω)

)
+
H1(∂Ω), for all t ≥ 0.

Here w(Ω) is the width of Ω defined as the smallest number w ≥ 0 such that Ω
is contained between two parallel hyperplanes separated by a distance w. Theo-
rem 5.1 implies that this assumptions is always true. That the assumption was
valid for all convex planar domains was conjectured in [35] which, as mentioned
above, motivated the analysis in Paper A. Moreover, using Theorem 5.1 the meth-
ods of [35] used in the case of planar convex domains can be extended to convex
domains of arbitrary dimension resulting in Theorem 5.2.

We remark that Theorem 5.2 remains valid also for γ ∈ [1, 3/2). In fact, for all
γ ≥ 1 the corresponding result can be obtained as a consequence of an inequality
proved in [40] combined with a result of Paper D (see Theorem 2.4 in Paper C).
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Summary of Paper C
Asymptotic shape optimization for Riesz means of the Dirichlet Laplacian over
convex domains
Journal of Spectral Theory, published online.

In Paper C we consider the shape optimization problem

sup{Tr(−∆D
Ω − λ)γ− : Ω ⊂ Rd convex open, |Ω| = 1},

for λ > 0 and γ ≥ 1. In particular, we are interested in what happens to optimal
domains as λ tends to infinity.

Let Kd denote the set of non-empty, bounded convex domains in Rd. This is
a metric space when equipped with the Hausdorff metric. The main result in the
paper is the following

Theorem 5.3. Let A be a closed subset of Kd. Fix γ ≥ 1 and let Ωλ,γ(A) denote
any extremal domain for the shape optimization problem

sup{Tr(−∆D
Ω − λ)γ− : Ω ∈ A, |Ω| = 1}.

Then the following statements hold:

(i) For any sequence {λj}j≥1↑∞ the corresponding sequence {Ωλj ,γ(A)}j≥1 has a
subsequence which, up to translation, converges in A. Moreover, the limit Ω∞
of such a subsequence has unit measure.

(ii) Under the additional assumption that

Tr(−∆D
Ω−λ)γ−=Lcl

γ,d|Ω|λγ+d/2−
Lcl
γ,d−1
4 Hd−1(∂Ω)λγ+(d−1)/2 +o(λγ+(d−1)/2),

as λ→∞, uniformly for Ω in compact subsets of A, then the limit Ω∞ also
minimizes the perimeter in A:

Hd−1(∂Ω∞) = inf{Hd−1(∂Ω) : Ω ∈ A, |Ω| = 1}.

For two natural classes of convex domains it is also proved that the assumption
in (ii) is valid. Namely, if A is the set of convex polytopes of no more than m
faces, or if the elements of A are assumed to have boundaries which are uniformly
C1-regular. However, by the results obtained in Paper E the assumption in (ii) is
valid for any choice of A ⊆ Kd. In particular, we can take A = Kd and obtain that
in the limit λ→∞ any optimizer will, up to translation, converge to a ball of unit
measure (see Corollary 5.9 below).

The main tools in the proof is an extension of Theorem 5.2 to all γ ≥ 1, the
Blaschke selection principle, and two-term asymptotic expansions of Tr(−∆D

Ω−λ)γ−
as λ→∞ with uniform control of the error term. Combining these tools with the
strategy described in Chapter 3 one obtains the main result.
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It is also shown that the ideas can be extended to understand the asymptotic
behaviour of the shape optimization problem if one also allows for disjoint unions
of convex domains.

Corollary 5.4. Let A be a closed subset of Kd which is invariant under dilations
and satisfies the assumption in (ii) of Theorem 5.3. Fix γ ≥ 1 and let Ωλ,γ(A∞)
denote any extremal domain of the shape optimization problem

sup
{

Tr(−∆D
Ω − λ)γ− : |Ω| = 1, Ω =

⋃
k≥1Ωk, Ωk ∈ A, Ωk ∩ Ωk′ = ∅ if k 6= k′

}
.

Let also Ω1
λ denote the largest of the components of Ωλ,γ(A∞).

For any sequence {λj}j≥1 ↑ ∞ the corresponding sequence {Ω1
λj
}j≥1 has a subse-

quence which, up to rigid transformations, converges in A. Moreover, the limit Ω∞
of such a subsequence has unit measure and minimizes the perimeter in A:

Hd−1(∂Ω∞) = inf{Hd−1(∂Ω) : Ω ∈ A, |Ω| = 1}.

Note that Corollary 5.4 can be interesting even for extremely simple choices
of A. For instance, it implies that among unions of disjoint balls the maximizers
of the Riesz means will in the semiclassical limit converge to a single ball of unit
measure.

Summary of Paper D
Asymptotic behaviour of cuboids optimising Laplacian eigenvalues
(joint with K. Gittins)
Integral Equations and Operator Theory (2017).

In the same spirit as Paper C, the topic of Paper D is an asymptotic problem in
spectral shape optimization. In contrast to Paper C the class of admissible domains
is much more restrictive, but the main focus is towards optimizing individual eigen-
values and not the more regular Riesz means studied in Paper C. Before stating
the main results we require some additional notation.

For a bounded open set Ω ⊂ Rd with Lipschitz boundary denote by {λk(Ω)}k≥1
and {µk(Ω)}k≥0 the increasingly ordered eigenvalues counted with multiplicity
of −∆D

Ω and −∆N
Ω, respectively.

For ā = (a1, . . . , ad), with 0 < a1 ≤ a2 ≤ . . . ≤ ad, define the cuboid Rā =∏d
j=1(0, aj) ⊂ Rd and let Q denote the unit cube (0, 1)d.
Finally, for k ≥ 1 define

λ∗k = inf{λk(Rā) : |Rā| = 1}, and µ∗k = sup{µk(Rā) : |Rā| = 1}.

The aim of Paper D is to analyse the behaviour of cuboids realizing the infimum
and supremum in the limit as k tends to infinity.



40 CHAPTER 5. SUMMARY OF RESULTS

The main result of Paper D is

Theorem 5.5. Let d ≥ 2. For k ∈ N let RDk and RNk denote two d-dimensional
unit measure cuboids such that

λk(RDk) = λ∗k, and µk(RNk ) = µ∗k.

Then, for some θd < d− 1 and as k →∞, it holds that

aD1,k = 1 +O(k(θd−(d−1))/(2d))
aN1,k = 1 +O(k(θd−(d−1))/(2d)),

where aD/N1,k is the shortest side-length of the cuboid RD/Nk .
That is, in the limit k → ∞ the sequences {RDk}k≥1 and {RNk }k≥1 converge to

the unit cube Q.

For d = 2 the result of Theorem 5.5 was first obtained by Antunes and Freitas
for the Dirchlet problem, and van den Berg, Bucur, and Gittins for the Neumann
problem [2, 5]. Later van den Berg and Gittins [6] also proved the result for the
Dirichlet problem when d = 3.

The quantity θd in Theorem 5.5 is given through a closely related lattice point
counting problem. For d ≥ 2, θd can be taken as any number such that for all
a1, . . . , ad > 0,

#
{
z ∈ Zd : a−2

1 z2
1 + . . .+ a−2

d z2
d ≤ r2}− ωdrd

d∏

j=1
aj = O(rθd), (5.3)

as r →∞, uniformly for aj on compact subsets of (0,∞).
Finding the sharp remainder in (5.3) when d = 2 and a1 = a2 = 1 is the well-

known, and still open, Gauss circle problem. If the dimension is greater than 5,
then (5.3) is valid with θd = d − 2 which is known to be sharp [38]. For d = 3, 4
Herz [46] proved (5.3) with θd = d(d−1)

d+1 . For d = 2 the expansion (5.3) is valid for
θ2 = 46

73 + ε, for any ε > 0 [50]. In particular, for any d ≥ 2 (5.3) is valid for some
θd < d− 1.

In addition to the geometric convergence of the extremal domains, results con-
cerning the distance between λ∗k and µ∗k and the eigenvalues of the cube are obtained.

Theorem 5.6. Let d ≥ 2. Then, as k →∞,

|λk(Q)− λ∗k| = O(k(θd−(d−2))/(2d))
|µk(Q)− µ∗k| = O(k(θd−(d−2))/(2d)).

For d ≥ 5 Theorem 5.6 implies that the difference between the extremal eigen-
values and those of the unit cube are bounded uniformly with respect to k.
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The strategy of the proofs of Theorems 5.5 and 5.6 relies on the fact that the
eigenvalues of both the Dirichlet and Neumann Laplacians on a cuboid are explicitly
known. Namely for the cuboid Rā they are given by

π2j2
1

a2
1

+ . . .+ π2j2
d

a2
d

,

where j1, . . . , jd are positive integers for the Dirichlet eigenvalues and non-negative
integers for the eigenvalues of the Neumann Laplacian. Through this observation
one can reformulate the problem in terms of finding ellipsoids containing the largest,
or smallest, number of positive, respectively non-negative, integer lattice points.

With this in hand one can follow the strategy outlined in Chapter 3 to reduce
the proof to that of minimizing the perimeter among cuboids of unit measure. In
particular, the proof of uniform asymptotic expansions is reduced to well-studied
problems in number theory and the proof of universal spectral inequalities can be
reduced to proving a one-dimensional inequality by applying the Aizenman–Lieb
identity (2.10).

Summary of Paper E
Two-term spectral asymptotics for the Dirichlet Laplacian in a Lipschitz domain
(joint with R. L. Frank)
Preprint 2019.

Paper E deals with semiclassical asymptotics for the Dirichlet Laplacian in domains
with rough boundary. Specifically we prove a two-term asymptotic expansion of
Tr(−∆D

Ω−λ)− in the limit λ→∞ under a Lipschitz assumption on ∂Ω. As discussed
in Section 2.2 this corresponds to an averaged version of Weyl’s conjecture.

The main result of the paper is

Theorem 5.7. Let Ω ⊂ Rd, d ≥ 2, be a bounded open set with Lipschitz boundary.
Then, as λ→∞,

Tr(−∆D
Ω − λ)− = Lcl

1,d|Ω|λ1+d/2 −
Lcl

1,d−1
4 Hd−1(∂Ω)λ1+(d−1)/2 + o(λ1+(d−1)/2).

The method employed to prove the result is based on combining techniques of
local trace asymptotics developed by Solovej–Spitzer [94] and Frank–Geisinger [30,
31], with ideas from geometric measure theory developed by Brown [11] in order to
prove (2.7) for Lipschitz domains.

The main result of Frank and Geisinger [30] is a version of Theorem 5.7 valid
for Ω ⊂ Rd with C1,α-regular boundary. In the subsequent paper [31], where the
same authors consider the Laplace operator with Robin boundary conditions, the
regularity assumption is lowered to C1.

However, the step from C1-regular boundary to Lipschitz requires fundamen-
tally different tools. The treatment of the boundary in [30, 31] relies on locally
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changing coordinates in such a way that the boundary of the domain is mapped
to a hyperplane while maintaining control of how the Laplace operator is changed
by this mapping. If the boundary is merely Lipschitz, such an approach is not
possible. Indeed, straightening a Lipschitz boundary requires a Lipschitz change of
coordinates which can lead to arbitrarily large perturbations of the Laplacian.

The approach employed to overcome this issue is to utilize a geometric con-
struction of Brown [11]. The main ingredient is a quantitative way of saying that
the boundary of a Lipschitz domain is around most points well approximated by a
hyperplane, at least at a sufficiently small scale.

The techniques developed in the proof of Theorem 5.7 are not only applicable
to prove asymptotic estimates but can also be used to prove universal spectral
inequalities. For instance, if Ω is assumed to be convex we prove

Theorem 5.8. Let Ω ⊂ Rd, d ≥ 2, be a convex bounded open set. Then, for
all λ > 0,

∣∣∣Tr(−∆D
Ω − λ)− − Ld|Ω|λ1+d/2 + Ld−1

4 Hd−1(∂Ω)λ1+(d−1)/2
∣∣∣

≤ CHd−1(∂Ω)λ1+(d−1)/2(rin(Ω)
√
λ
)−1/11

,

where the constant C depends only on the dimension.

As a corollary of Theorem 5.8 the a priori regularity assumptions in the main
theorem of Paper C can be removed.

Corollary 5.9. Let γ ≥ 1. For λ > 0 let Ωλ,γ denote any extremal domain of the
shape optimization problem

sup{Tr(−∆D
Ω − λ)γ− : Ω ⊂ Rd convex open, |Ω| = 1}.

Then, up to translation, Ωλ,γ converges in the Hausdorff metric to a ball of unit
measure as λ→∞.

Summary of Paper F
Maximizing Riesz means of anisotropic harmonic oscillators
Arkiv för Matematik, to appear.

Paper F concerns an asymptotic optimization problem for anisotropic harmonic
oscillators. The problem arose in connection to spectral shape optimization and
provides an interesting toy model for which the behaviour differs from that observed
in, for instance, [2, 5, 6] and Papers C and D. In the same manner as the results of
Paper D can be formulated in terms of finding ellipsoids containing the most points
of Nd the problem at hand has a similar interpretation, but where the ellipsoids are
replaced by triangles.
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For β > 0, let Lβ denote the self-adjoint operator in L2(R2) acting as

Lβ = −∆ + βx2 + β−1y2.

We refer to this operator as the anisotropic harmonic oscillator. The spectrum of
Lβ is discrete and consists of an infinite number of positive eigenvalues which we
denote by, repeating each eigenvalue according to its multiplicity,

0 < λ1(β) ≤ λ2(β) ≤ . . . ≤ λk(β) ≤ . . . .
The eigenvalues of Lβ are in one-to-one correspondence with N2, explicitly the
correspondence is given by the map

N2 3 (k1, k2) 7→ 2(k1 − 1/2)
√
β + 2(k2 − 1/2)/

√
β.

In Paper F we are interested in the behaviour of βk realizing the infimum

inf{λk(β) : β > 0}
as k tends to infinity. Although we are not able to completely understand the be-
haviour of such minimizing β we prove a number of results concerning a regularized
version of the problem. Namely, the corresponding problem for Riesz means.

From the viewpoint of counting lattice points a natural family of generalizations
of this problem is the following: for σ, τ > −1 what β = β(λ) maximizes the
quantity

#
{

(k1, k2) ∈ N2 : (k1 + σ)
√
β + (k2 + τ)/

√
β ≤ λ

}
? (5.4)

For σ = τ = −1/2 this is exactly the problem of minimizing eigenvalues of
anisotropic harmonic oscillators but formulated in terms of the eigenvalue counting
function. These problems were introduced by Laugesen and Liu in [59, 60]. In the
first of these articles it was conjectured that when σ = τ = 0 the set of maximizing
values of (5.4) converges to a highly non-trivial set as λ → ∞. Specifically they
conjectured that the limiting set consists of an infinite set of rational numbers. A
partial positive answer to this conjecture was subsequently given by Marshall and
Steinerberger [79]. Their main result states that the limiting set contains an infinite
subset of Q.

The main goal of Paper F is to study the following version of the problem in
a setting corresponding to Riesz means of harmonic oscillators: for γ > 0 and
σ, τ > −1 find β realizing the supremum

sup
{
Rγσ,τ (β, λ) : β > 0

}
, (5.5)

where
Rγσ,τ (β, λ) =

∑

(k1,k2)∈N2

(
λ− (k1 + σ)

√
β + (k2 + τ)/

√
β
)γ

+.

Putting γ = 0 and interpreting the sum appropriately this is precisely the problem
of maximizing (5.4).

Our main results state that for a certain range of the parameters σ, τ, and γ the
maximizing β has a well-defined limit as λ→∞.
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Theorem 5.10. For λ > 0 let βγσ,τ (λ) denote any β realizing the supremum
in (5.5). Then, for all γ > 0 and σ, τ > −1/2 it holds that

lim
λ→∞

βγσ,τ (λ) = 1 + 2τ
1 + 2σ .

Moreover, for all γ > 1 it holds that

lim
λ→∞

βγ−1/2,−1/2(λ) = 1.

In the case (σ, τ) ∈ (−1,∞)2 \ ((−1/2,∞)2 ∪ {(−1/2,−1/2)}) any sequence of
maximizing β must degenerate in the semiclassical limit. In the sense that for any
fixed compact set I ⊂ R+ all maximizers β(λ) are in Ic if λ is large enough.

For (σ, τ) ∈ (−1/2,∞)2 ∪ {(−1/2,−1/2)} and γ ≥ 0 not covered by Theo-
rem 5.10 it is conjectured that the corresponding result is false and that the problem
exhibits behaviour resembling that studied in [79], i.e. the case σ = τ = γ = 0.

The main strategy is that discussed in Chapter 3 and applied in Papers C and D.
The main tools in following this strategy are combinations of precise estimates for
what corresponds to a one-dimensional versions of the considered Riesz means,
the Aizenman–Lieb identity (2.10), and precise asymptotic expansions of the sum
in (5.5) as λ→∞.

The asymptotic expansion is derived by generalizing a calculation for β = 1 and
σ = τ = −1/2 made in [41, 42, 43] which is based on the Laplace transform and
precise application of the residue theorem. In order to state the result precisely let
ζ : C×C→ C denote the Hurwitz ζ-function [25, Chapter 25]. Let also {x} denote
the fractional part of x ∈ R, i.e. {x} = x− bxc.

Theorem 5.11. For any γ > 0, M ∈ N, δ > 0, β ∈ R+ and σ, τ > −1, there are
constants αk = αk(β, σ, τ, γ) such that

Rγσ,τ (β, λ) =
M+1∑

k=0
αkλ

2−k+γ + osc(β, λ) + o(λ−M+γ+δ), as λ→∞.

The coefficients αk are continuous in β and |osc(β, λ)| ≤ Cβ(λ+ 1). Moreover, Cβ
and the implicit constant of the remainder term are uniformly bounded for β in
compact subsets of R+.

Furthermore,

(i) if β = µ
ν ∈ Q+, gcd(µ, ν) = 1, then, with x = √µνλ− µσ − ντ ,

osc(β, λ) = ζ(−γ, {x})
(µν) 1+γ

2
λ+O(1), as λ→∞;
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(ii) if β ∈ R+\Q, it holds that

osc(β, λ) = β−γ/2Γ(1 + γ)
(2π)1+γ

Λ(λ)/
√
β∑

k=1

sin(πk(2λ
√
β − (1 + 2σ)β − 2τ)− π

2 (1 + γ))
k1+γ sin(πkβ)

+ βγ/2Γ(1 + γ)
(2π)1+γ

Λ(λ)
√
β∑

k=1

sin(πk(2λ/
√
β − 2σ − (1 + 2τ)/β)− π

2 (1 + γ))
k1+γ sin(πk/β)

+ o(λ−M+γ+δ),

as λ→∞ and where Λ(λ) = O(λ
M+2−γ

γ ).

For an explicit formula for the coefficients αk, see Paper F. For the maximization
problems that we consider it is only the first few coefficients that are important

α0 = 1
(1 + γ)(2 + γ) , α1 = − (1 + 2σ)

√
β + (1 + 2τ)/

√
β

2(1 + γ) ,

α2 = (1 + 2σ)(1 + 2τ)
4 + (1 + 6σ(1 + σ))β + (1 + 6τ(1 + τ))/β

12 .

The behavioural transition observed in the optimization problem at σ = −1/2
and τ = −1/2 is a consequence of the function β 7→ α1 changing its character.
If σ, τ > −1/2, then the function achieves its unique maximum at β = 1+2τ

1+2σ . If
instead min{σ, τ} ≤ −1/2, then the function is maximized in one, or both, of the
limits β → 0 or β →∞. Heuristically, βγσ,τ (λ) should approach the maximum of α1
as λ→∞ which leads to the degenerate behaviour discussed above. The criticality
of the harmonic oscillators σ = τ = −1/2 is a result of α1(β,−1/2,−1/2, γ) ≡ 0,
and hence the optimization takes place at the level of the lower order term α2λ

γ .
However, for this term to dictate the asymptotic behaviour it needs to be asymp-
totically much larger than osc(β, λ). In other words we need γ > 1. Otherwise,
the oscillating behaviour will dominate and one expects to find a more complicated
limiting set of maximizing β.

Summary of Paper G
Exclusion bounds for extended anyons (joint with D. Lundholm)
Archive for Rational Mechanics and Analysis (2018).

As discussed in Chapter 4 there is the mathematical possibility of two-dimensional
quantum particles called anyons which escape the classical boson/fermion dichotomy.
Through the magnetic gauge picture such particles can be modelled as bosons in-
teracting through a self-generated magnetic field. It has been argued that this is
actually one of the more probable manners in which one might expect anyons to
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arise in practice; that is, as bosons to which a quantity of magnetic flux effectively
has been attached (see [75] and references therein).

However, in such a model the magnetic flux attached has some positive extent.
In contrast, in the magnetic gauge picture which we described in Chapter 4 the
magnetic field is completely concentrated at a point. Therefore, it is interesting to
try to understand the properties of a two-dimensional gas of bosons interacting via
a magnetic field of positive extent attached to each particle. This is precisely the
topic of Paper G.

Technically the model considered is that described in Chapter 4 but the singular
magnetic potential

Aj(x) =
∑

k 6=j

(x− xk)⊥
|x− xk|2

is replaced by

AR
j (x) = Aj∗

1BR(0)

πR2 (x) =
∑

k 6=j

(x− xk)⊥
|x− xk|2R

,

where R > 0 describes the size of the attached flux and |x|R = max{|x|, R}. Note
that while Aj corresponds to a magnetic field with point fluxes at each xk, k 6= j,
the vector potential AR

j corresponds to the magnetic field

BR
j (x) = curl AR

j (x) = 2π
∑

k 6=j

1BR(xk)(x)
πR2

(a disk with radius R of constant magnetic field around each xk). Note that the
magnetic flux attached to each xk (the integral of the magnetic field) is independent
of R.

For R > 0, α ∈ R we are interested in understanding the magnetic kinetic energy
operator

TRα =
N∑

j=1
(−i∇xj + αAR

j (xj))2

in the bosonic Hilbert space L2
sym(R2N ). Let also T 0

α denote the corresponding
operator with AR

j replaced by Aj , i.e. the non-extended case.
Paper G focuses on one of the most fundamental properties of the extended

anyon gas, namely, its ground-state energy. In particular, we consider the energy
per particle of the homogeneous anyon gas confined to a square Q in the limit as
the particle number N and the size of the square |Q| tend to infinity, while keeping
the average particle density %̄ = N/|Q| fixed.

In the case of ideal anyons, i.e. when R = 0, this problem was studied by Lund-
holm and Solovej [77]. In their results the dependence on the statistics parameter
α enters through the rather peculiar quantity

α∗ =
{

1
ν if α = µ

ν ∈ Q with gcd(µ, ν) = 1 and µ odd,
0 otherwise.

(5.6)
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In particular, their results imply a positive energy per particle in the thermody-
namic limit for α such that α∗ 6= 0. The quantity (5.6) appears also in the results
of Paper G. In particular, it determines the behaviour in the limit as R tends to
zero. For R = 0 our results improve upon the results of Lundholm and Solovej.
However, again the method is in this case able to yield positive energy per particle
in the thermodynamic limit only if α∗ 6= 0. The dependence on α∗ might appear
rather unnatural, and indeed Lundholm and Seiringer [76] recently proved that the
thermodynamic energy per particle is zero only for α ∈ 2Z, that is, only if the
particles are bosons. However, it should be noted that there are arguments for why
number-theoretic properties of the statistics parameter α might be relevant for the
precise thermodynamic energy [71].

The main result of Paper G is

Theorem 5.12. Let e(α, γ̄), where γ̄ = R%̄1/2, denote the ground-state energy per
particle and unit density of the extended anyon gas in the thermodynamic limit at
fixed α ∈ R, R ≥ 0 and density %̄ > 0 where Dirichlet boundary conditions have
been imposed, that is

e(α, γ̄) = lim inf
N, |Q|→∞
N/|Q|=%̄

(
1
%̄N

inf
Ψ∈D(TRα )∩C∞0 (QN )

‖Ψ‖2=1

〈Ψ, TRα Ψ〉
)
.

Then

e(α, γ̄) ≥ C
(

2π
|α|min

{
2(1− γ̄2/4)−1,Kα

}

Kα + 2|α| ln(2/γ̄) 1γ̄<2 + 2π|α|1γ̄≥2

+ πg(cα∗, 12γ̄/
√

2)2(1− 12γ̄/
√

2)3
+

)
,

for some universal constants C, c > 0. Here Kα is defined by

Kα =
√

2|α|I0(
√

2|α|)
I1(
√

2|α|)
,

where Iν is the modified Bessel function of order ν, and g(ν, γ) for ν ∈ R+ and
0 ≤ γ < 1 is the square root of the smallest positive solution λ associated with the
Bessel equation −u′′ − u′/r + ν2u/r2 = λu on the interval [γ, 1] with Neumann
boundary conditions, while g(ν, γ) = ν for γ ≥ 1.

Furthermore, for any α ∈ R we have for the ideal anyon gas that

e(α, 0) ≥ πα∗
(
1−O(α1/3

∗ )
)
.

The result looks rather daunting, but the important message is that for all
values of α, γ̄ > 0 the energy per particle in the thermodynamic limit is positive.

The method of the main proof follows the strategy developed in [77] to under-
stand the gas of ideal anyons. The main idea of this strategy is to combine local
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exclusion principles with a partitioning of the configuration space. In order to ex-
tend the methods to the case R > 0 we prove new magnetic Hardy inequalities
based on ideas in [57, 77]. Moreover, the analysis requires proving lower bounds
for certain two-dimensional Schrödinger operators with oscillating radial scalar po-
tentials. Although this part of the argument does not require anything deep, it is
nonetheless fairly involved at a technical level.

Summary of Paper H
Lieb–Thirring inequalities for wave functions vanishing on the diagonal set
(joint with D. Lundholm and P. T. Nam)
Preprint 2019.

Paper H is devoted to a generalization of the Lieb–Thirring inequality for many-
body wave functions discussed in Chapter 4. Specifically we consider the kinetic
energy operator acting as the fractional Laplacian in each particle. For s > 0,
the fractional Laplace operator (−∆)s is defined using Theorem 2.1 through the
quadratic form

q(u) =
∫

Rd
|ξ|2s|û(ξ)|2 dξ, u ∈ Hs(Rd), (5.7)

where û denotes the Fourier transform of u. Specifically we consider inequalities of
the form 〈

Ψ,
N∑

j=1
(−∆xj )sΨ

〉
≥ C

∫

Rd
%Ψ(x)1+2s/d dx, (5.8)

for Ψ ∈ Hs(RdN ), with ‖Ψ‖L2(RdN ) = 1, and where %Ψ is the one-body density

%Ψ(x) =
N∑

j=1

∫

Rd(N−1)
|Ψ(x1, . . . ,xj−1,x,xj+1, . . . ,xN )|2

∏

i6=j
dxi.

Importantly, the constant C should be independent of Ψ and N .
Under the assumption that Ψ satisfies the Pauli exclusion principle,

Ψ(x1, . . . ,xN ) = sgn(σ)Ψ(xσ(1), . . . ,xσ(N))

for all permutations σ ∈ SN (or equivalently (4.1)), the inequality (5.8) is known
to be valid for all s > 0 and d ≥ 1 [22, 69, 70]. In particular, when s = 1 this is
precisely Theorem 4.1.

Noting that the Pauli exclusion principle implies that Ψ must vanish on the
diagonal set

44 =
{

(x1, . . . ,xN ) ∈ RdN : xi = xj for some i 6= j
}

it is natural to ask if (5.8) remains valid under this weaker assumption. The main
result of Paper H is that the answer to this question is yes, if and only if 2s > d.
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In fact, we prove a more general result. Define for d ≥ 1, s > 0 and k ≥ 2 the
function space

Hs,Nk (Rd) =
{

Ψ ∈ C∞0 (RdN ) : Ψ|44k = 0
}Hs(RdN )

,

where

44 k =
{

(x1, . . . ,xN ) ∈ RdN : xj1 = . . . = xjk for some j1 < . . . < jk
}

is the k-particle diagonal set in RdN . Note that by definition 44 = 44 2.
The main result of Paper H is

Theorem 5.13. Let d ≥ 1, k ≥ 2 and 2s > d(k − 1). Then for every N ≥ 1 and
every Ψ ∈ Hs,Nk (Rd), with ‖Ψ‖L2(RdN ) = 1, we have

〈
Ψ,

N∑

i=1
(−∆xi)sΨ

〉
≥ C

∫

Rd
%Ψ(x)1+2s/d dx.

Here C = C(d, s, k) > 0 is a universal constant independent of N and Ψ.

Theorem 5.13 provides a positive answer to a question posed by Lundholm,
Nam, and Portmann in [73] which served as the original motivation for our work.

The proof of Theorem 5.13 is based on the local strategy of deriving Lieb–
Thirring inequalities mentioned in Chapter 4. The main new ingredient in Paper H
is a reduction of the proof of a local exclusion principle to simply the positivity
of a local energy. This refines a bootstrap argument developed in [76]. After
this reduction the final ingredient in the proof of Theorem 5.13 is a new many-
body Poincaré inequality for wave functions vanishing on 44 k, which could be of
independent interest (Theorem 5.1 in Paper H).
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Contributions of the author

The results of Papers D, E, G, and H were obtained through collaborations. The
role of the author in each of these is indicated below.

Paper D (joint with K. Gittins)
The paper is a result of a collaboration in which both authors contributed approx-
imately equal amounts to every aspect of the work. The problem studied is a
generalization of one studied by Gittins and co-authors in [5, 6] (see also [2]). The
main contribution of the author to the paper is how to use the product structure
of the domains together with the Aizenman–Lieb identity (2.10) to reduce the d-
dimensional case to one one-dimensional problem. This is key in constructing a
unified proof removing complications appearing when increasing the dimension.

Paper E (joint with R. L. Frank)
The paper is a result of a collaboration in which both authors contributed approx-
imately equal amounts to every aspect of the work. The idea of combining the tech-
niques of [30] with those in [11] was proposed by Frank. The argument to control
the geometric approximation error by proving two-term semiclassical asymptotics
for the localized Laplacian on cones was proposed by the author. The geometric
construction in the proof of uniformity in the setting of convex domains is based
on ideas of the author appearing also in Papers A and C.

Paper G (joint with D. Lundholm)
The paper is a result of a collaboration in which both authors contributed approx-
imately equal amounts to every aspect of the work. The study of the problem was
proposed by Lundholm as a continuation on earlier work on ideal anyons [77].

Paper H (joint with D. Lundholm and P. T. Nam)
The paper is a result of a collaboration in which all authors contributed approx-
imately equal amounts to every aspect of the work. The idea to generalize the
reduction of a local exclusion bound by Lundholm and Seiringer [76] was proposed
by Nam (Lemma 4.1 in Paper H). The main contributions of the author relate to
the application for wave functions vanishing on diagonal sets.
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We provide a sharp lower bound for the perimeter of the inner 
parallel sets of a convex body Ω. The bound depends only on 
the perimeter and inradius r of the original body and states 
that

|∂Ωt| ≥
(
1 − t

r

)n−1

+
|∂Ω|.

In particular the bound is independent of any regularity 
properties of ∂Ω. As a by-product of the proof we
establish precise conditions for equality. The proof, which is
straightforward, is based on the construction of an extremal 
set for a certain optimization problem and the use of basic 
properties of mixed volumes.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Given a convex domain Ω ⊂ Rn we consider the family of its inner parallel sets. We 
denote by Ωt the inner parallel set at distance t ≥ 0, which is defined by

Ωt = {x ∈ Ω : dist(x,Ωc) ≥ t} = Ω ∼ tB.
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Here B is the unit ball in Rn and ∼ denotes the Minkowski difference; a precise definition 
is given in Section 1.1. Correspondingly, the outer parallel set at distance t ≥ 0 is the 
set

{x ∈ Rn : dist(x,Ω) ≤ t} = Ω + tB,

where + denotes the Minkowski sum. In this paper we provide a lower bound for the 
perimeter of Ωt in terms of the perimeter of Ω.

An important result in the theory of outer parallel sets is the so-called Steiner formula

|Ω + tB| =
n∑

i=0

(
n

i

)
tiWi(Ω), (1)

where coefficients Wi of the polynomial are the quermassintegrals of Ω, which are a 
special case of mixed volumes (see Section 1.1). The set of quermassintegrals contains 
several important geometric quantities: for instance we have that W0(Ω) = |Ω| and 
nW1(Ω) = |∂Ω|. There are analogous formulae to (1), called the Steiner formulae [14], 
that express the value of the i-th quermassintegral of Ω + tB in terms of Wj(Ω), for 
i ≤ j ≤ n. The Steiner formula appears not only in convex geometry, and important 
applications may be found in Federer’s work on curvature measures in geometric measure 
theory (see [5]) and Weyl’s tube formula in differential geometry (see [17]).

For inner parallel sets there is, in general, no counterpart to the Steiner formula. 
Matheron conjectured in [11] that the volume of a Minkowski difference is bounded from 
below by the alternating Steiner polynomial. If we restrict our attention to inner parallel 
sets he conjectured that

|Ω ∼ tB| ≥
n∑

i=0

(
n

i

)
(−t)iWi(Ω).

The precise conjecture was a more general statement where B is replaced by a general 
convex body and the quermassintegrals are replaced by mixed volumes. However, the 
conjecture was proved to be false by Hernández Cifre and Saorín in [7].

In addition to the lack of a Steiner-type formula, the Minkowski difference is far from 
being as well behaved as the Minkowski sum. In contrast to the Minkowski sum the 
difference is not a vectorial operation. Moreover, the regularity properties of Ω ∼ tB

may be very different from those of Ω. Both of these properties are demonstrated in 
Fig. 1. Nonetheless, the theory of inner parallel sets is rich and has several beautiful 
applications in both convex geometry and analysis (see for instance [2,4,10,12,13]).

In [8] the authors prove bounds for the quermassintegrals of inner parallel sets in a 
more general setting than that described above. Instead of considering the sets Ω ∼ tB, 
t ≥ 0, they consider Ω ∼ tE for some convex set E. The inequalities obtained in this 
paper are closely related to those in [8], and using similar techniques the results here 
could, at least in some sense, be generalized to the same setting. However, in such 
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Fig. 1. The inner parallel sets of some convex bodies in R2. Note that Ω̃t is equal to Ω̂t even though Ω̃ �= Ω̂.

generalizations the connection to the spectral theoretic applications that motivated the 
work in this paper is lost.

The main result of this paper is an improvement of the following theorem which is 
obtained in [16] using the Steiner formula to bound the perimeter of outer parallel sets.

Theorem 1.1 (Modified Steiner inequality [16]). Let Ω be a convex domain in Rn with 
volume |Ω| and surface area |∂Ω| such that at each point the principal curvatures of ∂Ω
are bounded from above by 1/K for some K > 0. Then for any t ≥ 0 we have the bound

|∂Ωt| ≥ |∂Ω|
(
1 − n − 1

K
t
)

+
.

Further, for any 0 ≤ t < K the principal curvatures of ∂Ωt are bounded from above by 
(K − t)−1.

Our study of this problem is motivated by work of Geisinger, Laptev and Weidl in [6]
where they use Theorem 1.1 to obtain bounds on the Riesz eigenvalue means for the 
Dirichlet Laplacian on a convex domain Ω ⊂ Rn. For convex domains in the plane 
satisfying the inequality

|∂Ωt| ≥
(
1 − 3t

ω

)
+

|∂Ω|, (2)

where ω denotes the width of Ω, the authors further improve these bounds. Moreover, 
the authors conjecture that (2) holds for any planar convex domain. In this paper we 
prove that the bound (2) holds for any convex set in R2 and that similar bounds hold in 
arbitrary dimension.

We now turn to our main result which is contained in the next theorem. In [9] the 
techniques of [6] are combined with this result to obtain further geometrical improve-
ments of Berezin-type bounds for the Dirichlet eigenvalues of the Laplacian on convex 
domains.

Theorem 1.2. Let Ω ⊂ Rn be a convex domain with inradius r. Then, for any inner 
parallel set Ωt, t ≥ 0, it holds that

|∂Ωt| ≥
(
1 − t

r

)n−1

+
|∂Ω|.
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Further, equality holds for some t ∈ (0, r) if and only if Ω is homothetic to its form 
body.1 If this is the case equality holds for all t ≥ 0.

Using the above theorem and known bounds for the inradius and width of a convex 
body we are able to conclude that the conjectured inequality (2) holds and provide the 
following generalization to higher dimensions.

Corollary 1.3. Let Ω ⊂ Rn be a convex domain with width ω. Then, for the inner parallel 
sets of Ω we have that

|∂Ωt| ≥
(
1 − 2

√
n

ω
t
)n−1

+
|∂Ω| if n is odd,

|∂Ωt| ≥
(
1 − 2(n + 1)

ω
√

n + 2
t
)n−1

+
|∂Ω| if n is even.

In both cases equality holds if Ω is a regular (n + 1)-simplex.

The result developed here is in several aspects an improvement of Theorem 1.1. Firstly, 
the assumptions on Ω are less restrictive. We require only convexity whilst the earlier 
result requires the principal curvatures of ∂Ω to be bounded. Further, by noting that

(
1 − t

K

)n−1

+
≥
(
1 − (n − 1)

K
t
)

+

and that the maximum of the principal curvatures of the boundary of a convex set is 
always larger than the reciprocal of its inradius one can conclude that Theorem 1.2
implies Theorem 1.1. We also note that if t is less than the reciprocal of the maximal 
principal curvature then Ω = Ωt + tB. In general the set Ω cannot be determined from 
Ωt and t.

1.1. Notation and preliminaries

Let Kn
0 denote the set of all convex bodies in Rn that have nonempty interior. Through-

out the paper Ω will belong to Kn
0 . Let B denote the closed unit ball in Rn and let Sn−1

denote the corresponding sphere. A closed ball of radius r centered at x ∈ Rn is denoted 
by Br(x). For notational simplicity we denote both volume and surface measure by | · |. 
This will appear in two forms, the volume of a set |Ω| and the surface measure of its 
boundary |∂Ω|. Further, we will make use of the notation x± = (|x| ± x)/2.

For two sets K, L ∈ Kn
0 the Minkowski sum (+) and difference (∼) are defined by

K + L := {x + y : x ∈ K, y ∈ L},

K ∼ L := {x ∈ Rn : x + L ⊆ K}.

1 The precise definition of the form body of a convex set Ω will be given in Section 1.1 (see also [8,14]).
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It is a direct consequence of the definitions that we, as claimed in the introduction, 
equivalently can define the inner parallel body Ωt, t ≥ 0, as Ω ∼ tB [14]. Similarly the 
outer parallel body can be written as Ω + tB.

The inradius r of a set Ω ∈ Kn
0 is defined as the radius of the largest ball contained 

in Ω, or equivalently (see for instance [14]) as

r = sup{λ ≥ 0 : Ω ∼ λB 	= ∅}.

The observation contained in the next lemma is intuitively clear but of central impor-
tance in what follows.

Lemma 1.4. Let Ω ∈ Kn
0 have inradius r0. Then, for any t ∈ [0, r0] the inradius rt of Ωt

satisfies

rt = r0 − t.

Proof. Let x0 ∈ Rn be such that Br0(x0) ⊆ Ω. For each x ∈ Br0(x0) we have that 
dist(x, ∂Ω) ≥ dist(x, ∂Br0(x0)) and hence

Ωt ⊇
(
Br0(x0)

)
t
= B(r0−t)(x0).

We conclude that rt ≥ r0 − t. To prove the reverse inequality we observe that for any 
xt ∈ Rn such that Brt

(xt) ⊆ Ωt we have that dist(Brt
(xt), ∂Ω) ≥ t. Which implies that

B(rt+t)(xt) = Brt
(xt) + tB ⊆ Ω,

and consequently r0 ≥ rt + t. �
A classic result in convex geometry is that the volume of a Minkowski sum λ1K1 +

· · · + λmKm is, for λ1, . . . , λm ≥ 0 and K1, . . . , Km ∈ Kn
0 , a homogeneous n-th degree 

polynomial in the λi with positive coefficients (see [3,14]). That is, we can write

|λ1K1 + · · · + λmKm| =
m∑

i1=1
. . .

m∑

in=1
λi1 · · ·λinW (Ki1 , . . . ,Kin),

where W is symmetric with respect to its arguments. The W (Ki1 , . . . , Kin) are called 
the mixed volumes of K1, . . . , Km. In what follows we will use several properties of W . 
We list the properties here and for proofs refer to [3,14]:

• W is a symmetric functional on n-tuples of sets in Kn
0 .

• W is multilinear with respect to Minkowski addition:

W (λK + λ′K ′,K2, . . . ,Kn) = λW (K,K2, . . . ,Kn) + λ′W (K ′,K2, . . . ,Kn).
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• W is monotonically increasing with respect to inclusions.
• W is invariant under translations in each argument.
• The perimeter of K ∈ Kn

0 is, up to a constant, equal to a mixed volume:

|∂K| = nW (B,K, . . . ,K).

We will by h(K, u) denote the support function of K ∈ Kn
0 which is defined for any 

u ∈ Rn as

h(K,u) = sup
x∈K

〈x, u〉.

The restriction of h(K, u) to u ∈ Sn−1 reduces to the function describing the distance 
from the origin to the supporting hyperplane of K with normal u. In what follows we 
denote such a supporting hyperplane by H(K, u). We then have the following character-
ization of the supporting hyperplanes of K:

H(K,u) = {x ∈ Rn : 〈x, u〉 = h(K,u)}.

The following properties of h(K, u) will be needed later:

• For any K, L ∈ Kn
0 and α, β > 0 it holds that

h(αK + βL, u) = αh(K,u) + βh(L, u).

• For any u ∈ Sn−1 and K, L ∈ Kn
0 it holds that

h(K ∼ L, u) ≤ h(K,u) − h(L, u).

• For x ∈ ∂(K ∼ L) there exists a normal vector u of ∂(K ∼ L) at x such that

h(K ∼ L, u) = h(K,u) − h(L, u).

Proofs of the above properties can be found in [14].
The width ω of Ω ∈ Kn

0 is defined as

ω = inf{h(Ω, u) + h(Ω,−u) : u ∈ Sn−1}.

A point x ∈ ∂Ω is called regular if the supporting hyperplane at x is uniquely defined, 
that is if there is a unique u ∈ Sn−1 such that

x ∈ H(Ω, u) ∩ Ω.

The set of all regular points of ∂Ω is denoted by reg(Ω). We also let U(Ω) denote the set 
of all outward pointing unit normals to ∂Ω at points of reg(Ω).
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Fig. 2. The form body of two convex sets in R2.

We are now ready to define the form body Ω∗ of a set Ω ∈ Kn
0 , which, following [14], 

is defined by

Ω∗ =
⋂

u∈U(Ω)

{x ∈ Rn : 〈x, u〉 ≤ 1}.

Two planar convex bodies and their form bodies are shown in Fig. 2. If Ω is a polytope 
then Ω∗ is the polytope that has the same set of normals as Ω, but with each face 
translated so that it is tangent to the unit ball. If instead the boundary of Ω is smooth 
(in which case every point is regular) then Ω∗ = B.

The following lemma will be needed in our main proof and is an almost direct conse-
quence of the definitions of Ω∗ and r combined with the fact that almost every point of 
∂Ω is regular.

Lemma 1.5. Let Ω ∈ Kn
0 have inradius r. Then there exists x ∈ Rn such that x +rΩ∗ ⊆ Ω.

2. Proof of the main result

The idea of the proof is as follows: Given a set Ω ∈ Kn
0 and t ≥ 0 we construct a 

convex set Ω̃ such that Ω̃t = Ω and |∂Ω̃| ≥ |∂Ω̂| for any other set Ω̂ ∈ Kn
0 satisfying 

Ω̂t = Ω. If we can prove Theorem 1.2 for such Ω̃ it clearly holds also for any other convex 
set satisfying Ω̂t = Ω. Since the choice of Ω and t was arbitrary this completes the proof.

We begin by constructing the set Ω̃. In the case where Ω is a polygon this problem 
has the fairly intuitive solution that Ω̃ is the polygon with the same faces as Ω, only 
moved a distance t along their outward pointing normals. The following lemma tells us 
that a generalization of this intuitive solution actually works for any possible Ω.

Lemma 2.1. Let Ω ∈ Kn
0 and let Ω∗ denote its form body. Then, for any t ≥ 0 the 

maximization problem

max{|∂Ω̂| : Ω̂ ∈ Kn
0 , Ω̂t = Ω}

is solved by Ω̃ = Ω + tΩ∗.

Proof. Recalling the properties of the support function, we have that for any x ∈ ∂Ω =
∂(Ω̂ ∼ tB) there exists a u ∈ Sn−1 normal to ∂Ω at x such that

h(Ω̂ ∼ tB, u) = h(Ω̂, u) − h(tB, u) = h(Ω̂, u) − t.
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Rearranging this we find for all u ∈ U(Ω) that h(Ω̂, u) = h(Ω, u) + t. Therefore, it follows 
that

Ω̂ ⊆
⋂

u∈U(Ω)

{x ∈ Rn : 〈x, u〉 ≤ h(Ω, u) + t}

=
⋂

u∈U(Ω)

{x ∈ Rn : 〈x, u〉 ≤ h(Ω, u) + h(tΩ∗, u)}

=
⋂

u∈U(Ω)

{x ∈ Rn : 〈x, u〉 ≤ h(Ω + tΩ∗, u)}

= Ω + tΩ∗,

where we used that h(Ω∗, u) = 1 for u ∈ U(Ω) and the last equality follows from [14, 
Theorem 2.2.6]. Since the perimeter is increasing under inclusion of convex sets, we 
conclude that |∂Ω̂| ≤ |∂(Ω + tΩ∗)|.

What remains to complete the proof is to show that Ω + tΩ∗ is an admissible set in 
the above maximization problem. That Ω ⊆ (Ω + tΩ∗)t follows from the argument above 
so we only need to establish the opposite inclusion. Let x ∈ reg(Ω). Then, with u being 
the unique normal to ∂Ω at x, we have that

h(Ω + tΩ∗, u) = h(Ω, u) + t.

Since a convex body can be written as the intersection of its supporting half-spaces we 
conclude that x + tu ∈ (Ω + tΩ∗)c implying that dist(x, ∂(Ω + tΩ∗)) ≤ t. Combining this 
with the inclusion of Ω in (Ω + tΩ∗)t we find that reg(Ω) ∈ ∂(Ω + tΩ∗)t. Since almost 
every point of ∂Ω is regular the statement follows. �

We are now ready to prove Theorem 1.2. Let t ≥ 0 and let Ω ∈ Kn
0 have inradius r. 

By the above lemma we have, for any convex body Ω̂ such that Ω̂t = Ω, the bound 
|∂Ω̂| ≤ |∂(Ω + tΩ∗)|, and by Lemma 1.4 any such Ω̂ has the inradius r̂ = r + t. Thus it 
is sufficient to prove that

|∂Ω| ≥
(
1 − t

r̂

)n−1

+
|∂(Ω + tΩ∗)|.

Using the multilinearity of W and fact that the perimeter of a convex set can be expressed 
as a mixed volume we find that

|∂(Ω + tΩ∗)| = nW (B,Ω + tΩ∗, . . . ,Ω + tΩ∗︸ ︷︷ ︸
n−1

)

= n
n−1∑

m=0

(
n − 1

m

)
tmW (B,Ω, . . . ,Ω︸ ︷︷ ︸

n−1−m

,Ω∗, . . . ,Ω∗︸ ︷︷ ︸
m

).
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By Lemma 1.5 there exists x ∈ Rn such that x + rΩ∗ ⊆ Ω. Therefore by the translation 
invariance and the monotonicity of mixed volumes we find that

|∂(Ω + tΩ∗)| = n
n−1∑

m=0

(
n − 1

m

)
tmW (B,Ω, . . . ,Ω︸ ︷︷ ︸

n−1−m

,Ω∗, . . . ,Ω∗︸ ︷︷ ︸
m

)

= n

n−1∑

m=0

(
n − 1

m

)
tm

rm
W (B,Ω, . . . ,Ω︸ ︷︷ ︸

n−1−m

, rΩ∗, . . . , rΩ∗︸ ︷︷ ︸
m

)

≤ n
n−1∑

m=0

(
n − 1

m

)
tm

rm
W (B,Ω, . . . ,Ω︸ ︷︷ ︸

n−1

)

= |∂Ω|
n−1∑

m=0

(
n − 1

m

)
tm

rm

= |∂Ω|
(
1 + t

r

)n−1
.

Rearranging the terms and using that r̂ = r + t one obtains the desired inequality. It is 
clear from the argument above that equality holds if and only if Ω = x + rΩ∗, that is 
when Ω is homothetic to Ω∗. This completes the proof of Theorem 1.2.

Deducing Corollary 1.3 is simply a matter of applying the following theorem due 
to Steinhagen [15]. We note that this theorem appeared in the case of planar convex 
bodies in earlier work by Blaschke [1], and this simpler case is sufficient for proving the 
inequality conjectured in [6].

Theorem 2.2 (Steinhagen’s inequality [15]). Let Ω ∈ Kn
0 have inradius r and width ω. 

Then the following two-sided inequality holds:

2r ≤ ω ≤ 2
√

n r if n is odd,

2r ≤ ω ≤ 2(n + 1)√
n + 2

r if n is even.

The lower bound is attained if Ω is a ball, and the upper bound is attained if Ω is a 
regular (n + 1)-simplex.
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ON THE REMAINDER TERM OF THE BEREZIN INEQUALITY

ON A CONVEX DOMAIN

SIMON LARSON

(Communicated by Michael Hitrik)

Abstract. We study the Dirichlet eigenvalues of the Laplacian on a convex
domain in Rn, with n ≥ 2. In particular, we generalize and improve upper
bounds for the Riesz means of order σ ≥ 3/2 established in an article by
Geisinger, Laptev and Weidl. This is achieved by refining estimates for a
negative second term in the Berezin inequality. The obtained remainder term
reflects the correct order of growth in the semi-classical limit and depends only

on the measure of the boundary of the domain. We emphasize that such an
improvement is for general Ω ⊂ Rn not possible and was previously known to
hold only for planar convex domains satisfying certain geometric conditions.

As a corollary we obtain lower bounds for the individual eigenvalues λk,
which for a certain range of k improves the Li–Yau inequality for convex do-
mains. However, for convex domains one can by using different methods obtain
even stronger lower bounds for λk.

1. Introduction

Let Ω be an open subset of Rn and let −∆Ω be the Dirichlet Laplace operator on
L2(Ω), defined in the quadratic form sense with form domain H1

0 (Ω). If the volume
of Ω, which we denote by |Ω|, is finite, then the embedding H1

0 (Ω) ↪→ L2(Ω) is
compact and the spectrum of −∆Ω is discrete. Further, the spectrum is positive
and accumulates only at infinity. Thus we can write it as an increasing sequence of
eigenvalues:

0 < λ1(Ω) ≤ λ2(Ω) ≤ λ3(Ω) ≤ . . . ,

where an eigenvalue is repeated according to its multiplicity.
Letting x± = (|x| ± x)/2, the Riesz means of these eigenvalues are defined, for

Λ > 0, by
∞∑

k=1

(Λ − λk)σ
+ = Tr(−∆Ω − Λ)σ

−, σ ≥ 0.

In what follows we will be interested in establishing upper bounds for these means.
In particular, we will study the case σ ≥ 3/2 when Ω is convex.

The classical Weyl asymptotic formula (see [23]) states that for Ω ⊂ Rn and
σ ≥ 0 the identity

(1) Tr(−∆Ω − Λ)σ
− = Lcl

σ,n|Ω|Λσ+n/2+ o(Λσ+n/2)
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2168 S. LARSON

holds as Λ → ∞. Here, and in what follows, Lcl
σ,n denotes the Lieb–Thirring

constant:

Lcl
σ,n =

Γ(σ + 1)

(4π)n/2Γ(σ + 1 + n/2)
.

Following the work of Weyl the second term of the asymptotics has been further
studied (see, for instance, [3,4,7–9,18]). Under certain conditions on the set Ω and
its boundary ∂Ω it was proved by Ivrĭı in [8] that

Tr(−∆Ω −Λ)σ
− = Lcl

σ,n|Ω|Λσ+n/2 −1

4
Lcl

σ,n−1|∂Ω|Λσ+(n−1)/2 + o(Λσ+(n−1)/2)(2)

holds as Λ → ∞, for σ ≥1 this was later generalized to a larger class of domains
by Frank and Geisinger [4]. To simplify notation we write |Ω| for the n-dimensional
volume of Ω, and |∂Ω| for the (n −1)-dimensional surface area of its boundary.

In [2] Berezin proved that for Ω ⊂Rn and Λ > 0 the convex Riesz eigenvalue
means, that is, when σ ≥1, satisfy the bound

(3) Tr(−∆Ω −Λ)σ
− ≤ 1

(2π)n

∫∫

Ω×Rn

(|p|2 −Λ)σ
− dp dx = Lcl

σ,n|Ω|Λσ+n/2.

From the Weyl asymptotics (1) it follows that the constant Lcl
σ,n in this bound is

sharp. That (3) remains true also for σ = 0 coincides with the Pólya conjecture on
the number of eigenvalues of −∆Ω less than Λ (see [16]). In view of (2) this raises
the question of whether one, in a similar manner as for the semi-classical limit, can
improve Berezin’s inequality by a negative remainder term.

Given an open set Ω ⊂Rn one can increase |∂Ω| without significantly increasing
λk(Ω). Thus, it is in general, for any C > 0, not possible to subtract a term
C|∂Ω|Λσ+(n−1)/2 from the right-hand side of (3). However, the main result of
this paper is that if we restrict our attention to convex sets and σ ≥3/2 such an
improvement is possible. This result is contained in the following theorem which
generalizes a result obtained by Geisinger, Laptev and Weidl [5, Theorem 5.1] for
convex sets in R2 satisfying certain geometric assumptions (see Theorem 1.4).

Theorem 1.1. Let Ω ⊂Rn be a bounded, convex domain with inradius r and let
σ ≥3/2. Then there exists a constant C(σ, n) > 0 such that

Tr(−∆Ω −Λ)σ
− = 0 if Λ ≤ π2

4r2
,

and

Tr(−∆Ω −Λ)σ
− ≤Lcl

σ,n|Ω|Λσ+n/2 −C(σ, n)Lcl
σ,n−1|∂Ω|Λσ+(n−1)/2 if Λ >

π2

4r2
.

Further, we provide upper and lower bounds for the constants C(σ, n).

Using techniques from [11] this result can be applied to find improved bounds
for Riesz means on product domains, Ω = Ω1×Ω2, where one of the factors is a
convex domain. These considerations lead to the following corollary:

Corollary 1.2. Let Ω = Ω1×Ω2, where Ω1 ⊂Rn1 is a bounded, convex domain
with inradius r and Ω2 ⊂Rn2 is bounded and open. Assume that σ + n2/2 ≥3/2
and that for all Λ > 0

Tr(−∆Ω2
−Λ)σ

− ≤Lcl
σ,n2

|Ω2|Λσ+n2/2.
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REMAINDER TERM OF THE BEREZIN INEQUALITY 2169

With n = n1 + n2 we have that for Λ ≤ π2

4r2

Tr(−∆Ω − Λ)σ
− = 0,

and if Λ > π2

4r2 , then

Tr(−∆Ω − Λ)σ
− ≤ Lcl

σ,n|Ω|Λσ+n/2 − C(n1, σ + n2/2)Lcl
σ,n−1|Ω2| |∂Ω1|Λσ+(n−1)/2,

where C(σ, n) is the constant appearing in Theorem 1.1.

In particular, if n2 ≥ 3 and Ω2 satisfies the Pólya conjecture, for instance if
Ω2 is a tiling domain, we may apply this with σ = 0. Thus we obtain examples
of domains for which the Pólya conjecture is true even if we subtract, from the
right-hand side of (3), a term of order Λ(n−1)/2.

Proof of Corollary 1.2. Since Ω = Ω1 × Ω2 we have that the eigenvalues of −∆Ω

are given by

λkl = ηk + νl,

where ηk and νl are the eigenvalues of −∆Ω1
and −∆Ω2

, respectively. Thus we find
that

Tr(−∆Ω − Λ)σ
− =

∑

λkl≤Λ

(Λ − λkl)
σ =

∑

ηk≤Λ

( ∑

νl≤Λ−ηk

((Λ − ηk) − νl)
σ
)
.

By the assumptions on Ω2, one obtains that

Tr(−∆Ω − Λ)σ
− ≤ Lcl

σ,n2
|Ω2|

∑

ηk≤Λ

(Λ − ηk)σ+n2/2 = Lcl
σ,n2

|Ω2| Tr(−∆Ω1
− Λ)

σ+n2/2
− .

Applying Theorem 1.1 and using that Lcl
σ,n2

Lcl
σ+n2/2,n1

= Lcl
σ,n1+n2

yields the result.

!

As it stands in [5] the theorem corresponding to Theorem 1.1 above contains
an error. This error appears when the Aizenman–Lieb argument (see [1]) is used
together with a bound for the case σ = 3/2 to obtain bounds for larger values of σ.
However, the proof that is used in [5] for the case of σ = 3/2 generalizes without
any difficulty to arbitrary σ ≥ 3/2 (this is the method we use here). The only
difference is that instead of a constant depending only on the dimension we obtain
one depending also on the parameter σ, namely C(σ, n). In fact, it is not very
difficult to prove that this constant must depend on both σ and n.

The first result in the direction of improving Berezin’s inequality (3) is due to
Melas, who in [15] obtains an improvement for all σ ≥ 1. However, the negative
correction term that was established in [15] is not of the same order in Λ as the
correction term in the semi-classical asymptotics (2). In the two-dimensional case
it was proved in [10] that the order of the remainder term can be chosen arbitrarily
close to the asymptotically correct one, namely σ + 1/2.

In the case of σ ≥ 3/2, which is the case studied here, it was established in [22]
that the Berezin inequality, for open sets Ω ⊂ Rn, can be strengthened by a negative
term of the same order in Λ as the second term in (2). However, as remarked earlier
any uniform improvement of (3) must depend on other geometric quantities. For
instance, the remainder term found in [22] depends on projections onto hyperplanes
and in [6] the authors derive a remainder term, of the correct order, depending only
on |Ω|.
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The approach of [22] relies on using Lieb–Thirring inequalities for Schrödinger
operators with operator-valued potentials, see [12], and reducing the problem to
trace estimates for the one-dimensional Laplacian on open intervals. In [5] the au-
thors employ the same approach but with different estimates for the one-dimensional
problem. Moreover, the authors of [5] are able to refine these estimates if Ω is con-
vex. We summarize these refinements in the following theorems.

Theorem 1.3 ([5], Corollary 3.5). Let Ω ⊂ Rn be a bounded, convex domain with
smooth boundary and assume that at each point the principal curvatures of ∂Ω are
bounded from above by 1/K. Then, for σ ≥ 3/2 and all Λ > 0 we have that

Tr(−∆Ω−Λ)σ
− ≤ Lcl

σ,n|Ω|Λσ+n/2−Lcl
σ,n2−n−2|∂Ω|Λσ+(n−1)/2

∫ 1

0

(
1− n − 1

4K
√

Λ
t
)
+

dt.

Theorem 1.4 ([5], Theorem 5.1). Let Ω ⊂ R2 be a bounded, convex domain with
width w and let Ωt = {x ∈ Ω : dist(x, Ωc) ≥ t} denote its inner parallel set at
distance t ≥ 0. Further, assume that each Ωt satisfies the estimate

|∂Ωt| ≥
(
1 − 3t

w

)
+

|∂Ω|.

Then, for σ ≥ 3/2 we have that

Tr(−∆Ω − Λ)σ
− = 0 if Λ ≤ π2

w2
,

and

Tr(−∆Ω − Λ)σ
− ≤ Lcl

σ,2 |Ω| Λσ+1 − C(σ) Lcl
σ,1 |∂Ω| Λσ+1/2 if Λ >

π2

w2
,

for some C(σ) > 0. In particular

C(3/2) ≥ 11

9π2
− 3

20π4
− 2

5π2
log

(4π

3

)
> 0.0642.

As pointed out earlier the last theorem is stated in [5] with a constant not
depending on σ (in place of C(σ)), as we shall see such a statement cannot hold.
However, the proof provided in [5] for the case σ = 3/2 holds and through a
straightforward generalization this can be used to prove the statement for all σ ≥
3/2.

Note that in Theorem 1.4 the remainder term reflects the correct order of growth
in the semi-classical limit and depends only on |∂Ω|. As remarked above this is not
possible in general. In this paper we use bounds for the perimeter of inner parallel
sets, obtained in [13], to refine and generalize both Theorem 1.3 and Theorem 1.4
to arbitrary convex domains and any dimension.

We begin Section 2 with a short introduction to the theory and notation that
we will need from [5]. We then proceed by applying the results of [13] to refine
the arguments leading to the improved Berezin bounds. The generalization of
Theorem 1.3 is proved in the same manner as in [5], the only difference being the
application of results from [13] instead of a version of Steiner’s inequality (see [21]).
Also the argument leading to Theorem 1.1, the generalized version of Theorem 1.4,
is an almost step-by-step generalization of the proof given in [5]. However, for
general dimension the computations become slightly more complicated.

In Section 3 we use the obtained improvements of (3) to prove (implicit) lower
bounds for individual eigenvalues λk(Ω), where Ω is convex. We are able to show
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that for a rather surprising number of the lower eigenvalues these bounds are an
improvement of the Li–Yau inequality [14]:

(4) λk(Ω) ≥ Γ
(n

2
+ 1

)2/n 4πn

n + 2

( k

|Ω|
)2/n

.

We note that for convex Ω one can, through different methods, improve the
bounds given by (4); see [20]. Even though our results in a certain range of k
provide better bounds than (4), they fail to improve the results of [20] in general.

2. An improved Berezin inequality for convex domains

We begin with a short introduction of the relevant notation used in [5] and [13].
For an open set Ω ⊂ Rn (which in our case will be a convex set) we let, for x ∈ Ω
and u ∈ Sn−1,

θ(x, u) = inf{t > 0 : x + tu /∈ Ω},

d(x, u) = inf{θ(x, u), θ(x, −u)}

and

l(x, u) = θ(x, u) + θ(x, −u).

For a convex non-empty set Ω ⊂ Rn we let h(Ω, · ) denote the support function of
Ω, which is defined by

h(Ω, x) = sup
y∈Ω

⟨y, x⟩, x ∈ Rn.

For a detailed account on properties of the support function and convex geometry
in general we refer to Schneider’s excellent book [19].

Letting δ(x) denote the distance from x to the boundary of Ω we have that

δ(x) = inf
u∈Sn−1

θ(x, u).

We define the inradius r and width w of a convex set Ω by

r = sup
x∈Ω

δ(x), w = inf
u∈Sn−1

h(Ω, u) + h(Ω, −u).

For a convex set Ω ⊂ Rn with width w it holds (see for instance [19]) that

w = inf
u∈Sn−1

sup
x∈Ω

l(x, u).

The quantity on the right-hand side is in [5], for a general domain Ω, denoted by
l0.

As in Theorem 1.4 we let Ωt denote the inner parallel body of a convex set Ω at
distance t ≥ 0, which is defined by

Ωt = {x ∈ Ω : dist(x, Ωc) ≥ t}.

The inradius of Ω can now alternatively be written as r = sup{t ≥ 0 : Ωt ̸= ∅}.
In [13] the main result is a lower bound for the (n − 1)-dimensional surface area

of the perimeter of an inner parallel set, the result is stated below and will be of
central importance in what follows.
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Theorem 2.1 ([13], Theorem 1.2). Let Ω ⊂ Rn be a convex domain with inradius
r. Then, for any inner parallel set Ωt, t ≥ 0, we have that

|∂Ωt| ≥
(
1 − t

r

)n−1

+
|∂Ω|.

Further, equality holds for some t ∈ (0, r) if and only if Ω is homothetic to its form
body. If this is the case equality holds for all t ≥ 0.

For the precise definition of the form body of Ω we refer to [19]. Since the exact
conditions for equality will be of little importance, we will not include the precise
definition.

For a fixed ε > 0 let

Aε(x) = {a ∈ Rn \ Ω : |x − a| < δ(x) + ε}
and for any x ∈ Ω let

ρ(x) = inf
ε>0

sup
a∈Aε(x)

|Bδ(x)(a) \ Ω|
|B1(0)| |x − a|n ,

where Bδ(x) denotes a ball of radius δ centred at x ∈ Rn. For a convex domain Ω
we have that ρ(x) > 1/2 for all x ∈ Ω (see [5]).

As in [5] we set for Λ > 0

MΩ(Λ) =

∫

RΩ(Λ)

ρ(x) dx,

where RΩ(Λ) = {x ∈ Ω : δ(x) < 1/(4
√

Λ)} = Ω \ Ω1/(4
√

Λ).

The following theorem and its proof in [5] form the starting point for most of
the remaining arguments of this paper.

Theorem 2.2 ([5], Theorem 3.3). Let Ω ⊂ Rn be an open set with finite volume
and σ ≥ 3/2. Then for all Λ > 0 we have that

Tr(−∆Ω − Λ)σ
− ≤ Lcl

σ,n|Ω|Λσ+n/2 − Lcl
σ,n2−n+1Λσ+n/2MΩ(Λ).

Using Theorem 2.1 and the same argument that leads to Corollary 3.5 in [5], we
deduce the following bound.

Corollary 2.3. Let Ω ⊂ Rn be a bounded, convex domain with inradius r. Then
for all σ ≥ 3/2 and all Λ > 0 we have that

Tr(−∆Ω − Λ)σ
− ≤ Lcl

σ,n|Ω|Λσ+n/2

− Lcl
σ,n2−n−2|∂Ω|Λσ+(n−1)/2

∫ 1

0

(
1 − s

4r
√

Λ

)n−1

+
ds.

Proof. Consider the remainder term in Theorem 2.2. Inserting into the definition
of MΩ(Λ) that ρ(x) > 1/2 when Ω is convex we find that

MΩ(Λ) =

∫

RΩ(Λ)

ρ(x) dx >

∫

RΩ(Λ)

1

2
dx =

1

2

∫ 1/(4
√

Λ)

0

|∂Ωt| dt.

Applying Theorem 2.1 yields

MΩ(Λ) >
|∂Ω|

2

∫ 1/(4
√

Λ)

0

(
1 − t

r

)n−1

+
dt =

|∂Ω|
8
√

Λ

∫ 1

0

(
1 − s

4r
√

Λ

)n−1

+
ds,

which proves the claim. !
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Using the inequality λ1(Ω) ≥ π2

4r2 (see [17]) Corollary 2.3 actually implies that
Theorem 1.1 holds for some positive constant C(σ, n). However, by applying more
refined techniques we can prove Theorem 1.1 with substantially larger values for
C(σ, n).

We now turn our attention to the main results of this paper, namely Theorem 1.1.
As noted earlier this generalizes a result obtained in [5], in particular we are able to
relax certain geometric constraints and generalize the result to dimensions n ≥ 2.
We emphasize that the remainder term in Theorem 1.1 reflects the behaviour of the
second term of the semi-classical limit Λ → ∞; see (2). It has the correct order in
Λ and depends only on the size of ∂Ω. Since it is not possible to obtain a uniform
remainder term of this form for a general domain Ω ⊂Rn, it would be of interest
to know under what geometric conditions such a bound holds.

For n = 2 and σ = 3/2 the constant can be estimated in a similar manner as
in [5] with the slightly improved result

C(3/2, 2) > 0.0846 >
11

9π2
− 3

20π4
− 2

5π2
ln

(4π

3

)
≈0.0642,

where the constant on the right-hand side is the one found by Geisinger, Laptev
and Weidl. The lower bound obtained for C(σ, n) takes the form of an integral.
This integral can, for fixed dimension and given σ, be expressed in terms of cer-
tain hypergeometric functions. However, these expressions quickly become rather
complicated. For the first few dimensions and some different values of σ numerical
values of the obtained upper and lower bounds for C(σ, n) are displayed in Table 1.

Table 1. The obtained upper / lower bounds for C(σ, n) for di-
mensions two through six and some different values of σ.

U/L n = 2 n = 3 n = 4 n = 5 n = 6

σ = 3/2 0.1334 / 0.0846 0.0819 / 0.0538 0.0572 / 0.0391 0.0430 / 0.0305 0.0339 / 0.0247

σ = 2 0.1228 / 0.0808 0.0762 / 0.0515 0.0537 / 0.0375 0.0407 / 0.0293 0.0323 / 0.0239

σ = 5/2 0.1143 / 0.0775 0.0716 / 0.0495 0.0508 / 0.0361 0.0387 / 0.0283 0.0308 / 0.0231

σ = 3 0.1074 / 0.0747 0.0678 / 0.0477 0.0484 / 0.0349 0.0370 / 0.0274 0.0296 / 0.0224

We proceed by giving the proof of Theorem 1.1, which largely follows along the
same lines as the corresponding proof in [5].

Proof of Theorem 1.1. The first part of the theorem follows directly from λ1(Ω) ≥
π2

4r2 ; see [17]. Therefore we may focus on the second case.
Equation (13) in [5] states that for an open bounded set Ω ⊂Rn, σ ≥ 3/2 and

Λ > 0 we have that

(5) Tr(−∆Ω −Λ)σ
− ≤Lcl

σ,nΛσ+n/2

∫

Ω

∫

Sn−1

(
1 − 1

4Λd(x, u)2

)σ+n/2

+
dν(u) dx,

where dν(u) is the normalized measure on the sphere. This inequality will be the
starting point for the second part of the proof.

Fix x ∈ Ω and choose u0 ∈ Sn−1 such that δ(x) = d(x, u0). Since everything is
coordinate invariant we may assume that u0 = (1, 0, . . . , 0) and let Sn−1

+ = {u ∈
Sn−1 : ⟨u, u0⟩ > 0}. Denote by a the intersection point of the ray {x + tu0, t >
0} with ∂Ω. Similarly, for u ∈ Sn−1

+ let bu be the intersection point of the ray
{x + tu, t > 0} with the hyperplane through a orthogonal to u0; we note that this
is nothing but the supporting hyperplane of Ω with normal u0.
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We have that d(x, u) ≤ |x − bu|, and with θu denoting the angle between u and
u0 we find that

d(x, u) ≤ |x − bu| =
|x − a|
cos θu

=
δ(x)

cos θu
.

Using the the antipodal symmetry of d(x, u) and inserting the above estimate
into (5) one obtains that

Tr(−∆Ω − Λ)σ
− ≤ 2Lcl

σ,nΛσ+n/2

∫

Ω

∫

Sn−1
+

(
1 − 1

4Λd(x, u)2

)σ+n/2

+
dν(u) dx(6)

≤ 2Lcl
σ,nΛσ+n/2

∫

Ω

∫

Sn−1
+

(
1 − cos2 θu

4Λδ(x)2

)σ+n/2

+
dν(u) dx.

We now switch to n-dimensional spherical coordinates such that u0 is given by
setting all angular coordinates to zero. Together with the rotational symmetry
around u0, this yields that

Tr(−∆Ω − Λ)σ
− ≤ Lcl

σ,nΛσ+n/2Cn

∫

Ω

∫ π/2

0

(
1 − cos2 θ

4Λd(x)2

)σ+n/2

+
(sin θ)n−2 dθ dx,

where the normalization constant Cn is given by

Cn =
(∫ π/2

0

(sin θ)n−2 dθ
)−1

=
2 Γ

(
n
2

)
√

π Γ
(

n−1
2

) .

We begin by rewriting the integral in (6) to more easily obtain an expression of
the desired form,

Tr(−∆Ω − Λ)σ
−

≤ Lcl
σ,nΛσ+n/2Cn

∫

Ω

∫ π/2

0

(
1 − cos2 θ

4Λδ(x)2

)σ+n/2

+
(sin θ)n−2 dθ dx

= Lcl
σ,n|Ω|Λσ+n/2

− Lcl
σ,nΛσ+n/2

∫

Ω

(
1 − Cn

∫ π/2

0

(
1 − cos2 θ

4Λδ(x)2

)σ+n/2

+
(sin θ)n−2 dθ

)
dx

= Lcl
σ,n|Ω|Λσ+n/2

− Lcl
σ,nΛσ+n/2

∫

R+

|∂Ωt|
(
1 − Cn

∫ π/2

0

(
1 − cos2 θ

4Λt2

)σ+n/2

+

(sin θ)n−2 dθ
)
dt.

In the last step we make use of the coarea formula and that the distance function
δ(x) satisfies the Eikonal equation |∇δ| = 1 almost everywhere.

By the definition of Cn the expression in the outer integral is non-negative, that
is,

1 − Cn

∫ π/2

0

(
1 − cos2 θ

4Λt2

)σ+n/2

+
(sin θ)n−2 dθ ≥ 0.

Therefore, using Theorem 2.1 one obtains that

Tr(−∆Ω − Λ)σ
− ≤ Lcl

σ,n|Ω|Λσ+n/2

− Lcl
σ,n|∂Ω|Λσ+n/2

∫

R+

(
1 − t

r

)n−1

+

(
1−Cn

∫ π/2

0

(
1 − cos2 θ

4Λt2

)σ+n/2

+
(sin θ)n−2 dθ

)
dt.
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Letting s = 2
√

Λ t and using that Λ ≥ π2

4r2 we find
∫

R+

(
1 − t

r

)n−1

+

(
1 − Cn

∫ π/2

0

(
1 − cos2 θ

4Λt2

)σ+n/2

+
(sin θ)n−2 dθ

)
dt

≥ 1

2
√

Λ

∫

R+

(
1 − s

π

)n−1

+

(
1 − Cn

∫ π/2

0

(
1 − cos2 θ

s2

)σ+n/2

+
(sin θ)n−2 dθ

)
ds.

Since the integral above depends only on n and σ the claim follows with a lower
bound on C(σ, n) given by

C(σ, n) ≥
Lcl

σ,n

2 Lcl
σ,n−1

I(σ, n),

where

I(σ, n) =

∫

R+

(
1 − s

π

)n−1

+

(
1 − Cn

∫ π/2

0

(
1 − cos2 θ

s2

)σ+n/2

+
(sin θ)n−2 dθ

)
ds

=

∫ π

0

(
1 − s

π

)n−1(
1 − Cn

∫ 1

0

(
1 − ϕ2

s2

)σ+n/2

+
(1 − ϕ2)(n−3)/2 dϕ

)
ds.

To find upper estimates for the constants C(σ, n) we argue as follows. For

Λ > π2

4r2 our theorem says that

Tr(−∆Ω − Λ)σ
− ≤ Lcl

σ,n|Ω|Λσ+n/2 − C(σ, n)Lcl
σ,n−1|∂Ω|Λσ+(n−1)/2.

But we know that the left-hand side is positive, and thus any positive zero of the

polynomial on the right must be contained in the interval (0, π2

4r2]. Clearly the
polynomial has exactly one positive zero Λ0 , given by

Λ0 =

(
C(σ, n)Lcl

σ,n−1|∂Ω|
Lcl

σ,n|Ω|

)2

.

Therefore we must have that

π2

4r2
≥

(
C(σ, n)Lcl

σ,n−1|∂Ω|
Lcl

σ,n|Ω|

)2

.

Rearranging the terms we find that for any convex domain Ω it should hold that

(7) C(σ, n) ≤ π

2r

Lcl
σ,n|Ω|

Lcl
σ,n−1|∂Ω| .

By using the coarea formula and Theorem 2.1 we find that

|Ω|
r|∂Ω| =

1

r|∂Ω|

∫ r

0

|∂Ωt| dt ≥ 1

r

∫ r

0

(
1 − t

r

)n−1

dt =
1

n
,

where equality holds for a certain class of sets (see [13]). Inserting this into (7) we
find that

C(σ, n) ≤
√

π Γ(σ + n+1
2 )

4n Γ(σ + 1 + n
2 )

,

as this tends to zero when σ or n tends to infinity it is clear that the constant in
Theorem 1.1 must depend on both quantities.

Comparing the obtained upper and lower bounds we find that our proof provides
a rather good estimate for C(σ, n). This is also indicated by the numerical values
in Table 1. !
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3. Bounds on individual eigenvalues

Using the same methods as in [5] we would like to obtain bounds for individual
eigenvalues. However to analytically solve the equation that one obtains for Λ is
no simple task, since it involves solving an n-th order polynomial equation. It is,
however, not difficult to numerically compute lower bounds. Nonetheless, we are
able to conclude that the bounds implicitly given by our improved trace bounds in
fact improve those given by the Li–Yau inequality for a certain range of k (which,
in a rather complicated way, depends on n). As an introduction to what is to come,
we state and prove the following result for the two-dimensional case. The proof is
precisely the same as that given in [5].

Corollary 3.1 ([5], Corollary 5.2). Let Ω ⊂ Rn be a bounded, convex domain.
Then with C = C(3/2, 2) given by Theorem 1.1 we for any k ∈ N and α ∈ (0, 1)
have that

λk(Ω)

1 − α
≥ 10πα3/2 k

|Ω| +
15πC

8

|∂Ω|
|Ω|

√
10πα3/2

k

|Ω| +
225π2C2

256

|∂Ω|2
|Ω|2

+
225π2C2

128

|∂Ω|2
|Ω|2 .

Proof. We let N(Λ) = Tr(−∆Ω − Λ)0− be the counting function of eigenvalues less
than Λ. For σ > 0 and all Λ > 0, τ > 0 it is shown in [11] that

(8) N(Λ) ≤ (τΛ)−σ Tr(−∆Ω − (1 + τ )Λ)σ
−.

Applying this with σ = 3/2, we can use Theorem 1.1 and for Λ ≥ π2

4r2 estimate

N(Λ) ≤ (τΛ)−3/2
(
Lcl

3/2,2|Ω|((1 + τ )Λ)5/2 − C(3/2, 2)Lcl
3/2,1|∂Ω|((1 + τ )Λ)2

)

= Lcl
3/2,2|Ω| (1 + τ )5/2

τ 3/2
Λ − C(3/2, 2)Lcl

3/2,1|∂Ω| (1 + τ )2

τ 3/2

√
Λ.

Substituting τ = α/(1 − α) for α ∈ (0, 1) and using that N(λk) ≥ k we find that

k ≤ Lcl
3/2,2α

−3/2|Ω|λk(Ω)

1 − α
− C(3/2, 2)Lcl

3/2,1|∂Ω|α−3/2

√
λk(Ω)

1 − α
.

Since the right-hand side is a convex quadratic polynomial in
√

λk(Ω)
1−α which vanishes

at zero, there is exactly one positive solution to where this polynomial is equal to k.

By monotonicity this solution provides a lower bound for
√

λk(Ω)
1−α . Through some

algebraic manipulations this yields that

λk(Ω)

1 − α
≥

(
C(3/2, 2)Lcl

3/2,1|∂Ω| +
(
(C(3/2, 2)Lcl

3/2,1|∂Ω|)2 + 4kLcl
3/2,2|Ω|α3/2

)1/2

2Lcl
3/2,2|Ω|

)2

=
α3/2k

Lcl
3/2,2|Ω|+ C(3/2, 2)

Lcl
3/2,1

Lcl
3/2,2

|∂Ω|
|Ω|

√√√√ α3/2k

Lcl
3/2,2|Ω| +

C(3/2, 2)2

4

(
Lcl

3/2,1

Lcl
3/2,2

)2 |∂Ω|2
|Ω|2

+
C(3/2, 2)2

2

(
Lcl

3/2,1

Lcl
3/2,2

)2 |∂Ω|2
|Ω|2 .

Inserting the values of the Lieb–Thirring constants we obtain the desired expression.
!
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For dimensions three and four the same method can be used to get explicit
bounds for λk(Ω), but the expressions obtained become rather intractable as they
involve the formula for a root of a third respectively fourth degree polynomial.
However, since we already know that the bounds given by the Li–Yau inequality
are better for large k a problem of interest is to find in what range of k our bound
is an improvement of that given by Li–Yau (4). In this direction the estimates in
Corollary 5.2 of [5] improve the Li–Yau inequality for n = 2 when k ≤ 23. With the
new improved estimates for C(3/2, 2) obtained here this is increased to all k < 40.

Let B(Ω, k, n) be such that λk(Ω) ≥ B(Ω, k, n) is the bound implied by Theo-
rem 1.1. In what follows we will provide, for general n, a lower bound for k∗, which
is such that for any integer k < k∗ we have that

λk(Ω) ≥ B(Ω, k, n) > Γ
(n

2
+ 1

)2/n 4πn

n + 2

( k

|Ω|
)2/n

,

where the right-hand side is the Li–Yau inequality. As in [5] we also consider the
question for which λk, with k > 2, the bound is an improvement of that implied by
the Krahn–Szegő inequality:

(9) λk(Ω) ≥ λ2(Ω) ≥ πΓ
(n

2
+ 1

)− 2/n( 2

|Ω|
)2/n

j2
n/2− 1,1,

where jm,1 denotes the first positive zero of the Bessel function Jm.

Theorem 3.2. Let Ω ⊂ Rn be a bounded, convex domain. Then, there exist
k∗, k∗ > 0 depending only on the dimension such that for all k satisfying k∗ < k < k∗

the lower bound

λk(Ω) ≥ B(Ω, k, n)

is an improvement of both the Li–Yau inequality and the bound in (9). Moreover,
for n sufficiently small the set of such k is non-empty and we have that

k∗ ≥ 3n

2n

πnnn

Γ
(

n
2 + 1

)2
(

C(3/2, n)(n + 2)1/2(n + 3)2+n/2Γ(n + 2)

3 · 2nn(n+3)(n+3)/2Γ
(

n
2 +2

)
Γ
(

n
2

)
−33/2(n+2)n/2Γ(n+4)

)n

,

k∗ ≤
(n + 2

n

)n/2 21− n

Γ
(

n
2 + 1

)2 jn
n/2− 1,1.

In particular, for the first few dimensions the obtained bounds are displayed in
Table 2.

Table 2. The upper respectively lower bounds for k∗, k∗.

n = 2 3 4 5 6 7 8

k∗ ≥ 40 91 165 255 332 392 412

k∗ ≤ 6 10 16 25 38 59 91

As is indicated by Table 2 the gap between k∗ and k∗ has a maximum around
dimension n = 7, after which the gap appears to close rather quickly. Using the
obtained upper bounds for C(3/2, n) it is not difficult to show that k∗ will tend to
zero as n → ∞.
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Proof of Theorem 3.2. By the Li–Yau inequality we know that for an open set
Ω ⊂ Rn we have that

λk(Ω) ≥ Γ
(n

2
+ 1

)2/n 4πn

n + 2

( k

|Ω|
)2/n

.

Solving this for k we find that it is equivalent to the bound

k ≤
(n + 2

4πn

)n/2 |Ω|
Γ
(

n
2 + 1

)λ
n/2
k .

By monotonicity this implies that

N(Λ) ≤
(n + 2

4πn

)n/2 |Ω|
Γ
(

n
2 + 1

)Λn/2 =: PLY (Λ).

Using (8) we conclude from Theorem 1.1 that if Λ > 0 and τ > 0, then

N(Λ)

≤
(
Lcl

3/2,n|Ω| (1+τ )(n+3)/2

τ3/2
Λn/2 − C(3/2, n)Lcl

3/2,n−1|∂Ω| (1+τ )1+n/2

τ3/2
Λ(n−1)/2

)
+

=: P (Λ).

It is clear that both P (Λ) and PLY (Λ) are continuous and monotonically increasing
for Λ ≥ 0. By monotonicity the bound given by λk ≥ B(Ω, k, n) = P−1(k) is
sharper than the Li–Yau inequality precisely when P (Λ) < PLY (Λ).

Further, we have that

Lcl
3/2,n

(1 + τ )(n+3)/2

τ3/2
≥ Lcl

3/2,n

(n + 3)(n+3)/2

33/2nn/2
>

(n + 2

4πn

)n/2

Γ
(n

2
+ 1

)−1

,

where we used that the left-hand side is minimal (for τ > 0) when τ = n/3. And
thus the polynomial PLY is asymptotically larger than P . Hence it is clear that
there exists a unique Λ∗ > 0 such that P (Λ∗) = PLY (Λ∗). Correspondingly, if we
let k∗ be such that for all k < k∗ we have

P−1(k) > P−1
LY (k) = Γ

(n

2
+ 1

)2/n 4πn

n + 2

( k

|Ω|
)2/n

,

then k∗ is the smallest integer larger than P (Λ∗) = PLY (Λ∗). By monotonicity
finding a lower bound for Λ∗ corresponds to finding a lower bound for k∗.

We proceed by calculating Λ∗ = Λ∗(n, Ω, τ ). After equating the two polynomials,
a simple calculation using that Λ∗ > 0 gives us the solution

Λ∗ =

(
C(3/2, n)|∂Ω|Γ

(
n
2 + 1

)
Lcl

3/2,n−1
(1+τ)1+n/2

τ3/2

|Ω|Γ
(

n
2 + 1

)
Lcl

3/2,n
(1+τ)(n+3)/2

τ3/2 − |Ω|
(

n+2
4πn

)n/2

)2

=

(
C(3/2, n) Γ

(
n
2 + 1

)
Lcl

3/2,n−1(1 + τ )1+n/2

Γ
(

n
2 + 1

)
Lcl

3/2,n(1 + τ )(n+3)/2 −
(

n+2
4πn

)n/2
τ3/2

)2 |∂Ω|2
|Ω|2 .
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We can now insert this expression into either of our two polynomials to attempt
to estimate k∗. Since PLY is a monomial it makes our computations slightly simpler,

PLY (Λ∗)

=
(n + 2

4πn

)n/2 |Ω|
Γ
(

n
2 + 1

) (Λ∗)n/2

=
(n+2

4πn

)n/2 1

Γ
(

n
2 +1

)
(

C(3/2, n) Γ
(

n
2 + 1

)
Lcl

3/2,n− 1(1 + τ )1+n/2

Γ
(

n
2 + 1

)
Lcl

3/2,n(1 + τ )(n+3)/2 −
(

n+2
4πn

)n/2
τ3/2

)n |∂Ω|n
|Ω|n− 1

.

Note that PLY (Λ∗) behaves very nicely with respect to both the isoperimetric ratio
of our domain and the constant C(3/2, n).

Now as this expression is rather messy, especially in its dimensional dependence,
it is not the easiest task to calculate its integer part. Even trying to optimize
this in τ is a rather intricate problem. But considering where τ comes from in
our argument, and that the bound holds for any τ > 0, we simply choose the τ
which minimizes the leading coefficient of P (Λ). A simple calculation shows that
this is attained at τ = 3/n. Inserting this into the expression above we lose the
dependence of τ and obtain that

k∗ ≥ 3n

2n

πn/2

Γ
(

n
2

+ 1
)
(

C(3/2, n)(n + 2)1/2(n + 3)2+n/2Γ(n + 2)

3 · 2nn(n + 3)(n+3)/2Γ( n
2

+ 2)Γ( n
2
) − 33/2(n + 2)n/2Γ(n + 4)

)n |∂Ω|n
|Ω|n−1

.

Using the isoperimetric inequality we may further bound this, and thus also lose
the domain dependence. This gives the following bound which now depends only
on the dimension:

k∗ ≥ 3n

2n

πnnn

Γ
(

n
2

+ 1
)2

(
C(3/2, n)(n + 2)1/2(n + 3)2+n/2Γ(n + 2)

3 · 2nn(n + 3)(n+3)/2Γ
(

n
2

+ 2
)
Γ
(

n
2

)
− 33/2(n + 2)n/2Γ(n + 4)

)n

.

As in [5] we can supplement these bounds from below. Let ΛKZ denote the
bound for λ2(Ω) given by (9), that is,

ΛKZ = πΓ
(n

2
+ 1

)− 2/n( 2

|Ω|
)2/n

j2
n/2− 1,1,

where again jm,1 denotes the first positive zero of the Bessel function Jm. By the
same reasoning as before we can conclude that k∗ ≤ P (ΛKZ). If ΛKZ ≤ Λ∗ we have
that P (ΛKZ) ≤ PLY (ΛKZ) thus if this is the case PLY (ΛKZ) is an upper bound
for k∗. Moreover, if ΛKZ > Λ∗, then k∗ ≥ k∗ and the range of k where our implicit
bounds improve the Li–Yau bound and that implied by Krahn–Szegő is empty, and
therefore we can restrict our interest to the first case. Calculating we find that

k∗ ≤ PLY (ΛKZ) =
(n + 2

n

)n/2 21− n

Γ
(

n
2 + 1

)2 jn
n/2− 1,1,

which completes the proof. !
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Asymptotic shape optimization for Riesz means

of the Dirichlet Laplacian over convex domains
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Abstract. For � � Rn, a convex and bounded domain, we study the spectrum of ���

the Dirichlet Laplacian on �. For ƒ � 0 and  � 0 let �ƒ; .A/ denote any extremal set

of the shape optimization problem

sup¹Tr.��� � ƒ/
�W � 2 A; j�j D 1º;

where A is an admissible family of convex domains in Rn. If  � 1 and ¹ƒj ºj �1 is a

positive sequence tending to infinity we prove that ¹�ƒj ; .A/ºj �1 is a bounded sequence,

and hence contains a convergent subsequence. Under an additional assumption on A we

characterize the possible limits of such subsequences as minimizers of the perimeter among

domains in A of unit measure. For instance if A is the set of all convex polygons with no

more than m faces, then �ƒ; converges, up to rotation and translation, to the regular

m-gon.
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1. Introduction and main results

1.1. Introduction. This paper deals with the existence of an asymptotically op-
timal shape in a certain family of shape optimization problems. By a shape opti-
mization problem we mean a variational problem where given a cost functional F

and an admissible class of domains A one wishes to solve the optimization prob-
lem

inf¹F.�/W � 2 Aº:

For an introduction to the general theory of shape optimization we refer the reader
to the books [10, 28].

In recent years the study of shape optimization for spectral problems, where the
cost functional F depends on the spectrum of an operator defined on �, has been
of large interest, see for instance [27] and references therein. This type of problem
has a long history which can be traced back to Lord Rayleigh [50] who conjectured
that the disk minimizes the first eigenvalue of the Dirichlet Laplacian among all
planar domains of fixed area. Rayleigh’s conjecture was proved independently by
Faber [15] and Krahn [32]; the latter of whom also generalized the result to higher
dimensions [33]. From this result one can prove a similar statement concerning
the second eigenvalue, namely that it is minimized by the union of two disjoint
balls of equal measure [32, 33, 54]. For even higher eigenvalues the corresponding
problems have only in recent years seen much progress. Using techniques coming
from free boundary problems in partial differential equations it has been possible
to prove the existence of extremal sets within the larger class of quasi-open sets1
for the problem

inf¹�k.�/W � � Rn quasi-open, j�j D 1º;

where �k.�/ denotes the k-th eigenvalue of the Dirichlet Laplacian on � (see [9,
12, 13, 46]). Within the same framework one can treat more general functionals
depending on the eigenvalues of some spectral problem (see [12, 44, 46, 55]).

Here we are interested in a two-parameter family of spectral shape optimization
problems for the Dirichlet Laplacian, parametrized by ; ƒ � 0 in (2) below. In
the case  D 0 the problem essentially reduces to that of minimizing individual
eigenvalues of the Dirichlet Laplacian but formulated in terms of the eigenvalue

counting function:
N�.ƒ/ WD #¹k 2 NW �k.�/ < ƒº: (1)

Here we shall mainly consider the case  � 1.

1 A quasi-open set is a superlevel set of a function in H 1.Rn/, for a precise definition see [13].
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For  � 1 and ƒ � 0 the cost functionals we consider fit into the above
mentioned framework for proving existence of extremal sets in the class of quasi-
open sets of fixed measure. In the case  D 1 the problem is equivalent to that of
minimizing the sum of the first m eigenvalues for certain values of m, and thus it
follows from [12, 47] that the optimal sets are open and their boundary is smooth
up to exceptional sets of lower dimension. For  > 1 the question of whether
the extremal sets are open is to the author’s knowledge not covered by existing
theory. However, this will not be the question dealt with in this paper. Instead,
we restrict ourselves to the much simpler case of considering the problem when
restricting the admissible class A to certain families of convex domains. Before
we are able to properly define the functional considered it is necessary to introduce
some additional notation.

Let � be an open subset of Rn, n � 2, and let ��� denote the Dirichlet
Laplace operator on L2.�/, which we define in the quadratic form sense with
the Sobolev space H 1

0 .�/ as its form domain. If we assume that the measure
of � is finite then the embedding H 1

0 .�/ ,! L2.�/ is compact, and hence the
spectrum of ��� is discrete. Moreover, the spectrum consists of an infinite
sequence of positive eigenvalues accumulating at infinity only. We enumerate
these eigenvalues in an increasing sequence where each eigenvalue is repeated
according to its multiplicity,

�1.�/ � �2.�/ � �3.�/ � � � � :

An open ball of radius r > 0 centred at x 2 Rn will be denoted by Br.x/; if
the centre of the ball is irrelevant we write simply Br . For the ball of unit measure
centred at the origin we write B .

We can now define the two-parameter family of functionals studied here. For
 � 0 and ƒ � 0 the Riesz eigenvalue means of ��� are defined by

Tr.��� � ƒ/
� D

X

kW�k.�/<ƒ

.ƒ � �k.�// ; (2)

where x˙ WD .jxj ˙ x/=2.
Given  � 0, ƒ � 0 and an admissible class of domains A, we are interested

in the shape optimization problem

sup¹Tr.��� � ƒ/
�W � 2 A; j�j D 1º: (3)

Here and in what follows we denote the n-dimensional measure of a set � � Rn

by j�j and the .n � 1/-dimensional measure of its boundary by j@�j. For fixed
; ƒ, and A let �ƒ;.A/ denote any extremal domain of (3). We emphasize that it
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is not a priori clear that any such domain exists. We shall here restrict our attention
to  � 1 and admissible classes A which are families of convex domains; without
loss of generality we shall always assume that the admissible class A is closed
under rigid transformations and contains at least one domain of unit measure. For
such A the existence of extremal domains �ƒ; .A/ will be proved in Lemma 3.1
below.

We note that for  D 0 the Riesz mean is equal to the counting function of
eigenvalues less than ƒ. Thus, in this case (3) is in a sense dual to the problem of
minimizing �k.�/.

Moreover, the problem of maximizing the Riesz mean of order  D 1 is
equivalent to minimizing the sum of the m first eigenvalues for certain values
of m. Indeed, since �ƒ;1.A/ is extremal for (3) with  D 1, we have for any
� 2 A with j�j D 1 that

Tr.���ƒ;1.A/ � ƒ/� � Tr.��� � ƒ/�: (4)

By definition (4) is equivalent to

X

k�N�ƒ;1.A/.ƒ/

�k.�ƒ;1.A// �
X

k�N�.ƒ/

�k.�/ � ƒ.N�.ƒ/ � N�ƒ;1.A/.ƒ//:

We claim that the right-hand side is no larger than the sum of the N�ƒ;1.A/.ƒ/

first eigenvalues of ���. To this end let m D N�ƒ;1.A/.ƒ/ and ym D N�.ƒ/. If
m D ym the claim is clearly true. If m < ym then

X

k� ym
�k.�/ � ƒ. ym � m/ D

X

k�m

�k.�/ C
ym

X

kDmC1

�k.�/ � ƒ. ym � m/

<
X

k�m

�k.�/;

where we in the last step used that �k.�/ < ƒ for each k � ym. The remaining
case follows almost identically. Hence �ƒ;1.A/ is also extremal for the shape
optimization problem

inf
° m
X

kD1

�k.�/W � 2 A; j�j D 1
±

;

with m D N�ƒ;1.A/.ƒ/:
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1.2. Main results. Let Kn denote the metric space defined as the set of all
bounded convex domains � � Rn with non-empty interior equipped with the
Hausdorff distance [51]. We shall in this paper restrict our classes of admissible
domains A to consisting of certain subsets of Kn. In an upcoming paper it will
be shown that these restrictions can be dropped [19]. We begin by defining two
natural classes of convex domains.

(A) For an integer m � n C 1 we let Pm � Kn be the set of all bounded convex
polytopes in Rn with no more than m faces. We note that Pm is a closed sub-
set of Kn: if a sequence ¹Pj ºj �1 � Pm converges to P 2 Kn in the topology
of Kn, then P 2 Pm.

(B) Fix a continuous increasing function !W Œ0; L/ ! R, with !.0/ D 0. Let
x 2 @�, after rotation and translation we assume that x D 0 and the
hyperplane ¹x 2 RnW xn D 0º is tangent to @� at x. Let D be the projection
of @� \ BL=2 onto this hyperplane. If BL=2 \ @� can be represented as the
graph of a function f 2 C 1.D/ which satisfies

jrf .x0/ � rf .y0/j � !.jx0 � y0j/; for all x0; y0 2 D

we say that @� has C 1-modulus of continuity ! around x. We say that @� is
!-uniformly C 1 if this holds true with the same ! at every x 2 @�.

We let Kn
! denote the set of all � 2 Kn whose boundary is !-uniformly

C 1. By the uniform regularity assumption it follows that also Kn
! is a closed

subset of Kn: if a sequence ¹Kj ºj �1 � Kn
! converges to K 2 Kn in the

topology of Kn, then K 2 Kn
! . We shall always assume that ! is such that

Kn
! contains at least one domain of unit measure.

Our main results are contained in the following theorems.

Theorem 1.1. Fix  � 1 and m � n C 1. Let ¹ƒj ºj �1 � RC be a sequence

tending to infinity, and choose for each j a corresponding extremal domain

�j D �ƒj ; .Pm/.

Then the sequence ¹�j ºj �1 has a subsequence which, up to rigid transforma-

tions, converges to a domain Pm 2 Pm. Moreover, Pm is of unit measure and

minimizes the measure of the perimeter among domains in Pm of the same mea-

sure:

j@Pmj D inf¹j@�jW � 2 Pm; j�j D 1º:
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We also prove the corresponding result in Kn
! .

Theorem 1.2. Fix  � 1 and ! as in (B) above. Let ¹ƒj ºj �1 � RC be a

sequence tending to infinity, and choose for each j a corresponding extremal

domain �j D �ƒj ; .Kn
!/.

Then the sequence ¹�j ºj �1 has a subsequence which, up to rigid transforma-

tions, converges to a domain K! 2 Kn
! . Moreover, K! is of unit measure and

minimizes the measure of the perimeter among domains in Kn
! of the same mea-

sure:

j@K!j D inf¹j@�jW � 2 Kn
! ; j�j D 1º:

We note that if A is one of the admissible classes considered above, then the
existence of a set �0 realizing the infimum

inf¹j@�j W � 2 A; j�j D 1º (5)

is an easy consequence of the strong compactness properties of Kn [51]. If the set
�0 is unique, up to rigid transformations, then for any choice of sequence ¹ƒj ºj �1

we find that the corresponding sequence of maximizers converges to �0. Since
the choice of sequence was arbitrary we obtain that

inf
x02Rn

T 2O.n/

distKn.�ƒ;.A/; x0 C T �0/ D o.1/ as ƒ ! 1; (6)

where O.n/ is the orthogonal group in dimension n and distKn denotes the metric
of Kn. Since we do not know that the maximizers �ƒ;.A/ are unique we
emphasize that we mean that (6) is true when an arbitrary choice of maximizer is
made for each ƒ.

In particular if ! is such that the unit ball B 2 Kn
! then it is up to transla-

tions the unique minimizer of (5) and hence �ƒ; .Kn
!/ converges to B , modulo

translations. If the ball is not in Kn
! then minimizers of the perimeter need not be

unique and different subsequences of �ƒj ; .Kn
!/ may converge to different such

minimizers.
The existence and characterization of minimizers of the perimeter in the class

Pm is a classical problem. This problem is equivalent to that of finding which
polytopes circumscribing a ball have minimal volume [23]. For n D 2 the regular
m-gon is, up to rotations and translations, the unique minimizer. However, in
higher dimensions this turns out to be a very difficult problem, and to the author’s
knowledge it is not known whether the minimizers are unique.

If �0 realizing (5) is not unique then one can still conclude that all isolated
minimizers of the perimeter are local asymptotic maximizers of our shape opti-
mization problem in the following sense. Let �0 2 A realize the infimum (5) and
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assume that �0 is isolated from any other such minimizer with respect to the Haus-
dorff topology (up to rigid transformations). Then one can construct a perturbed
shape optimization problem by removing from A an arbitrarily small neighbour-
hood around all other minimizers of the perimeter (in the Hausdorff sense). For
this new shape optimization problem any sequence of maximizers would converge
to the now unique minimizer of the perimeter.

1.3. Related results and further questions. Similar results in asymptotics of
extremal domains have recently been obtained in several different settings. The
most commonly studied problem is that of finding a domain asymptotically min-
imizing �k.�/ among � in a certain class of admissible domains. That is, given
an admissible class of domains A one wants to find a domain �1 such that the
extremizers of the problem

inf¹�k.�/W � 2 Aº (7)

converge to �1 as k goes to infinity.

The first result in this direction is due to Antunes and Freitas who proved
that if A is the set of rectangles with area one, then any sequence of extremal
sets converges to the unit square as k goes to infinity [2]. In [7] van den Berg
and Gittins proved the corresponding result in three dimensions, and in [22] the
result was obtained in general dimension. In the class A of sets of the form
.0; a1/ � � � � � .0; an/ � Rn of unit measure any sequence of minimizers of the
k-th eigenvalue converges to the unit cube in Rn as k ! 1. In [6, 22] the
corresponding results were proved to hold also if one instead considers eigenvalues
of the Neumann Laplacian on the same class of domains, in which case the natural
problem is to maximize the eigenvalues.

The idea of Antunes and Freitas [2] was to reformulate the problem of mini-
mizing eigenvalues as a maximization problem for the counting function (1) and
exploit the explicit structure of Laplacian eigenvalues on rectangles. This effec-
tively reformulates the problem as an optimization problem in the setting of geo-
metric lattice point counting. For fixed ƒ � 0 find the ellipses among those on
the form .x=a/2 C .ay/2 � ƒ=�2 which contain the greatest number of positive
integer lattice points. The asymptotic problem translates into studying the shape
of such ellipses in the limit ƒ ! 1.

The lattice point problem which arose in the work of Antunes and Freitas has
since then seen several generalizations. Laugesen and Liu [38] and Ariturk and
Laugesen [3] consider a similar problem but replace the bounding region, which
in [2] was given by a quarter of an ellipse, by the region under the graph of a
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decreasing concave or convex function f . The optimization problem studied can
then be phrased as follows. Given r > 0 find s > 0 realizing

sup
s>0

#¹.j; k/ 2 N2W k � rsf .js=r/º:

The main results of [3, 38] are that under weak assumptions on f the optimal
values of s tend to a unique limit as r ! 1. Moreover, the limit can be explicitly
expressed in terms of f . More recently these results have been generalized to
allow for a shift of the lattice, that is replacing the standard lattice by .NC �/ �
.N C �/, see [39]. Also higher dimensional versions of this problem have been
studied by Marshall, and Guo and Wang in [24, 42].

A particularly interesting case of the lattice point optimization problem is to
consider f .x/ D 1�x. In this case the behaviour of maximizing values s is highly
erratic, and it was proved by Marshall and Steinerberger [43] that there is no unique
limit as r tends to infinity. In fact they prove that there are infinitely many values of
s which are optimal for arbitrarily large r , which proves a conjecture of Laugesen
and Liu in [38]. Recently a related problem but in the setting of Riesz means was
studied in [37].

In the same direction as the work of Antunes and Freitas, one can consider the
shape optimization problem (7) as k tends to infinity but with the measure con-
straint replaced by different ones, see [5, 11, 20]. In particular, Bucur and Freitas
considered the problem in R2 under a constraint on the measure of the perime-
ter and prove that any sequence of optimal domains converges to the disk [11]:
if �k � R2 is a domain realizing the infimum

inf¹�k.�/W � � R2 open; j@�j � j@Bjº;

then, up to translation, limk!1 �k D B in the Hausdorff topology. In [20] Freitas
considered the problem of minimizing the average (or equivalently the sum) of the
m first eigenvalues in the limit as m tends to infinity under a constraint on either the
measure or the perimeter. In the former case he obtains that the extremal averages
are in a certain sense sub-additive and compute their leading order asymptotic
behaviour. In the latter he proves that the extremal sets converge to a ball in the
limit m ! 1.

The fact that the problem studied here allows the same type of analysis as in
the results discussed above under the constraint of fixed measure, and in large
classes of convex sets is the main reason that we find it noteworthy. Moreover,
after this article was completed it has been proved that the a priori regularity
assumptions on A needed to identify the asymptotically maximizing domains
as minimizers of the perimeter can be removed. That these assumptions can
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be dropped is a consequence of the results in [19] where two-term asymptotic
formulas for Tr.��� � ƒ/� are obtained in the semi-classical limit ƒ ! 1,
under the assumption that � � Rn has Lipschitz-regular boundary (in particular
this covers all convex domains).

A natural further question is of course whether the convexity assumption can
be dropped, and instead consider the optimization problem (3) in the class of
quasi-open sets. As mentioned in the introduction the existence of optimizers
for this problem with  � 1 is covered by the results in [9, 13, 45, 46] (see
also [44, 55]). The results in these articles consider the case of functions of a
fixed number of eigenvalues which is not the case for (2). However, using the
Li–Yau inequality [40],

�k.�/ � �
�n

2
C 1

�2=n 4�n

n C 2

� k

j�j
�2=n

; (8)

we can bound the number of eigenvalues present in the sum (2) and thus reduce
our problem to this situation. If ƒ > �1.B/ and  � 1 then the functional
Tr.����ƒ/

� is Lipschitz continuous as a function of the eigenvalues and weakly
strictly decreasing in a neighbourhood of any maximizer (see [45]). Hence the
problem is covered by the existing results for such cost functions. However, in
terms of what happens as ƒ ! 1 these results yield little information. To
analyse the asymptotic behaviour of maximizers we here use inequalities for
Tr.��� � ƒ/

� in terms of geometric quantities of �, see Theorem 2.4. Similar
inequalities have in recent years been obtained in a variety of different forms,
see e.g. [21, 25, 26, 31, 48, 56]. These inequalities indeed provide geometric
information about maximizers in a more general setting. However, without the
convexity assumption it is unclear whether this information is sufficient to prove
that maximizers cannot degenerate as ƒ ! 1.

1.4. Structure of the paper. The remainder of the paper is structured as follows.
In Section 2 we introduce some notation, recall some known results, and prove a
number of inequalities needed in the sequel. Section 3 is devoted to proving that
given an admissible class of convex domains A the shape optimization problem (3)

has at least one extremal domain for fixed values of ƒ and  . In Section 4 we
establish that for  � 1 any sequence of extremal domains has a convergent
subsequence, and show that under an additional assumption on the class A any
limit point of the sequence must be a minimizer of the perimeter. In Section 5 we
show that the tools developed to prove our main theorems also allow us to deduce
the corresponding results when minimizing the sum of the first m eigenvalues
among convex domains. Section 6 is devoted to studying the asymptotic behaviour
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of (2) as ƒ ! 1, and proving that the assumption from Section 4 holds true in Pm.
That the same assumption is true in Kn

! is a consequence of the results in [16, 17]
(see Lemma 2.2). We end the paper by proving that our results generalize to the
case when the admissible domains are allowed to consist of disjoint unions of
convex domains, see Section 7.

2. Notation and preliminaries

We denote by dist. � ; � / the distance between two sets in Rn (possibly singletons):

dist.A; B/ WD inf
x2A;y2B

jx � yj:

We will in several places make use of the fact that if @� is Lipschitz regular then
dist. � ; @�/ satisfies

jrdist.x; @�/j D 1 (9)

for almost every x 2 Rn. In particular this holds true as soon as � is convex.

2.1. Preliminary convex geometry. We continue by recalling some basic def-
initions from convex geometry and introducing the notation we use. For more
details and a general treatment of classical convex geometry we refer the reader
to the books [23, 51].

Let � 2 Kn. We define the inradius, diameter, and minimal width of � by

r.�/ WD sup
x2�

dist.x; �c/;

D.�/ WD sup
x;y2�

jx � yj;

resp.

w.�/ WD inf
�2Sn�1

.sup
x2�

x � � � inf
x2�

x � �/:

We note that r is the radius of the largest ball contained in �, and w is the smallest
distance such that � is contained between two parallel hyperplanes separated by
this distance.
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Clearly 2r.�/ � w.�/. Less clear is that also a reversed inequality holds [53]:
there exists a dimensional constant c > 0 such that, for all � 2 Kn,

cw.�/ � r.�/: (10)

The inner and outer parallel sets of � at distance t 2 .0; 1/ are defined by

�t WD � � Bt D ¹x 2 �W dist.x; �c/ > tº;

�t WD � C Bt D ¹x 2 RnW dist.x; �/ < tº:

The notation C; � comes from the concepts of Minkowski addition and the
Minkowski difference [51].

We let W W .Kn/n ! R denote the unique symmetric function (with respect to
permutations of its arguments) such that

j�1�1 C � � � C �m�mj D
m

X

j1D1

� � �
m

X

jnD1

�j1
� � � �jn

W.�j1
; : : : ; �jn

/; (11)

for any �1; : : : ; �m 2 Kn and �1; : : : ; �m � 0 [51]. The quantity W.�1; : : : ; �n/

is called the mixed volume of �1; : : : ; �n 2 Kn. Here we will only need the
following elementary properties of W (see [51]).

1. W.�1; : : : ; �n/ > 0 for �1; : : : ; �n 2 Kn.

2. W is a multilinear function with respect to Minkowski addition.

3. W is increasing with respect to inclusions.

4. W is invariant under translations in each argument.

5. The volume and perimeter of � 2 Kn can be written in terms of W :

j�j D W.�; : : : ; �/ and j@�j D nW.�; : : : ; �; B1/:

In what follows we shall need to bound certain of these quantities in terms
of others; these and similar bounds can be found in the literature but we include
proofs for completeness. To this end we recall the main result of [35]: for t � 0

and any � 2 Kn it holds that

j@�t j � j@�j
�

1 � t

r.�/

�n�1

C
: (12)

Since the measure of the perimeter of convex sets is decreasing under set inclusion
we also have that j@�t j � j@�j.
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Using the co-area formula and (9) we have that

j�j D
Z r.�/

0

j@�t j dt:

By the upper, respectively lower, bound on j@�t j above we find, after integrating
and rearranging, that

j�j
j@�j � r.�/ � n

j�j
j@�j : (13)

Furthermore, it is not difficult to deduce an upper bound for D.�/ in terms
of r.�/ and j�j. After translation and rotation we may assume that the ball
Br.�/.0/ � � and that x0 D .0; : : : ; 0; R/ 2 �. By convexity the cone V with
vertex x0 and base ¹x 2 RnW xn D 0; x2

1 C � � � C x2
n�1 D r.�/2º is contained in

�. The volume of this cone is equal to

jV j D cr.�/n�1

Z R

0

�

1 � xn

R

�n�1

dxn D cr.�/n�1R:

Thus we have a contradiction if cr.�/n�1R � j�j and hence R � c j�j
r.�/n�1 .

Consequently there is a constant c > 0, depending only on n, such that

D.�/ � c
j�j

r.�/n�1
: (14)

2.2. Weyl asymptotics. From the classical Weyl asymptotics for the Dirichlet
eigenvalues (see [57]) it follows that the Riesz means for  � 0 obey the asymp-
totic formula

Tr.��� � ƒ/
� D Lcl

;nj�jƒCn=2 C o.ƒCn=2/ as ƒ ! 1:

Here � � Rn is a bounded and open set and Lcl
;n denotes the semi-classical

Lieb–Thirring constant:

Lcl
;n D �. C 1/

.4�/n=2�. C 1 C n=2/
:

If in addition � satisfies certain regularity properties the following two-term
asymptotic formula holds:

Tr.��� � ƒ/
� D Lcl

;nj�jƒCn=2 �
Lcl

;n�1

4
j@�jƒC.n�1/=2 C o.ƒC.n�1/=2/;

(15)

as ƒ ! 1. This refined asymptotic formula was conjectured by Weyl in [57].
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Under the sole assumption of convexity we prove that the asymptotic behaviour
does not lie below that suggested by the Weyl conjecture.

Lemma 2.1 (one-sided two-term asymptotics). Let � 2 Kn. Then, for  � 1,

Tr.��� � ƒ/
� � Lcl

;nj�jƒCn=2 � 1

4
Lcl

;n�1j@�jƒC.n�1/=2 C o.ƒC.n�1/=2/;

(16)

as ƒ ! 1. Moreover, the error term is uniform on compact subsets of Kn.

In [30] Ivrii proved that (15) holds for  D 0 under the assumptions that @� is
smooth and the measure of the periodic billiards in � is zero. By the Aizenman–
Lieb identity it follows that the expansion holds for all  > 0 under the same
assumptions. More recently, Frank and Geisinger proved that (15) is true for
 D 1 if the boundary of � is C 1;˛-regular [16]. In [17] the same authors treat
the case of Robin boundary conditions and show that their method also covers
C 1-domains. Again the Aizenman–Lieb identity implies that (15) is valid under
the same assumptions for all  � 1. In particular, the results of [16, 17] imply that
the expansion (15) holds uniformly on compact subsets of Kn

! .

Lemma 2.2 ([16, Theorem 1.1], [17, Theorem 1.3]). Let � 2 Kn
! . Then, for  � 1,

Tr.��� � ƒ/
� D Lcl

;nj�jƒCn=2 �
Lcl

;n�1

4
j@�jƒC.n�1/=2 C o.ƒC.n�1/=2/;

as ƒ ! 1. Moreover, the error term is uniform on compact subsets of Kn
! .

That the error term in the above expansion is uniform on compact subsets
follows from the methods of Frank and Geisinger, in fact the uniform C 1-modulus
of continuity of @� together with upper and lower bounds on j�j and j@�j suffices.
This uniformity is not explicitly stated in their results but it is nonetheless possible
to track the geometric dependence through their proof and conclude that this is the
case. However, this is not an entirely trivial task. To see how this can be done we
refer the reader to [19] where the same construction is used and the error term is
tracked explicitly.

In Section 6 we shall prove that (15) holds uniformly also for � in compact
subsets of Pm.
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Lemma 2.3. Let � 2 Pm. Then, for  � 1,

Tr.��� � ƒ/
� D Lcl

;nj�jƒCn=2 �
Lcl

;n�1

4
j@�jƒC.n�1/=2 C o.ƒC.n�1/=2/;

as ƒ ! 1. Moreover, the error term is uniform on compact subsets of Pm.

The reason that we here need to further restrict our admissible classes of convex
domains is that, prior to the results in [19], (15) was not known to hold uniformly
in compact subsets of Kn, for  � 1.

The refined asymptotics (15) combined with the isoperimetric inequality indi-
cates that if we can prove that an asymptotically optimal shape exists, it is likely
the ball. This is indeed the heuristic idea behind the belief that maximizers of
the Riesz means, or for that matter minimizers of the eigenvalues, should be well
behaved in the limit ƒ ! 1.

2.3. A two-term Berezin inequality. A key ingredient in our proof here will be
the following two-term bound for the Riesz means of order  � 1 when � � Rn is
convex. This result was first obtained for  � 3=2 in the planar case in [21] under
an additional geometric assumption. In [35] it was proved that this additional
assumption was true in general, and in [36] this was used to generalize the bound
for  � 3=2 to any dimension and arbitrary convex domains. The extension to
1 �  < 3=2 was until recently unknown to us but follows as a simple corollary
of an inequality due to Harrell and Stubbe [25], which reduces the problem to
considering a domain of the form .0; a1/ � � � � � .0; an/ � Rn. For domains on
this form precise bounds for Riesz means were proved in [22].

Theorem 2.4 ([21, Corollary 3.4], [36, Theorem 1.1], [25], [22]). Let � 2 Kn.

For  � 1 there exists a constant c.; n/ > 0 such that

� if ƒ � �2

4r.�/2 , then

Tr.��� � ƒ/
� D 0I

� if ƒ > �2

4r.�/2 , then

Tr.��� � ƒ/
� � Lcl

;nj�jƒCn=2 � c.; n/Lcl
;n�1j@�jƒC.n�1/=2:

Proof of Theorem 2.4. The first part of the theorem is a direct consequence of the
bound �1.�/ � �2

4r.�/2 proved in [29, 49]. For the second part we, without loss
of generality, assume that � � .0; 2w.�// � .0; a2/ � � � � � .0; an/ DW R; where
0 < 2w.�/ � a2 � � � � � an < 1.
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By equation 4.3 in [25] it follows that, for all ƒ � 0,

Tr.��� � ƒ/� � j�j
jRj Tr.��R � ƒ/�:

By an application of the Aizenman–Lieb identity [1] (see also Section 6 below)
we also have that

Tr.��� � ƒ/
� � j�j

jRj Tr.��R � ƒ/
�;

for any  � 1 and ƒ � 0.
By Lemma 4.4 in [22] and the behaviour of Laplacian eigenvalues under

scaling, �k.t �/ D t�2�k.�/ for t > 0, we find that for all  � 1 there exist
positive constants c1; c2; b0 such that

Tr.��� � ƒ/
�

� j�j
jRj Tr.��R � ƒ/

�

� Lcl
;nj�jƒCn=2 �

c1bLcl
;n�1

2w.�/
j�jƒC.n�1/=2 C

c2b2Lcl
;n�2

4w.�/2
j�jƒC.n�2/=2;

(17)

for all ƒ � 0 and b 2 Œ0; b0�.
For ƒ � �2

4r.�/2 we find that

Tr.��� � ƒ/
� � Lcl

;nj�jƒCn=2 � cLcl
;n�1

j�j
w.�/

ƒC.n�1/=2;

where we used w.�/ � 2r.�/ and that we can choose b arbitrarily small. The
claimed bound follows since j�j

w.�/
� cj@�j by combining (10) and (13). �

The bound in Theorem 2.4 is an improvement of an inequality going back to
Berezin [4] which states that for the convex Riesz means, i.e. when  � 1, the first
term in the Weyl asymptotic formula always overestimates the eigenvalue mean:

Tr.��� � ƒ/
� � Lcl

;nj�jƒCn=2: (18)

This inequality should more correctly be attributed to Berezin, Lieb, and Li and
Yau [4, 40, 41]. Berezin and Lieb both proved inequalities of which (18) is a special
case, while Li and Yau proved an inequality for the sum of the first m eigenvalues
which is equivalent to (18) (see [34]).

We emphasize that the second term appearing in the bound of Theorem 2.4 is
up to a constant the same as that appearing in the refined Weyl asymptotic formula
(this is essential in proving the boundedness of the maximizers).
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3. Existence of extremal domain

For any fixed  � 1 and ƒ large enough, we have that the existence of a maximizer
in the class of quasi-open sets follows from known results [9, 13, 45, 46]. However,
the methods used in these articles do not take into account that we wish to stay
within our class of convex domains. But, as this is already a very nice class of
sets, proving the existence of a maximizer for our problem is not difficult.

Lemma 3.1 (Existence of maximizers). Let A be a closed subset of Kn. Then, for

any  � 0 and ƒ � 0 there exists a domain �ƒ; 2 A realizing the supremum

sup¹Tr.��� � ƒ/
�W � 2 A; j�j D 1º: (19)

Moreover, if A D Kn,  � 1, and ƒ > �1.B/ then any such domain has

C 1-regular boundary.

Proof of Lemma 3.1. For fixed ƒ > �1.B/ and  � 1 our functional is weakly
strictly decreasing [45], that is if �k.�/ < �k. z�/ for all k � 1 then

Tr.��� � ƒ/
� > Tr.��z� � ƒ/

�:

Moreover, by the Li–Yau inequality (8), our functional is for any fixed ƒ a finite
sum of Lipschitz functions and hence Lipschitz. Thus the last part of the lemma
is a direct consequence of Theorem 3.4 in [8].

If ƒ � inf¹�1.�/W � 2 A; j�j D 1º then the supremum in (19) is zero and
hence any domain in A is a maximizer. If this is not the case we let ¹�kºk�1 � A,
with j�k j D 1, be a maximizing sequence for (19). Without loss of generality we
assume that Tr.���k

� ƒ/
� > 0. In particular, we must have that �1.�k/ < ƒ

for all k. Hence the inequality �1.�/ � �2

4r.�/2 , for � � Kn, due to Hersch in R2

and Protter in Rn [29, 49] implies that r.�k/ > �

2
p

ƒ
. Since j�k j D 1 for each k

we by (14) obtain an upper bound for D.�k/ which is independent of k.

As our functional is invariant under translation we may translate each �k so
that it has barycentre at the origin and obtain a new maximizing sequence which
is uniformly bounded. By the Blaschke selection theorem [51, Theorem 1.8.7]
we can extract a subsequence which converges in Kn, and hence in A. Abusing
notation denote this subsequence by ¹�kºk�1 and let �1 denote its limit. Since
the eigenvalues of the Dirichlet Laplacian are lower-semi continuous with respect
to the topology on Kn [28] we find that �1 realizes the supremum in (19). �
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4. Convergence of maximizers

In this section we prove that for any sequence ¹ƒj ºj �1 tending to infinity the
corresponding sequence of maximizers �ƒj ; .A/ has a convergent subsequence.
Moreover, if A satisfies an additional assumption we characterize the possible
limit points of such subsequences. Our main objective is to prove the following
proposition:

Proposition 4.1. Let A be a closed subset of Kn. Fix  � 1 and let �ƒ; .A/

denote any extremal domain for the shape optimization problem

sup¹Tr.��� � ƒ/
�W � 2 A; j�j D 1º: (20)

Then the following statements hold.

(i) For any sequence ¹ƒj ºj �1" 1 the corresponding sequence ¹�ƒj ; .A/ºj �1

has a subsequence which, up to translation, converges in A. Moreover, �1
the limit of such a subsequence has unit measure.

(ii) Under the additional assumption that

Tr.��� � ƒ/
�

D Lcl
;nj�jƒCn=2 � 1

4
Lcl

;n�1j@�jƒC.n�1/=2 C o.ƒC.n�1/=2/;

as ƒ ! 1, uniformly for � in compact subsets of A, then the limit �1 also

minimizes the perimeter in A:

j@�1j D inf¹j@�jW � 2 A; j�j D 1º: (21)

Remark 4.2. As a consequence of the results in [19] we know that the assumption
in the second part of the theorem is redundant, the expansion holds uniformly on
any compact subset of Kn. As a consequence the conclusions of Proposition 4.1
remain true without it and hence extends Theorems 1.1 and 1.2 to any admissible
class of convex domains A (see [19]).

With Proposition 4.1 in hand it is straightforward to prove our main theorems.

Proof of Theorems 1.1 and 1.2. By Lemmas 2.2 and 2.3 the classes Kn
! and Pm

satisfy the assumptions of (i) and (ii) of Proposition 4.1, and thus the theorems
follow as special cases thereof. �
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Proof of Proposition 4.1. The proof follows closely the strategy of Antunes and
Freitas [2] (see also [6, 7, 11, 22] for applications in very similar settings). Using
the bound of Theorem 2.4 one readily obtains that the sequence of maximizers
have uniformly bounded perimeters. Using the inequalities of Section 2.1 we can
conclude that the sequence is uniformly bounded, and thus extract a convergent
subsequence. The final ingredient is to use the uniform asymptotic expansions
in (ii) to identify the limiting domains as minimizers of the perimeter.

Fix A and  � 1. For notational convenience we will for a maximizer of (20)

write simply �ƒ instead of �ƒ; .A/. Without loss of generality we throughout
the proof assume that the barycentre of each maximizer is the origin. The idea
used to prove the existence of a convergent subsequence of �ƒ;.A/ is to use the
maximality of Tr.���ƒ

�ƒ/
� and compare it with the corresponding Riesz mean

for some fixed domain �0 2 A with j�0j D 1.

Assume that ƒ > inf¹�1.�/W � 2 A; j�j D 1º. Then, by the maximality of
�ƒ,

0 < Tr.���0
� ƒ/

� � Tr.���ƒ
� ƒ/

�:

Using Theorem 2.4 and Lemma 2.1 this inequality implies that

Lcl
;nƒCn=2 �

Lcl
;n�1

4
j@�0jƒC.n�1/=2 C o.ƒC.n�1/=2/

� Lcl
;nƒCn=2 � c.; n/Lcl

;n�1j@�ƒjƒC.n�1/=2:

(22)

Rearranging (22) yields

j@�ƒj � j@�0j
4c.; n/

C o.1/;

as ƒ ! 1, and thus the perimeter of the maximizers remains uniformly bounded
in ƒ. By (13) and (14) we conclude that �ƒ remains uniformly bounded with
respect to ƒ. Thus we can for any sequence ¹ƒj ºj �1 tending to infinity extract a
subsequence of ¹�ƒj

ºj �1 which converges to a domain �1 2 A. Since j�j and
j@�j are continuous with respect to the topology of Kn we find that j�1j D 1 and
j@�1j � j@�0j

4c.;n/
, this completes the proof of (i).

With a slight abuse of notation we let ¹ƒj ºj �1 denote the subsequence along
which ¹�ƒj

ºj �1 converges to �1. For each j � 1 we have, by the maximality of
�ƒj

, that

Tr.���0
� ƒj /

� � Lcl
;nƒ

Cn=2
j

ƒ
C.n�1/=2
j

�
Tr.���ƒj

� ƒj /
� � Lcl

;nƒ
Cn=2
j

ƒ
C.n�1/=2
j

:
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Assume now that A satisfies the assumption in (ii). Using that our sequence of
maximizers ¹�ƒj

ºj �1 is bounded, and hence contained in a compact subset of A,
to uniformly control the error terms, one finds that

j@�ƒj
j � j@�0j C o.1/;

as j ! 1. Since the sequence �ƒj
converges to �1 and the measure of the

perimeter is continuous in the topology of Kn, we obtain that j@�1j � j@�0j.
Choosing �0 to realize the infimum in (21) concludes the proof. �

Remark 4.3. We note that in the proof of (i) we do not require the full statement
of Lemma 2.1 only that there exists one domain �0 2 A with j�0j D 1 for which
the second term of the asymptotic expansion of the Riesz mean is of the correct
order � ƒC.n�1/=2.

5. Sums of eigenvalues

In this section we prove that our techniques allow us also to study the behaviour
of convex domains realizing the infimum

inf
° 1

m

m
X

kD1

�k.�/W � 2 A; j�j D 1
±

(23)

in the limit m ! 1. This problem, but without the convexity assumptions, was
recently studied by Freitas [20].

Theorem 5.1. Let A be a closed subset of Kn satisfying the assumption in (ii) of

Proposition 4.1. Let �m.A/ denote any extremal domain for the shape optimiza-

tion problem (23). Then the sequence ¹�mºm�1 has a subsequence which, up to

translations, converges in A. Moreover, �1 the limit of such a subsequence has

unit measure and minimizes the perimeter in A:

j@�1j D inf¹j@�jW � 2 A; j�j D 1º:

Remark 5.2. Again we note that the extra assumption on A can be dropped in
light of the results in [19].

The proof of Theorem 5.1 is based on our tools developed for Riesz means
and the close connection between sums of eigenvalues and Riesz means of order
 D 1. In particular, via the Legendre transform the asymptotic expansion
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for Tr.��� � ƒ/� implies a similar two-term expansion for the sum (see, for
instance, [18, Appendix A]): for � � Rn such that (15) holds

1

m

m
X

kD1

�k.�/ D An

� m

j�j
�2=n

C Bn

j@�j
j�j

� m

j�j
�1=n

C o.m1=n/;

as m ! 1. The constants An; Bn are explicitly given by

An D
4�n�

�
n
2

C 1
�2=n

n C 2
; Bn D

2��
�

n
2

C 1
�1C1=n

.n C 1/�
�

nC1
2

� :

It should also be noted that the Legendre transform switches the direction of in-
equalities. In particular, the lower bound for the Riesz mean asymptotics provided
by Lemma 2.1 turns into a corresponding upper bound for the asymptotics of the
sum.

If we can prove a bound similar to Theorem 2.4 in the setting of eigenvalue
sums then it is straightforward to follow the strategy in the proofs of Lemma 3.1
and Proposition 4.1 to prove first the existence and uniform boundedness of the
minimizers.

Corollary 5.3 (Improved Li–Yau inequality). Let � 2 Kn. There exists a positive

constant c.n/ such that, for all m � 1,

1

m

m
X

kD1

�k.�/ � An

� m

j�j
�2=n

C c.n/Bn

j@�j
j�j

� m

j�j
�1=n

:

Proof of Corollary 5.3. By (17) there are positive constants c1; c2; b0 such that

sup
ƒ�0

�

mƒ �
X

kW�k.�/<ƒ

.ƒ � �k.�//
�

� sup
ƒ�0

�

mƒ � Lcl
1;nj�jƒ1Cn=2 C

c1bLcl
1;n�1

w.�/
j�jƒ.nC1/=2

�
c2b2Lcl

1;n�2

w.�/2
j�jƒn=2

�

;

(24)

for all m � 1 and b 2 Œ0; b0�.
It is well known that the left-hand side of (24) is equal to the sum of the

m first eigenvalues, this follows from studying the sign of the derivative of the
expression in the parenthesis with respect to ƒ on intervals where N�.ƒ/ is
constant. Moreover, since the supremum on the right-hand side is larger than
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its value at any fixed ƒ we obtain a valid inequality by simply choosing a ƒ � 0.

Specifically we choose ƒ D 41=n

.nC2/2=n.Lcl
1;n

/2=n

�
m

j�j
�2=n

which leads to

sup
ƒ�0

�

mƒ � Lcl
1;nj�jƒ1Cn=2 C

c1bLcl
1;n�1

w.�/
j�jƒ.nC1/=2 �

c2b2Lcl
1;n�2

w.�/2
j�jƒn=2

�

� mAnj�j
� m

j�j
�2=n

C m
c0

1b

w.�/

� m

j�j
�1=n

� m
c0

2b2

w.�/2

� mAnj�j
� m

j�j
�2=n

C mc.n/Bn

j@�j
j�j

� m

j�j
�1=n

;

where we in the final step used (10) and (13), m � 1, and that we can choose b as
small as we wish. �

Proof of Theorem 5.1. The claim follows by mimicking the proofs of Lemmas 3.1
and Proposition 4.1. The use of the asymptotic bound of Lemma 2.1 should be
replaced by its corresponding Legendre transform, and the use of Theorem 2.4 by
Corollary 5.3. �

6. Uniform two-term asymptotics

In this section we use the methods of Frank and Geisinger [16, 17] to prove Lem-
mas 2.1 and 2.3. The proof of Lemma 2.1 will complete the proof of Proposi-
tion 4.1, which in combination with Lemma 2.2 and Lemma 2.3 proves Theo-
rem 1.2 and Theorem 1.1, respectively.

To match the notation used in [16, 17] we here consider the asymptotics of
Tr.�h2�� � 1/

� as h ! 0C. By a simple calculation (15) is equivalent to

Tr.�h2�� � 1/
� D Lcl

;nj�jh�n �
Lcl

;n�1

4
j@�jh�nC1 C o.h�nC1/; as h ! 0C;

and (16) to the corresponding inequality.

In [16, 17] the authors consider only the case  D 1 but it can be lifted to larger
 using the Aizenman–Lieb identity [1]: if 1 � 0 and 2 > 1, then

Tr.��� � ƒ/2
� D B.1 C 1; 2 � 1/�1

Z 1

0

��1C2�1 Tr.��� � .ƒ � �//1
� d�;

where B denotes the Euler Beta function. It thus suffices to prove Lemmas 2.1
and 2.3 in the case  D 1.
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The proof relies on localizing the operator into balls whose sizes vary depend-
ing on the distance to the complement of �. The asymptotic contributions from
each of these localizations is then analysed separately.

Using Theorem 22 in [52] the localization is constructed by introducing a
length-scale l.u/ and functions �u 2 C 1

0 .RnIR/ with support in Bl.u/.u/ D ¹x 2
RnW jx � uj < l.u/º, satisfying

k�uk1 � c; kr�uk1 � c l.u/�1 (25)

and for any x 2 Rn
Z

Rn

�2
u.x/l.u/�n du D 1: (26)

Here and in what follows c will denote a positive constant which may change from
line to line, but which depends only on the dimension and the choice of l.u/; �u.
Following [16, 17] we set

l.u/ WD 1

2

�

1 C .dist.u; �c/2 C l2
0 /�1=2

��1
; (27)

where l0 2 .0; 1/ is a parameter depending only on h which will tend to zero as
h ! 0C.

We will use the following results from [16, 17]:

Lemma 6.1 ([16, Proposition 1.1]). For 0 < l0 < 1 and 0 < h � Ml0 we have that

ˇ
ˇ
ˇ
ˇ
Tr.�h2�� � 1/� �

Z

Rn

Tr.�u.�h2�� � 1/�u/�l.u/�n du

ˇ
ˇ
ˇ
ˇ

� c

Z

��
l.u/�2 du h�nC2;

where �� WD ¹u 2 RnW supp �u \ � ¤ ;º and the constant c depends only on M

and those in (25).

Remark 6.2. In Proposition 1.1 in [16] the integral on the right-hand side is in
the final step of the proof bounded in terms of l�1

0 . As we here wish to keep
track of how the remainder depends on � we choose to keep it in integral form.
Moreover, in [52] the function l is assumed to be C 1-regular, however, a Lipschitz
assumption is sufficient (see [19]).

Remark 6.3. We also note that � ¨ �� � �t , for t D l0

2C2l0
. If the functions �u

are chosen so that supp �u D Bl.u/.u/ then equality holds in the second inclusion.
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Lemma 6.4 ([16, Proposition 1.1] and [17, Proposition 2.3]). Let � 2 C 1.Rn/ be

supported in a ball of radius l > 0 and satisfy

kr�k1 � cl�1: (28)

Assume that the intersection @� \ supp � is C 1 with modulus of continuity

!W Œ0; L/ ! R, with L � 2l , in the sense of (B).

Then if l is so small that !.l/ � cn, where cn depends only on the dimension,

it holds for 0 < h � l that

ˇ
ˇ
ˇ
ˇ
Tr.�.�h2�� � 1/�/� � Lcl

1;n

Z

�

�2.x/ dx h�n

C 1

4
Lcl

1;n�1

Z

@�

�2.x/ d�.x/ h�nC1

ˇ
ˇ
ˇ
ˇ

� r.l; h/;

where d� denotes the .n � 1/-dimensional Lebesgue measure on @� and the

remainder satisfies

r.l; h/ � c
� ln�2

hn�2
C !.l/2ln�1

hn�1
C !.l/ln

hn

�

;

where the constant c depends only on that in (28).

Remark 6.5. Here we shall only make use of Lemma 6.4 when the boundary of �

is either C 1;1-regular or when � 2 Pm and the boundary is locally a hyperplane,
in the latter case we can take ! � 0. In [16, 17] it is stated that the smallness
assumption on l may depend on �, this is however not necessary the relevant
local geometry is encoded by !. Inspection of the proofs in [16, 17] yields that one
can can take cn D 1

4.n�1/
:

We shall also need the following lemma which can be viewed as a local version
of (18).

Lemma 6.6 ([16, Lemma 2.1]). For any � 2 C 1
0 .Rn/ and h > 0 we have that

Tr.�.�h2�� � 1/�/� � Lcl
1;n

Z

�

�2.x/ dx h�n:

To prove Lemma 2.1 we will need a more refined version of this inequality
when the support of � is disjoint from the boundary of �.
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Lemma 6.7 ([16, Proposition 1.2]). Let � 2 C 1
0 .�/ be supported in a ball of

radius l > 0 and satisfy

kr�k1 � cl�1: (29)

Then, for all h > 0,

ˇ
ˇ
ˇ
ˇ
Tr.�.�h2�� � 1/�/� � Lcl

1;n

Z

�

�2.x/ dx h�n

ˇ
ˇ
ˇ
ˇ

� c ln�2h�nC2;

where the constant c depends only on that in (29).

To control the error terms coming from the applications of the local bounds
above we shall need the following inequalities which appear in [16] (or with
explicitly stated geometric dependence in [19]): for � 2 Kn and ˛ 2 R it holds
that

Z

��

l.u/�2 du � c.j�j C j@�j/l�1
0 ; (30)

Z

��n��

l.u/˛ du � cj@�jl1C˛
0 ; (31)

where �� is defined as in Lemma 6.1, �� D ¹u 2 RnW supp �u \ � ¤ ;º, and
similarly �� WD ¹u 2 �W supp �u � �º. As noted above �� is essentially an outer
parallel set of �. Similarly �� is essentially an inner parallel set. In particular we
note the inclusions �� � � � ��.

Using the above we are ready to prove Lemmas 2.1 and 2.3.

Proof of Lemma 2.1. The proof is based on constructing a nested family of regular
convex domains �."/ 2 Kn, for " > 0, such that �.0/ D � and �."/ � �."0/ if
" > "0.

Define, in the notation introduced in Section 2.1, �."/ WD .�"/
" D .� � B"/C

B", that is the outer parallel set of the inner parallel set of � at distance " > 0. For
0 � " < r.�/ it is clear from the construction that �."/ are non-empty and nested
as described above. We also see that �."/ satisfies an "-inner ball condition, and
hence its boundary is C 1;1-regular (see, for instance, [14]). Furthermore, it holds
that D.�."// � D.�/ and r.�."// D r.�/.

By (11) and the properties of mixed volumes listed in Section 2.1 we have

ˇ
ˇj�"j � j�j � "j@�j

ˇ
ˇ D

n
X

j D2

�
n

j

�

"j W.�; : : : ; �
„ ƒ‚ …

n�j

; B1; : : : ; B1
„ ƒ‚ …

j

/
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and

n
X

j D2

�
n

j

�

"j W.�; : : : ; �
„ ƒ‚ …

n�j

; B1; : : : ; B1
„ ƒ‚ …

j

/

D
n

X

j D2

�
n

j

�
"j

D.�/j
W.�; : : : ; �

„ ƒ‚ …

n�j

; D.�/B1; : : : ; D.�/B1
„ ƒ‚ …

j

/

�
n

X

j D2

�
n

j

�
"j

D.�/j
D.�/njB1j � cD.�/n�2"2:

Similarly

ˇ
ˇj@�"j � j@�j

ˇ
ˇ D n

n�1
X

j D1

�
n � 1

j

�

"j W.�; : : : ; �
„ ƒ‚ …

n�j �1

; B1; : : : ; B1
„ ƒ‚ …

j C1

/ � cD.�/n�2":

Hence we can conclude that

j�"j D j�j C "j@�j C O."2/ and j@�"j D j@�j C O."/; (32)

where both error terms are uniform on compact subsets of Kn.

Moreover, by (12) and the corresponding upper bound

j@�"j D j@�j C O."/; (33)

where the implicit constant can be bounded from above by a constant times
j@�j=r.�/.

Combining �."/ � � with (32), (33) and the inequality j�"j � j�j � "j@�j
yields that

j�."/j D j�j C O."2/ and j@�."/j D j@�j C O."/; (34)

where again both the error terms are uniform on compact subsets of Kn.

By the monotonicity of Dirichlet eigenvalues under domain inclusion

Tr.�h2�� � 1/� � Tr.�h2��."/ � 1/�: (35)

The idea is now to apply the methods of [16] to each �."/, keeping track of how
the error terms depend on ", and in the final step choose " appropriately depending
on h.
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We first observe that if x 2 @�."/ and ı � "=2 then the set @�."/ \ Bı.x/ is
(in the sense above) locally a graph of a C 1;1-function f satisfying

jrf .x0/ � rf .y0/j � c

"
jx0 � y0j; (36)

where c is a dimensional constant. Indeed, by convexity and the fact that �

satisfies a uniform "-inner ball condition it follows that f is C 1;1-regular from
Propositions 1.1 and 1.2 in [14]. That the constant in the C 1;1-estimate (36) behaves
like "�1 is a consequence of scaling: If f .x/ can be touched from above and below
at each point by a ball of radius " then g.x/ WD f ."x/=" can at each point be
touched from above and below by a ball of radius 1.

Let l.u/ be defined as in (27) with respect to the set �."/ with l0 2 .0; 1/ to be
chosen later, and �u be the corresponding family of functions (we emphasize that
this definition depends on " even though this is not reflected in our notation).

Consider the set

��."/ WD ¹u 2 RnW supp �u \ �."/ ¤ ;º;

we note again that ��."/ contains points in the complement of �."/. This is
precisely the set of u 2 Rn where Tr.�u.�h2��."/ � 1/�u/� is non-zero. We
split ��."/ into the sets ��."/ WD ¹u 2 ��."/W supp�u � �."/º and �b."/ WD
��."/ n ��."/. The set ��."/ is precisely the set of u 2 ��."/ such that
supp �u \ @�."/ D ;, and �b."/ is the set where the same intersection is non-
empty.

Let t� solve the equation t D 1
2
.1 C .t2 C l2

0 /�1=2/�1 D l.u/
ˇ
ˇ
dist.u;�c/Dt

. By

observing that l.u/
ˇ
ˇ
u2�c D l0

2l0C2
and 0 � d

dt

�
1
2
.1 C .t2 C l2

0 /�1=2/�1
�

� 1
2

it is

clear that t� is unique, and moreover that t� � l0=
p

3 since

1

2
.1 C ..l0=

p
3/2 C l2

0 /�1=2/�1 D l0p
3 C 2l0

� l0p
3

:

By the remarks above l.u/ � l0=4 for all u 2 Rn, and moreover since �b."/

is precisely the set where l.u/ � dist.u; @�/ we find that if u 2 �b."/ then
l.u/ � l0=

p
3.

By Lemma 6.1 and (30) we have for 0 < h � Ml0 and " 2 Œ0; r.�// that

Tr.�h2��."/ � 1/� �
Z

��."/

Tr.�u.�h2��."/ � 1/�u/�l.u/�n du

C
Z

�b."/

Tr.�u.�h2��."/ � 1/�u/�l.u/�n du

� c.j�j C j@�j/l�1
0 h�nC2;

(37)

where the constant in the error term can be chosen independent of " due to (34).
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If u 2 �b."/ then dist.u; @�/ � l.u/ � l0=
p

3 and thus Bl.u/.u/ � B2l0=
p

3.x/

for some x 2 @�. If we assume that l0 � c" then by the observation that @�."/ is
C 1;1-regular with the explicit estimate (36) we can apply Lemma 6.4 to the second
integrand of (37), assuming c is small enough (depending only on dimension). By
also applying Lemma 6.7 to the first integrand in (37) this yields that

Tr.�h2��."/ � 1/�

� Lcl
1;n

Z

��."/

Z

�."/

�2
u.x/l.u/�n dxdu h�n

C
Z

�b."/

�

Lcl
1;n

Z

�."/

�2
u.x/ dx h�n

� 1

4
Lcl

1;n�1

Z

@�."/

�2
u.x/ d�.x/ h�nC1

�

l.u/�n du

� ch�nC1

Z

�b."/

�

hl.u/�2 C l.u/"�2 C "�1h�1l.u/
�

du

� c.j�j C j@�j/l�1
0 h�nC2;

(38)

where we used the C 1-modulus of continuity for @� in (36), and (30) and (31) to
bound the error terms coming from Lemmas 6.1 and 6.7.

Using (26), and (31) we find that (38) implies

Tr.�h2��."/ � 1/� � Lcl
1;nj�."/jh�n �

Lcl
1;n�1

4
j@�."/jh�nC1

� c.j�j C j@�j/.hl�1
0 C l2

0 "�2 C l2
0 h�1"�1/h�nC1

D Lcl
1;nj�jh�n �

Lcl
1;n�1

4
j@�jh�nC1

C .hl�1
0 C l2

0 "�2 C l2
0 h�1"�1 C h�1"2 C "/O.h�nC1/;

(39)

where we in the second step also use (34). The final error term of (39) is uniform
on compact subsets of Kn since this is the case for all the error terms leading up
to the estimate.

In the construction above we have required that h � Ml0 and l0=c � " < r.�/,
for a dimensional constant c, and l0 < 1. Setting l0 D ch˛ , M D 1=c, and
" D hˇ for some 0 < ˇ � ˛ < 1 we find that our assumptions are satisfied for all
0 < h < min¹1; r.�/1=ˇº. With these choices the expression in the parenthesis of
the last term in (39) becomes

hl�1
0 C l2

0 "�2 C l2
0 h�1"�1 Ch�1"2 C" . h1�˛ Ch2˛�2ˇ Ch2˛�1�ˇ Ch2ˇ�1 Chˇ :
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Choosing ˛ D 6=7; ˇ D 4=7 we find

h1�˛ C h2˛�2ˇ C h2˛�1�ˇ C h2ˇ�1 C hˇ . h1=7:

By (35), and since the the error term in (39) is uniform on compact subsets
of Kn, this completes the proof of Lemma 2.1 for  D 1. As noted above
the statement for  > 1 follows from an application of the Aizenman–Lieb
identity. �

Proof of Lemma 2.3. Fix � 2 Pm. By Lemma 2.1 we only need to prove the
corresponding upper bound for Tr.�h2�� � 1/�. The main idea of the proof is
similar to that used above for the regular sets �."/. However, since the boundary
is now not regular enough to use Lemma 6.4 close to every point we split our
domain of integration into three parts. Define

�� WD ¹u 2 RnW supp �u \ � ¤ ;º;

�� WD ¹u 2 RnW supp �u � �º;

�b WD ¹u 2 ��W supp �u \ @� is a piece of a hyperplaneº;

�s WD �� n .�� [ �b/:

The set �� is again the set of u 2 Rn where Tr.�u.�h2�� � 1/�u/� is non-zero.
The set �� is the bulk of �, where the effect from the boundary is not felt. Finally
�b and �s are the remaining parts of ��. The first set �b is where the intersection
of supp �u with the boundary consists of part of a single face of �, and hence we
can apply Lemma 6.4 with ! � 0. The second set �s is where the intersection of
supp �u with the boundary contains pieces of several faces of �, we shall show
that the contribution from this set is negligible in the limit h ! 0C.

By Lemma 6.1 and (30) we have that, for 0 < h � l0,

Tr.�h2�� � 1/�

�
Z

��

Tr.�u.�h2�� � 1/�u/�l.u/�n du

C
Z

�b

Tr.�u.�h2�� � 1/�u/�l.u/�n du

C
Z

�s

Tr.�u.�h2�� � 1/�u/�l.u/�n du C c.j�j C j@�j/l�1
0 h�nC2:
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We estimate the first and third terms using Lemma 6.6, and apply Lemma 6.4 with
! � 0 to the integrand of the second, this yields

Tr.�h2�� � 1/�

� Lcl
1;n

Z

��

Z

�

�u.x/2l.u/�n dxdu h�n

�
Lcl

1;n�1

4
h�nC1

Z

�b[�s

Z

@�

�u.x/2l.u/�n d�.x/du

C
Lcl

1;n�1

4
h�nC1

Z

�s

Z

@�

�u.x/2l.u/�n d�.x/du C c.j�j C j@�j/l�1
0 h�nC2:

Here we have added and subtracted the boundary term integrated over �s, and
used (31) to bound the remainder from our application of Lemma 6.4. Using (26)

we obtain that

Tr.�h2�� � 1/� � Lcl
1;nj�jh�n �

Lcl
1;n�1

4
j@�jh�nC1

C
Lcl

1;n�1

4
h�nC1

Z

�s

Z

@�

�u.x/2l.u/�n d�.x/du

C c.j�j C j@�j/l�1
0 h�nC2:

(40)

Using (25) and the convexity of � it holds that

Z

�s

Z

@�

�u.x/2l.u/�n d�.x/du � c

Z

�s

jsupp �u \ @�jl.u/�n du

� c

Z

�s

l.u/�1 du � cj�sjl�1
0 ;

where we used that l.u/ � l0=4. We want to prove that we can choose l0 such that

h�nC1l�1
0 j�bj C .j�j C j@�j/l�1

0 h�nC2 D o.h�nC1/ (41)

uniformly for � in compact subsets of Pm. If we can prove that such a choice is
possible the combination of (40) and Lemma 2.1 implies the claimed asymptotic
expansion for  D 1. As above an application of the Aizenman–Lieb identity
completes the proof for all  > 1.

Our aim is to show that j�bj is small, specifically we shall show that it is � l2
0 .

To this end we shall prove that �b is contained in an l0-neighbourhood of the
.n � 2/-dimensional faces of �.
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Take u 2 �s. By definition there are two points x1; x2 2 Bl.u/.u/ \ @� such
that x1; x2 belong to two different faces of � (otherwise u would be in �b). Let
x0 be a point in � such that Br.�/.x0/ � �. Consider the plane spanned by the
points x0; x1; x2, noting that x0; x1; x2 cannot lie on a line since by convexity this
would imply that x0 2 �c which is a contradiction. Without loss of generality we
can assume that x0 is the origin. Since jx1 � x2j � 2l0=

p
3 we can if l0 � r.�/

also assume that x1; x2 are in the same half-plane H .

Let �0 be the polygon obtained as the intersection of � with this plane. Clearly
r.�0/ � r.�/ and D.�0/ � D.�/. We also note that the segment of @�0 \ H

connecting x1; x2 must contain a point belonging to an .n�2/-dimensional face of
�. Let x0 be any such point. By convexity �0 contains the open triangle which has
one vertex at x0 and the other two on @Br.�/.x0/\L, where L is the line through x0

perpendicular to that through x0 and x0. In other words we consider the isosceles
triangle with one side being a diameter of the disk Br.�/.x0/ and symmetry axis
being the segment from x0 to x0. As x1; x2 2 @� they are necessarily in the
complement of this triangle. Since jx1 � x2j � 2l0=

p
3 and jx0 � x0j � D.�/ the

convexity of �0 and elementary trigonometry gives us that

max¹jx1 � x0j; jx2 � x0jº � cD.�/

r.�/
l0:

We can thus conclude that �b is contained in a cD.�/
r.�/

l0-neighbourhood of the
.n � 2/-dimensional faces of �. Let ¹Fkºk denote the collection of these faces.
There are fewer than

�
m
2

�

such faces and each of them is contained in a subset of
an .n � 2/-dimensional affine subspace of Rn whose diameter is less than D.�/.
Hence we find that

j�bj �
ˇ
ˇ
ˇ

°

u 2 RnW dist.u; [kFk/ � cD.�/

r.�/
l0

±ˇ
ˇ
ˇ

�
X

k

ˇ
ˇ
ˇ

°

u 2 RnW dist.u; Fk/ � cD.�/

r.�/
l0

±ˇ
ˇ
ˇ

�
�

m

2

�ˇ
ˇ
ˇ

°

u 2 RnW dist.u; yF / <
cD.�/

r.�/
l0

±ˇ
ˇ
ˇ

� cD.�/n

r.�/2
l2
0 ;

where
yF D ¹u 2 RnW u1 D u2 D 0; juj � 2D.�/º:
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Returning to (41) we can conclude that, with l0 D h1=3,

h�nC1.l�1
0 j�b j C .j�j C j@�j/hl�2

0 / � ch�nC4=3
�D.�/n

r.�/2
C j�j C j@�j

�

:

As the choice of l0 clearly fulfils the requirements h � l0 � min¹1; r.�/º as soon
as h � min¹1; r.�/3º this completes the proof of Lemma 2.3. �

7. Maximizing Riesz means over disjoint unions of convex domains

In this section we show that our results are unchanged if one allows also for disjoint
unions of convex domains. We begin by proving that the result remains true if one
allows two convex components.

Lemma 7.1. Let A be a closed subset of Kn which is invariant under dilations

and satisfies the assumption in (ii) of Proposition 4.1. Fix  � 1 and let �ƒ; .A2/

denote any extremal domain of the shape optimization problem

sup¹Tr.��� � ƒ/
�W j�j D 1;

� D �1 [ �2;

�1 \ �2 D ;;

�j 2 A or �j D ;º:

Let also �1
ƒ denote the largest of the two components of �ƒ;.A2/.

For any sequence ¹ƒj ºj �1 " 1 the corresponding sequence ¹�1
ƒj

ºj �1 has a

subsequence which, up to rigid transformations, converges in A. Moreover, �1
the limit of such a subsequence has unit measure and minimizes the perimeter

in A:

j@�1j D inf¹j@�jW � 2 A; j�j D 1º:

Proof of Lemma 7.1. Fix  � 1 and let �ƒ;.A2/ D �ƒ D �1
ƒ [ �2

ƒ. Assume
without loss of generality that j�1

ƒj � 1=2. Since the Riesz mean is additive under
disjoint unions the two components must be maximizers for the shape optimization
problems among domains in A of their respective measure. After rescaling to unit
measure one finds that �1

ƒ solves the one-component optimization problem at
ƒ0 D ƒj�1

ƒj2=n. Thus by Proposition 4.1 we are done as soon as we can show that
j�1

ƒj
j ! 1 as j ! 1.
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After possibly passing to a subsequence of ¹ƒj ºj �1 we have two possibilities.

Case 1: j�2

ƒj
j ! 0 as j ! 1. In which case we are done.

Case 2: j�2

ƒj
j � c > 0. Since Riesz means are additive under disjoint unions

we have that the bound in Theorem 2.4 holds also in our current setting: Sum the
corresponding bounds for the components of the disjoint union. Hence by arguing
as in the first part of the proof of Proposition 4.1 we find that j@�ƒj

j � c: Thus
both sequences ¹�1

ƒj
ºj �1; ¹�2

ƒj
ºj �1 are after translation contained in a compact

subset of Kn. Hence our assumptions imply that

Tr.���ƒj
� ƒj /

�

D Tr.���1
ƒj

� ƒ/
� C Tr.���2

ƒj

� ƒj /
�

D Lcl
;nj�ƒj

jƒCn=2
j �

Lcl
;n�1

4
j@�ƒj

jƒC.n�1/=2
j C o.ƒ

C.n�1/=2
j /;

as j ! 1. Arguing as in the proof of Proposition 4.1 we find that �ƒj
converges

to a domain which minimizes the perimeter among domains with at most two
components, each of which is in A. If �0 D �0

1 [ �0
2 with �0

j 2 A it is clear
that the perimeter of �0 is minimal when the perimeter of the two components
are minimizers of the perimeter in A among sets of their respective measure. By
scaling we find that

j@�0j D .j�0
1j.n�1/=n C j�0

2j.n�1/=n/ inf¹j@�jW � 2 A; j�j D 1º:
Since �.n�1/=n C .1 � �/.n�1/=n � 1 with equality if and only if � D 0 or 1 we find
that any domain minimizing the perimeter must have only one component. This
contradicts the assumption that j�2

ƒj
j � c, and hence completes the proof. �

Using the same idea as above it is not difficult to prove the corresponding
result when any fixed and finite number of components is allowed. However, our
goal is here to show that this restriction is in fact not necessary and we can allow
for an arbitrary number of components. The only reason to first prove the two-
component case is that it will be used in the proof of the general result.

Corollary 7.2. Let A be a closed subset of Kn which is invariant under dilations

and satisfies the assumption in (ii) of Proposition 4.1. Fix  � 1 and let �ƒ; .A1/

denote any extremal domain of the shape optimization problem

sup¹Tr.��� � ƒ/
�W j�j D 1; � D

S

k�1�k ; �k 2 A; �k \ �k0 D ; if k ¤ k0º:
Let also �1

ƒ denote the largest of the components of �ƒ; .A1/.
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For any sequence ¹ƒj ºj �1 " 1 the corresponding sequence ¹�1
ƒj

ºj �1 has a

subsequence which, up to rigid transformations, converges in A. Moreover, �1
the limit of such a subsequence has unit measure and minimizes the perimeter

in A:

j@�1j D inf¹j@�jW � 2 A; j�j D 1º:

Remark 7.3. We note that Corollary 7.2 can be interesting even in extremely
simple cases. For instance, it implies that among unions of disjoint balls the
maximizers will as ƒ ! 1 converge to a single ball of unit measure.

Proof of Corollary 7.2. Again we can argue as in Proposition 4.1 to find that

j@�ƒ;.A1/j � c: (42)

Moreover, by Faber–Krahn’s inequality we know that each component of a max-
imizer �ƒ; .A1/ has measure greater than cƒ�n=2. Indeed, the Riesz mean is
zero for any component with smaller measure, which contradicts the maximality
of �ƒ; .A1/ since we can remove such components and rescale the remaining
domain to have measure one and in the process increasing the Riesz mean.

Let �ƒj ; .A1/ D
S

k�1 �k
ƒ be a maximizer, where we assume j�k

ƒj
j �

j�k0

ƒj
j if k < k0. Fix ¹ƒj ºj �1 " 1. After possibly passing to a subsequence we

can assume that j�1
ƒj

j < 1 � ", for some " > 0. If this is not the case we are
already done.

Step 1. We first exclude that all components have size � ƒ
�n=2
j . Assume that

along the sequence ƒj (or a subsequence thereof) we have that j�1
ƒj

j � cƒ
�n=2
j

for some c > 0. Due to the measure constraint we must have � ƒ
n=2
j components.

By the isoperimetric inequality

j@�ƒj
j D

X

k�1

j@�k
ƒj

j & ƒ
n=2
j ƒ

�.n�1/=2
j D ƒ

1=2
j ! 1;

which contradicts (42).

Step 2. The set �1
ƒj

[ �2
ƒj

is a maximizer for the problem

sup¹Tr.��� � ƒj /
�W j�j D mj ;

� D �1 [ �2;

�1 \ �2 D ;;

�j 2 A or �j D ;º;
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with mj D j�1
ƒj

j C j�2
ƒj

j. By Step 1 we can assume that mj ƒ
n=2
j ! 1 and

hence this problem is, after rescaling to unit measure, equivalent to that considered
in Lemma 7.1. Hence we find that for j large enough j�2

ƒj
j � cj�1

ƒj
j for any

0 < c < 1 to be chosen later.

Step 3. Similarly, y�1 D
S

k�2 �k
ƒj

is a maximizer for the problem

sup¹Tr.��� � ƒj /
�W j�j D j y�1j;

� D
S

k�1�k ;

�k 2 A;

�k \ �k0 D ; if k ¤ k0º:

Since j y�1j D 1 � j�1
ƒj

j > " this problem is again in the asymptotic regime and

we can argue as in Steps 1 and 2 and find that j�3
ƒj

j � cj�2
ƒj

j for any 0 < c < 1

if j is large enough.

Step 4. Set c D "
2�"

. We can then iterate the arguments above. For each l > 1

we have
ˇ
ˇ
S

k�l �k
ƒj

ˇ
ˇ D 1 �

ˇ
ˇ
Sl�1

kD1 �k
ƒj

ˇ
ˇ � 1 � j�1

ƒj
j
Pl�1

kD1
"k�1

.2�"/k�1 > "=2,

this ensures that the maximization problem which y�l D
S

k�l �k
ƒj

solves is
still in the asymptotic regime when j ! 1. Hence, by Steps 1-3 it holds that
j�kC1

ƒj
j � j�k

ƒj
j "

2�"
, for all k � 1, provided that ƒj is large enough (depending

only on ").

Step 5. Calculate the measure of �ƒj ; .A1/:

j�ƒj ; .A1/j D
X

k�1

j�k
ƒj

j

� j�1
ƒj

j
1

X

kD1

"k�1

.2 � "/k�1

� .1 � "/

1
X

kD1

"k�1

.2 � "/k�1

D 1 � "=2;

which is a contradiction for all " > 0 and hence j�1
ƒj

j ! 1 as j ! 1.

By Proposition 4.1 we can conclude that �1
ƒj

converges to a domain which
minimizes the perimeter among domains of unit measure in A. This completes
the proof. �
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Abstract. We prove that in dimension n ≥ 2, within the collection of
unit-measure cuboids in Rn (i.e. domains of the form

∏n
i=1(0, an)), any

sequence of minimising domains RD
k for the Dirichlet eigenvalues λk con-

verges to the unit cube as k → ∞. Correspondingly we also prove that
any sequence of maximising domains RN

k for the Neumann eigenvalues
µk within the same collection of domains converges to the unit cube as
k → ∞. For n = 2 this result was obtained by Antunes and Freitas in
the case of Dirichlet eigenvalues and van den Berg, Bucur and Gittins
for the Neumann eigenvalues. The Dirichlet case for n = 3 was recently
treated by van den Berg and Gittins. In addition we obtain stability
results for the optimal eigenvalues as k → ∞. We also obtain corre-
sponding shape optimisation results for the Riesz means of eigenvalues
in the same collection of cuboids. For the Dirichlet case this allows us to
address the shape optimisation of the average of the first k eigenvalues.

Mathematics Subject Classification. 35J20, 35P99.

Keywords. Spectral optimisation, Laplacian, Eigenvalues, Asymptotics,
Cuboids.

1. Introduction

Let Ω ⊂ Rn, n ≥ 2, be an open set with finite Lebesgue measure |Ω| < ∞.
Then the spectrum of the Dirichlet Laplace operator −∆D

Ω acting on L2(Ω)
is discrete and its eigenvalues can be written in a non-decreasing sequence,
repeating each eigenvalue according to its multiplicity,

λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) ≤ · · · ,

with λ1(Ω) > 0. Moreover, the sequence accumulates only at infinity.
If in addition the boundary of Ω is Lipschitz regular, then the spectrum

of the Neumann Laplace operator −∆N
Ω is discrete and its eigenvalues can

be written in a non-decreasing sequence, repeating each eigenvalue according
to its multiplicity,
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0 = µ0(Ω) ≤ µ1(Ω) ≤ · · · ≤ µk(Ω) ≤ · · ·
Again the sequence accumulates only at infinity.

1.1. Optimising Laplacian Eigenvalues with a Measure Constraint

For k ∈ N and fixed c > 0, the existence of sets ΩD
k and ΩN

k which realise the
infimum respectively the supremum in the optimisation problems

λk(ΩD
k) = inf{λk(Ω) : Ω ⊂ Rn open, |Ω| = c},

µk(ΩN
k ) = sup{µk(Ω) : Ω ⊂ Rn open and Lipschitz, |Ω| = c}

has received a great deal of attention throughout the last century.
It was shown by Faber [10] in R2 and Krahn [22,23] in any dimension

that the first Dirichlet eigenvalue is minimised by the ball of measure c.
Furthermore, Krahn [23] proved that the disjoint union of two balls each of
measure c

2 minimises λ2. In the Neumann case it was shown by Szegő [35] and
Weinberger [39] that the ball of measure c maximises µ1. Girouard et al. [12]
proved that amongst all bounded, open, planar, simply connected sets of area
c, the maximum of µ2 is realised by a sequence of sets which degenerates to
the disjoint union of two discs each of area c

2 .
For k ≥ 3, it is known that a minimiser of λk exists in the collection of

quasi-open sets, see [7,32]. But whether these minimisers are open is currently
unresolved. In general minimisers of λ3 are not known to date, but there are
some conjectures for them, for example see [15,33]. In the plane, and with
k ≥ 5, it is known that neither a disc nor a disjoint union of discs minimises
λk [6]. In addition, for some values of k ≥ 3, numerical evidence suggests that
minimisers of λk might not have any natural symmetries, see [2].

In the Neumann case the existence of a maximising set which realises
the above supremum remains open to date (see, for example, [8, Sect. 7.4]).

1.2. Asymptotic Shape Optimisation

An idea brought forward by Antunes and Freitas [3] was to consider the
behaviour of minimisers of λk at the other end of the spectrum. That is,
for a collection of sets in which a minimiser ΩD

k of λk exists for all k ∈ N,
to determine the limiting shape of a sequence of minimising sets (ΩD

k)k as
k → ∞. Analogously, if a maximiser ΩN

k of µk exists in some collection of sets,
then one can consider the asymptotic behaviour of a sequence of maximising
sets (ΩN

k )k as k → ∞.
It was shown in [9] that the statement that λk(ΩD

k) resp. µk(ΩN
k ) is

asymptotically equal to 4π2ω
−2/n
n (k

c )2/n as k → ∞, where ωn is the measure
of the unit ball in Rn, is equivalent to Pólya’s conjecture: for k ∈ N and any
bounded, open set Ω ⊂ Rn of measure c,

λk(Ω) ≥ 4πΓ
(n

2
+ 1

)2/n(k

c

)2/n

,

µk(Ω) ≤ 4πΓ
(n

2
+ 1

)2/n(k

c

)2/n

.

(1)

Note that the right-hand side of (1) is precisely the quantity we would like

to find as k → ∞, since 4π2ω
−2/n
n = 4πΓ(n

2 + 1)2/n. These inequalities were
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shown to hold for tiling domains by Pólya [34], see also [21]. In particular,
they hold for Ω =

∏n
i=1(0, ai).

In [3], it was shown that amongst all planar rectangles of unit area,
any sequence of minimising rectangles for λk converges to the unit square as
k → ∞. In [37] it was shown that the corresponding result holds in the Neu-
mann case. Furthermore, the analogous result for the Dirichlet eigenvalues
in three dimensions was proven in [38]. That is, amongst all cuboids in R3

of unit volume, any sequence of cuboids minimising λk converges to the unit
cube as k → ∞. For the Dirichlet eigenvalues, it was conjectured in [4] that
the analogous result also holds in dimensions n ≥ 4, and some support for
this conjecture was obtained there (see [4, Sect. 2]). Similar arguments also
suggest that the corresponding result holds for the Neumann eigenvalues in
dimensions n ≥ 3 (by invoking [4, Theorem 4] instead of [4, Theorem 1]).

The goal of this paper is to generalise the results of [3,37,38] to arbi-
trary dimensions. To that end, throughout the paper we let R = Ra1,...,an

denote an n-dimensional cuboid of unit measure, that is a domain of the form∏n
i=1(0, ai) ⊂ Rn where a1, . . . , an ∈ R+ are such that

∏n
i=1 ai = 1. Without

loss of generality we will always label the ai so that a1 ≤ · · · ≤ an. Moreover,
we let Q denote the n-dimensional unit cube.

For k ∈ N, λk(R) and µk(R) obey the two-term asymptotic formulae

λk(R) = 4πΓ
(n

2
+ 1

)2/n

k2/n +
2πΓ(n

2 + 1)1+1/n

nΓ(n+1
2 )

|∂R|k1/n + o(k1/n),

µk(R) = 4πΓ
(n

2
+ 1

)2/n

k2/n −2πΓ(n
2 + 1)1+1/n

nΓ(n+1
2 )

|∂R|k1/n + o(k1/n),

(2)

as k → ∞ (see [20] or Sect. 2.3). Here, and in what follows, |∂R| denotes the
perimeter of R. Corresponding two-term asymptotic formulae were conjec-
tured by Weyl for more general domains Ω ⊂ Rn, and under certain regularity
assumptions the conjecture was proven by Ivrii in [20].

Since the cube in Rn has smallest perimeter in the collection of n-
dimensional cuboids, (2) suggests that the cube is the limiting domain of a
sequence of optimising cuboids in this collection as k → ∞. However, this
argument does not provide a proof as we are not considering a fixed cuboid R
and then letting k → ∞. The minimising or maximising cuboids themselves
depend upon k (see, for instance, [4]).

1.3. Eigenvalues of Cuboids

For a cuboid R as above, the Laplacian eigenvalues are given by

π2i21
a2
1

+
π2i22
a2
2

+ · · · +
π2i2n
a2

n

, (3)

where i1, . . . , in are positive integers in the Dirichlet case and non-negative
integers in the Neumann case.

From (3) we see that a minimising cuboid of unit measure for λk, k ∈ N,
must exist. Indeed, as in [38], we consider a minimising sequence for λk where
one side-length is blowing up. Then another side-length must be shrinking
in order to preserve the measure constraint. However, this shrinking side
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would give rise to large eigenvalues, whilst for the unit cube Q we have
that λk(Q) ≤ nπ2k2 < ∞, contradicting the minimality of the sequence. To
emphasise the optimality, when referring to a cuboid which minimises λk we
will write RD

k and denote its side-lengths by a∗
1,k, . . . , a∗

n,k.

Similarly we see that a maximising cuboid of unit measure for µk, k ∈ N,
exists. As in [37], if (Rℓ)ℓ∈N = (Raℓ

1,...,aℓ
n
)ℓ∈N is a maximising sequence for µk

with aℓ
n → ∞ as ℓ → ∞, then for sufficiently large ℓ

µk(Rℓ) ≤ π2k2

(aℓ
n)2

and so µk(Rℓ) → 0 as ℓ → ∞. For the unit cube Q we have that µk(Q) > π2,
contradicting the maximality of the sequence. When referring to a cuboid
which maximises µk we will write RN

k and let a∗
1,k, . . . , a∗

n,k denote its side-
lengths.

1.4. Main Results

Before we state our results we need the following definition which plays a
central role in what follows.

Definition 1.1. For n ≥ 2, we define θn as any exponent such that for all
a1, . . . , an ∈ R+,

#{z ∈ Zn : a−2
1 z2

1 + · · · + a−2
n z2

n ≤ t2} −ωntn
n∏

i=1

ai = O(tθn), (4)

as t → ∞, uniformly for ai on compact subsets of R+.

Geometrically θn describes the asymptotic order of growth of the dif-
ference between the number of integer lattice points in the ellipsoid a−2

1 x2
1 +

· · · + a−2
n x2

n ≤ t2 and its volume. Finding the optimal order of growth in the
case n = 2 and a1 = a2 = 1 is the well-known, and still open, Gauss circle
problem (see [19] and references therein).

If (4) is not required to hold uniformly for different ai, then estimates for
θn are well-known (see, for instance, [14,18,19]). However, with the additional
requirement of a uniform remainder term the literature is less extensive. For
n ≥ 5, θn = n −2 is known to hold and to be optimal [13]. As far as the

authors are aware, the smallest known value, for n = 3, 4, is θn = n(n−1)
n+1

which is due to Herz [16]. For n = 2 it holds that θ2 ≤ 46
73 + ε, for any ε > 0,

due to Huxley [17]. In all dimensions, θn < n −1.
The main aim of this paper is to prove the following theorems, and

thereby extend the results of [3,37,38] to all dimensions.

Theorem 1.1. Let n ≥ 2. For k ∈ N, let RD
k denote an n-dimensional unit-

measure cuboid which minimises λk. Then, as k → ∞, we have that

a∗
n,k = 1 + O(k(θn−(n−1))/(2n)),

where θn is as defined in (4). That is, any sequence of minimising cuboids
(RD

k)k for λk converges to the n-dimensional unit cube as k → ∞.
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Theorem 1.2. Let n ≥ 2. For k ∈ N, let RN
k denote an n-dimensional unit-

measure cuboid which maximises µk. Then, as k → ∞, we have that

a∗
n,k = 1 + O(k(θn−(n−1))/(2n)),

where θn is as defined in (4). That is, any sequence of maximising cuboids
(RN

k )k for µk converges to the n-dimensional unit cube as k → ∞.

A further interesting question is what this implies for the difference
between λ∗

k = λk(RD
k) and λk(Q), resp. µ∗

k = µk(RN
k ) and µk(Q). By Pólya’s

inequalities (1), and the leading order asymptotics of λk(Q), µk(Q), we see
that |λk(Q)−λ∗

k| = O(k1/n) and |µk(Q)−µ∗
k| = O(k1/n). By a more detailed

analysis, we obtain the following.

Theorem 1.3. As k → ∞,

|λk(Q) −λ∗
k| = O(k(θn−(n−2))/n),

|µk(Q) −µ∗
k| = O(k(θn−(n−2))/n),

where θn is as defined in (4).

Note that for n ≥ 5 the above estimate states that the difference between
the extremal eigenvalues and those of the unit cube remain bounded for all
k, which we do not know to be the case for n < 5.

1.5. Strategy of Proof

Let r ≥ 0 and let R ⊂ Rn be a cuboid of measure one. We define

E(r,R) :=

{
(x1, . . . , xn) ∈ Rn :

n∑

j=1

x2
j

a2
j

≤ r

π2

}
. (5)

The set E(r,R) ⊂ Rn is an n-dimensional ellipsoid with radii rj =
ajr1/2

π ,

j = 1, . . . , n, and measure |E(r,R)| = ωn

∏n
j=1 rj = ωnrn/2

πn .

By (3), we see that the Dirichlet eigenvalues λ1(R), . . . ,λk(R) corre-
spond to integer lattice points with positive coordinates that lie inside or
on the ellipsoid E(λk(R), R). In this setting, determining a cuboid of unit
measure which minimises λk corresponds to determining the ellipsoid which
contains k integer lattice points with positive coordinates and has minimal
measure. Similarly, the Neumann eigenvalues µ0(R), µ1(R), . . . , µk(R) corre-
spond to integer lattice points with non-negative coordinates that lie inside
or on the ellipsoid E(µk(R), R). Determining a cuboid of unit measure which
maximises µk corresponds to determining the ellipsoid of maximal measure
which contains fewer than k + 1 integer lattice points with non-negative co-
ordinates.

This observation is used to prove Theorems 1.1 and 1.2 by following the
strategy of [3] (see also [37,38]). In particular, we compare the number of
lattice points that are inside or on a minimal, respectively maximal, ellipsoid
to the number of lattice points that are inside or on the sphere with radius
π−1(λ∗

k)1/2, respectively π−1(µ∗
k)1/2, and let k → ∞. To make this compari-

son, we use known estimates for the number of integer lattice points that are
inside or on an n-dimensional ellipsoid (this explains the appearance of the



612 K. Gittins, S. Larson IEOT

quantity θn in the above results). However, in order to use these estimates, we
must first show that for any sequence of minimising or maximising cuboids,
the corresponding side-lengths are bounded independently of k. The difficulty
lies in obtaining a sufficiently good upper, resp. lower, bound for the Dirich-
let, resp. Neumann, counting function which, for λ, µ ≥ 0 and R,E(r,R) as
above, we define as

ND(λ, R) := #{(i1, . . . , in) ∈ Nn ∩ E(λ, R)},

NN (µ,R) := #{(i1, . . . , in) ∈ (N ∪ {0})n ∩ E(µ,R)}.
(6)

In this paper, in order to obtain an upper bound for ND(λ, R) and
corresponding lower bound for NN (µ,R), we make use of an argument going
back to Laptev [24] and the fact that cuboids satisfy Pólya’s inequalities (1).
This argument, together with an application of an identity due to Aizenman
and Lieb (see [1] or (9) below), allows us to reduce the problem to estimating∑

k(λ−k2)+, which arises as the Riesz mean of the Laplacian on an interval.
The approach taken in [3,37,38] to prove the two- and three-dimensional

versions of Theorems 1.1 and 1.2 makes use of the fact that the functions i *→
(y−i2)m/2, for m = 1, 2, are concave on [0, y1/2]. However, for m ≥ 3, this con-
cavity fails and hence this approach cannot be used to deal with the higher-
dimensional cases, see [38]. To use the same approach as in [37] to deal with
the case n = 3, it would also be necessary to show that lim supk→∞(a∗

1,k)−1

(µ∗
k)−1/2 < ∞ (compare with [37, Lemma 2.3]). The approach taken for

the Neumann case here allows us to obtain a two-term lower bound for
NN (µ,R) which enables us to avoid such considerations. This issue was
also avoided when the two-dimensional case was proven in [28]. Nonethe-
less, in any dimension it is possible to obtain a bound for the quantity
lim supk→∞(a∗

1,k)−1(µ∗
k)−1/2 by exploiting that if a∗

1,k = o((µ∗
k)−1/2) then all

µl(R
N
k ), for l < k, must be of the form π2

∑n
j=2 i2j (a

∗
j,k)−2 and by the max-

imality of µ∗
k the domain

∏n
j=2(0, a

∗
j,k) must be a maximiser of µk amongst

cuboids in Rn−1 of measure 1/a∗
1,k.

1.6. Additional Remarks

Our approach naturally lifts to considering the shape optimisation problems
of maximising, resp. minimising, the Riesz means of Dirichlet, resp. Neumann,
eigenvalues, which for λ, µ ≥ 0 and γ ≥ 0 are defined by

Tr(−∆D
Ω −λ)γ

− =

∞∑

k=1

(λ −λk(Ω))γ
+,

resp.

Tr(−∆N
Ω −µ)γ

− =

∞∑

k=0

(µ −µk(Ω))γ
+.

For Ω ⊂ Rn and γ ≥ 3/2 the Dirichlet case of this problem was addressed
in [27], where it was shown that amongst collections of convex sets of unit
measure, satisfying certain additional regularity assumptions, the extremal
sets converge to the ball as λ → ∞. Within the collection of n-dimensional



Vol. 89 (2017) Cuboids Optimising Laplacian Eigenvalues 613

cuboids we obtain the corresponding result for all γ ≥ 0 in both the Dirichlet
and Neumann cases, that is, any sequence of optimal cuboids converges to
the unit cube as λ, µ → ∞ (see Propositions 4.1 and 4.2 below).

A problem which is closely related to that considered here was recently
studied by Laugesen and Liu [28]. In this article the authors consider a collec-
tion of concave, planar curves that lie in the first quadrant and have intercepts
(L, 0) and (0,M). They fix such a curve and scale it in the x direction by
s−1 and in the y direction by s, as well as radially by r. Their goal is to
determine the curve which contains the most integer lattice points in the
first quadrant as r → ∞. Under certain assumptions on the curve they prove
that the optimal stretch factor s(r) → 1 as r → ∞. In particular, they re-
cover the result of Antunes and Freitas [3], and, in a similar way, that of
van den Berg et al. [37]. They also obtain analogous results for p-ellipses
where 1 < p < ∞. The case where 0 < p < 1 has recently been addressed
by Ariturk and Laugesen [4]. As mentioned above, the results of that paper
lend some support to Theorem 1.1 in the case where n ≥ 5 (see [4, Sect. 2]).
Recently the case p = 1 was treated by Marshall and Steinerberger [31]. In
contrast to the case p ̸= 1, the set of maximising s in this setting does not
converge when r → ∞ and in fact there is an infinite set of limit points.
After the first version of this paper appeared Marshall generalised the re-
sults of Laugesen and Liu to an n-dimensional setting [30]. The results of
that paper include the convergence results of Theorems 1.1 and 1.2 as special
cases.

The plan for the remainder of the paper is as follows. In Sect. 2.1 we
obtain bounds for the eigenvalue counting functions ND, NN . We continue
in Sect. 2.2 by applying the obtained bounds to prove that the side-lengths
of a sequence of minimising, respectively maximising, cuboids (RD

k)k, (RN
k )k

are bounded independently of k. In Sect. 2.3 we prove uniform asymptotic
expansions for the counting functions ND(λ, R), NN (µ,R). All the above is
combined in Sect. 3 in order to prove Theorems 1.1, 1.2 and 1.3. Finally, in
Sect. 4 we apply our methods to the shape optimisation problems of maximis-
ing, resp. minimising, the Riesz means of Dirichlet, resp. Neumann, eigenval-
ues and minimising the average of the first k Dirichlet eigenvalues. For both
problems we obtain analogous results to those obtained in the case of indi-
vidual eigenvalues.

2. Preliminaries

We begin this section by establishing three- respectively two-term bounds for
the eigenvalue counting functions for the Dirichlet and Neumann Laplacians
on an arbitrary cuboid. These bounds will allow us to prove that the sequence
of extremal cuboids remains uniformly bounded, i.e. does not degenerate, as
k tends to infinity (see Sect. 2.2).

We end this section by obtaining precise and uniform asymptotic ex-
pansions for the eigenvalue counting functions on the sequence of extremal
cuboids.
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Here and in what follows we let Lcl
γ,m denote the semi-classical Lieb–

Thirring constant

Lcl
γ,m =

Γ(γ + 1)

(4π)m/2Γ(γ + m
2 + 1)

.

For x ∈ R we also define the positive and negative parts of x by x± =
(|x| ± x)/2.

2.1. Asymptotically Sharp Bounds for the Eigenvalue Counting Functions

In this section we prove a three-term upper bound for the counting function
ND(λ, R) and a two-term lower bound for the counting function NN (µ,R).
More specifically we prove the following lemmas.

Lemma 2.1. For n ≥ 2, there exist positive constants c1, c2 and b0 such that,
for any cuboid R ⊂ Rn with |R| = 1, the bound

ND(λ, R) ≤ Lcl
0,nλn/2 −c1bL

cl
0,n−1

a1
λ(n−1)/2 +

c2b
2Lcl

0,n−2

a2
1

λ(n−2)/2,

holds for all λ ≥ 0 and b ∈
[
0, b0

]
.

Lemma 2.2. For n ≥ 2, there exists a constant c1 > 0 such that for any
cuboid R ⊂ Rn, with |R| = 1, the bound

NN (µ,R) ≥ Lcl
0,nµn/2 +

c1L
cl
0,n−1

a1
µ(n−1)/2,

holds for all µ ≥ 0.

Remark 2.3. The parameter b in our bounds for ND(λ, R) allows us to tune
whether we wish the bound to be more accurate near the bottom of the
spectrum or asymptotically as λ → ∞. This flexibility will be of importance
for us when we prove the uniform boundedness of the extremal cuboids for
the Dirichlet problem, see Sect. 2.2.

It should be noted that for large λ the third term is not fundamental
and could be absorbed by the second one. For instance, when n ≥ 5 a bound
similar to Lemma 2.1 was obtained in [26, Corollary 1.2] without the third
term by instead requiring that λ is large enough. Similarly a two-term bound
in the two-dimensional case was obtained in [28, Proposition 10]. However,
the procedure of lifting the above bounds to Riesz means is much simplified
if the bounds are valid for all λ ≥ 0, and correspondingly µ ≥ 0 (see Sect. 4).

Proof of Lemmas 2.1 and 2.2. The main idea of the proof is to reduce the
problem to proving one-dimensional estimates. To this end we follow an idea
due to Laptev [24], which uses the fact that cuboids satisfy Pólya’s inequal-
ities (1) and the product structure of the domains. Let R′ = (0, a2) × · · · ×
(0, an) and write

ND(λ, R) =
∑

k:λk(R)≤ λ

(λ −λk(R))0

=
∑

k,l:λk(R′)+λl((0,a1))≤ λ

(λ −λl((0, a1)) −λk(R′))0
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=
∑

l:λl((0,a1))≤ λ

∑

k:λk(R′)≤ λ−λl((0,a1))

((λ −λl((0, a1))) −λk(R′))0

=
∑

l:λl((0,a1))≤ λ

ND((λ −λl((0, a1)))+, R′),

where we use the convention “00 = 1”. The above could be done with strict
inequalities to avoid this issue, but to match (5), (6) we also wish to count the
eigenvalues that are equal to λ. Applying Pólya’s inequality for the counting
function on R′, which says ND(λ, R′) ≤ Lcl

0,n−1|R′|λ(n−1)/2 (see [34]), yields
that

ND(λ, R) ≤
∑

l:λl((0,a1))≤ λ

Lcl
0,n−1|R′|(λ −λl((0, a1)))

(n−1)/2
+

= Lcl
0,n−1|R′|Tr(−∆D

(0,a1)
−λ)

(n−1)/2
− . (7)

Analogously, with the only difference being that Pólya’s inequality goes
in the opposite direction, one finds that

NN (µ,R) ≥ Lcl
0,n−1|R′|Tr(−∆N

(0,a1)
−µ)

(n−1)/2
− . (8)

The Aizenman–Lieb Identity [1] asserts that if γ1 ≥ 0 and γ2 > γ1,
then, for η ≥ 0,

Tr(−∆Ω−η)γ2
− = B(1+γ1, γ2−γ1)

−1

∫ ∞

0

τ−1+γ2−γ1 Tr(−∆Ω−(η−τ))γ1
− dτ,

(9)
where B denotes the Euler Beta function:

B(x, y) :=

∫ 1

0

tx−1(1 −t)y−1 dt.

The identity follows immediately from linearity and that, for any a ∈ R,
∫ ∞

0

τ−1+γ2−γ1(a + τ)γ1
− dτ =

∫ a−

0

τ−1+γ2−γ1(a + τ)γ1
− dτ

= aγ2
− B(1 + γ1, γ2 −γ1),

by the change of variables t = (a+τ)−
a−

.

Thus we can write the bounds (7) and (8) in the form

ND(λ, R) ≤ Lcl
0,n−1|R′|

B(1 + γ, n−1
2 −γ)

∫ λ

0

τ−1+ n−1
2 −γ Tr(−∆D

(0,a1)
−(λ −τ))γ

− dτ,

(10)

NN (µ,R) ≥ Lcl
0,n−1|R′|

B(1 + γ, n−1
2 −γ)

∫ µ

0

τ−1+ n−1
2 −γ Tr(−∆N

(0,a1)
−(µ −τ))γ

− dτ,

(11)

where we are free to choose γ ∈ [0, (n −1)/2). By choosing suitable γ and
appropriate one-dimensional estimates it is possible to obtain a variety of
bounds for the counting functions. The bounds that we make use of here are
proven in the appendix (see Lemmas A.1 and A.2).
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For n = 3 we do not use the Aizenman–Lieb Identity. Applying the
bounds of Lemmas A.1 and A.2 to the one-dimensional traces of (7) resp. (8)
yields the claimed bounds. For dimensions n ≥ 4 choose γ = 1 in (10) and (11)
and apply Lemma A.1 resp. Lemma A.2. Computing the resulting integrals
one obtains the claimed bounds.

In the two-dimensional Neumann case a bound of the required form was
obtained in [28, Proposition 14]. Moreover, the two-dimensional Dirichlet
case follows almost directly from Proposition 10 of the same paper. This
proposition states that, for λ ≥ 1/a2

1,

ND(λ, R) ≤ λ

4π
−cλ1/2

a1
, (12)

for some constant c > 0. We aim for a bound of the form ND(λ, R) ≤ 1
4π (

√
λ−

b/a1)
2. Note that the bound is trivially true for λ < π2/a2

1. Note also that
for b ≤ π the right-hand side is pointwise decreasing in b, hence if it holds
true for some b0 it holds for all b ∈ [0, b0]. Therefore, using (12) it suffices to
prove that

λ

4π
−cλ1/2

a1
≤ λ

4π
−bλ1/2

2πa1
+

b2

4πa2
1

for all λ > π2/a2
1, which is clearly true if and only if b ≤ 2πc. !

2.2. Extremal Cuboids are Uniformly Bounded

In this section we obtain a uniform lower bound for the shortest side-length
of the extremal cuboids RD

k and RN
k .

As the proof is almost precisely the same for the Dirichlet and the
Neumann cases we only write out the former in full. The only difference
between the two cases is that an element of the proof in the Dirichlet case is
not present in the proof of the Neumann result. This difference stems from
the fact that in the Dirichlet case we have a three-term bound and so we
need to bound the quantity that this extra term gives rise to.

For n ≥ 2 let RD
k , k ≥ 1, be a sequence of unit measure cuboids

minimising λk, i.e. such that λk(RD
k) = λ∗

k, and as usual we assume that
a∗
1,k ≤ · · · ≤ a∗

n,k. By optimality λ∗
k ≤ λk(Q) and so λ∗

k −ε < λk(Q), for any
0 < ε < 1, which implies that

ND(λ∗
k −ε, Q) ≤ k −1 < k ≤ ND(λ∗

k, RD
k).

The two-term asymptotics for the Dirichlet eigenvalue counting function
on the cube (see [20] or Sect. 2.3) combined with Lemma 2.1 then yield that

Lcl
0,n(λ∗

k −ε)n/2 −Lcl
0,n−1

4
|∂Q|(λ∗

k −ε)(n−1)/2 + o((λ∗
k −ε)(n−1)/2)

≤ Lcl
0,n(λ∗

k)n/2 −c1bL
cl
0,n−1

a∗
1,k

(λ∗
k)(n−1)/2 +

c2b
2Lcl

0,n−2

(a∗
1,k)2

(λ∗
k)(n−2)/2.

Rearranging and taking ε = 1
2 we find that

b

a∗
1,k

(
1 −c2bL

cl
0,n−2(λ

∗
k)−1/2

c1Lcl
0,n−1a

∗
1,k

)
≤ n

2c1
+ o(1).
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Since λ∗
k = λk(RD

k) ≥ λ1(R
D
k) > π2(a∗

1,k)−2, we have that −(λ∗
k)−1/2 ≥

−a∗
1,k/π. Hence

b

a∗
1,k

(
1 − c2bL

cl
0,n−2

c1πLcl
0,n−1

)
≤ n

2c1
+ o(1).

We now choose b ∈ (0, b0], where b0 is as defined in Lemma 2.1, small
enough so that the left-hand side is positive. Then the above implies that
there exists a C > 0 such that

1

a∗
1,k

≤ C + o(1), (13)

which in turn implies that

a∗
n,k ≤

(
1

a∗
1,k

)n−1

≤ Cn−1 + o(1).

Thus lim infk→∞ a∗
1,k ≥ 1/C > 0 and lim supk→∞ a∗

n,k < ∞ so the side-
lengths of a minimising sequence of cuboids are uniformly bounded away
from zero and infinity. For dimensions n = 2, 3, the corresponding result was
obtained, through a slightly different argument, in [3,38].

To prove the corresponding result for the Neumann problem one can
take the same approach. Observe that NN (µ∗

k −ε, RN
k ) ≤ k −1 < k ≤

NN (µk(Q), Q) ≤ NN (µ∗
k, Q), for k ≥ 1 and any 0 < ε < 1, apply the lower

bound of Lemma 2.2 to the left-hand side and expand the right-hand side us-
ing its two-term asymptotic expansion. Rearranging the obtained inequality
yields a bound of the form (13).

2.3. Precise Asymptotics for Eigenvalue Counting Functions

Let λ, µ, r ≥ 0 and E(r,R), ND(λ, R) and NN (µ,R) be as defined in Sect. 1.
Assume that R has bounded side-lengths so that the ellipsoid E(r,R) has
positive Gaussian curvature. In this section, we obtain two-term asymptotic
expansions for ND(λ, R) and NN (µ,R) with remainder estimates which are
uniform in the side-lengths of R. As the calculations for the Dirichlet and
Neumann problems are almost identical, we will write out the argument in
full only for the Dirichlet case and indicate what differences appear for the
Neumann case. Specifically we prove the following.

Lemma 2.4. For n ≥ 2 and R =
∏n

i=1(0, ai) ⊂ Rn, with ai > 0,

ND(λ, R) = Lcl
0,n|R|λn/2 −Lcl

0,n−1

4
|∂R|λ(n−1)/2 + O(λθn/2), (14)

NN (µ,R) = Lcl
0,n|R|µn/2 +

Lcl
0,n−1

4
|∂R|µ(n−1)/2 + O(µθn/2), (15)

as λ, µ → ∞, where θn is as defined in (4). Moreover, the remainder terms
are uniform on any collection of cuboids with side-lengths contained in a
compact subset of R+.
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Similar two-term asymptotic expansions for the counting function of
the Dirichlet, resp. Neumann, Laplacian are known to hold for more general
domains than cuboids (see, for example, [20]). However, to obtain the orders
of convergence in Theorems 1.1, 1.2 and 1.3 we require a better remainder
estimate than what is possible in general.

Proof of Lemma 2.4. The proof is based on the inclusion-exclusion principle.
For notational simplicity, in what follows we will write ND(λ), NN (µ) and
E(r) with the dependence on R being implicit.

By symmetry of the ellipsoid E(r) we have that

#{Zn ∩ E(r)} = 2n#{Nn ∩ E(r)}
+ #{(x1, . . . , xn) ∈ Zn ∩ E(r) : ∃i for which xi = 0}.

(16)
Let Ei(r) denote the set E(r)∩{xi = 0}. As the second term in the right-hand
side of (16) is the union of the sets Ei(r) ∩ Zn we can apply the inclusion–
exclusion principle

#{∪n
i=1(Ei(r) ∩ Zn)}

=

n∑

k=1

(−1)k+1

⎛
⎝ ∑

1≤ i1<···<ik≤ n

#{Ei1(r) ∩ · · · ∩ Eik
(r) ∩ Zn}

⎞
⎠ .

(17)

The set Ei1(r)∩ · · ·∩Eik
(r) is naturally identified with an ellipsoid in Rn−k,

namely

EI(r) =

⎧
⎨
⎩(x1, . . . , xn−k) ∈ Rn−k :

∑

j /∈I

x2
j

a2
j

≤ r2

π2

⎫
⎬
⎭ ,

where I = {i1, . . . , ik}. Moreover, we have that

#{Ei1(r) ∩ · · · ∩ Eik
(r) ∩ Zn} = #{EI(r) ∩ Zn−k}.

Since ND(R,λ) = #{Nn ∩ E(λ)}, we find from (16), (17) and (4) that

ND(R,λ) =
ωnλn/2

2nπn
−ωn−1λ

(n−1)/2

2nπn−1

n∑

i=1

∏

j ̸=i

aj

+ O(λθn/2 + λθn−1/2 + λ(n−2)/2)

= Lcl
0,nλn/2 −Lcl

0,n−1

4
|∂R|λ(n−1)/2 + O(λθn/2).

In the final step we used that 2
∑

i

∏
j ̸=i aj = |∂R| and θm ∈ [m−2,m−1) for

all m. The uniformity of the remainder follows directly from Definition 1.1.

To obtain the corresponding expansion in the Neumann case, one writes
the lattice points in E(r) as the union of reflected copies of the lattice points
in E(r)∩(N∪{0})n and then applies the inclusion–exclusion principle to this
union. !
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3. Geometric Convergence and Spectral Stability

In this section, we prove Theorems 1.1, 1.2 and 1.3. As the proofs of the
Dirichlet and the Neumann cases are almost identical, we again write out the
former case in full and indicate the differences which occur in the proof of
the latter.

Since the minimisers RD
k , respectively the maximisers RN

k , need not be
unique, we consider an arbitrary subsequence of such extremal sets. By the
results obtained in Sect. 2.2 (or the corresponding statements in [3,37,38]),
we know that the extremal cuboids in any dimension are uniformly bounded
in k, and thus the remainder terms in (14) and (15) are uniform with respect
to RD

k and RN
k , respectively.

Proof of Theorems 1.1 and 1.2. As in the proof of the uniform boundedness,
N(λ∗

k −ε, Q) < k ≤ N(λ∗
k, RD

k), for any 0 < ε < 1. Plugging in the asymptotic
expansion (14) on both sides, we have that

Lcl
0,n(λ∗

k −ε)n/2 −Lcl
0,n−1

4
|∂Q|(λ∗

k −ε)(n−1)/2 −O((λ∗
k −ε)θn/2)

≤ Lcl
0,n(λ∗

k)n/2 −Lcl
0,n−1

4
|∂RD

k |(λ∗
k)(n−1)/2 + O((λ∗

k)θn/2).

Rearranging and choosing ε = 1
2 , we obtain that

|∂RD
k | −|∂Q| ≤ O((λ∗

k)(θn−(n−1))/2) = O(k(θn−(n−1))/n), (18)

which, when combined with the isoperimetric inequality for cuboids, implies
that

|∂RD
k | =

n∑

i=1

2

a∗
i,k

= 2n + O(k(θn−(n−1))/n). (19)

By the arithmetic–geometric means inequality, with a∗
n,k = 1 + δk > 1, we

find that

(n −1)(1 + δk)1/(n−1) +
1

1 + δk
≤

n∑

i=1

1

a∗
i,k

. (20)

Then, by (19) and (20),

(n −1)(1 + δk)n/(n−1) + 1 ≤ n + nδk + O(k(θn−(n−1))/n). (21)

For each n ≥ 2, we know by the results in Sect. 2.2 (or from [3,38]) that
there exists T > 0 so that δk = a∗

n,k −1 ≤ T . Hence, letting c(T ) =
(1+T )n/(n−1)−1− n

n−1 T

T2 > 0, we have that

(1 + δk)n/(n−1) ≥ 1 +
n

n −1
δk + c(T )δ2

k.

By substituting this into (21), we deduce that δk = O(k(θn−(n−1))/(2n)).
For the Neumann case one can argue almost identically by observing

(as in the proof of the uniform boundedness of RN
k ) that, for any 0 < ε < 1,

NN (µ∗
k −ε, RN

k ) ≤ NN (µ∗
k, Q). !
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Remark 3.1. We remark that if we restrict the collection of cuboids to a sub-
collection containing a unique minimiser of the perimeter, then the above
arguments prove that any sequence of minimising, resp. maximising, cuboids
converges to the cuboid of smallest perimeter in this sub-collection (in par-
ticular, replace Q by this cuboid in (18)). For example, in the sub-collection
consisting of all unit-measure cuboids in Rn of the form

∏n
i=1(0, ai) such

that 0 < a1 ≤ · · · ≤ an and ca1 = a2, with c ≥ 1, any sequence of optimisers
converges to the cuboid with a1 = c−(n−1)/n and a2 = · · · = an = c1/n.

We now turn to the question of spectral stability and the proof of The-
orem 1.3.

Proof of Theorem 1.3. As in the proof of Theorems 1.1 and 1.2, we have
that, for any 0 < ε < 1, ND

k (λ∗
k −ε, Q) ≤ k ≤ ND(λ∗

k, RD
k). By the asymptotic

expansion (14) we thus find that

Lcl
0,n(λ∗

k −ε)n/2 −Lcl
0,n−1

4
|∂Q|(λ∗

k −ε)(n−1)/2 −O((λ∗
k −ε)θn/2)

≤ k ≤ Lcl
0,n(λ∗

k)n/2 −Lcl
0,n−1

4
|∂RD

k |(λ∗
k)(n−1)/2 + O((λ∗

k)θn/2).

By the isoperimetric inequality for cuboids this also holds with |∂RD
k | replaced

by |∂Q|.
Choosing ε = 1

2 yields that

k = Lcl
0,n(λ∗

k)n/2 −
Lcl

0,n−1

4
|∂Q|(λ∗

k)(n−1)/2 + O((λ∗
k)θn/2), (22)

as k → ∞. From which we can conclude that

λ∗
k = 4πΓ

(n

2
+ 1

)2/n

k2/n +
2πΓ(n

2 + 1)1+1/n

nΓ(n+1
2 )

|∂Q|k1/n + O(k(θn−(n−2))/n),

(23)
as k → ∞. Now (22) is the same two-term expansion as that for N(λ, Q),
so (23) must agree with the two-term expansion for λk(Q). Thus we obtain
that |λk(Q) −λ∗

k| = O(k(θn−(n−2))/n) as k → ∞.
The approach to prove the Neumann case is identical except that one

instead uses that, for any 0 < ε < 1,

NN (µ∗
k −ε, RN

k ) ≤ k ≤ NN (µ∗
k, Q). !

4. Riesz Means and Eigenvalue Averages

Given the techniques and bounds obtained above, it is not difficult to obtain
the corresponding shape optimisation results for the following problems:

(i) For γ ≥ 0 and λ, µ ≥ 0,

sup
{
Tr(−∆D

R −λ)γ
− : R ⊂ Rn cuboid, |R| = 1

}
,

inf
{
Tr(−∆N

R −µ)γ
− : R ⊂ Rn cuboid, |R| = 1

}
.
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(ii) For k ∈ N,

inf
{1

k

k∑

i=1

λi(R) : R ⊂ Rn cuboid, |R| = 1
}

.

For the Riesz means we prove that:

Proposition 4.1. Let n ≥ 2 and γ ≥ 0. For λ > 0, let RD
λ denote any cuboid

which maximises Tr(−∆D
R−λ)γ

− amongst all cuboids R of unit measure. Then
as λ → ∞ we have that

a∗
n,λ = 1 + O(λ(θn−(n−1))/4).

Proposition 4.2. Let n ≥ 2 and γ ≥ 0. For µ > 0, let RN
µ denote any cuboid

which minimises Tr(−∆N
R −µ)γ

− amongst all cuboids R of unit measure. Then
as µ → ∞ we have that

a∗
n,µ = 1 + O(µ(θn−(n−1))/4).

In [11] Freitas studied problem (ii) in the more general setting of min-
imising amongst all bounded, open sets of fixed measure, and obtained the
leading order behaviour of the extremal values as k → ∞. By utilising a
connection between Riesz means of order γ = 1 and the eigenvalue averages,
we prove here that:

Proposition 4.3. Let n ≥ 2. For k ∈ N, let R
D
k denote any cuboid which

minimises the average 1
k

∑k
i=1 λi(R) amongst all cuboids R of unit measure.

Then as k → ∞ we have that

ā∗
n,k = 1 + O(k(θn−(n−1))/(2n)).

We believe that the corresponding result should also hold for the max-
imisation of the Neumann averages. However, we have been unable to solve
an issue which appears when trying to pass from a bound for the Riesz means
to a bound for the averages (see Remark 4.7 below).

In a similar manner as in Sect. 1.3 above (see also [27]), one can con-
clude that for any fixed λ, µ or k ∈ N each of these problems has at least

one optimal cuboid. We denote any such optimal cuboid by RD
λ, RN

µ and R
D
k ,

respectively, where the bar is to distinguish from the minimisers of the indi-
vidual eigenvalues.

The approach we take for (i) is to use the Aizenman–Lieb Identity to
lift our bounds for the counting functions to higher order Riesz means. For
γ ≥ 1 this improves special cases of a pair of inequalities due to Berezin [5]
(see also [24]). For (ii) we use an approach based on the close relationship
between the sum of eigenvalues and the Riesz means of order γ = 1. This
allows us to obtain a three-term bound for the sum of the first k eigenvalues,
which improves a special case of a bound obtained by Li and Yau [29] (see
Lemma 4.6 below).
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Lemma 4.4. Let γ ≥ 0. There exist positive constants c1, c2 and b0 such that,
for any cuboid R ⊂ Rn with |R| = 1, the bound

Tr(−∆D
R −λ)γ

− ≤ Lcl
γ,nλγ+n/2−c1bL

cl
γ,n−1

a1
λγ+(n−1)/2+

c2b
2Lcl

γ,n−2

a2
1

λγ+(n−2)/2,

holds for all λ ≥ 0 and b ∈
[
0, b0

]
.

Lemma 4.5. Let γ ≥ 0. There exists a constant c1 > 0 such that, for any
cuboid R ⊂ Rn with |R| = 1, the bound

Tr(−∆N
R −µ)γ

− ≥ Lcl
γ,nµγ+n/2 +

c1L
cl
γ,n−1

a1
µγ+(n−1)/2,

holds for all µ ≥ 0.

Proof of Lemmas 4.4 and 4.5. Apply the Aizenman–Lieb Identity (9) with
γ1 = 0 and γ2 = γ to both sides of Lemma 2.1, respectively Lemma 2.2. !

We note that by using the Laplace transform instead of the Aizenman–
Lieb Identity, one could apply the above procedure to obtain a three-term

bound for Tr(et∆
D/N
R ) valid for all cuboids R ⊂ Rn. Moreover, using The-

orem 1.1 of [26] one can obtain a tunable three-term bound (similar to
Lemma 4.4) for any convex domain Ω ⊂ Rn which could then, using the

Laplace transform, be lifted to a corresponding bound for Tr(et∆D
Ω). A simi-

lar inequality was obtained by van den Berg [36] for the Dirichlet Laplacian
on smooth convex domains. By using results from [25], the upper bound
of [36] can be extended to all convex domains.

Lemma 4.6. There exist positive constants c1, c2 and b0 such that, for any
cuboid R ⊂ Rn with |R| = 1, the bound

1

k

k∑

i=1

λi(R) ≥ 4πnΓ(n
2 + 1)2/n

n + 2
k2/n +

c1b

a1
k1/n −c2b

2

a2
1

,

holds for all k ∈ N and all b ∈
[
0, b0

]
.

Proof of Lemma 4.6. It is well known that the sum of eigenvalues and the
order 1 Riesz means are related by the Legendre transform [24]. It is a small
modification of this insight that will allow us to obtain the claimed bound
from Lemma 4.4 with γ = 1.

By Lemma 4.4 there exist constants c′
1, c

′
2 > 0 such that, for any k ∈ N,

sup
λ≥ 0

(
kλ −

∑

i:λi≤ λ

(λ −λi(R))
)

≥ sup
λ≥ 0

(
kλ −Lcl

1,nλ1+n/2+
c′
1bL

cl
1,n−1

a1
λ1+(n−1)/2

−c′
2b

2Lcl
1,n−2

a2
1

λ1+(n−2)/2
)
. (24)

The supremum on the left-hand side is achieved precisely at λ = λk(R).
Indeed, the function fk(λ) = kλ−∑

i:λi≤ λ(λ−λi(R)) is continuous, increasing

for all λ for which N(λ, R) < k, and decreasing if N(λ, R) > k. Moreover,
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for λ such that N(λ, R) = k we have that fk(λ) =
∑k

i=1 λi(R). Thus the
left-hand side reduces to

sup
λ≥ 0

(
kλ −

∑

i:λi≤ λ

(λ −λi(R))
)

=
k∑

i=1

λi(R).

On the other hand, maximising the right-hand side of the inequality is
slightly more difficult and there may also be a question of uniqueness of the
maximum. However, on this side we may choose any λ ≥ 0 and still obtain a
valid inequality.

Choosing λ to maximise kλ −Lcl
1,nλ1+n/2, which corresponds to

λ =

(
k

(n
2 + 1)Lcl

1,n

)2/n

= 4πΓ
(n

2
+ 1

)2/n

k2/n,

ensures that the leading order term has the sharp constant (this follows from
the equivalence, via the Legendre transform, of the Li–Yau inequality for the
sum of eigenvalues and the Berezin inequality for the Riesz mean of order
γ = 1, see [24]). With the above choice of λ we obtain the claimed bound
from (24). !

Remark 4.7. If one attempts to apply the same technique as above to obtain
a lower bound for the average of the Neumann eigenvalues from Lemma 4.5,
the inequality after the Legendre transform is reversed. Therefore one cannot
pick µ analogously to how we chose λ above. Instead one needs to prove an
upper bound for

sup
µ≥ 0

(
kµ −Lcl

1,nµ1+n/2 −c1L
cl
1,n−1

a1
µ1+(n−1)/2

)
,

which is sufficiently good to obtain the uniform boundedness of the extremal
cuboids.

4.1. Proof of Propositions 4.1–4.3

With the above bounds in hand, and almost step-by-step following the proof
in Sect. 2.2, or the corresponding proof in [27], one obtains that RD

λ, RN
µ and

R
D
k are uniformly bounded as λ, µ or k goes to infinity.

For the Riesz means, in both the Dirichlet case and the Neumann case,
the proof is completely analogous to that in Sect. 2.2 by using Lemmas 4.4
and 4.5 and the asymptotic expansions one obtains from Lemma 2.4 via the
Aizenman–Lieb Identity.

For the eigenvalue averages we require an upper bound for 1
a1,kk1/n ,

which can be obtained as follows. Since R
D
k is a minimiser, we have that

kπ2

a2
1,k

≤ kλ1(R
D
k) ≤

k∑

i=1

λi(R
D
k) ≤

k∑

i=1

λi(Q).
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Inserting that, as k → ∞,

k∑

i=1

λi(Q) =
4πnΓ(n

2 + 1)2/n

n + 2
k1+2/n +

2πΓ(n
2 + 1)1+1/n

(n + 1)Γ(n+1
2 )

|∂Q|k1+1/n

+ o(k1+1/n)

and rearranging implies the required bound.

To find an asymptotic expansion for the eigenvalue averages, one can
make use of the corresponding two-term expansions that we have for λi(R)
and calculate the asymptotics of the resulting sums (for instance using the
Euler–Maclaurin formula).

In a similar manner as in the preceding section, for these problems
one could also obtain estimates for the spectral stability, i.e. to what order
in the respective parameters do the extremal eigenvalue means or averages
approach those of the limiting domain Q. However, by finer analysis of the
asymptotics, and not lifting the results for the counting function, it should
be possible to obtain sharper estimates than what is obtained directly by
the method outlined in the previous paragraph. This is due to the fact that
in the above problems the erratic behaviour of the eigenvalues and counting
function has in some sense been reduced by summing.

It is possible to analyse the asymptotic behaviour of the extremal av-
erages of the first k Neumann eigenvalues amongst unit-measure cuboids by
invoking Theorem 1.3. Indeed, by using that

1

k

k∑

i=0

µi(Q) ≤ sup

{
1

k

k∑

i=0

µi(R) : R ⊂ Rn cuboid, |R| = 1

}
≤ 1

k

k∑

i=0

µN
i

and Theorem 1.3, one obtains precise two-term asymptotics for the extremal
averages, and finds that they agree with the corresponding asymptotics for Q.
However, as mentioned above we have been unable to obtain an inequality
which is sharp enough to conclude that the sequence of extremal cuboids
for this problem remains uniformly bounded as k → ∞. Thus our approach
yields nothing about the geometric convergence.
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Appendix A. One-Dimensional Bounds

Lemma A.1. There exist constants c1, c2, b0 > 0 such that, for all λ ≥ 0 and
a > 0,

Tr(−∆D
(0,a)−λ)− =

∑

k ≥ 1

(
λ−π2k2

a2

)
+

≤ aLcl
1,1λ

3/2−bc1L
cl
1,0λ+

b2c2

a
Lcl

1,−1λ
1/2,

for all b ∈ [0, b0].

Lemma A.2. There exists a constant c1 > 0 such that, for all µ ≥ 0 and
a > 0,

Tr(−∆N
(0,a) −µ)− =

∑

k ≥ 0

(
µ −π2k2

a2

)
+

≥ aLcl
1,1µ

3/2 + c1L
cl
1,0µ.

Remark A.3. For our purposes it is essential that the leading order term
agrees with the asymptotic one. The lower order terms are of less importance
up to their behaviour in λ and a. However, in the Dirichlet case it is impor-
tant that the third term can be dominated by the second one by choosing b
sufficiently small.

We also emphasise that when applying the Aizenman–Lieb Identity (9)
it simplifies matters if we have bounds valid for all λ, µ ≥ 0. This is the reason
for proving the above inequalities for λ, µ ≥ 0 even though our main interest
here is focused on large λ, µ.

Proof of Lemma A.1. By rescaling it suffices to prove that, for λ ≥ 0 and
small enough b,

∑

k ≥ 1

(λ −k2)+ ≤ 2

3
λ3/2 −bc1λ +

4b2c2

π
λ1/2.

We will prove this with c1 = 4
3 , c2 = π

6 and b ≤ 1 − 1
6

√
27+

√
3

2 .

With r =
√

λ −⌊
√

λ⌋ we have that

∑

k ≥ 1

(λ −k2)+ =
2

3
λ3/2 −λ

2
+

(
r −r2 −1

6

)
λ1/2 +

1

6
(r −3r2 + 2r3).

Maximising the coefficient in front of λ1/2 and the constant term with respect
to r ∈ [0, 1) we obtain

∑

k ≥ 1

(λ −k2)+ ≤ 2

3
λ3/2 −λ

2
+

λ1/2

12
+

1

36
√

3
. (25)

We aim for a bound of the form
∑

k ≥ 1(λ−k2)+ ≤ 2
3λ1/2(

√
λ−b)2, which

holds for all λ ≥ 0 and some b > 0. Note that this bound holds trivially for
all λ ≤ 1, and thus we only need to choose b so that it is valid for all λ > 1.
Moreover, note that, for b < 1 and λ > 1, this bound is pointwise decreasing
in b. Hence if we know the bound to hold for some b0 then it holds for all
0 ≤ b ≤ b0.
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Since we have an upper bound in terms of the polynomial in (25), it
suffices to choose b so that, for all λ > 1,

λ3/2 −3

4
λ +

λ1/2

8
+

1

24
√

3
≤ λ1/2(

√
λ −b)2 = λ3/2 −2bλ + b2λ1/2.

Rearranging we see that this is equivalent to
(1

8
−b2

)
λ1/2 +

1

24
√

3
≤

(3

4
−2b

)
λ,

and thus we must choose b < 3/8. If this is true then, since λ > 1,
(3

4
−2b

)
λ ≥

(3

4
−2b

)
λ1/2.

Thus it is sufficient to choose b satisfying
(1

8
−b2

)
λ1/2 +

1

24
√

3
≤

(3

4
−2b

)
λ1/2,

or equivalently so that

1

24
√

3
≤

(5

8
−2b + b2

)
λ1/2.

This holds for all λ > 1 if and only if the inequality is valid at λ = 1. Thus

we can choose b ∈ [0, b0] with b0 = 1 − 1
6

√
27+

√
3

2 < 3
8 . !

Proof of Lemma A.2. We shall prove that the claimed bound holds if and

only if c1 ≤ 36−
√

3
108 . By scaling it is sufficient to prove that

∑

k ≥ 0

(µ −k2)+ ≥ 2

3
µ3/2 + c1µ. (26)

Analogously to the Dirichlet case above
∑

k ≥ 0

(µ −k2)+ =
2

3
µ3/2 +

µ

2
+

(
r −r2 −1

6

)
µ1/2 +

1

6
(r −3r2 + 2r3),

where r :=
√

µ −⌊√µ⌋. Minimising the coefficient in front of µ1/2 and the
constant term with respect to r ∈ [0, 1), we find that

∑

k ≥ 0

(µ −k2)+ ≥ 2

3
µ3/2 +

µ

2
−µ1/2

6
− 1

36
√

3
.

For µ ≥ 1 it is easy to prove that

2

3
µ3/2 +

µ

2
−µ1/2

6
− 1

36
√

3
≥ 2

3
µ3/2 + c1µ,

if and only if c1 ≤ 36−
√

3
108 .

What remains is to prove that the bound is valid for µ ∈ [0, 1). In this
range the inequality (26) reduces to

µ ≥ 2

3
µ3/2 + c1µ.



Vol. 89 (2017) Cuboids Optimising Laplacian Eigenvalues 627

As the right-hand side is strictly convex and the bound is valid at µ = 0 and
µ = 1 the proof is complete. !
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TWO-TERM SPECTRAL ASYMPTOTICS

FOR THE DIRICHLET LAPLACIAN IN A LIPSCHITZ DOMAIN

RUPERT L. FRANK AND SIMON LARSON

Abstract. We prove a two-term Weyl-type asymptotic formula for sums of eigenvalues
of the Dirichlet Laplacian in a bounded open set with Lipschitz boundary. Moreover, in
the case of a convex domain we obtain a universal bound which correctly reproduces the
first two terms in the asymptotics.

1. Introduction and main result

In this paper we investigate the asymptotic behavior of the eigenvalues of the Dirichlet
Laplacian on domains with rough boundary. Besides being of intrinsic interest, this question
is relevant for some problems in shape optimization, as we will explain below in some more
detail.

One of the central results in the spectral theory of di↵erential operators is Weyl’s law [36].
It states that the eigenvalues

0 < �1  �2  �3  . . . ,

repeated according to multiplicities, of the Dirichlet Laplacian ��⌦ in an open set ⌦ ⇢ Rd

of finite measure satisfy

#{�k < �} =
!d

(2⇡)d
|⌦|�d/2 + o(�d/2) as �! 1 , (1)

where !d denotes the measure of the unit ball in Rd. The fact that this asymptotic expan-
sion holds without any regularity conditions on ⌦ was shown in [28].

In [37] Weyl conjectured that a refined version of the asymptotic formula (1) holds.
Namely, he conjectured that

#{�k < �} =
!d

(2⇡)d
|⌦|�d/2� 1

4

!d�1

(2⇡)d�1
Hd�1(@⌦)�(d�1)/2+o(�(d�1)/2) as �! 1 . (2)

Here Hd�1(@⌦) denotes the (d � 1)-dimensional Hausdor↵ measure of the boundary. This
conjecture was proved by Ivrii in [18] under two additional assumptions. The first assump-
tion is that the measure of all periodic billiards is zero and the second assumption is that
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2 R. L. FRANK AND S. LARSON

the boundary of the set is smooth. It is believed, but only known in special cases [33, 34],
that the first assumption is always satisfied. Concerning the second assumption, in a series
of papers [7, 19, 20] Ivrii and co-workers have tried to lower the required assumptions on
the boundary of the set. In particular, in [20] the asymptotics (2) are proved under the
billiard assumption for C1 domains such that the derivatives of the functions describing
the boundary have a modulus of continuity o(|log r|�1). Without the billiard assumption it

is shown that the left side of (2) di↵ers from the first term on the right side by O(�(d�1)/2).
This bound, in the smooth case, is originally due to Seeley [30, 31].

The goal of this paper is to show that an averaged version of the asymptotics (2) is valid
for any bounded open set with Lipschitz boundary. In order to state this result precisely,
we write x± = (|x| ± x)/2, so that

Tr(��⌦ � �)� =
X

�k<�

(�� �k) ,

and abbreviate

Ld =
2

2 + d

!d

(2⇡)d
.

Our main result is

Theorem 1.1. Let ⌦ ⇢ Rd, d � 2, be a bounded open set with Lipschitz regular boundary.
Then, as �! 1,

Tr(��⌦ � �)� = Ld|⌦|�1+d/2 � Ld�1

4
Hd�1(@⌦)�1+(d�1)/2 + o(�1+(d�1)/2) . (3)

We will discuss momentarily in which sense this theorem improves earlier results and
sketch the strategy of its proof. Before doing so, we would like to emphasize that the
methods that we develop in order to prove Theorem 1.1 can also be used to prove universal,
that is, non-asymptotic bounds. For instance, for convex sets we obtain the following
bound.

Theorem 1.2. Let ⌦ ⇢ Rd, d � 2, be a convex bounded open set. Then, for all � > 0,
���Tr(��⌦ � �)� � Ld|⌦|�1+d/2 +

Ld�1

4
Hd�1(@⌦)�1+(d�1)/2

���

 CHd�1(@⌦)�1+(d�1)/2
⇣
rin(⌦)

p
�
⌘�1/11

,

where the constant C depends only on the dimension.

By integration with respect to �, Theorem 1.2 implies a corresponding inequality for
Tr(et�⌦) which is valid uniformly for all t > 0. This improves an earlier result by van den
Berg [5], where an additional bound on the curvatures was assumed.

In a similar manner, Theorem 1.2 implies universal upper and lower bounds for Tr(H⌦)��
for all � � 1. The resulting upper bound can be seen as an improvement of an inequality
going back to work of Berezin [4] and Li–Yau [25]. Such improved versions of the Berezin–
Li–Yau inequality have been the topic of several recent papers [13, 14, 15, 21, 23, 26, 35].
Lower bounds in the same spirit are contained in [16]. In contrast to our Theorem 1.2,
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however, none of these previous upper and lower bounds reproduces correctly the second
term in the asymptotics.

A challenging open question from shape optimization theory, which, in part, motivated
this work, is whether for fixed � � 0, a family (⌦�,�)�>0 of optimizers of the problem

sup{Tr(��⌦ � �)�� : ⌦ ⇢ Rd open, |⌦| = 1}
converges as � ! 1 to a ball of unit measure. We refer to [24] for more on this problem.
The intuition for why the convergence to a ball might be true is that, while the leading
term in the asymptotics of Tr(��⌦ ��)�� as �! 1 is fixed due to the constraint |⌦| = 1,
maximizing the second term leads to minimizing Hd�1(@⌦) under the constraint |⌦| = 1.
By the isoperimetric inequality the unique solution to this problem is a ball of unit measure.
The di�culty with making this intuition rigorous is that one needs the asymptotics of
Tr(��⌦ � �)�� not only for a fixed domain ⌦, but rather for a family of domains ⌦�,�

depending on � with a priori no information concerning their geometry.
While we have not been able to answer this question in full generality, we did prove

the corresponding result for a similar optimization problem with an additional convexity
constraint and � � 1. Namely, as a corollary of Theorem 1.2 we obtain

Corollary 1.3. Let � � 1. For � > 0 let ⌦�,� denote any extremal domain of the shape
optimization problem

sup{Tr(��⌦ � �)�� : ⌦ ⇢ Rd convex open, |⌦| = 1} .

Then, up to translation, ⌦�,� converges in the Hausdor↵ metric to a ball of unit measure
as �! 1.

Proof. Let K be the set of all non-empty, bounded convex open sets in Rd. This is a
metric space with respect to the Hausdor↵ metric. In order to prove the corollary, by [24,
Proposition 4.1] we only need to show that the asymptotic expansion

Tr(��⌦ � �)�� = L�,d|⌦|��+d/2 � 1

4
L�,d�1Hd�1(@⌦)��+(d�1)/2 + o(��+(d�1)/2) , (4)

as �! 1, holds uniformly on compact subsets of K. Here

L�,d =
�(� + 1)

(4⇡)d/2�(� + 1 + d/2)
.

Recall the Aizenman–Lieb identity [1]: for 0  �1 < �2 and � � 0,

Tr(��⌦ � �)�2� = B(1 + �1, �2 � �1)
�1

Z �

0
⌧�2��1�1 Tr(��⌦ � (�� ⌧))�1� d⌧ , (5)

where B denotes the Euler Beta function.
By (5) it su�ces to prove the uniform asymptotics (4) for � = 1. Since |⌦| and Hd�1(@⌦)

are continuous on K, they are bounded on compact subsets of K. Therefore it su�ces
to prove (4) uniformly for sets ⌦ with bounded |⌦| and Hd�1(@⌦). This follows from
Theorem 1.2 together with the fact that one can bound rin(⌦) from below in terms of |⌦|
and Hd�1(@⌦), see (49). ⇤
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Remark 1.4. In fact, the convergence in Corollary 1.3 holds not only for maximizers, but
also for almost-maximizers (⌦�,�)�>0 in the sense that ⌦�,� ⇢ Rd is convex, open with
|⌦�,� | = 1 and

lim sup
�!1

����(d�1)/2
�
Tr(��⌦�,�

� �)�� � S�
�
� 0 ,

where S� denotes the supremum in the corollary. This follows by a straightforward adap-
tation of the arguments above and in [24, Proposition 4.1].

Let us now return to discussing Theorem 1.1. This theorem improves earlier results
from [10, 11] where the asymptotics were shown for sets with C1,↵ and C1 boundary,
respectively. As we will explain below in more detail, the technique of flattening the
boundary from [10, 11] cannot be used in the case of Lipschitz boundary, but a di↵erent
and more robust technique is needed.

The Lipschitz condition on the boundary is essentially an optimal assumption. On the
one hand, the result is optimal in the Hölder scale (because there are sets with C0,↵ bound-
ary for ↵ < 1 for which Hd�1(@⌦) is infinite) and on the other hand, the asymptotics (3)
are not valid for arbitrary sets for which Hd�1(@⌦) is finite (for instance, for a ball divided
in two pieces by a hyperplane the piece of the hyperplane contributes once to the measure
of the boundary, but should contribute twice to the asymptotics).

Moreover, within Lipschitz domains the error term o(�1+(d�1)/2) is the best possible on
the algebraic scale: for any " > 0 one can construct a Lipschitz domain ⌦ such that

lim sup
�!1

��1�(d�1)/2+"
���Tr(��⌦ � �)� � Ld|⌦|�1+d/2 +

Ld�1

4
Hd�1(@⌦)�1+(d�1)/2

��� = 1 .

This follows by integration with respect to � from a construction mentioned in [8].
Two-term spectral asymptotics under a Lipschitz assumption go back to the work [8] by

Brown, where it is shown that

Tr et�⌦ =
X

k�1

e�t�k = (4⇡t)�d/2
⇣
|⌦| �

p
⇡

2
Hd�1(@⌦)t1/2 + o(t1/2)

⌘
as t ! 0+ . (6)

Note that (6) is an Abel-type average of (2), whereas (3) is a Cesàro-type average. It is
well-known and easy to see that the asymptotics in (3) imply those in (6), but not vice
versa. The key insight in [8] was to use ideas from geometric measure theory to decompose
a neighborhood of the boundary into a ‘good’ part and a ‘bad’ part with su�ciently precise
control on the size of the bad part. Inserting well-known pointwise bounds on the heat
kernel into this decomposition one obtains (6). While Brown’s decomposition of a neigh-
borhood of the boundary also plays an important role in our proof of (3), we are facing
the additional di�culty that we cannot work on a pointwise level. Thus, our main task
is to show that Brown’s geometric measure theory arguments can be combined with the
technique of local trace asymptotics used in [10, 11].

Let us sketch the overall strategy of the proof. As in [10, 11] we first localize the operator
��⌦ into balls whose size varies depending on the distance to ⌦c. (As an aside we point
out that our choice of the size of the balls here di↵ers from that in [10, 11]. It is both
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simpler and has a natural scaling behavior which is crucial for the proof of the uniform
inequality in Theorem 1.2.) There are four di↵erent types of balls:

(i) B ⇢ ⌦, i.e. we have localized in the bulk of ⌦.
(ii) B \ ⌦ is empty, i.e. we have localized outside ⌦ (here the localized operator is

trivially zero).
(iii) B \ @⌦ is non-empty and is in a certain sense well-behaved.
(iv) cases (i)-(iii) fail, i.e. the set B \ @⌦ is non-empty and fails to be well-behaved in

the sense of (iii).

Balls of type (i) are handled as in [10, 11] and those of type (ii) are trivial. The precise sense
in which balls of type (iii) and (iv) are distinguished follows the geometric construction
due to Brown [8].

Our analysis diverges from that in [10, 11] when it comes to treating the region near the
boundary. In [10, 11] the types (iii) and (iv) were not distinguished. There, the bounds
rely on the fact that if the boundary is su�ciently regular, then one can locally make a
change of coordinates mapping the boundary to a hyperplane while retaining control of
how the Laplacian is perturbed under this mapping. For Lipschitz boundaries this method
cannot work; flattening the boundary requires a Lipschitz change of coordinates and can
thus result in large perturbations of the Laplacian.

The idea of distinguishing types (iii) and (iv) is in the spirit of Brown’s decomposition
of a neighborhood of the boundary into a large ‘good’ and a small ‘bad’ part. Essentially,
Brown’s geometric construction tells us in a quantitative manner that at a su�ciently
small scale, the boundary is in most regions well approximated by a hyperplane. For
these approximating hyperplanes we can proceed as in the smooth case. However, we are
still left with controlling the error from the hyperplane approximation. This is dealt with
by proving precise local spectral asymptotics for circular cones (which are the content of
Lemma 2.10).

This concludes our sketch of the proof of Theorem 1.1. We would like to emphasize that
the methods that we develop in this paper are not limited to the situation at hand. In
particular, the following three generalizations seem possible:

(1) For our proof it is not crucial that the boundary around any point can be represented
as a Lipschitz graph. For instance, we could treat domains with a finite number of cusps
and also domains with slits (the second term in the asymptotics (3) should be modified so
that the measure of a slit is counted twice).

(2) Uniform inequalities similar to that in Theorem 1.2 are probably valid also for other
classes of domains. The essential ingredients here are Lemmas 5.3 and 5.4. For example,
analogues of these lemmas can probably be established for sets satisfying a uniform inner
and outer ball condition. For such sets uniform bounds for the heat trace were shown in [6].

(3) Bañuelos, Kulczycki and Siudeja [3] have generalized Brown’s results for the heat
kernel to the case of the fractional Laplacian. Similarly, [12] generalizes the results from [10]
for eigenvalue sums to the case of the fractional Laplacian. Combining these techniques one
can probably extend the results in the present paper to the case of the fractional Laplacian.
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Structure of the paper. We begin by introducing some notation, recalling the machinery
developed in [10, 11] and proving some corollaries thereof. This is done in Section 2. In
Section 3 we adapt the geometric constructions of [8] to the problem considered here.
Section 4 is dedicated to the proof of Theorem 1.1 using the tools developed in Sections 2
and 3. We end the paper with the proof of Theorem 1.2 in Section 5.

2. Notation and Preliminaries

Throughout the paper we let dist( · , · ) denote the distance between two sets in Rd

(possibly singletons), that is,

dist(A, B) = inf
x2A, y2B

|x � y| .

Given a Lipschitz set ⌦ define �⌦( · ), the signed distance function of ⌦, by

�⌦(x) = dist(x,⌦c) � dist(x,⌦) .

Note that �⌦( · ) and dist( · , @⌦) satisfy almost everywhere

|r�⌦(x)| = 1 , |rdist(x, @⌦)| = 1 . (7)

Define also the inradius of ⌦ ⇢ Rd by

rin(⌦) = sup
x2⌦

dist(x,⌦c) .

We recall that for a Lipschitz domain ⌦ ⇢ Rd the functions defined by

#inner(⌦, t) =
|{u 2 ⌦ : dist(u, @⌦) < t}|

tHd�1(@⌦)
� 1 ,

#outer(⌦, t) =
|{u 2 ⌦c : dist(u, @⌦) < t}|

tHd�1(@⌦)
� 1

are both o(1) as t ! 0+ [2]. In what follows we shall suppress ⌦ in the notation and let
this dependence be understood implicitly. We also define

#(t) =
1

2
sup

t1,t2t

�
|#inner(t1)| + |#outer(t2)|

�
(8)

so that ����
|{u 2 Rd : dist(u, @⌦) < t}|

2tHd�1(@⌦)
� 1

����  #(t) . (9)

The main contributions to the error term of Theorem 1.1 can be understood in terms
of #inner(t),#outer(t) and #(t).

In the following it will be convenient to introduce the operator

H⌦ = �h2�⌦ � 1 in L2(⌦)
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with Dirichlet boundary conditions, depending on a parameter h > 0. Technically, H⌦ is
defined as a self-adjoint operator in L2(⌦) via the quadratic form

R
⌦(h2|ru|2 � |u|2) dx

with form domain H1
0 (⌦). We have

Tr(H⌦)� = h2
X

�k<h�2

(h�2 � �k) = h2 Tr(��⌦ � h�2)� ,

and therefore the asymptotics in Theorem 1.1 as �! 1 can be rephrased equivalently as
asymptotics for Tr(H⌦)� as h ! 0+. Similarly, the universal bound in Theorem 1.2 can be
rephrased equivalently as a universal bound for Tr(H⌦)�.

For � 2 C1(Rd), define �H⌦� as a self-adjoint operator in L2(⌦) via the quadratic formR
⌦(h2|r(�u)|2 � |�u|2) dx with form domain H1

0 (⌦).
Let us recall three results from [10, 11] concerning localized traces of H⌦.

Lemma 2.1 (Localized Berezin–Li–Yau inequality [10, Lemma 2.1]). Let � 2 C1
0 (Rd).

Then, for all h > 0,

Tr(�H⌦�)�  Ldh
�d

Z

⌦
�2(x) dx .

Lemma 2.2 ([10, Proposition 1.2]). Let � 2 C1
0 (⌦) have support in a ball of radius l > 0

and satisfy
kr�kL1  Ml�1 .

Then, for all h > 0,
���Tr(�H⌦�)� � Ldh

�d

Z

⌦
�2(x) dx

���  Cld�2h�d+2 ,

with a constant C depending only on M and d.

Lemma 2.3 ([10, Proposition 1.3], [11, Proposition 2.3]). Let � 2 C1
0 (Rd) have support

in a ball of radius l > 0 and satisfy

kr�kL1  Ml�1 .

Assume that @⌦\ supp� can be represented as a graph xd = f(x0) and that there is a point
(y0, yd) 2 @⌦ \ supp� with rf(y0) = 0 and

|rf(x0)|  !(|x0 � y0|) for all (x0, xd) 2 @⌦ \ supp� ,

where ! : [0,1) ! [0,1) is non-decreasing and lim�!0+ !(�) = 0. Then, if !(l)  Cd and
0 < h  l,
����Tr(�H⌦�)�Ldh

�d

Z

⌦
�2(x) dx +

Ld�1

4
h�d+1

Z

@⌦
�2(x) dHd�1(x)

����  C
ld

hd

✓
h2

l2
+!(l)

◆
,

where the constant Cd is universal and the constant C depends only on M and d.

Remark 2.4. This result appears in [10] in the special case !(�) = C�↵. The case of a
general function ! appears in [11], but for the Laplacian with Robin boundary conditions.
The proof there, however, extends immediately to the case of Dirichlet boundary conditions.
Moreover, a slightly stronger assumption on the parametrization is made in these papers,
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but only the above one is used, see [11, Equation (4.1)]. Also, the analysis in [10, 11] leads
to an additional error term !(l)2h/l in the parentheses on the right side, but since

!(l)2h

l
 1

2

h2

l2
+

1

2
!(l)4  1

2

h2

l2
+

C3
d

2
!(l)

this term is controlled by the other two terms in the parentheses. Finally, there are the
following two minor changes. In [10, 11] it is stated that the constant C depends, in
addition, on k�kL1 and ⌦. However, since � has support in a ball of radius l one easily
finds |�(x)|  lkr�kL1 , so k�kL1  M , and an upper bound on k�kL1 was all that entered
in the proof in [11]. Moreover, an inspection of the proof shows that the dependence on ⌦
enters only through the modulus of continuity ! and that, in fact, only !(l)  Cd is needed.

Next, we recall a result of Solovej and Spitzer which provides a family of localization
functions adapted to a given local length scale.

Lemma 2.5 ([32, Theorem 22]). Let � 2 C1
0 (Rd) with support in B1(0) and k�kL2 = 1 and

let l be a bounded, positive Lipschitz function on Rd with Lipschitz constant krlkL1 < 1.
Let

�u(x) = �
⇣x � u

l(u)

⌘r
1 + rl(u) · x � u

l(u)
.

Then Z

Rd

�u(x)2l(u)�d du = 1 for all x 2 Rd (10)

and

k�ukL1 
p

2 k�kL1 and kr�ukL1  Cl(u)�1kr�kL1 for all u 2 Rd , (11)

where the constant C depends only on (1 � krlkL1)�1.

Remark 2.6. Strictly speaking, the functions �u are defined only for almost every u 2 Rd,
namely, for those where rl(u) exists. Note that if (x�u)/l(u) 2 supp�, then |rl(u) · (x�
u)/l(u)|  krlkL1 < 1. Therefore the square root in the definition of �u is well-defined
and �u 2 C1

0 (Rd).

Remark 2.7. The assumptions of Lemma 2.5 are weaker than those in [32]. However, the
proof in [32] applies with almost no change, but for completeness we include it below.
Moreover, the definition of �u in [32] reads

�u(x) = l(u)d/2�((x � u)/l(u))
p

J(x, u) ,

where J(x, u) is the absolute value of the Jacobi determinant of the map u 7! (x�u)/l(u),
that is,

J(x, u) = l(u)�d

����det

✓
1 + rl(u) ⌦ x � u

l(u)

◆���� .

Computing the determinant one arrives at the above formula (which will be important for
us later on).
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Proof of Lemma 2.5. Without loss of generality we assume that x = 0. In order to
prove (10) we shall show that the map F : Rd ! Rd given by F (u) = �u/l(u) is a bi-
jection of F�1(B1(0)) onto B1(0). After this is established the desired equality follows by
a change of variables since

l(u)�d
⇣
1 + rl(u) · x � u

l(u)

⌘
= J(x, u),

where J(x, u) is the absolute value of the Jacobi determinant of the map u 7! (x�u)/l(u).
Fix u 2 Rd, since |F (u)| � |u|/klkL1 and F (0) = 0 there exists a t 2 [�klkL1 , 0] such

that F (tu) = u. Consequently F is surjective.
That the map is injective on F�1(B1(0)) can be seen as follows. Fix u 6= 0. We can write

F (tu) = �g(t)u where g : R ! R is a continuous function, indeed g(t) = t/l(tu). Moreover,
we claim that g is monotone increasing for all t such that |F (tu)| = |g(t)||u| < krlk�1

L1 ,
and in particular for t such that |F (tu)| = |g(t)||u|  1. For almost every t it holds that

g0(t) = l(tu)�1[1 � tl(tu)�1u · rl(tu)] � l(tu)�1[1 � |g(t)||u|krlkL1 ] > 0,

which proves the claim. We conclude that F is a bijection from F�1(B1(0)) to B1(0).
Di↵erentiating the formula for �u and using k�kL1  kr�kL1 (see Remark 2.4) one

immediately obtains (11). ⇤
Lemma 2.8 (Localization). Let � and l be as in Lemma 2.5. Then, for any ' 2 C1(Rd)
and all 0 < h  M mindist(u,⌦\ supp')l(u) l(u),

���Tr('H⌦')� �
Z

Rd

Tr(�u'H⌦'�u)�l(u)�d du
���

 Ck'k2
L1(⌦)h

�d+2

Z

dist(u,⌦\ supp')l(u)
l(u)�2 du ,

(12)

where the constant depends only on kr�kL1, (1 � krlkL1)�1, M and d.

For ' ⌘ 1 this is in essentially Proposition 1.1 [10]. Here we shall need the slightly more
general statement above. However, the proof, which is given in Appendix A, is almost
identical to that in [10].

Remark 2.9. In [10] the inequality corresponding to (12) is stated for all h > 0, however, the
proof requires additionally an upper bound on h/l(u). This does not a↵ect the results in [10]
because for an asymptotic result it su�ces to apply the statement where this additional
assumption is met. Nonetheless, in [10] the inequality is stated for a particular choice of l
for which it can be extended to all h > 0, if one assumes that a parameter l0 in their
construction satisfies lim infh!0+ l0/h > 0. This will be proved in Appendix A.

With these preparations at hand, we now show how the method of [10] can be used to
compute a two-term asymptotic formula for cones.

Lemma 2.10 (Precise local asymptotics in cones). Let ' 2 C1
0 (Rd) have support in a ball

of radius l > 0 and satisfy
k'kL1  M . (13)
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Let 0  "  1/2 and

⇤" = {x 2 Rd : xd < "|x|} .

Then, for all h > 0,
���Tr('H⇤"')� �Ldh

�d

Z

⇤"

'2(x) dx +
Ld�1

4
h�d+1

Z

@⇤"

'2(x) dHd�1(x)
���  Cld�4/3h�d+4/3 ,

and���Tr('H⇤c
"
')� �Ldh

�d

Z

⇤c
"

'2(x) dx +
Ld�1

4
h�d+1

Z

@⇤c
"

'2(x) dHd�1(x)
���  Cld�4/3h�d+4/3 ,

where the constant C depends only on M and d and, in particular, not on ".

The error (l/h)d�4/3 is probably not sharp, but good enough for our purposes. After
the proof we will explain that for d = 2, our proof actually yields the error (l/h)� for any
� > 0.

Proof of Lemma 2.10. We only prove the first claim of the lemma, the second one follows
analogously. The idea is to apply the arguments from [10, 11] to the operator 'H⇤"'
instead of H⇤" .

Before we continue with the main part of the proof we show that the claimed inequality
holds for h � l.

For all h > 0, Lemma 2.1 implies that
���Tr('H⇤"')� � Ldh

�d

Z

⇤"

'2(x) dx +
Ld�1

4
h�d+1

Z

@⇤"

'2(x) dHd�1(x)
���

 2Ldh
�d

Z

⇤"

'2(x) dx +
Ld�1

4
h�d+1

Z

@⇤"

'2(x) dHd�1(x)

 C(ldh�d + ld�1h�d+1) .

Here we used (13), |⇤"\Bl|  Cld, and Hd�1(@⇤"\Bl)  Cld�1. The last inequality follows
by noting that ⇤c

" \ Bl is convex and the monotonicity of the measure of the perimeter of
convex sets under inclusion.

Consequently the inequality claimed in the lemma holds for all h � l. Through the
remainder of the proof we assume that 0 < h < l.

Since ⇤" is scale invariant, we may and will assume that l = 1.
Step 1: We derive a local C1 modulus of continuity for @⇤". We claim that for any

|u| � 4r and Br(u) \ @⇤" 6= ; we can choose a system of coordinates (x0, xd) 2 Rd�1 ⇥ R
such that @⇤" \ Br(u) can be parametrized as the graph xd = f(x0) of a function f such
that for some point in @⇤" \ Br(u) with coordinates (y0, yd) and rf(y0) = 0 one has

|rf(x0)|  Cd,"
|x0 � y0|

|u| , (14)

where Cd," is uniformly bounded for 0  "  1/2. (In fact, the constant here satisfies
Cd," = o"!0+(1), but this will not be relevant for us. In d = 2 the boundary of ⇤" consists
of two rays and hence C2," = 0.)



TWO-TERM SPECTRAL ASYMPTOTICS 11

Let us prove (14). Pick x0 2 Br(u) \ @⇤". Then Br(u) \ @⇤" ⇢ B2r(x0) \ @⇤" and 0 /2
B2r(x0). After rescaling and rotating so that x0 = (1, 0, . . . , 0) and ⇤" ⇢ {x 2 Rd : xd  0}
the above inclusions imply that it is su�cient to consider parametrizing @⇤" as xd = f0(x

0)
in the ball B2/3(x0). Clearly this is possible and f0 is C1,1-regular and thus, by the choice
of coordinates, satisfies the estimate

|rf0(x
0)|  Cd,"|x0 � x0

0| , x0
0 = (1, 0, . . . , 0) 2 Rd�1 ,

where Cd," is uniformly bounded for 0  "  1/2 and tends to zero as "! 0+. After scaling

and translating one obtains (14) since by assumption |x0| � 3
4 |u|.

Step 2: We localize the problem. Fix a function � 2 C1
0 (Rd) with supp� = B1(0) and

k�kL2 = 1. With a parameter l0 2 (0, 1] depending on h to be determined, set

l(u) =
1

2
min

�
2, max{dist(u,⇤c

"), 2l0}
 

.

Note that 0 < l  1 and, by (7), krlkL1  1/2, so Lemma 2.5 is applicable. Denote by
�u the resulting family of functions from that lemma. Assume also that h  l0 so that
h  l(u) for all u 2 Rd.

By Lemma 2.8, with M = 1, and a straightforward estimate of the integral remainder
we have that

���Tr('H⇤"')� �
Z

Rd

Tr(�u'H⇤"'�u)�l(u)�d du
���  Ck'k2

L1 l�1
0 h�d+2 . (15)

Step 3: We split

Z

Rd

Tr(�u'H⇤"'�u)�l(u)�d du =

Z

⇤(1)

Tr(�u'H⇤"'�u)�l(u)�d du

+

Z

⇤(2)

Tr(�u'H⇤"'�u)�l(u)�d du ,

(16)

where

⇤(1) = {u 2 Rd : ; 6= supp�u' ⇢ ⇤"} ,

⇤(2) = {u 2 Rd : supp�u' \ @⇤" 6= ;} ,

and where we used the fact that Tr(�u'H⇤"'�u)� = 0 when supp�u' \ ⇤" = ;. Since
supp' is contained in a ball of radius 1 and supp�u is contained in a ball of radius l(u)  1

the set ⇤(1) [⇤(2) is contained in a ball of radius 2. Moreover, it is easy to see that for all
u 2 ⇤(2) one has l(u) � dist(u, @⇤") and therefore dist(u, @⇤")  l0 and l(u) = l0.
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Applying Lemma 2.2 to the first integral in (16) and using [10, Equation 8] (see also (35)
below) yields

Z

⇤(1)

Tr(�u'H⇤"'�u)�l(u)�d du = Ldh
�d

Z

⇤(1)

Z

⇤"

�2
u(x)'2(x)l(u)�d dx du

+ O(h�d+2)

Z

⇤(1)

l(u)�2 du (17)

= Ldh
�d

Z

⇤(1)

Z

⇤"

�2
u(x)'2(x)l(u)�d dx du + l�1

0 O(h�d+2) .

With a parameter � > 0 to be specified, we split the second integral of (16) further,
depending on the distance of u from the vertex of ⇤",

Z

⇤(2)

Tr(�u'H⇤"'�u)�l(u)�d du =

Z

⇤(2)\B�

Tr(�u'H⇤"'�u)�l(u)�d du

+

Z

⇤(2)\B�

Tr(�u'H⇤"'�u)�l(u)�d du .

(18)

By Lemma 2.1 the second integral is small, that is,

Z

⇤(2)\B�

Tr(�u'H⇤"'�u)�l(u)�d du  Ldh
�d

Z

⇤(2)\B�

Z

⇤"

�2
u(x)'2(x)l(u)�d dx du

 Ch�d|⇤(2) \ B�|  Ch�d�d�1l0 .

(19)

In the last inequality we used the fact that ⇤(2) is contained in an l0-neighborhood of @⇤".
For later purposes we also record that

Z

⇤(2)\B�

✓Z

⇤"

�2
u(x)'2(x)dx+h

Z

@⇤"

�2
u(x)'2(x)dHd�1(x)

◆
l(u)�ddu  C�d�1(l0+h) , (20)

where we used again |⇤(2) \ B�|  Cl0�
d�1.

To treat the remaining term of (18) we apply Lemma 2.3. Let Cd," and Cd be the
constants from Step 1 and Lemma 2.3, respectively, and let !(r) = Cd,"r/|u|. Finally, set
A = max{Cd,"/Cd, 4}.

We claim that, if � � Al0, then !(l(u))  Cd and for all u 2 ⇤(2)\B� one can parametrize
@⇤" \ Bl(u)(u) as the graph of a function f and for a point (y0, yd) 2 @⇤" \ Bl(u)(u) one

has rf(y0) = 0 and |rf(x0)|  !(|x0 � y0|) for all x0 2 Rd�1.

Indeed, for any u 2 ⇤(2) \ B� one has |u| � � � Al0 = Al(u). Therefore, since A � 4,
according to Step 1 such a parametrization is possible with the above choice of !. In
particular, !(l(u)) = Cd,"l(u)/|u|  Cd,"/A. Since A � Cd,"/Cd, the claimed inequality
holds.
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Since l0 � h, we for all u 2 ⇤(2) have l(u) = l0 � h and therefore Lemma 2.3 yields
Z

⇤(2)\B�

Tr(�u'H⇤"'�u)�l(u)�d du

= Ldh
�d

Z

⇤(2)\B�

Z

⇤"

�2
u(x)'2(x)l(u)�d dx du

� Ld�1

4
h�d+1

Z

⇤(2)\B�

Z

@⇤"

�2
u(x)'2(x)l(u)�d dHd�1(x) du

+ O(h�d)

Z

⇤(2)\B�

✓
h2

l(u)2
+ Cd,"

l(u)

|u|

◆
du .

(21)

Combining (15), (16), (17), (18), (19), (20), (21) and using (10) we obtain

Tr('H⇤"')� = Ldh
�d

Z

⇤"

'2(x) dx � Ld�1

4
h�d+1

Z

@⇤"

'2(x) dHd�1(x) + R

with

|R|  Ch�d

✓
l�1
0 h2 + �d�1(l0 + h) +

Z

⇤(2)\B�

✓
h2

l(u)2
+ Cd,"

l(u)

|u|

◆
du

◆
. (22)

Our final task in the proof is to choose l0 and � such that the right side here becomes
 Ch�d+4/3. By [10, Equation 8], see also (34),

h2

Z

⇤(2)\B�

l(u)�2 du  Cl�1
0 h2 .

To bound the remaining term of the integral we consider two cases:

i. If ⇤(2) \ B1 = ;, then

Cd,"

Z

⇤(2)\B�

l(u)

|u| du  Cd,"

Z

⇤(2)\B�

l(u) du  CCd,"l
2
0 .

ii. If ⇤(2) \ B1 6= ;, then ⇤(2) ⇢ B5 and

Cd,"

Z

⇤(2)\B�

l(u)

|u| du  CCd,"l
2
0

Z 5

�
⌧�1⌧d�2 d⌧  Cl20 ⇥

8
><
>:

0 if d = 2 ,

C3,"(1 + h log(��1)) if d = 3 ,

Cd," if d � 4 .

In both cases we used the fact that ⇤(2) is contained in an l0-neighborhood of @⇤".
In conclusion, the right side of (22) is bounded by

Ch�d
⇣
l�1
0 h2 + �d�1(l0 + h) + Cd,"l

2
0(1 + h log(��1))

⌘
, (23)

where the log term appears only in d = 3. Setting � = Al0 and l0 = h2/3, we obtain the
claimed error bound. Note that 1 � l0 � h for 0 < h  1, as required. ⇤
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Remark 2.11. In the two-dimensional case the above argument can be iterated to obtain
Lemma 2.10 with an error term of order l�h�� for any � > 0. Indeed, if one has Lemma 2.10
with error term l�0h��0 for some �0 2 (0, 2], then one can replace the application of
Lemma 2.1 in (19) by an application of this asymptotic expansion and one can avoid (20).

Therefore (23) is replaced by h�2(l�1
0 h2 + �h2��0 l�1+�0

0 ). Choosing again � = Al0 but

now l0 = h�0/(1+�0) yields a two-term expansion with error of order l�
0
h��0 with �0 =

�0
1+�0

. Repeating this procedure the exponent � can be made arbitrarily small. In higher

dimensions the corresponding idea does not yield an improvement since the term l�1
0 h2 +

Cd,"l
2
0 in (23) can be made no smaller than h4/3.

3. Geometric constructions

In this section we adapt the geometric ideas used by Brown in [8] (see also [3]) to the
setting considered here.

Definition 3.1. Let 0 < "  1 and r > 0. A point p ⇢ @⌦ is called (", r)-good if the inner
unit normal ⌫(p) exists and

Br(p) \ @⌦ ⇢ {x 2 Rd : |(x � p) · ⌫(p)| < "|x � p|} .

The set of all (", r)-good points of @⌦ is denoted by G",r.

In other words, p is (", r)-good if locally @⌦ is contained in the complement of the two-

sided circular cone with vertex p, symmetry axis ⌫(p), and opening angle sin�1(
p

1 � "2) =
cos�1(") measured from the axis of symmetry.

Following [3, 8] we define a good subset of points near the boundary. In contrast to the
constructions in [3, 8] this set will contain points both in ⌦ and in its complement ⌦c.

Definition 3.2. Let

�",r(p) = {x 2 Rd : |(x � p) · ⌫(p)| >
p

1 � "2|x � p|} \ Br/2(p)

and

G",r =
[

p2G",r

�",r(p) .

We emphasize that �",r(p) di↵ers from the corresponding set defined in [3, 8] in several
ways. Here we avoid an additional degree of freedom by taking the union over all (", r)-
good points instead of a subset of them, we consider two-sided cones instead of one-sided,
and we also choose to truncate the cone at distance r/2 instead of r.

The two-sided cones appear since we, in contrast to [3, 8], do not work at a pointwise level
but at the local length scale given by l. In particular, we have a non-trivial contribution
to the trace from localizations centered at points u /2 ⌦ (see Lemma 2.8).

The reason for considering smaller cones is to ensure that if u 2 G",r then @⌦ \ Br0(u)
stays close to the hyperplane tangent to @⌦ at p as long as r0  r/2. In particular, we shall
make use of the following lemma.
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Lemma 3.3. Let p 2 @⌦ be (", r)-good with 0 < "  1/2. Then for any u 2 �",r(p),

|u � p|  2 dist(u, @⌦) .

Proof of Lemma 3.3. Let p0 2 @⌦ satisfy |u � p0| = dist(u, @⌦). Then, since p 2 @⌦,

|u � p0| = dist(u, @⌦)  |u � p| < r/2

and so, in particular, p0 2 Br(p). Let ⇤ = {y : |(y � p) · ⌫(p)| < "|y � p|}. Then,

since p is (", r)-good, p0 2 @⌦ \ Br(p) implies that p0 2 ⇤. Let y 2 ⇤ \ Br(p) satisfy
|u�y| = dist(u,⇤\Br(p)). Then, since p0 2 ⇤\Br(p), |u�y|  |u�p0|. By the choice of y
and the construction of �",r(p) the points u, p, y form a right-angle triangle with the angle
between the sides u�p and y�p larger than ⇡/2�2 sin�1("). By elementary trigonometry
it follows that, for " 2 (0, 1/2],

|u � p0| � |u � y| � sin(⇡/2 � 2 sin�1("))|u � p| = (1 � 2"2)|u � p| � 1

2
|u � p| .

This completes the proof. ⇤

The proof of the following result, which is omitted, is based on Rademacher’s theorem
on almost everywhere di↵erentiability of Lipschitz functions.

Lemma 3.4 ([8, Section 4]). For any " > 0,

lim
r!0+

Hd�1(@⌦ \ G",r) = 0 .

It follows that for any fixed " > 0 we can find r > 0 small enough so that G",r is
non-empty. Furthermore, defining for " > 0

µ⌦(", r) =
Hd�1(@⌦ \ G",r)

Hd�1(@⌦)
, (24)

there is an r > 0 so that µ(", r) is arbitrarily small. We shall often write simply µ and leave
the dependence on ⌦ implicit. For the next lemma we recall that # was defined in (8).

Lemma 3.5 ([8, Proposition 1.3], [3, Lemma 2.7]). Let " 2 (0, 1] and r > 0. Then there
exists an s0 = s0(", r,⌦) > 0 such that for all s  s0,

|{u 2 Rd : dist(u, @⌦) < s} \ G",r|  2s(µ(", r) + #(s) + "2)Hd�1(@⌦) . (25)

Proof of Lemma 3.5. The proof follows closely those of Lemma 2.7 and Proposition 1.3
in [3] and [8], respectively. Write

|{u 2 Rd : dist(u, @⌦) < s} \ G",r| = |{u 2 Rd : dist(u, @⌦) < s}|
� |{u 2 Rd : dist(u, @⌦) < s} \ G",r| .

(26)

The first term on the right side can be controlled using (9). To bound the second one,
for some � > 0 to be determined later, choose ⌫1, . . . , ⌫N 2 Sd�1 and disjoint closed sets
F1, . . . , FN ⇢ G",r such that Hd�1(G",r \ SN

i=1 Fi)  �Hd�1(G",r) and |⌫(p) � ⌫i|  " for
all p 2 Fi. Mimicking the proofs in [3, 8] one finds that p + ⇢⌫i 2 �",r(p) for p 2 Fi
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and �r/2 < ⇢ < r/2 and that the map (p, ⇢) 7! p + ⇢⌫i is injective for p 2 Fi and
�r/2 < ⇢ < r/2.

If s0 is less than or equal to both r/2 and mini 6=j dist(Fi, Fj)/2 one obtains by the area
formula [9, Theorem 3.2.3] that, for 0 < s  s0,

|{u 2 Rd : dist(u, @⌦) < s} \ G",r| �
NX

i=1

|{p + ⇢⌫i : p 2 Fi,�s < ⇢ < s}|

� (1 � "2/2)

NX

i=1

Z

{p+⇢⌫i:p2Fi,�s<⇢<s}

dx

⌫i · ⌫(p)

= 2s(1 � "2/2)
NX

i=1

Hd�1(Fi)

� 2s(1 � "2/2)(1 � �)Hd�1(G",r)

= 2s(1 � µ(", r))(1 � "2/2)(1 � �)Hd�1(@⌦) .

(27)

Combining (26), (27) and the definition of # yields

|{u 2 Rd : dist(u, @⌦) < s}\G",r|  2sHd�1(@⌦)(1�(1�µ(", r))(1�"2/2)(1��)+#(s)) .

Choosing � = "2/2 and recalling that µ(", r)  1 completes the proof. ⇤

4. Asymptotics for Lipschitz domains

Our goal in this section is to prove the following

Theorem 4.1. Let ⌦ ⇢ Rd, d � 2, be a bounded open set with Lipschitz regular boundary.
Then, as h ! 0+,

Tr(H⌦)� = Ld|⌦|h�d � Ld�1

4
Hd�1(@⌦)h�d+1 + o(h�d+1) .

Clearly, this is equivalent to Theorem 1.1. Our proof of Theorem 4.1 depends on three
parameters

"0 2 (0, 4] , " 2 (0, 1/2] , r > 0

and we shall show that for each such choice of parameters there is an h0("0, ", r,⌦) > 0
such that for all 0 < h  h0("0, ", r,⌦) one has

hd�1
���Tr(H⌦)��Ld|⌦|h�d+

Ld�1

4
Hd�1(@⌦)h�d+1

���  C
⇣
"
1/3
0 +

"

"0
+
#(l0)

"0
+

µ(", r)

"0

⌘
, (28)

where C is a constant that depends in an explicit way on ⌦. Here #(s) and µ(", r) are the
functions from (8) and (24). Recalling that limt!0 #(t) = 0 and limr!0 µ(", r) = 0 for any
fixed " > 0 (see Lemma 3.4), Theorem 4.1 follows from (28) by letting h, r, " and "0 tend
to zero in that order.
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There is nothing special about the assumption that "0  4. Any choice of upper bound
is su�cient to complete the proof and would only result in a change of the constant C
in (28). However, for our analysis in Section 5 allowing "0 2 (0, 4] will be convenient.

We now give the details of our construction. We introduce a local length scale

l(u) =
1

2
max{dist(u,⌦c), 2l0} (29)

with a parameter 0 < l0  rin(⌦)/2 that we will write as

l0 = h/"0 for 0 < h  2rin(⌦) .

Here "0 2 (0, 4] is one of the parameters of our construction. We note in passing that
the above definition of l(u) is similar, but simpler than that in [10, 11] and has a natural
scaling.

Note that 0 < l(u)  rin(⌦)/2 and that, using (7), krlkL1  1/2.

Fix a function � 2 C1
0 (Rd) with supp� = B1(0) and k�kL2 = 1. Later on, it will also

be important that � is radially symmetric.
Lemma 2.5 now yields a family of functions (�u)u2Rd such that supp�u = Bl(u)(u)

and (10) and (11) are satisfied.
In what follows we will use the convention that C denotes a constant which may change

from line to line but only depends on the dimension and the choice of �. In particular, we
emphasize that it is independent of ⌦. Similarly, when we write O( · ) the implicit constant
is independent of ⌦ and all the parameters of the construction.

If h  2rin(⌦) then

min
dist(u,⌦)l(u)

l(u) = h/"0 � h/4 .

Thus, for 0 < h  2rin(⌦) we can apply Lemma 2.8, with M = 4 and ' ⌘ 1, and reduce
our problem to studying the local contributions to the trace Tr(�uH⌦�u)�. (The fact that
the integral on the right side of (12) is indeed negligible for small "0 will be proven below
in (36).)

We now continue our construction and fix the parameters " 2 (0, 1/2] and r > 0 and
define the sets G",r and G",r as in the previous section. According to Lemma 3.4 we may
and will assume in the following that given ", the parameter r is chosen so small that G",r

is non-empty.
We divide the set of u 2 Rd where Tr(�uH⌦�u)� is non-zero into three parts,

⌦⇤ = {u 2 Rd : supp�u ⇢ ⌦} ,

⌦g = {u 2 G",r : supp�u \ @⌦ 6= ;} ,

⌦b = {u 2 Rd \ G",r : supp�u \ @⌦ 6= ;} .

(30)
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Clearly these three sets are disjoint and Tr(�uH⌦�u)� = 0 for u /2 ⌦⇤ [⌦g [⌦b. Splitting
the integral of Lemma 2.8 according to this partition we haveZ

Rd

Tr(�uH⌦�u)�l(u)�d du =

Z

⌦⇤
Tr(�uH⌦�u)�l(u)�d du

+

Z

⌦g

Tr(�uH⌦�u)�l(u)�d du

+

Z

⌦b

Tr(�uH⌦�u)�l(u)�d du .

(31)

Let us pause for a moment and review the overall strategy of our proof. In ⌦⇤ the
e↵ect of the boundary is not felt and a su�ciently precise asymptotic expansion follows
from Lemma 2.2. By Lemma 3.5 the set ⌦b is small and its contribution to the trace is
negligible. The set which is most di�cult to analyse is ⌦g. Here the asymptotics in cones
from Lemma 2.10 will play an important role.

4.1. Some auxiliary estimates. To control the error terms appearing in the proof we
need to be able to control l(u) on the sets in (30).

We begin with the following observation,

⌦g [ ⌦b = {u 2 Rd : dist(u, @⌦)  l0} . (32)

Indeed, by definition of ⌦g and ⌦b and since supp� = B1(0), the set on the left equals

{u 2 Rd : dist(u, @⌦)  l(u)}. Therefore we need to prove that for any u 2 Rd, one has
dist(u, @⌦)  l0 if and only if one has dist(u, @⌦)  l(u). This is trivial if dist(u,⌦c)  2l0,
since then l(u) = l0. On the other hand, if dist(u,⌦c) > 2l0, then l(u) = (1/2) dist(u,⌦c) =
(1/2) dist(u, @⌦), and therefore neither of the two inequalities holds. This completes the
proof of (32).

The equality (32) together with (9) implies that

|⌦g [ ⌦b|  2l0Hd�1(@⌦)(1 + #(l0)) . (33)

Note that it also follows from (32) that

l(u) = l0 if u 2 ⌦g [ ⌦b .

Consequently, for any ↵ 2 R,Z

⌦g[⌦b

l(u)↵ du = l↵0 |⌦g [ ⌦b|  2Hd�1(@⌦)l1+↵
0 (1 + #(l0)) . (34)

We now use (32) to bound integrals which will appear as error terms later on. We claim
that Z

⌦⇤
l(u)�2 du  CHd�1(@⌦)

⇥
1 + #(rin(⌦))

⇤
l�1
0 , (35)

To prove this, we decomposeZ

⌦⇤
l(u)�2 du = l�2

0 |{u 2 ⌦⇤ : �⌦(u)  2l0}| + 4

Z

u2⌦⇤:�⌦(u)>2l0

�⌦(u)�2 du .
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Using (7) and the co-area formula and integrating by parts we find
Z

u2⌦⇤:�⌦(u)>2l0

�⌦(u)�2 du =

Z rin(⌦)

2l0

Hd�1({u 2 ⌦⇤ : �⌦(u) = t})t�2 dt

= 2

Z rin(⌦)

2l0

|{u 2 ⌦⇤ : �⌦(u)  t}|t�3 dt

+ |⌦⇤|rin(⌦)�2 � 1

4
|{u 2 ⌦⇤ : �⌦(u)  2l0}|l�2

0 ,

and therefore
Z

⌦⇤
l(u)�2 du  8

Z rin(⌦)

2l0

|{u 2 ⌦ : �⌦(u)  t}|t�3 dt + 4|⌦|rin(⌦)�2 .

The second term on the right side can be bounded by

4|⌦|rin(⌦)�2  2|⌦|rin(⌦)�1l�1
0  2Hd�1(@⌦)

⇥
1 + 2#(rin(⌦))

⇤
l�1
0 .

In order to bound the first term, we use the definition of # and get
Z rin(⌦)

2l0

|{u 2 ⌦ : �⌦(u)  t}|t�3 dt  Hd�1(@⌦)
⇥
1 + 2#(rin(⌦))

⇤ Z rin(⌦)

2l0

t�2 dt

 1

2
Hd�1(@⌦)

⇥
1 + 2#(rin(⌦))

⇤
l�1
0 .

This completes the proof of (35).
Next, we discuss the localization error coming from (12). We claim that

h�d+2

Z

dist(u,⌦)l(u)
l(u)�2 du  CHd�1(@⌦)

⇥
1 + #(rin(⌦))

⇤
"0h

�d+1 . (36)

Note that this term is negligible for the asymptotics if "0 ⌧ 1.
Indeed, taking into account (32) this follows from (34), (35) and the fact that l0 = h/"0.

4.2. Contribution from the bulk ⌦⇤. For the first term on the right side of (31),
Lemma 2.2 and (35) yield

Z

⌦⇤
Tr(�uH⌦�u)�l(u)�d du =

Z

⌦⇤

✓
Ldh

�d

Z

⌦
�2

u(x) dx + l(u)d�2O(h�d+2)

◆
l(u)�d du

= Ldh
�d

Z

⌦⇤

Z

⌦
�2

u(x)l(u)�d dx du

+ Hd�1(@⌦)
⇥
1 + #(rin(⌦))

⇤
l�1
0 O(h�d+2)

= Ldh
�d

Z

⌦⇤

Z

⌦
�2

u(x)l(u)�d dx du

+ "0Hd�1(@⌦)
⇥
1 + #(rin(⌦))

⇤
O(h�d+1) .

This is already the desired bound. Note that the second term on the right side is negligible
for the asymptotics if "0 ⌧ 1.
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4.3. Contribution from the bad part of the boundary ⌦b. For the third term on the
right side of (31), Lemmas 2.1 and 3.5 yield

0 
Z

⌦b

Tr(�uH⌦�u)�l(u)�d du  Ldh
�d

Z

⌦b

Z

⌦
�2

u(x)l(u)�d dx du

 Ch�d|⌦b|
 CHd�1(@⌦)h�d+1(µ(", r) + #(l0) + "2)/"0 ,

(37)

Here we used ⌦b ⇢ {u 2 Rd : dist(u, @⌦)  l0} \ G",r and assumed l0  s0 where s0 is the
constant from Lemma 3.5. The latter condition holds for h small enough depending on "0,
", r and ⌦.

The bound (37) will be su�cient for us. Note that the term on the right side is negligible
for the asymptotics if (µ(", r) + #(l0) + "2)/"0 ⌧ 1.

4.4. Contribution from the good part of the boundary ⌦g. The term coming from
⌦g is more troublesome to deal with. It is the only term which contributes to the second
term of the asymptotic expansion, and thus we need to understand its behavior in more
detail.

Let u 2 ⌦g. Then by definition there is a p(u) 2 G",r such that u 2 �",r(p(u)). We
define two conical sets associated with u, namely,

I" = I"(u) = {x 2 Rd : (x � p(u)) · ⌫(p(u)) > "|x � p(u)|} ,

U" = U"(u) = {x 2 Rd : �(x � p(u)) · ⌫(p(u)) � "|x � p(u)|}c .

We note the inclusions I" \Br(p) ✓ ⌦\Br(p) ✓ U" \Br(p) and @⌦\Br(p) ⇢ U" \ I". If h
is small enough so that l0  r/2 (note that this condition on h depends only on "0 and r),
then the fact that l(u) = l0 implies that Bl(u)(u) ⇢ Br(p), and so

I" \ Bl(u)(u) ✓ ⌦ \ Bl(u)(u) ✓ U" \ Bl(u)(u) . (38)

It is shown in [3] that there is a half-space L⇤ = L⇤(u) such that p(u) 2 @L⇤, dist(u, @L⇤)
= dist(u, @⌦) and I" ⇢ L⇤(u) ⇢ U". These inclusions together with (38) and domain
monotonicity imply that

Tr(�uHI"�u)�  Tr(�uH⌦�u)�  Tr(�uHU"�u)� ,

Tr(�uHI"�u)�  Tr(�uHL⇤�u)�  Tr(�uHU"�u)� .

Since all the previous arguments hold for any u 2 ⌦g we infer that
���
Z

⌦g

Tr(�uH⌦�u)�l(u)�d du �
Z

⌦g

Tr(�uHL⇤(u)�u)�l(u)�d du
���


Z

⌦g

⇥
Tr(�uHU"(u)�u)� � Tr(�uHI"(u)�u)�

⇤
l(u)�d du .

(39)

A technical point here is that the choice of the point p(u) and the half space L⇤(u) can
be made so that it depends in a measurable way on u. The fact that this is possible can be
seen by constructing the map u 7! p(u) in the following manner. Take a countable dense
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p

@⌦

@L⇤

⌫

↵

↵

�r,"

@I"

@U"

·u

r/2

r/2

l0
l

Figure 1. The di↵erent sets involved in the construction. Here ↵ =
sin�1("), p = p(u), ⌫ = ⌫(p(u)) and l = dist(u, @⌦) = dist(u, @L⇤) and
l0 = dist(u, @I"). The shaded two-sided truncated cone is the set �r,"(p).

subset S in G",r. The continuity of the map p 7! �",r(p) implies that G",r = [p2S �",r(p).
Choose an ordering of S and define the u 7! p(u) by mapping u to the point p 2 S which
appears first in this ordering. The inverse image of any measurable subset of @⌦ is then a
countable union of intersections of the sets �",r which is measurable. The map u 7! L⇤(u)
can be constructed in a similar manner.

We will argue that the second term on the left side of (39) contains the relevant terms
in the asymptotics. In fact, by Lemma 2.3 in [10] (the case ! ⌘ 0 of Lemma 2.3 above but
valid for all h > 0) it holds that

Tr(�uHL⇤�u)� = Ldh
�d

Z

L⇤
�2

u(x) dx�Ld�1

4
h�d+1

Z

@L⇤
�2

u(x) dHd�1(x)+l(u)d�2O(h�d+2) .

Integrating these asymptotics we obtain
Z

⌦g

Tr(�uHL⇤(u)�u)�l(u)�d du = Ldh
�d

Z

⌦g

Z

L⇤(u)
�2

u(x)l(u)�d dx du

� Ld�1

4
h�d+1

Z

⌦g

Z

@L⇤(u)
�2

u(x)l(u)�d dHd�1(x) du

+

Z

⌦g

l(u)�2 du O(h�d+2) .

(40)

The first two terms on the right side are almost the terms that we are looking for, namely,

Ldh
�d

Z

⌦g

Z

⌦
�2

u(x)l(u)�d dx du � Ld�1

4
h�d+1Hd�1(@⌦) . (41)

Note that in the first term on the right side of (40) we want to replace the domain L⇤(u) of
the u-integration by ⌦. Similarly, in the second term we essentially want to replace @L⇤(u)
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by @⌦ (although eventually we will argue slightly di↵erently). The last term on the right
side of (40) is controlled by (34).

Thus, in the remainder of this subsection we need to do two things, namely first to
control the error between the right side of (40) and (41), and second to bound the term on
the right side of (39).

4.4.1. The volume terms. First we show that the di↵erence between the first term on the
right side of (40) and the first term in (41) is small. We bound
Z

⌦g

���
Z

⌦
�2

u(x) dx �
Z

L⇤(u)
�2

u(x) dx
���l(u)�d du 

Z

⌦g

Z

⌦�L⇤(u)
�2

u(x)l(u)�d dx du


Z

⌦g

Z

U"(p)\I"(p)
�2

u(x)l(u)�d dx du (42)

 C

Z

⌦g

|(U"(p) \ I"(p)) \ supp�u|l(u)�d du .

For u 2 ⌦g we have l(u) � dist(u, @⌦). By Lemma 3.3 we find |u � p(u)|  2l(u) and
hence

(U"(p) \ I"(p)) \ Bl(u)(u) ⇢ (U"(p) \ I"(p)) \ B3l(u)(p(u)) , (43)

which in turn implies that

|(U"(p) \ I"(p)) \ Bl(u)(u)|  |(U"(p) \ I"(p)) \ B3l(u)(p(u))|  C"l(u)d .

Inserting this bound into (42) and recalling (33) yields

h�d

Z

⌦g

|(U"(p) \ I"(p)) \ supp�u|l(u)�d du  Ch�d"|⌦g|

 Ch�d"l0Hd�1(@⌦)(1 + #(l0))

= C""�1
0 h�d+1Hd�1(@⌦)(1 + #(l0)) .

Note that this term is negligible for the asymptotics if ""�1
0 ⌧ 1.

4.4.2. The boundary terms. Next, we consider the di↵erence between the second term on
the right side of (40) and the second term in (41). We shall show that
����
Z

⌦g

Z

@L⇤(u)
�2

u(x)l(u)�ddHd�1(x) du�Hd�1(@⌦)

����  CHd�1(@⌦)
�
µ(", r)+#(l0)+"

2
�
. (44)

Note that the right side is negligible for the asymptotics if µ(", r) + #(l0) + "2 ⌧ 1. This
is a weaker requirement than the one we met in (37).

Let u 2 ⌦g. We know from (32) that l(u) = l0 and therefore �u(x) = �((x � u)/l0).
We define

f(xd) =

Z

Rd�1

�(x0, xd)
2 dx0 .
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Let y 2 @L⇤(u) such that |u � y| = dist(u, @L⇤(u)) = dist(u, @⌦). Then @L⇤(u) = {x 2
Rd : (x � y) · (u � y) = 0} and

Z

@L⇤(u)
�u(x)2 dHd�1(x) =

Z

@L⇤(u)
�
⇣x � y

l0
� u � y

l0

⌘2
dHd�1(x)

= ld�1
0 f(|u � y|/l0) .

The last equality follows by scaling and from the fact that � is radial. Since f is even, we
can write

f(|u � y|/l0) = f(�⌦(u)/l0) .

This proves that
Z

⌦g

Z

@L⇤(u)
�2

u(x)l(u)�d dHd�1(x) du = l�1
0

Z

⌦g

f(�⌦(u)/l0) du .

Next, we show that, up to a controllable error, the set ⌦g on the right side can be

replaced by Rd. Indeed, we have

0  l�1
0

Z

⌦b

f(�⌦(u)/l0) du  l�1
0 kfkL1 |⌦b|

 CHd�1(@⌦)
�
µ(", r) + #(l0) + "2

�
,

(45)

where we used the same bound as in (37). Moreover, since � has support in B1(0), f has
support in [�1, 1] and therefore (32) implies that f(�⌦(u)/l0) = 0 for u /2 ⌦g [ ⌦b.

Thus, we are left with analysing

l�1
0

Z

Rd

f(�⌦(u)/l0) du = l�1
0

Z

R
f(t/l0)Hd�1({u 2 Rd : �⌦(u) = t}) dt .

The identity here comes again from the co-area formula together with (7).
The idea in the following is that l�1

0 f(t/l0) is an approximate delta function at t = 0.
Note that Z

R
f(xd) dxd = k�k2

L2 = 1 .

The following argument is a quantitative, ‘two-sided’ version of a special case of [8, Propo-
sition 1.1]. To justify the replacement of l�1

0 f(t/l0) by a delta function write

l�1
0

Z 1

0
f(t/l0)Hd�1({u 2 Rd : �⌦(u) = t}) dt � (1/2)Hd�1(@⌦)

= l�1
0

Z 1

0
f(t/l0)

d

dt

⇣
|{u 2 ⌦ : �⌦(u)  t}| � Hd�1(@⌦)t

⌘
dt

= l�2
0

Z 1

0
f 0(t/l0)

⇣
|{u 2 ⌦ : �⌦(u)  t}| � Hd�1(@⌦)t

⌘
dt

= l�2
0 Hd�1(@⌦)

Z 1

0
f 0(t/l0) t#inner(t) dt .
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This, together with a similar formula for t < 0 and the fact that f is supported in [�1, 1],
implies that

����l�1
0

Z

R
f(t/l0)Hd�1({u 2 Rd : �⌦(u) = t}) dt � Hd�1(@⌦)

����

 2l�2
0 Hd�1(@⌦)#(l0)

Z 1

0
|f 0(t/l0)| t dt

= 2Hd�1(@⌦)#(l0)

Z 1

0
|f 0(xd)| xd dxd .

This completes the proof of (44).

4.4.3. Estimating the error from (39). To complete the proof, it remains to control the
error made in our local approximation of Bl(u)(u)\⌦ by Bl(u)(u)\L⇤(u), that is, the right
side of (39). We shall show that

Z

⌦g

⇥
Tr(�uHU"(u)�u)� � Tr(�uHI"(u)�u)�

⇤
l(u)�d du

 CHd�1(@⌦)(1 + #(l0))
�
""�1

0 + "
1/3
0

�
h�d+1 .

Note that in order to show that this term does not interfere with the asymptotics we need

to make ""�1
0 + "

1/3
0 small.

Plugging in the asymptotics of Lemma 2.10 we find that

Z

⌦g

⇥
Tr(�uHU"(u)�u)� � Tr(�uHI"(u)�u)�

⇤
l(u)�d du

 Ldh
�d

Z

⌦g

Z

U"(p)\I"(p)
�2

u(x)l(u)�d dx du

� Ld�1

4
h�d+1

Z

⌦g

✓Z

@U"(p)
�2

u(x) dHd�1(x) �
Z

@I"(p)
�2

u(x) dHd�1(x)

◆
l(u)�d du

+ Ch�d+4/3

Z

⌦g

l(u)�4/3 du .

The first term can be handled as in (42) and is thus  CHd�1(@⌦)(1 + #(l0))""
�1
0 h�d+1.

The third term is  CHd�1(@⌦)(1 + #(l0))"
1/3
0 h�d+1 by (34) and the choice of l0.

In order to bound the second term, let H denote the hyperplane through p(u) orthogonal
to ⌫(p(u)). Then the map s : Rd�1 ! R, x0 7! "p

1�"2 |x0|, parametrizes @U" and @I" as

graphs over H. In coordinates chosen so that p(u) = 0 and H = {(x0, 0) : x0 2 Rd�1}, we
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find that���
Z

@U"

�2
u(x) dHd�1(x) �

Z

@I"

�2
u(x) dHd�1(x)

���


Z

Rd�1

|�2
u(x0, s(x0)) � �2

u(x0,�s(x0))|
p

1 + |rs|2dx0

 4"

1 � "2
k�ukL1kr�ukL1

Z

B3l(u)

|x0| dx0

 C"p
1 � "2

l(u)d�1 ,

where we used |x0|  3l(u) in supp�u, see (43). Combined with (33) we find that the error
coming from the second term of (34) is  CHd�1(@⌦)(1 + #(l0))"h

�d+1.

4.5. Gathering the error terms. The proof of Theorem 4.1 can now be completed by
combining the contributions from ⌦⇤,⌦b,⌦g and estimating the localization error from
Lemma 2.8. Note that (10) implies thatZ

⌦⇤

Z

⌦
�2

u(x)l(u)�d dx du +

Z

⌦g

Z

⌦
�2

u(x)l(u)�d dx du +

Z

⌦b

Z

⌦
�2

u(x)l(u)�d dx du = |⌦| .

For all 0 < h  2rin(⌦), r > 0, " 2 (0, 1/2] and "0 2 (0, 4] satisfying

h/"0 = l0  min
�
r/2, s0, rin(⌦)/2

 

(with s0 = s0(", r,⌦) given by Lemma 3.5) we can conclude that

h�d+1
���Tr(H⌦)� � Ld|⌦|h�d +

Ld�1

4
Hd�1(@⌦)h�d+1

���

 CHd�1(@⌦)


"0
⇥
1 + #(rin(⌦))

⇤
+

µ(", r) + #(l0)

"0
+
�
"�1
0 "+ "

1/3
0

�⇥
1 + #(l0)

⇤�
,

(46)

where the constant C depends only on the dimension. (Here we have simplified some terms
using the fact that "  1/2 and "0  4.) This proves (28) and therefore concludes the proof
of Theorem 4.1. ⇤

5. Uniform asymptotics for convex sets

Our goal in this section is to prove the following

Theorem 5.1. Let ⌦ ⇢ Rd, d � 2, be a convex bounded open set. Then, for all h > 0,

hd�1
���Tr(H⌦)� � Ld|⌦|h�d +

Ld�1

4
Hd�1(@⌦)h�d+1

���  CHd�1(@⌦)
⇣

h
rin(⌦)

⌘1/11
,

where the constant C depends only on the dimension.

Clearly, this is equivalent to Theorem 1.2. To prove Theorem 5.1 we follow the same
strategy as in the proof of Theorem 4.1. The geometry of ⌦ enters into the final inequal-
ity (46) in that proof via the three quantities #(l0), µ(", r) and s0(", r,⌦) (the latter as a
constraint on the size of h).



26 R. L. FRANK AND S. LARSON

Our first goal in this section is to show that #(⌦, t) can be bounded for convex ⌦
through t/rin(⌦) only. This makes the geometric dependence of the term #(l0) in (46)
explicit.

It is not so easy to bound µ(", r) and s0(", r,⌦) explicitly, even for convex sets. Our
second goal in this section is therefore to prove a replacement of Lemma 3.5 for convex sets
where the geometry enters only through rin(⌦) and Hd�1(@⌦).

Having achieved these two goals, a straightforward modification of the proof of Theo-
rem 4.1 will prove Theorem 5.1.

Throughout this section we assume that ⌦ ⇢ Rd is a convex open set. The arguments
that follow are based on ideas related to the notion of inner parallel sets. The inner parallel
set of ⌦ at distance t is defined to be

⌦t = {u 2 ⌦ : dist(u,⌦c) > t} . (47)

By [22, Theorem 1.2] and monotonicity of the measure of the perimeter of convex bodies
under inclusions we know that

Hd�1(@⌦)
⇣
1 � t

rin(⌦)

⌘d�1

+
 Hd�1(@⌦t)  Hd�1(@⌦) for all t � 0 . (48)

Our first application of (48) will be to show that, as claimed above, one has two-sided
bounds for rin(⌦) in terms of |⌦| and Hd�1(@⌦). Indeed, by the co-area formula and (7)
one has

|⌦| =

Z rin(⌦)

0
Hd�1(@⌦s) ds .

Applying (48) and integrating we find that

|⌦|
Hd�1(@⌦)

 rin(⌦)  d|⌦|
Hd�1(@⌦)

. (49)

Remark 5.2. It might be worth noting that both bounds in (49) cannot be improved. In
the upper bound equality is achieved if ⌦ is a ball and, more generally, if and only if ⌦
is a form body (see [22, 29]). In the lower bound equality is asymptotically achieved by
(0, L)d�1 ⇥ (0, 1) in the limit L ! 1.

The following lemma achieves the first goal mentioned at the beginning of this section.

Lemma 5.3. Let ⌦ ⇢ Rd be a convex open set. Then for all 0  t  rin(⌦),

|#inner(⌦, t)|  C
t

rin(⌦)
, |#outer(⌦, t)|  C

t

rin(⌦)
, #(⌦, t)  C

t

rin(⌦)
, (50)

where the constants depend only on the dimension.

Proof of Lemma 5.3. We first bound the measure of {u 2 ⌦ : dist(u,⌦c) < t} from both
above and below. Using the co-area formula and (7) in the same manner as above we have
that, for 0  t  rin(⌦),

|{u 2 ⌦ : dist(u,⌦c) < t}| =

Z t

0
Hd�1(@⌦s) ds .
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By the upper bound in (48) it follows that, for t � 0,

|{u 2 ⌦ : dist(u,⌦c) < t}|  tHd�1(@⌦) .

Correspondingly, the lower bound in (48) implies that, for 0  t  rin(⌦),

|{u 2 ⌦ : dist(u,⌦c) < t}| =

Z t

0
Hd�1(@⌦s) ds

� Hd�1(@⌦)

Z t

0

⇣
1 � s

rin(⌦)

⌘d�1
ds

=
Hd�1(@⌦)rin(⌦)

d

⇣
1 �

⇣
1 � t

rin(⌦)

⌘d⌘

� tHd�1(@⌦)
⇣
1 � d � 1

2rin(⌦)
t
⌘

.

Consequently we find that

� d � 1

2rin(⌦)
t  #inner(t)  0 .

To obtain the corresponding bounds for the measure of {x 2 ⌦c : dist(x,⌦) < t} we first
note that {u 2 Rd : dist(u,⌦) < t} is convex and its inner parallel set at distance t is ⌦.
By applying (48) to this set and using rin({u 2 Rd : dist(u,⌦) < t}) = rin(⌦) + t we find
that

Hd�1({u 2 Rd : dist(u,⌦) = t})
⇣ rin(⌦)

rin(⌦) + t

⌘d�1

 Hd�1(@⌦)  Hd�1({u 2 Rd : dist(u,⌦) = t}) .

Rearranging and arguing as before one finds

tHd�1(@⌦)  |{u 2 Rd : dist(u,⌦) < t}|  tHd�1(@⌦)
⇣
1 +

2d � d � 1

d rin(⌦)
t
⌘

,

and hence

0  #outer(t) 
2d � d � 1

d rin(⌦)
t .

By combining the bounds for #inner and #outer one obtains the third inequality in (50).
This completes the proof of the lemma. ⇤

The following lemma achieves the second goal mentioned at the beginning of this section.
Note that this is similar to (25) but without involving µ(", r) or # and with an explicit
value for s0.

Lemma 5.4. Let ⌦ ⇢ Rd be a convex open set. Then, for all " 2 (0, 1], r 2 (0, "rin(⌦))
and s 2 (0, r/2],

|{u 2 Rd : dist(u, @⌦) < s} \ G",r|  CHd�1(@⌦)
sr

"rin(⌦)
,

where C depends only on the dimension.
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Proof of Lemma 5.4. We divide the proof into three steps.
Step 1: We define a set G ✓ @⌦.
We recall that ⌦t is defined in (47). We denote by reg(@⌦t) the set of points x 2 @⌦t

for which the inner unit normal ⌫t(x) exists. We consider the natural normal-map defined
for t 2 [0, rin(⌦)) by

ft : reg(@⌦t) ⇥ R+ ! Rd , (x, s) 7! x � s⌫t(x) .

We observe that ft(reg(@⌦t), s) ✓ reg(@⌦t�s) for 0 < s  t and, in particular, that
ft(reg(@⌦t), t) ✓ reg(@⌦). We also note that for all s 2 [0, t] the inwards pointing normal
to @⌦t�s at ft(x, t � s) is equal to the normal at x, ⌫t(x). It follows that the image of the
map ft(x, · ) : [0,1) ! Rd is a ray starting at x and passing orthogonally through @⌦ at
the point ft(x, t). If ft(x, t) is (", r)-good this ray forms the axis of symmetry for the cone
�",r(ft(x, t)). After these preparations, we now set

G = fr/"(reg(@⌦r/"), r/") .

Step 2: We show that for " 2 (0, 1) and r 2 (0, "rin(⌦)) every p 2 G is (", r)-good.
Note that we only need to check the (", r)-condition in the inwards direction, since for

any y 2 reg(@⌦) the boundary @⌦ is contained in the half-space {u 2 Rd : (u�y)·⌫(y) � 0}.
The main idea behind the construction of G is based on the observation that if a point

y 2 reg(@⌦) fails to be (", r)-good then it cannot be in the image of ft for suitably chosen t,
see Figure 2.

Assume that y 2 reg(@⌦) fails to be (", r)-good. If there is a point of reg(@⌦t) which is
mapped to y 2 reg(@⌦) under the normal map ft it must be the point y + t⌫(y). However,
since y is not (", r)-good there is a point y0 2 ⌦c such that |y0�y| = r and (y0�y)·⌫(y) = "r.
By elementary trigonometry we find that if t > r

2" then |y + t⌫(y) � y0| < t, and therefore
y + t⌫(t) does not belong to @⌦t implying that y /2 ft(reg(@⌦t), t). This proves that any
p 2 G = fr/"(reg(@⌦r/"), r/") is an (", r)-good point of @⌦.

Step 3: We now prove the inequality in the lemma.
We observe that for any fixed t > 0 and all s � 0 the map ft( · , s) is injective,

and by convexity Hd�1(ft(reg(@⌦t), s)) is an increasing functions of s. Note also that
Hd�1(reg(@⌦t)) = Hd�1(@⌦t) since Hd�1-a.e. point of the boundary of a d-dimensional
convex set is regular (see [29]).

Lemma 5.3 implies that

|{u 2 Rd : dist(u, @⌦) < s} \ G",r|  2sHd�1(@⌦)(1 + Cs/rin(⌦))

� |{u 2 Rd : dist(u, @⌦) < s} \ G",r| .
Therefore using s  r/2  r/(2") we see that the claimed inequality will follow from

|{u 2 Rd : dist(u, @⌦) < s} \ G",r| � 2sHd�1(@⌦)
⇣
1 � Cr

"rin(⌦)

⌘
, 8s  r/2 .

Since every p 2 G is (", r)-good

fr/"(reg(@⌦r/"), r/"+ s0) ⇢ G",r , 8s0 2 (�r/2, r/2) .



TWO-TERM SPECTRAL ASYMPTOTICS 29

y + r
2"⌫

↵0

↵0
↵y

y0

@⌦
⌫

r

Figure 2. A 2-dimensional cross-section of a neighborhood of y illustrating
the idea behind the construction of G. Here ↵ = sin�1(") and ↵0 = ⇡/2�↵.

Therefore, using again the co-area formula, (7), (48) and the fact that Hd�1(ft(@⌦t, s)) is
increasing in s,

|{u 2 Rd : dist(u, @⌦) < s} \ G",r| �
Z s

�s
Hd�1(fr/"(reg(@⌦r/"), r/"+ s0) ds0

� 2sHd�1(fr/"(reg(@⌦r/"), r/"� s)

� 2sHd�1(@⌦r/")

� 2sHd�1(@⌦)
⇣
1 � r

"rin(⌦)

⌘d�1

� 2sHd�1(@⌦)
⇣
1 � (d � 1)r

"rin(⌦)

⌘
.

This completes the proof of Lemma 5.4. ⇤

Remark 5.5. The points in the set G in the previous proof are a lot better than (", r)-good.
The proof shows essentially that for any p 2 G the principal curvatures of @⌦ are bounded
from above by ⇠ "r�1. That this set is large for r small enough follows from Aleksandrov’s
theorem on a.e. twice di↵erentiability of convex functions.

As explained at the beginning of this subsection, proving Theorem 5.1 is now simply
a matter of bounding all the relevant error terms in the derivation of the asymptotic
expansion.



30 R. L. FRANK AND S. LARSON

Proof of Theorem 5.1. We repeat the proof of Theorem 4.1 but in (37) and (45), where we
used Lemma 3.5, we simply keep the term |⌦b|. In this way we find

h�d+1
���Tr(H⌦)� � Ld|⌦|h�d +

Ld�1

4
Hd�1(@⌦)h�d+1

���

 CHd�1(@⌦)


"0
⇥
1 + #(rin(⌦))

⇤
+

|⌦b|
hHd�1(@⌦)

+ #(l0) +
�
"�1
0 "+ "

1/3
0

�⇥
1 + #(l0)

⇤�
,

where we again require 0 < h < 2rin(⌦), r > 0, " 2 (0, 1/2] and "0 2 (0, 4] to be chosen so
that

h/"0  min
�
r/2, rin(⌦)/2

 
.

We now use the convexity of ⌦ to bound the terms which still depend on the geometry.
By (49) we have

#(rin(⌦))  C and #(l0)  C
l0

rin(⌦)
.

Furthermore, if r  "rin(⌦) and l0  r/2, then Lemma 5.4 implies that

|⌦b|  CHd�1(@⌦)
l0r

"rin(⌦)
= CHd�1(@⌦)

hr

""0rin(⌦)
.

Therefore, the error term above is bounded by

CHd�1(@⌦)


r

""0rin(⌦)
+ "�1

0 "+ "
1/3
0

�
.

(Here we have dropped a term h/("0rin(⌦)) coming from the bound on #(l0), since h 
"0r  "0"rin(⌦), so this term is  " and therefore also  4 "�1

0 ".) The above bound is valid
provided the parameters satisfy

h  "0 r/2 and r  " rin(⌦) .

It remains to choose the parameters. We first assume that s = h/rin(⌦)  1. Optimizing
successively over r, " and "0 in that order and adjusting the constants we arrive at the
choices

r = (1/2)rin(⌦) s8/11 , " = (1/2) s4/11 , "0 = 4 s3/11 .

Clearly all constraints are satisfied and the final error is

CHd�1(@⌦) s1/11 = CHd�1(@⌦)(h/rin(⌦))1/11 .

This is the claimed bound for h  rin(⌦).

Finally, for any convex ⌦ ⇢ Rd the first eigenvalue of ��⌦ satisfies �1(⌦) � ⇡2

4rin(⌦)2
[17,

27]. Hence Tr(H⌦)� = 0 for all h � (2/⇡)rin(⌦) and, in particular, for h � rin(⌦).

Combining this observation with the fact that |⌦|
rin(⌦)  Hd�1(@⌦) (see (49)) the claimed

bound holds also for any h � rin(⌦), which completes the proof. ⇤
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Appendix A. Proof of Lemma 2.8

What remains to conclude our analysis is to prove Lemma 2.8. As mentioned earlier the
proof follows the same strategy as the proof of Proposition 1.1 in [10].

Proof of Lemma 2.8. Set

� =

Z

Rd

�u(�u'H⌦'�u)0��ul(u)�d du .

Clearly � � 0 and by (10) �  1. Since the range of � is a subset of H1
0 (⌦) the variational

principle tells us that

Tr('H⌦')� � �Tr(�'H⌦') =

Z

Rd

Tr(�u'H⌦'�u)�l(u)�d du .

This completes the proof of one side of the inequality.
To complete the proof we use the following version of the IMS-localization formula, for

f 2 H1
0 (⌦),

1

2
(f,�2

u'(��)'f) +
1

2
(f,'(��)(�2

u'f)) = (f,�u'(��)'�uf) � ('f,'f(r�u)2) .

By (10) this yields that

(f,'(��)'f) =

Z

Rd

�
(f,�u'(��)'�uf) � ('f,'f(r�u)2)

�
l(u)�d du . (51)

Using the properties of l and �u in Lemma 2.5 one can show, see the proof of [32,
eq. (68)], that Z

Rd

(r�u)2(x)l(u)�d du  C

Z

Rd

�2
u(x)l(u)�d�2 du .

When combined with (51) we find that

Tr('H⌦')� 
Z

dist(u,⌦\ supp')l(u)
Tr(�u'(H⌦ � Ch2l(u)�2)'�u)�l(u)�d du . (52)

Let 0 < ⇢u  1 be an additional parameter to be chosen later. By the variational
principle

Tr(�u'(H⌦ � Ch2l(u)�2)'�u)�

 Tr(�u'H⌦'�u)� + Tr(�u'(�⇢uh2�⌦ � ⇢u � Ch2l(u)�2)'�u)�

 Tr(�u'H⌦'�u)� + Ld(⇢u + Ch2l(u)�2)1+d/2⇢�d/2
u h�d

Z

⌦
�2

u(x)'(x)2 dx ,

where we in the last step used Lemma 2.1.
Setting ⇢u = h2l(u)�2/M2, which by assumption is bounded by 1, we conclude that

Tr(�u'(H⌦ � Ch2l(u)�2)'�u)� (53)

 Tr(�u'H⌦'�u)� + LdM
�2(1 + CM2)1+d/2h�d+2l(u)�2

Z

⌦
�2

u(x)'(x)2 dx .
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Since k�ukL1  C and |supp�u|  Cl(u)d it holds that
Z

dist(u,⌦\ supp')l(u)

Z

⌦
�u(x)2'(x)2l(u)�d�2 dx du (54)

 k'k2
L1(⌦)

Z

dist(u,⌦\ supp')l(u)

Z

⌦
�u(x)2l(u)�d�2 dx du

 Ck'k2
L1(⌦)

Z

dist(u,⌦\ supp')l(u)
l(u)�2 du .

Combining (52), (53) and (54) completes the proof of the lemma. ⇤

We now move on to proving that the inequality of Proposition 1.1 in [10] can be extended
to all h > 0. We also show that the same construction allows us to prove the analogous
statement for the length scale used in the proof of Theorem 1.1.

We begin with a function l as in Lemma 2.5 and any constant S > 0. Assuming that
h � S maxdist(u,⌦\ supp')l(u) l(u) then by Lemma 2.1 and (10)

���Tr('H⌦')� �
Z

Rd

Tr(�u'H⌦'�u)�l(u)�d du
���

 h�dLd

Z

⌦
'2(x) dx + h�dLd

Z

Rd

Z

⌦
'2(x)�2

u(x)l(u)�d dx du

= h�d2Ld

Z

dist(u,⌦\ supp')l(u)

Z

⌦
'2(x)�2

u(x)l(u)�d dx du

 h�dCk'k2
L1(⌦)

Z

dist(u,⌦\supp')l(u)
du

 h�d+2Ck'k2
L1(⌦)S

�2

Z

dist(u,⌦\ supp')l(u)
l(u)�2 du .

(55)

Here we used that
R
⌦ '

2(x)�u(x)2 dx  k'k2
L1Cl(u)d to obtain an estimate which matches

that of Lemma 2.8.
Assume now that we are given a length scale l depending on a parameter l0, which itself

depends on h in such a way that there are constants �, µ > 0 such that for h  � one has
l0 � µh.

We first consider the length scale used in [10]:

l(u) =
1

2

�
1 + (dist(u,⌦c) + l20)

�1/2
��1

, with 0 < l0  1 .

We have that

min
dist(u,⌦)l(u)

l(u) =
l0

2 + 2l0
,

max
dist(u,⌦)l(u)

l(u)  1/2 .
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If h  � and we set M = 2+µ�
µ then

M min
dist(u,⌦)l(u)

l(u) =
2 + 2µ�

µ

l0
2 + 2l0

� 2 + 2µ�

µ

µh

2 + 2µh
� h .

Therefore, we can in the regime h  � apply Lemma 2.8 with M as above. On the other
hand, if h > � then with S = 2� we have

S max
dist(u,⌦)l(u)

l(u)  2�/2 < h .

Thus if h > � we can apply (55) with S = 2�. In conclusion, with the choices of l and l0
made in [10] the claimed inequality is valid for all h > 0.

Similarly, for the length scale (29) used in the proof of Theorem 1.1 we have

min
dist(u,⌦)l(u)

l(u) = l0 ,

max
dist(u,⌦)l(u)

l(u)  rin(⌦)/2 .

Setting M = 1/µ and S = 2�/rin(⌦) we find

M min
dist(u,⌦)l(u)

l(u) = l0/µ � h , for h  � ,

S max
dist(u,⌦)l(u)

l(u)  � < h , for h > � ,

and we can conclude in the same manner as above.
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MAXIMIZING RIESZ MEANS OF ANISOTROPIC HARMONIC

OSCILLATORS

SIMON LARSON

Abstract. We consider problems related to the asymptotic minimization of eigenvalues
of anisotropic harmonic oscillators in the plane. In particular we study Riesz means of the
eigenvalues and the trace of the corresponding heat kernels. The eigenvalue minimization
problem can be reformulated as a lattice point problem where one wishes to maximize the
number of points of (N � 1

2
) ⇥ (N � 1

2
) inside triangles with vertices (0, 0), (0,�

p
�) and

(�/
p
�, 0) with respect to � > 0, for fixed � � 0. This lattice point formulation of the

problem naturally leads to a family of generalized problems where one instead considers
the shifted lattice (N + �) ⇥ (N + ⌧), for �, ⌧ > �1. We show that the nature of these
problems are rather di↵erent depending on the shift parameters, and in particular that
the problem corresponding to harmonic oscillators, � = ⌧ = � 1

2
, is a critical case.

1. Introduction and main result

For � > 0, let L� denote the self-adjoint operator on L2(R2) acting as

�� + �x2 + ��1y2,

which we will refer to as the anisotropic harmonic oscillator. For any � > 0 the spectrum
of L� is positive and purely discrete, consisting of an infinite number of eigenvalues. Let
{�k(�)}k2N denote the eigenvalues of L� numbered in increasing order and each repeated
according to its multiplicity. Here and in what follows we use the convention that N =
{1, 2, . . .}. It is well known that the eigenvalues have a one-to-one correspondence with N2,
explicitly given by

(k1, k2) 7! 2(k1 � 1/2)
p
� + 2(k2 � 1/2)/

p
� = �(k1,k2)(�). (1)

In this paper we consider a number of problems related to the following question: Given
k 2 N for what values of � is the minimum

min{�k(�) : � > 0}
realized? In particular we are interested in how the set of minimizing � behaves as k
tends to infinity. Similar questions concerning minimizing or maximizing functions of the
spectrum of di↵erential operators has in recent years seen large interest, see for instance [12]
and references therein.

2010 Mathematics Subject Classification. Primary 35P15. Secondary 11P21, 52C05.
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1.1. Minimizing eigenvalues and counting lattice points. The problem of minimiz-
ing the k-th eigenvalue among the operators L� can be reformulated as finding the � for
which the eigenvalue counting function,

N(�,�) := #{j 2 N : �j(�)  �}, (2)

is first to reach k. Hence, if one understands the maximization problem

max{N(�,�) : � > 0} (3)

for all � � 0, then one also understands the problem of minimizing �k(�) for any k 2 N.
Due to the form of the eigenvalues of L� this maximization problem can be reformulated

as a geometric lattice point problem: Given � � 0 find the triangle, amongst those given
by the vertices (0, 0), (�/

p
�, 0) and (0,

p
��), which contains the greatest number of points

of the lattice (N � 1
2) ⇥ (N � 1

2). (We have here rescaled the problem to avoid the factor 2
appearing in the explicit form of the eigenvalues (1).)

In a similar manner the problem of minimizing eigenvalues of the Dirichlet Laplacian
among cuboids of unit measure, i.e. domains of the form Q = (0, a1) ⇥ . . . ⇥ (0, ad) ⇢ Rd

with
Qd

i=1 ai = 1, can be recast as finding which ellipsoid centered at the origin and of fixed
volume contains the largest number of positive integer lattice points. In [2] Antunes and
Freitas used this idea to show that if Qk is a sequence of unit area rectangles such that Qk

minimizes �k then Qk converges to the square as k tends to infinity. In [4] a similar result
was proven for the case of the Neumann Laplacian. The result of Antunes and Freitas was
generalized to the three-dimensional case in [5], and to arbitrary dimension in [7] where
also the corresponding Neumann result was proven to hold in any dimension.

Generalizing the work of Antunes and Freitas from the viewpoint of lattice point prob-
lems, Laugesen and Liu [16] studied the following problem: Let f : [0,1) ! R be a strictly
decreasing concave function with f(0) = 1 and f(1) = 0. Define, for s, r > 0, the function

N(s, r) := #{(k1, k2) 2 N2 : k2  rsf(k1s/r)}. (4)

This function counts the number of integer lattice points under the graph of f after it has
been compressed in the x-direction by a factor s, stretched in the y-direction by the same
factor, and scaled by a factor r. What happens to the set of maximizers, argmaxs>0 N(s, r),
as r (the area under the rescaled graph) tends to infinity? For a large family of functions
f they prove that the maximizing set of s tends to 1. The corresponding problem with
concave curves replaced by convex ones was treated in [3]. More recently Laugesen and
Liu [17] have studied the case of both concave and convex curves where they also allow for
shifting the lattice, i.e. replacing N2 by (N + �) ⇥ (N + ⌧). For work on similar problems
in higher dimensions see also [8, 18].

However, the results of [3, 16, 17] all require that the graph of the function f has non-
vanishing curvature. In particular, the case of f(x) = 1�x is not covered, which is precisely
the problem of interest here. That the case of vanishing curvature is excluded from the
results of [3, 16, 17, 18] is no accident, and also more classical problems in lattice point
theory are less well understood in this setting [13, 20]. In fact it was conjectured in [16]
that the problem with f(x) = 1�x fails to have an asymptotic maximizer (see also [17] for
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the shifted case), and that instead the sequence of maximizing values of s has an infinite
number of limit points. In [19] Marshall and Steinerberger prove the conjecture in the case
of the non-shifted lattice N2.

1.2. Maximizing Riesz means. In what follows we will consider a family of problems
closely related to the maximization problem in (3). The main problem that we are inter-
ested in is the behavior of � which maximizes the function

R�
�,⌧ (�,�) :=

X

k2N2

(�� (k1 + �)
p
� � (k2 + ⌧)/

p
�)�+, (5)

for � > 0 and �, ⌧ > �1, as � tends to infinity (if � = ⌧ we will write simply R�
�). Here

and in what follows x± := (|x| ± x)/2.
Setting � = 0 and interpreting the sum appropriately, (5) reduces to the function

N�,⌧ (�,�) := #{(k1, k2) 2 (N + �) ⇥ (N + ⌧) : k1

p
� + k2/

p
�  �}. (6)

If � = ⌧ = 0 then (6) corresponds to the case considered in [16, 19]. If � = ⌧ = �1/2
then (6) is the eigenvalue counting function (2) evaluated at 2�. Similarly, for � > 0,
R�

�1/2(�,�) = Tr(L� � 2�)�� is the Riesz mean of order � of L� . Here we will adopt this

name also for other � and ⌧ .
Taking � > 0 (instead of � = 0 as in the original problem) leads to a regularization of

the problem and will allow us to use certain tools that are e↵ectively excluded in the case
of the counting function. Using the Aizenman–Lieb Identity [1] the regularizing e↵ect of
increasing � becomes clear as it allows one to write R�

�,⌧ as a weighted mean of lower order
Riesz means: for �2 > �1 � 0 and � � 0,

R�2
�,⌧ (�) = B(1 + �1, �2 � �1)

�1

Z 1

0
⌘�1+�2��1R�1

�,⌧ (�� ⌘) d⌘, (7)

where B denotes the Euler Beta function, and we as above interpret R0
�,⌧ as N�,⌧ . This

identity follows from linearity and the fact thatZ 1

0
⌧�1+�2��2(⌧ � a)�1+ d⌧ = a�2+ B(1 + �1, �2 � �1).

We will also consider a further regularized problem which in the harmonic oscillator
case corresponds to the trace of the heat kernel of L� , that is Tr(e�tL� ). For general shift
parameters �, ⌧ we define

H�,⌧ (�, t) :=
X

k2N2

e�t((k1+�)
p
�+(k2+⌧)/

p
�). (8)

The problem of asymptotically maximizing this function in � as t ! 0+ can in a certain
sense be seen as a limiting version of the Riesz mean problems with � and � going to
infinity simultaneously. A further connection to the Riesz means can be found by noticing
that H�,⌧ can be written using the Laplace transform of the R�

�,⌧ :

H�,⌧ (�, t) =
t1+�

�(1 + �)

Z 1

0
R�
�,⌧ (�,�)e��t d�. (9)
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This connection via the Laplace transform of R�
�,⌧ and H�,⌧ , combined with the fact that

H�,� can be explicitly computed, will be of importance when we study the behavior of the
Riesz means for large � (following [10, 11]). The main motivation for including the study
of the heat kernel problem here is that it is easier to understand than the Riesz mean
problem, and can thus serve as a guide to what we might expect when studying R�

�,⌧ .

1.3. Main results and conjectures. Throughout the paper ���,⌧ (�), for � � 0, will
denote a � which maximizes R�

�,⌧ ( · ,�), that is, satisfies

R�
�,⌧ (�

�
�,⌧ (�),�) = max{R�

�,⌧ (�,�) : � > 0}.

As such a maximizer is not necessarily unique we emphasize that when we make a claim
concerning ���,⌧ (�) we mean that this holds for all maximizers. Similarly we let �H

�,⌧ (t),
with t > 0, denote a maximizer of H�,⌧ ( · , t), i.e. such that

H�,⌧ (�
H
�,⌧ (t), t) = max{H�,⌧ (�, t) : � > 0}. (10)

We first turn to what we are able to prove for �H
�,⌧ (t). The problem is made easier due

to the fact that the sum (8) can be explicitly computed:

H�,⌧ (�, t) =
X

k2N2

e�t((k1+�)
p
�+(k2+⌧)/

p
�) =

e�t(�
p
�+⌧/

p
�)

(et
p
� � 1)(et/

p
� � 1)

. (11)

The question of maximizing with respect to � is thus reduced to an explicit optimization
problem in one variable. However, the behavior of this function depends strongly on the
parameters t,�, ⌧ and carrying out the maximization explicitly is di�cult.

For �H
�,⌧ (t) there are two asymptotic regions that we wish to study: when t ! 0+ and

when t ! 1. The asymptotic problem t ! 0+ is most closely related to that studied
for the Riesz means as more and more of the lattice points (eigenvalues) become relevant
as t becomes smaller, while if t goes to 1 the main contribution comes from the lattice
points which are closest to the origin. Our first theorem tells us that we can determine the
behavior of �H

�,⌧ (t) in both limits.

Theorem 1.1. For each t > 0 and �, ⌧ > �1 there exists a maximizing value �H
�,⌧ (t) sat-

isfying (10). If max{�, ⌧} � �1/2 then the maximizer is unique for each t > 0, moreover,
if � = ⌧ � �1/2 then �H

� (t) = 1.
Furthermore, for all �, ⌧ > �1, it holds that

lim
t!1

�H
�,⌧ (t) =

1 + ⌧

1 + �
,

similarly, for all �, ⌧ > �1/2,

lim
t!0+

�H
�,⌧ (t) =

1 + 2⌧

1 + 2�
.

For all values of �, ⌧ > �1 not covered above, any sequence of maximizers degenerates,
i.e. �H

�,⌧ (t) tends to 0 or 1 as t ! 0+.
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Remark 1.2. One should note that the asymptotic maximizer in the limit t ! 1 is precisely
the � which minimizes the area of the first triangle containing any lattice points at all.
In the limit t ! 0+ we find the same limit as Laugesen–Liu [17] found for the counting
function (4). This limit corresponds to balancing the area of the region below the bounding
curve (in our case a line) to the left of the first column of lattice points, with that of the
region below the bounding curve and below the first row of lattice points (see [17, Figure 1]).

In the same direction we prove the following for Riesz means:

Theorem 1.3. For all � > 0 and �, ⌧ > �1/2 it holds that

lim
�!1

���,⌧ (�) =
1 + 2⌧

1 + 2�
.

That is, for all shifts �, ⌧ > �1/2 any sequence of maximizers, with �! 1, for positive
order Riesz means has a unique limit. Thus the behavior observed in [16] and studied
in [19] for the counting function with � = ⌧ = 0 e↵ectively vanishes as soon as we consider
the regularized problem of Riesz means with � > 0.

In the case of the harmonic oscillators, � = ⌧ = �1/2, we find a unique limit first when
� > 1. Specifically we prove that:

Theorem 1.4. For all � > 1 it holds that

lim
�!1

���1/2(�) = 1.

We do not believe that the failure to prove the corresponding result for smaller � is a
result of our methods, but that in these cases the behavior of the maximizers resembles
that in [19]. In fact, for the cases that are not covered by the above we conjecture the
following, which extends the conjecture of Laugesen and Liu [16]:

Conjecture 1.5. The conjecture is split into two parts:

(i) For all �, ⌧ > �1/2 the set

\

�>0

[

�0>�

argmax
�>0

N�,⌧ (�,�0)

is infinite.
(ii) For all 0  �  1 the set

\

�>0

[

�0>�

argmax
�>0

R�
�1/2(�,�0)

is infinite.

As mentioned earlier the case � = � = ⌧ = 0 was recently settled by Marshall and
Steinerberger [19].



6 S. LARSON

1.4. Idea of proof. The conjecture, as well as the proof of Theorems 1.3 and 1.4, is based
on precise asymptotic expansions of R�

�,⌧ (�,�) as � ! 1. In [9, 10] the authors study
the asymptotic behavior of R�1/2(1,�/2) = Tr((�� + |x|2) � �)�� in connection to Lieb–
Thirring inequalities (see also [6, 15]). The calculations carried out there transfer without
much change to what we study here, see Section 5.

Let ⇣ : C ⇥ C ! C denote the Hurwitz ⇣-function. In the special case ⇣(z, 1) this is the
Riemann ⇣-function which we denote simply by ⇣(z) [21, Chapter 25]. Let also {x} denote
the fractional part of x 2 R, i.e. {x} = x � bxc.
Theorem 1.6. For any � > 0, M 2 N, � > 0, � 2 R+ and �, ⌧ > �1, there are constants
↵k = ↵k(�,�, ⌧, �) such that

R�
�,⌧ (�,�) =

M+1X

k=0

↵k�
2�k+� + Osc(�,�) + o(��M+�+�),

as �! 1. The coe�cients ↵k are continuous in � and |Osc(�,�)|  C�(�+1). Moreover,
C� and the implicit constant of the remainder term are uniformly bounded for � in compact
subsets of R+.

Furthermore,

(i) if � = µ
⌫ 2 Q+, gcd(µ, ⌫) = 1, then, with x =

p
µ⌫�� µ� � ⌫⌧ ,

Osc(�,�) =
⇣(��, {x})

(µ⌫)
1+�
2

�� ⇣(�1 � �, {x})

(µ⌫)1+ �
2

� (1 + 2�)µ + (1 + 2⌧)⌫

2(µ⌫)1+ �
2

⇣(��, {x})

+
⌫�/2�(1 + �)

µ�/2(2⇡)1+�

X

k2N
k/⌫ /2N

sin(⇡k(2x � µ)/⌫ � ⇡
2 (1 + �))

k1+� sin(⇡k µ
⌫ )

+
µ�/2�(1 + �)

⌫�/2(2⇡)1+�

X

k2N
k/µ/2N

sin(⇡k(2x � ⌫)/µ � ⇡
2 (1 + �))

k1+� sin(⇡k ⌫µ)
;

(ii) if � 2 R+\Q, it holds that

Osc(�,�) =
���/2�(1 + �)

(2⇡)1+�

⇤(�)/
p
�X

k=1

sin(⇡k(2�
p
� � (1 + 2�)� � 2⌧) � ⇡

2 (1 + �))

k1+� sin(⇡k�)

+
��/2�(1 + �)

(2⇡)1+�

⇤(�)
p
�X

k=1

sin(⇡k(2�/
p
� � 2� � (1 + 2⌧)/�) � ⇡

2 (1 + �))

k1+� sin(⇡k/�)

+ o(��M+�+�),

where ⇤(�) = O(�
M+2��

� ).

Remark 1.7. A couple of remarks are in order:

(1) If � 2 N then ↵k = 0 for all k > 2 + �.
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(2) We emphasize that the amplitude of the oscillatory term Osc(�,�) grows at most
linearly in � independently of the values of � and �:

• In the rational case (i) the only term of Osc(�,�) that is not bounded is the
first one,

Osc
�µ
⌫ ,�

�
=
⇣(��, {x})

(µ⌫)
1+�
2

�+ O(1), as �! 1.

• In the irrational case (ii) we believe that Osc(�,�) = o(�). For � = 0 it
follows that this is the case from the results in [19], but we are currently
unable to prove this when � > 0. Whether or not this statement is true will
be of little importance in what follows, but if one aims to prove (or disprove)
Conjecture 1.5 it would most likely be necessary to understand Osc(�,�) in
greater detail.

For an explicit formula for the coe�cients ↵k see (29). For our purposes it will only be
important that

↵0 =
1

(1 + �)(2 + �)
, ↵1 = �(1 + 2�)

p
� + (1 + 2⌧)/

p
�

2(1 + �)
,

↵2 =
(1 + 2�)(1 + 2⌧)

4
+

(1 + 6�(1 + �))� + (1 + 6⌧(1 + ⌧))/�

12
.

The ↵2 term will only be important in the case � = ⌧ = �1/2, in which case ↵1 = 0 and

↵2 = �1+�2

24� .

Heuristically, Theorem 1.6 suggests that Theorems 1.3, 1.4 and Conjecture 1.5 should be
true. Essentially, since the first order term is independent of � it is reasonable to conjecture
that to asymptotically maximize R�

�,⌧ one would want to choose � to maximize the next
order term. The cases where we can prove that an asymptotic maximizer exists is precisely
those where:

(i) the subleading polynomial term is asymptotically much larger than Osc(�,�), and
(ii) the coe�cient of this term is maximized at some � 2 R+.

In the harmonic oscillator case, when ↵1 = 0, this means that the third term ↵2�
� needs

to be superlinear, and hence � > 1.
For the combinations of �, ⌧ and � in Conjecture 1.5 the oscillatory parts of the expansion

are of greater importance. It is suitable to consider the renormalized quantity

R�
�,⌧ (�,�) � ↵0�

2+�

�
. (12)

If �, ⌧ and � are as in Conjecture 1.5 then in the limit �! 1 (12) converges to a function
which is periodic in � and whose period and amplitude depend on � (for � > 0 this follows
from Theorem 1.6 and for � = 0 from [19, Lemmas 4 and 5] by a change of variables). It
is not unreasonable to believe that one can align these periods to construct a large set of
limit points for ���,⌧ (�). In fact, this is the underlying idea in Marshall and Steinerberger’s
proof of the conjecture in the the case � = ⌧ = � = 0 [19].
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From Theorem 1.6 it is not di�cult to conclude that any sequence of maximizers of R�
�,⌧

must degenerate when (�, ⌧) 2 (�1,1)2 \ ((�1/2,1)2[{(�1/2,�1/2)}). Indeed, for such
shifts the second term of the asymptotic expansion is maximized when � tends either to
0 or 1. Since the expansion is uniform on compact sets this implies that any maximizing
sequence must eventually leave all compacts.

In the case of H�,⌧ similar reasoning can be used to conclude that any sequence of
maximizers �H

�,⌧ must degenerate as t ! 0+. Indeed, from Theorem 1.6 and (9) one finds
that

H�,⌧ (�, t) =
1

t2
� (1 + 2�)

p
� + (1 + 2⌧)/

p
�

2t
+ O(1), as t ! 0+,

where the remainder term is uniform for � on compact subsets of R+, which allows us to
argue as above.

1.5. Higher dimensions. Using an idea of Laptev [14] and the bounds proved in Section 2
one can reduce the corresponding d-dimensional version of the problems considered here to
lower dimensional ones. In [7] this strategy was applied to generalize the results of [2, 4, 5]
to any dimension.

Providing asymptotic expansions similar to those in Theorem 1.6 in higher dimensions is
possible using the techniques from [9, 10, 11], see also Section 5. Naturally the computations
in general dimension are more di�cult. However, for the cases where one would expect
the existence of an asymptotic maximizer the formulas in Theorem 1.6 are more detailed
than necessary. For the applications considered, it is su�cient to know the first and second
non-vanishing polynomial term, and that the oscillatory part of the expansion is of lower
order than the second polynomial term. In the d-dimensional case the oscillatory terms
will generally be of magnitude ⇠ �d�1. Precise, and uniform, asymptotic expansions to
su�ciently low order can be obtained following the argument in Section 5.3.

1.6. Structure of the paper. The remainder of the paper is structured as follows. In
Section 2 we prove a number of bounds for R�

�,⌧ which will enable us to exclude that
there are sequences of maximizers which degenerate as �! 1. In Section 3 we study the
problem of maximizing H�,⌧ and prove Theorem 1.1. Section 4 is dedicated to the proofs of
Theorems 1.3 and 1.4, which will rely on the bounds proved in Section 2 and Theorem 1.6.
Finally in Section 5 we study the asymptotic behavior of R�

�,⌧ (�,�), as �! 1, and prove
Theorem 1.6.

2. Preliminaries

Before we continue we need to verify that we can actually talk about maximizers of
R�
�,⌧ ( · ,�) and H�,⌧ ( · , t). For H�,⌧ it is clear from (11) that the maximization problem is

well posed, and hence we only need to prove that this is the case for R�
�,⌧ .

Lemma 2.1. For each � � 0, � > 0 and �, ⌧ > �1 there exists a maximizing value ���,⌧ (�).

If �  2
p

(1 + �)(1 + ⌧) then R�
�,⌧ (�,�) = 0 for all � > 0, and thus any � is a maximizer.



MAXIMIZING RIESZ MEANS OF ANISOTROPIC HARMONIC OSCILLATORS 9

If � > 2
p

(1 + �)(1 + ⌧) then all maximizers satisfy

���,⌧ (�) 2
✓

(1 + ⌧)2

�2
,

�2

(1 + �)2

◆
.

Lemma 2.1 follows directly from [17, Lemma 9], but since our notation is di↵erent and
the proof is simple we choose to include it.

Proof of Lemma 2.1. Note first that if we can prove the second part of the lemma, that

there are no maximizers outside
� (1+⌧)2

�2 , �2

(1+�)2

�
, then the existence of a maximizer is clear

by the continuity of R�
�,⌧ (�,�) as a function of �.

That R�
�,⌧ (�,�) = 0 for all � if �  2

p
(1 + �)(1 + ⌧) follows since the inequality

�� (1 + �)
p
� � (1 + ⌧)/

p
�  0, (13)

holds for all �  2
p

(1 + �)(1 + ⌧). Similarly, (13) holds if �  (1+⌧)2

�2 or � � �2

(1+�)2
, and

thus R�
�,⌧ (�,�) = 0 for such �. However, if � > 2

p
(1 + �)(1 + ⌧) then R�

�,⌧ (�
�
�,⌧ (�),�) �

R�
�,⌧ (

1+⌧
1+� ,�) > 0, which implies that � /2

� (1+⌧)2

�2 , �2

(1+�)2

�
cannot be a maximizer. ⇤

To conclude that any sequence of maximizers of R�
�,⌧ , with �! 1, remains in a compact

subset of R+ we require better control than that provided by Lemma 2.1. When proving
that this is in fact the case the following bounds will be useful:

Lemma 2.2. We have that:

(i) For � � �1/2,

X

k�1

(�� (k + �)
p
�)+  �2

2
p
�

, (14)

for all � > 0 and � � 0.
(ii) For � > �1/2 there exist positive constants c1, c2, b0 such that

X

k�1

(�� (k + �)
p
�)+  �2

2
p
�
� c1b�+ c2b

2
p
�, (15)

for all � > 0,� � 0 and b 2 [0, b0].
(iii) There exist positive constants c1, c2, b0 such that

X

k�1

(�� (k � 1
2)
p
�)2+  �3

3
p
�
� c1b

p
��+ c2b

3/2�, (16)

for all � > 0,� � 0 and b 2 [0, b0].



10 S. LARSON

Proof of Lemma 2.2. We begin by proving parts (i) and (ii) of the lemma. Clearly (ii)
implies (i) when � > �1/2. For � � �1/2,

X

k�1

(�� (k + �)
p
�)+ =

b�/
p
���cX

k=1

(�� (k + �)
p
�)

=
�2

2
p
�
� 1 + 2�

2
�+

r � r2 + � + �2

2

p
�, (17)

where r =
�

�p
�
� �

 
. Maximizing the right-hand side of (17) with respect to r 2 [0, 1) we

find
X

k�1

(�� (k + �)
p
�)+  �2

2
p
�
� 1 + 2�

2
�+

(1 + 2�)2

8

p
�, (18)

which implies (i) when � = �1/2. Moreover, since the left-hand side of (18) is decreasing
in � we find (ii) with c1 = 1/2, c2 = 1/8 and b0 = 1 + 2�.

The proof of part (iii) is similar:

X

k�1

(�� (k � 1
2)
p
�)2+ =

b�/
p
�+1/2cX

k=1

(�� (k � 1
2)
p
�)2

=
�3

3
p
�
�

p
�

12
�� r(1 � r)(1 � 2r)

6
�

 �3

3
p
�
�

p
�

12
�+

�

36
p

3
,

where we again maximized in r =
�

�p
�

+ 1
2

 
.

We aim for a bound on the form

X

k�1

(�� (k � 1
2)
p
�)2+  �3

3
p
�
� b
p
��+

2

3
b3/2�.

The right-hand side is non-negative for b,� > 0 and � � 0, and hence the bound is trivially
true when the left-hand side is zero, i.e. for �  p

�/2. It thus su�ces to prove that

�3

3
p
�
�

p
�

12
�+

�

36
p

3
 �3

3
p
�
� b
p
��+

2

3
b3/2�,

when b is small enough and � � p
�/2. The above inequality holds for all � � p

�/2 if and
only if

b  1/12 and � 9

2
+
p

3 + 54b � 72b3/2  0,

which it is easy to check holds for all b 2 [0, 1/12]. This completes the proof of (iii) with
c1 = 1, c2 = 2/3 and b0 = 1/12, and hence the proof of Lemma 2.2. ⇤
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Based on Lemma 2.2 we can adapt an idea from [14] (see also [7]) to reduce the proof
of a good enough bound for the counting function to a bound for what is essentially a
one-dimensional Riesz mean of order 1.

Lemma 2.3. Fix �, ⌧ > �1/2. There exist positive constants c1, c2, c3, b0 such that

N�,⌧ (�,�)  �2

2
� c1b

1 + �p
�
�+ c2b

2 1 + �2

�
+ c3(�+ 1),

for all � � 0, � > 0 and b 2 [0, b0].

Remark 2.4. A similar bound appears in [17, Propositon 10]. However, for �, ⌧ small the
linear term of that bound becomes positive. In what follows it will be essential for this
term to be negative, which corresponds to the positivity of c1 in Lemma 2.3.

Proof of Lemma 2.3. The bound is an easy consequence of Lemma 2.2. First observe that
for all � � 0, � > 0 and �0 2 (�1/2, min{�, ⌧}] we have

N�,⌧ (�,�)  N�0(�,�).

A straightforward estimate yields that

N�0(�,�) =
X

k2N2

(�� (k1 + �0)
p
� � (k2 + �0)/

p
�)0+

=
X

k1�1

b(�
p
� � (k1 + �)� � �0)+c


X

k1�1

(�
p
� � (k1 + �0)� + �0�)+

=
p
�
X

k1�1

(�+ �0�/
p
� � (k1 + �0)

p
�)+. (19)

Applying (15) of Lemma 2.2 one obtains that

N�0(�,�)  (�+ �0�/
p
�)2

2
� c1b

p
�(�+ �0�/

p
�) + c2b

2� (20)

=
�2

2
� c1b

p
��+ c2b

2� +
�0�p
�
�+

(�0�)2

2�
� c1b�

0
�.

Arguing as above but switching the roles of k1 and k2 one correspondingly finds that

N�0(�,�)  �2

2
� c1bp

�
�+

c2b
2

�
+ �0�

p
��+

(�0�)2

2
� � c1b�

0
�. (21)

Together these two bounds imply that

N�0(�,�)  �2

2
� c1b

2

1 + �p
�
�+ c2b

2 1 + �2

�
+ �0��+

(�0�)2

2
� c1b�

0
�. (22)

Indeed, for � � 1 the right-hand side of (22) is larger than that of (20), and for �  1
larger than that of (21). This completes the proof of the claimed bound with constants
related to those in Lemma 2.2. ⇤
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In the case of the harmonic oscillators we prove the following lemma, which will play
the same role as Lemma 2.3 in what follows.

Lemma 2.5. There exist positive constants c1, c2, b0 such that

R1
�1/2(�,�)  �3

6
� c1b

1 + �2

�
�+ c2b

3/2 1 + �3

�3/2
,

for all � > 0,� � 0 and b 2 [0, b0].

Proof of Lemma 2.5. Again the lemma is a simple consequence of Lemma 2.2. Applying
first (14) and then (16) we find that

R1
�1/2(�,�) =

X

k2N2

(�� (k1 � 1
2)
p
� � (k2 � 1

2)/
p
�)+


p
�

2

X

k1�1

(�� (k1 � 1
2)
p
�)2+

 �3

6
� c1b

2
��+

c2b
3/2

2
�3/2.

Arguing identically but switching the roles of k1 and k2 we find that

R1
�1/2(�,�)  �3

6
� c1b

2
��1�+

c2b
3/2

2
��3/2.

Taking the average of the two bounds completes the proof of Lemma 2.5. ⇤

Combining Lemmas 2.3 and 2.5 with the Aizenman–Lieb Identity (7) one finds the
following.

Corollary 2.6. We have that:

(i) For �, ⌧ > �1/2 and � > 0, there exist positive constants c1, c2, c3, b0 such that

R�
�,⌧ (�,�)  �2+�

(1 + �)(2 + �)
� c1b

1 + �p
�
�1+� + c2b

2 1 + �2

�
�� + c3(�+ 1)�� , (23)

for all � > 0,� � 0 and b 2 [0, b0].
(ii) For � � 1 there exist positive constants c1, c2, b0 such that

R�
�1/2(�,�)  �2+�

(1 + �)(2 + �)
� c1b

1 + �2

�
�� + c2b

3/2 1 + �3

�3/2
���1, (24)

for all � > 0,� � 0 and b 2 [0, b0].

Remark 2.7. We note that the proofs above lift without much work to the corresponding
d-dimensional problem. Using again the Aizenman–Lieb Identity (7) one finds a version
of (14) for higher order Riesz means. When � � 1 one can follow the lifting argument
of [14] (used in a similar context in [7]): use the corresponding one-term bound to bound
the first d� 1 sums and then a bound similar to (15) to bound the final sum. For the case
of the counting function one can mimic (19) reducing the problem to bound a Riesz mean
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of order one where the spectral parameter � is slightly shifted. Bounding this Riesz mean
can be carried out as described above.

3. Proof of Theorem 1.1

We now turn to the problem of maximizing H�,⌧ . Due to the fact that we have a closed
expression for H�,⌧ this is reduced to a maximization problem in one real variable. However
solving this problem still turns out to be rather tedious.

Since

H�,⌧ (�, t) =
e�t(�

p
�+⌧/

p
�)

(et
p
� � 1)(et/

p
� � 1)

is non-negative, continuous in � and lim�!0 H�,⌧ (�, t) = lim�!1 H�,⌧ (�, t) = 0 for all
t > 0 and �, ⌧ > �1, it follows that there is at least one maximizing � for each t.

Set x =
p
� and note that

H�,⌧ (x
2, t) =

e�t((�+1/2)x+(⌧+1/2)/x)

4t2
tx/2

sinh(tx/2)

t/(2x)

sinh(t/(2x)
.

By the monotonicity of the logarithm we can equivalently consider maximizing log(H�,⌧ ):

log(H�,⌧ (x
2, t)) = �t((� + 1/2)x + (⌧ + 1/2)/x)

� log

✓
sinh(tx/2)

tx/2

◆
� log

✓
sinh(t/(2x))

t/(2x)

◆
� log(4t2).

By recalling that log(sinh(x)/x) is increasing and strictly convex on R+ it follows that

@2

@x2
log(H�,⌧ (x

2, t)) < �t
⌧ + 1/2

2x3
.

Hence, if ⌧ � �1/2 the function log(H�,⌧ (x
2, t)) is concave in x. Since log(H�,⌧ (x

2, t)) also
tends to �1 when x ! 0 or 1 it has a unique maximum. Since H�,⌧ (x

2, t) = H⌧,�(1/x2, t)
we can conclude that the same is true if instead � � �1/2. Moreover, when � = ⌧ � �1/2
the symmetry H�(x

2, t) = H�(1/x2, t) implies that x = 1 must be the unique maximizer.
As the function x 7! log(H�,⌧ (x

2, t)) is smooth any maximizing x⇤(t) must satisfy

@

@x
log(H�,⌧ (x

2, t)) = � t

2x2

h⇣
1 + 2� + coth

⇣ tx

2

⌘⌘
x2 �

⇣
1 + 2⌧ + coth

⇣ t

2x

⌘⌘i
= 0. (25)

When t ! 0+ it is easy to see that this equation has a solution which converges toq
1+2⌧
1+2� . Similarly when t ! 1 we see that there is a solution converging to

q
1+⌧
1+� .

When max{�, ⌧} > �1/2 this concludes the proof of the theorem since we know that the
solution is unique.

When � and ⌧ are both less than �1/2 maximizers are no longer necessarily unique
when t is small. However, when t ! 1 any sequence of maximizers converges. If there is
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some solution x⇤(t) of (25) which remains in a compact subset of R+ as t ! 1, we must
have that

lim
t!1

x⇤(t) =

r
1 + ⌧

1 + �
,

since otherwise the expression in the brackets is bounded away from zero when t is large
enough.

What remains is to conclude that there can be no maximizers which degenerate, thus
implying that the asymptotically stable stationary point is indeed an asymptotic maximizer.
Since H�,⌧ (x

2, t) = H⌧,�(1/x2, t) any sequence of maximizers tending to infinity as t ! 1
implies the existence of a sequence of maximizers tending to zero for the problem where
� and ⌧ have been interchanged. Therefore it is su�cient to show that we cannot have
maximizers degenerating to zero.

Assume for contradiction that we have a sequence of maximizers x⇤ = x⇤(t) such that
limt!1 x⇤ = 0. Since the factor in front of the parenthesis is non-zero, (25) implies that

lim
t!1

coth
⇣ tx⇤(t)

2

⌘
x⇤(t)2 = 2 + 2⌧.

But this is a contradiction since

0  coth
⇣ tx⇤(t)

2

⌘
x⇤(t)2 

⇣
1 +

2

tx⇤(t)

⌘
x⇤(t)2 ! 0 as t ! 1,

which completes the proof of Theorem 1.1.

4. Proof of Theorems 1.3 and 1.4

We now turn our attention to the main results of the paper, namely Theorems 1.3
and 1.4. As the proofs of the two theorems are essentially identical we will write out
only the former in detail. The main idea is to combine the bounds in Corollary 2.6 with
Theorem 1.6 following the strategy of [2], with some modifications resembling those in [7].

Fix �, ⌧ > �1/2 and � > 0. For notational convenience we will write R(�,�) =
R�,⌧ (�,�), � = ���,⌧ (�) and �⇤ = 1+2⌧

1+2� throughout the proof.

By the maximality of � and (23) of Corollary 2.6 we have that

R(�⇤,�)  R(�,�)  �2+�

(1 + �)(2 + �)
� c1b

1 + �p
�
�1+� + c2b

2 1 + �2

�
�� + c3(�+ 1)�� .

Using the asymptotic expansion of the left-hand side given by Theorem 1.6, rearranging

and using that 1+�2

1+�  1 + � we find

c1b
1 + �p
�

⇣
1 � b

c2(1 + �)

c1
p
��

⌘
 C + O(��min{1,�}), (26)

as �! 1.
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From Lemma 2.1 we know that 1+�p
��

 1
1+⌧ + 1

1+� , and hence we can choose b small

enough so that the left-hand side of (26) is positive. Therefore we conclude that

lim sup
�!1

1 + �p
�

 C,

and hence � = ���,⌧ (�) remains uniformly bounded away from zero and infinity.
As we now know that all maximizers are contained in a compact subset of R+ we can

use Theorem 1.6 to expand both sides of the inequality R(�⇤,�)  R(�,�) with remainder
terms independent of �. After rearranging this yields that

(1 + 2�)
p
� + (1 + 2⌧)/

p
�  (1 + 2�)

p
�⇤ + (1 + 2⌧)/

p
�⇤ + O(��min{�,1}). (27)

Since �⇤ is the unique minimizer of the function x 7! (1 + 2�)
p

x + (1 + 2⌧)/
p

x and the
remainder term is independent of �, (27) implies that

� = �⇤ + o(1) as �! 1,

which concludes the proof of Theorem 1.3.
The proof of Theorem 1.4 is almost identical with the only change being the application

of (24) instead of (23) in the first part of the proof.

5. Proof of Theorem 1.6

What remains is to prove Theorem 1.6. The calculations follow those of Hel↵er and
Sjöstrand in [11] for the isotropic harmonic oscillator � = 1 and � = ⌧ = �1/2 (see
also [9, 10]). The key idea is to use the Laplace transform to rewrite R�

�,⌧ as an integral
which opens up for use of the residue theorem. For any c > 0,

R�
�,⌧ (�,�) =

X

k2N2

(�� (k1 + �)
p
� � (k2 + ⌧)/

p
�)�+

=
X

k2N2

�(1 + �)

2⇡i

Z c+i1

c�i1
et(��(k1+�)

p
��(k2+⌧)/

p
�)t�1�� dt

=
�(1 + �)

2⇡i

Z c+i1

c�i1

et(���p��⌧/p�)

(et
p
� � 1)(et/

p
� � 1)

t�1�� dt.

The integrand in the last expression is a meromorphic function of t outside of (�1, 0],
with poles at t = 2⇡ik

p
� and t = 2⇡il/

p
�, for k, l 2 Z \ {0}. If � is irrational all of

these poles are simple. If � 2 Q say � = µ
⌫ , with gcd(µ, ⌫) = 1, then there are degree-two

poles whenever k, l are related by µk = ⌫l. The remaining poles remain simple. That is,

degree-two poles at t = 2⇡i
p

µ⌫m for m 2 Z \ {0}, and simple poles at t = 2⇡i
q

µ
⌫ k1 and

t = 2⇡i
q

⌫
µk2 for k1, k2 2 Z \ {0} such that �k1 = µk1

⌫ /2 Z and k2
� = ⌫k2

µ /2 Z.
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Letting f(t) = et(���
p
��⌧/

p
�)

(et
p
��1)(et/

p
��1)

t�1�� and formally using the residue theorem, one would

obtain that

R�
�,⌧ (�,�) = �(1 + �)

X

t2P(f)

Res(f, t) +
�(1 + �)

2⇡i

Z

�1

f(t) dt, (28)

where P(f) denotes the poles of f and �1 is a contour oriented counter-clockwise which
encircles the negative real axis but none of the poles of f . However, to make this rigorous
we need that the sum of residues is absolutely convergent. We shall prove that this is the
case when � 2 Q+ but possibly not when � /2 Q+.

It is no big surprise that the contributions to the asymptotic expansion coming from the
residues is the most complicated part to analyse. It is this part which accounts for the
oscillatory terms in the expansion and the number theoretic dependence on �. In contrast
the integral over the contour �1 has an asymptotic expansion in � to arbitrary order as �
tends to infinity.

The proof will be split into two parts, first treating � 2 Q+ and then � /2 Q+. Much of
the work done in the first case will turn out to be useful also in the second.

5.1. Rational �. In this case it turns out that the use of the residue theorem above
is justified. This will be verified once we prove that the sum of residues is absolutely
convergent. However, we begin by studying the non-oscillatory part of the expansion, that
is, the contribution from the contour integral in (28).

Non-oscillatory part. Let " 2 (0, min{p�, 1/
p
�}], and let �1 = �� [ �0 [ �+ with

�± = (�1 ± i0,�"± i0],

�0 = "ei✓, ✓ 2 (�⇡,⇡).

For � > �
p
� + ⌧/

p
� and any " 2 (0, 1), we see that

���
Z

�±
f(t) dt

���  e"(�
p
�+⌧/

p
�)

�(e�
p
� � 1)(e�1/

p
� � 1)

e�"�"�2�� .

Returning to the integral over �0,
Z

�0

f(t) dt =

Z

�0

et�

t3+�

t2e�t(�
p
�+⌧/

p
�)

(et
p
� � 1)(et/

p
� � 1)

dt.

For small enough " and any M 2 N we have a uniform expansion

t2e�t(�
p
�+⌧/

p
�)

(et
p
� � 1)(et/

p
� � 1)

=
M�1X

k=0

ak(�,�, ⌧)tk + O(tM ),

where the implicit constant is uniform for � in compact subsets of R+. The ak(�,�, ⌧) are
explicitly given by

ak(�,�, ⌧) =

kX

l=0

(�1)l

l!
(�
p
� + ⌧/

p
�)lbk�l(�),
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where the bk(�) are the coe�cients in the expansion

t2

(et
p
� � 1)(et/

p
� � 1)

=

M�1X

k=0

bk(�)tk + O(tM ).

The first few coe�cients are given by

b0(�) = 1, b1(�) = �1 + �

2
p
�

, b2(�) =
1 + 3� + �2

12�
,

b3(�) = � 1 + �

24
p
�

, b4(�) = �1 � 5�2 + �4

720�2
, b5(�) =

1 + �3

1440�3/2
.

Thus we find that

Z

�0

f(t) dt =

M�1X

k=0

ak(�,�, ⌧)

Z

�0

et�tk�3�� dt + e"�O("M�2��)

=
M�1X

k=0

ak(�,�, ⌧)

Z

�1

e�ttk�3�� dt + e"�O("M�2��) + e�"�O("�2��),

where we used that
Z 1

"
e��ttk�3�� dt  sup

t�"
(e��ttk)

Z 1

"
t�3�� dt =

e�"�"k�2��

2 + �
,

provided "� � k.
Recall Hankel’s integral representation for the reciprocal � function [21, eq. 5.9.2]:

1

�(z)
=

1

2⇡i

Z
ett�z dt,

where the integral is over a contour which encircles the origin in the positively oriented di-
rection, beginning and returning to �1 while respecting the branch cut along the negative

real axis. By a change of variables we find that
R
�1

e�ttk�3�� dt = 2⇡i�2+��k

�(3+��k) .

Therefore we conclude that

�(1 + �)

2⇡i

Z

�1

f(t) dt =
M�1X

k=0

ak(�,�, ⌧)
�(1 + �)

�(3 + � � k)
�2�k+�

+ e�"�O("�2��) + e"�O("M�2��).

Choose " = "(�) to solve e��" = "M/2. For large enough � this choice satisfies the require-
ments above and the error terms become

O("(�)M/2�2��) = o(��M/2+2+�+�), 8� > 0,

since "(�) = O(log(�)/�) = o(��1+�) for any � > 0.
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Moving unnecessary parts into the error term, we have for any M 0 2 N and � > 0 that

�(1 + �)

2⇡i

Z

�1

f(t) dt =

M 0+1X

k=0

↵k�
2�k+� + o(��M 0+�+�),

where

↵k(�,�, ⌧, �) = ak(�,�, ⌧)
�(1 + �)

�(3 + � � k)
. (29)

Oscillatory part. We now turn our attention to the sum of residues

�(1 + �)
X

t2P(f)

Res(f, t).

Simple poles. If t = 2⇡ik
p
�, with k 2 Z \ {0} such that �k /2 Z, then it is straightforward

to calculate the residue of f at t, yielding:

Res(f, 2⇡ik
p
�) = ���/2 e2⇡ik(�

p
�����⌧)

(2⇡ik)1+�(e2⇡ik� � 1)
.

If instead t = 2⇡ik/
p
�, with k 2 Z \ {0} such that k/� /2 Z, then an almost identical

calculation leads to:

Res(f, 2⇡ik/
p
�) = ��/2 e2⇡ik(�/

p
����⌧/�)

(2⇡ik)1+�(e2⇡ik/� � 1)
.

Let x1 = �
p
� � �� � ⌧ and x2 = �/

p
� � � � ⌧/�. Combining the contributions from

k and �k one obtains that

X

t2P1

Res(f, t) =
���/2

(2⇡)1+�

X

k2N
�k/2N

1

k1+�

✓
e2⇡ikx1

ei⇡(1+�)/2(e2⇡ik� � 1)
+

e�2⇡ikx1

e�i⇡(1+�)/2(e�2⇡ik� � 1)

◆

+
��/2

(2⇡)1+�

X

k2N
k/� /2N

1

k1+�

✓
e2⇡ikx2

ei⇡(1+�)/2(e2⇡ik/� � 1)
+

e�2⇡ikx2

e�i⇡(1+�)/2(e�2⇡ik/� � 1)

◆

=
���/2

(2⇡)1+�

X

k2N
�k/2N

1

k1+�

✓
sin(⇡k(2x1 � �) � ⇡

2 (1 + �))

sin(⇡k�)

◆

+
��/2

(2⇡)1+�

X

k2N
k/� /2N

1

k1+�

✓
sin(⇡k(2x2 � 1/�) � ⇡

2 (1 + �))

sin(⇡k/�)

◆
,

where P1 denotes the simple poles of f .
Let � = µ

⌫ , with gcd(µ, ⌫) = 1, we shall show that the first of the above series is absolutely
convergent, the second can be treated identically. Since gcd(µ, ⌫) = 1 we have that µ

⌫ k /2 N
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if and only if k
⌫ /2 N. We find that

⌫�/2

µ�/2

X

k2N
k/⌫ /2N

���
sin(⇡k(2x1 � µ/⌫) � ⇡

2 (1 + �))

k1+� sin(⇡kµ/⌫)

���  ⌫�/2

µ�/2

X

k2N
k/⌫ /2N

1

k1+�

1

|sin(⇡kµ/⌫)|

=
⌫�/2

µ�/2

⌫�1X

l=1

1X

j=0

1

(j⌫ + l)1+�

1

|sin(⇡lµ/⌫)|

 ⌫�/2

µ�/2

⌫�1X

l=1

1

|sin(⇡lµ/⌫)|

✓
1

l1+�
+

1X

j=1

1

(j⌫)1+�

◆

=
⌫�/2

µ�/2

⌫�1X

l=1

1

|sin(⇡lµ/⌫)|

✓
1

l1+�
+
⇣(1 + �)

⌫1+�

◆
,

implying that the series is absolutely convergent.

Degree-two poles. When � = µ
⌫ then f has poles of degree two at t = 2⇡i

p
µ⌫ k, for

k 2 Z \ {0}. The residues at these poles can be calculated:

Res(f, 2⇡i
p

µ⌫ k) =
e2i⇡k(�

p
µ⌫�µ��⌫⌧)(� � 2⇡ik(�

p
µ⌫ � µ(� + 1

2) � ⌫(⌧ + 1
2)) + 1)

(2⇡)�+2(ik)�k2(µ⌫)1+�/2
.

It is clear that the sum of these residues is absolutely convergent, which validates our use
of the residue theorem in (28) in the case of rational �.

Letting x3 = {pµ⌫ �� µ� � ⌫⌧} we find that

X

t2P2

Res(f, t) = � (1 + �)

(µ⌫)1+�/2


e�

i⇡
2

(2+�)
1X

k=1

e2⇡ikx3

(2⇡k)2+�
+ e

i⇡
2

(2+�)
1X

k=1

e�2⇡ikx3

(2⇡k)2+�

�

+
�
p

µ⌫ � µ
�
� + 1

2

�
� ⌫
�
⌧ + 1

2

�

(µ⌫)1+�/2


e�

i⇡
2

(1+�)
1X

k=1

e2⇡ikx3

(2⇡k)1+�
+ e

i⇡
2

(1+�)
1X

k=1

e�2⇡ikx3

(2⇡k)1+�

�

=
�⇣(��, x3) � ⇣(�1 � �, x3)/

p
µ⌫ �

��
� + 1

2

�qµ
⌫ +

�
⌧ + 1

2

�
/
q

µ
⌫

�
⇣(��, x3)

(µ⌫)(1+�)/2�(1 + �)
,

where we made use of [21, eq. 25.12.13], and P2 denotes the set of degree-two poles of f .

5.2. Irrational �. For � 2 R+\Q the calculation leading to the precise asymptotic expan-
sion of R�

�,⌧ is slightly more complicated. The complication stems from the fact that we do
not know if the sum of residues in (28) is absolutely convergent. Hence we cannot justify
our use of the residue theorem as above. However, by choosing a �-dependent contour
where we only use the residue theorem for bounded contours one can obtain the desired
result.
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Fix � > �
p
�+ ⌧/

p
�. From the residue theorem we find that for c > 0 and ⇤ > 1 to be

chosen later

R�
�,⌧ (�,�) =

�(1 + �)

2⇡i

Z c+i1

c�i1
f(t) dt

=
�(1 + �)

2⇡i

 Z

�0

f(t) dt +

Z

�±
⇤,1

f(t) dt +

Z

�±
",⇤

f(t) dt +

Z

�±
",c

f(t) dt

!

+ �(1 + �)
X

t2P(f)
|=(t)|2(0,⇤)

Res(f, t),

where �0, " are as before and

�±
⇤,1 = (c ± i⇤, c ± i1),

�±
",⇤ = (�"± i0,�"± i⇤),

�±
",c = (�"± i⇤, c ± i⇤).

The integral over �0 can be computed precisely as in the case of rational �:

�(1 + �)

2⇡i

Z

�0

f(t) dt =

M+1X

k=0

↵k�
2�k+� + o(��M+�+�),

for any M 2 N, � > 0.
There are now only simple poles, the residues at which can be calculated as before:

X

t2P(f)
|=(t)|2(0,⇤)

Res(f, t) =
���/2

(2⇡)1+�

X

k2N
2⇡k

p
�<⇤

sin(⇡k(2�
p
� � (1 + 2�)� � 2⌧) � ⇡

2 (1 + �))

k1+� sin(⇡k�)

+
��/2

(2⇡)1+�

X

k2N
2⇡k/

p
�<⇤

sin(⇡k(2�/
p
� � 2� � (1 + 2⌧)/�) � ⇡

2 (1 + �))

k1+� sin(⇡k/�)
.

Moreover,

����
Z

�±
⇤,1

f(t) dt

���� 
ec(���p��⌧/p�)

(ec
p
� � 1)(ec/

p
� � 1)

Z c±i1

c±i⇤
|t|�1�� dt

 ec(���p��⌧/p�)

c2

Z 1

⇤
t�1�� dt

=
ec(���p��⌧/p�)

�c2
⇤�� ,
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since ex � 1 � x, for x � 0. Furthermore,

����
Z

�±
",⇤

f(t) dt

���� 
e�"(���

p
��⌧/p�)

(1 � e�"
p
�)(1 � e�"/

p
�)

Z ⇤

0
(t2 + "2)�(1+�)/2 dt

 4e�"(���
p
��⌧/p�)

"2
"��

Z ⇤p
⇤2+"2

0
(1 � z2)�1+�/2 dz

 2
p
⇡ �(�2 )

�(1+�
2 )

e�"(���
p
��⌧/p�)"�2��

= o(��M+�+�),

where we used that 1 � e�x � x/2, for x � 0, and the change of variables t = "zp
1�z2

.

Finally, for the two last segments of the contour we firstly have that by changing ⇤
by something smaller than 2⇡min{p�, 1/

p
�} we can choose ⇤ so that dist(i⇤, P(f)) �

⇡
2 min{p�, 1/

p
�}, that is dist(⇤, 2⇡

p
�Z [ 2⇡/

p
�Z) � ⇡

2 min{p�, 1/
p
�}. Hence

dist(⇤
p
�, 2⇡Z) � dist(⇤

p
�, 2⇡�Z [ 2⇡Z) � ⇡

2

p
�min{

p
�, 1p

�
} = ⇡

2 min{�, 1},

dist( ⇤p
�
, 2⇡Z) � dist( ⇤p

�
, 2⇡Z [ 2⇡

� Z) � ⇡
2
p
�

min{
p
�, 1p

�
} = ⇡

2 min{1, 1
�}.

For <(z) � � log(2),

|ez � 1|2 = e2<(z) � 2e<(z) cos(=(z)) + 1 � 1 � cos(=(z)) � 2

⇡2
dist(=(z), 2⇡Z)2.

Here the first inequality follows from that g(x, y) = e2x � (2ex � 1) cos(y) is non-negative
when x � � log(2). Indeed, if cos(y)  0 this is clearly the case, and if cos(y) � 0 this can
be seen by writing g as (ex � cos(y))2 + (1 � cos(y)) cos(y).

For t 2 �±
",c, we thus have that |(1 � et

p
�)(1 � et/

p
�)| � 1

2 min{�, 1} min{1, 1/�} =
1
2 min{�, 1/�}. Therefore

����
Z

�±
",c

f(t) dt

���� 
2ec(���p��⌧/p�)

min{�, 1/�}

Z c±i⇤

�"±i⇤
|t|�1�� dt

 2ec(���p��⌧/p�)

min{�, 1/�} ⇤�1��(c + ").

What remains is to choose ⇤, c appropriately. If c = O(��↵) and ⇤ = O(��), for some
↵ � 1 and � > 0, then the errors are of orders

(��↵ + log(�)��1)���(1+�) ⇠ log(�)��1��(1+�), �2↵��� , ��M+�+�.

The errors contributing are thus only the last two. Hence larger ↵ only makes things worse
so we choose ↵ = 1, and � so that 2 � �� = �M + �, that is � = M+2��

� . This choice

yields the desired expansion with the claimed remainder term o(��M+�+�), for any � > 0.
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5.3. Bounding Osc(�,�). The only remaining part to complete the proof of Theorem 1.6
is to prove that the sum of oscillatory terms is O(�) uniformly for � in compact subsets
of R+. To this end we make use of the following one-dimensional asymptotic expansion:

Lemma 5.1 ([11, Lemma 2.1]). For � > 0 we have an expansion

1X

k=1

(�� k)�+ =

d�eX

k=0

⇢k(�)�
1+��k + O(1),

as �! 1.

Using Lemma 5.1 we find that

R�
�,⌧ (�,�) =

X

k2N2

(�� (k1 + �)
p
� � (k2 + ⌧)/

p
�)�+

=
1

��/2

b�/
p
��⌧/���cX

k1=1

⇣d1+�eX

n=0

⇢n(�)(
p
��� ⌧ � (k1 + �)�)1+��n + O(1)

⌘

=

d1+�eX

n=0

⇣
�1�n+�/2⇢n(�)

X

k1�1

(�/
p
� � ⌧/� � � � k1)

1+��n
+

⌘
+ O(�)

=
X

n,m�0
m+n<2+�

�(n+m)/2⇢n(�)⇢m(1 + � � n)�2+��n�m
⇣
1 � �� + ⌧

�
p
�

⌘2+��n�m

+

+ O(�),

where the error is uniform for � on compact subsets of R+. By expanding the (1 � c/�)⌘

terms in the sum up to O(��1��+n+m) we obtain an asymptotic expansion of R�
�,⌧ up

to O(�). Comparing this to the precise asymptotics we obtained above leads us to conclude
that the Osc(�,�) = O(�) locally uniformly in �.
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Abstract

We introduce a rigorous approach to the many-body spectral theory of extended
anyons, that is quantum particles confined to two dimensions that interact via
attached magnetic fluxes of finite extent. Our main results are many-body mag-
netic Hardy inequalities and local exclusion principles for these particles, leading
to estimates for the ground-state energy of the anyon gas over the full range of the
parameters. This brings out further non-trivial aspects in the dependence on the any-
onic statistics parameter, and also gives improvements in the ideal (non-extended)
case.
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1. Introduction

In many-body quantum mechanics, the notion of particle indistinguishability
and statistics plays a fundamental role. Namely, particles of the same kind are typi-
cally logically identical and fall into two classes: bosons or fermions, giving rise to
such diverse phenomena as Bose–Einstein condensation and coherent propagation
of light in the former case, and the Fermi sea with its implications for conduction
bands, atomic structure, etc., in the latter. However, while these are the only two
options for fundamental particles that propagate in three-dimensional space, for
quantum systems confined to lower dimensions there is a possibility for effective
particles (quasiparticles) escaping the usual boson/fermion dichotomy. We shall
here consider the two-dimensional case where the quantum state of a system of N
particles at positions x j ∈ R2 may be described by a square-integrable, normalized,
complex wave function � : R2N → C, where |�(x)|2 is interpreted as the proba-
bility density of finding the particles at positions x = (x1, . . . , xN ).1 If the particles
are indistinguishable the density needs to be symmetric under permutations of the
particle labels:

|�(x1, . . . , x j , . . . , xk, . . . , xN )|2 = |�(x1, . . . , xk, . . . , x j , . . . , xN )|2, j �= k.
(1.1)

However, the exact phase of � is not an observable quantity and therefore (1.1)
leaves room for an exchange phase:

�(x1, . . . , x j , . . . , xk, . . . , xN ) = eiαπ�(x1, . . . , xk, . . . , x j , . . . , xN ), j �= k,
(1.2)

where α ∈ R (2Z-periodic) is called the statistics parameter. If α = 0 the particles
are called bosons (symmetric �), and if α = 1 they are fermions (antisymmetric
�). Because of the antisymmetry, fermions obey Pauli’s exclusion principle [61]
leading to Fermi–Dirac statistics, while bosons do not, leading to Bose–Einstein
statistics. These are indeed the familiar possibilities found in introductory quantum
mechanics textbooks, however, upon investigating the argument more carefully one
realizes that one needs to be more precise with what is meant with the exchange
j ↔ k in (1.1)–(1.2).Namely, the exchange should in fact be viewed as a continuous
loop in the manifold of positions x of N identical particles, and then topology plays
a crucial role. Thuswe define (1.2) tomean a continuous simple exchange of a single
pair of particles (in two dimensions counterclockwise and with no other particles
enclosed; furthermore the exchange phase can be shown to be independent of which
pair of particles is considered). In three dimensions and higher, the direction of the
exchange does not matter and a double exchange is topologically the same as no
exchange; therefore the group of continuous exchanges reduces to the group of
permutations and one ends up with the usual bosons or fermions. In two spatial
dimensions, on the other hand, the exchange group is the braid group and it then
turns out that any phase eiαπ ∈ U(1) in (1.2) is allowed [23,31,76,77,79] (see

1 Herewe restrict to the simplest case ofC-valuedwave functions corresponding toabelian
anyons, while Cn-valued, possibly non-abelian, anyons are also possible [20,58].
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also [65, p. 386]). The corresponding particles are therefore called anyons [77]. We
refer to [20,28,33,57,58,60,68,78] for extensive reviews on this topic.

The relative change of phase of the wave function � with respect to changes of
the coordinates may be geometrically understood as due to the curvature of a corre-
sponding complex line bundle of which � is a section. This is naturally described
by a magnetic field, and in the case of anyons one may indeed model the above
statistics phase as induced by a magnetic field of Aharonov–Bohm type. Namely,
one could start with � ∈ L2

sym((R2)N ) (or � ∈ L2
asym((R2)N )) being bosonic

(fermionic) and then attach magnetic fluxes to the particles so that their winding
around each other gives rise to the correct phase (1.2). This is commonly called the
magnetic gauge picture for anyons, and it is actually in this form that theymaymost
realistically arise in a real physical system. The most promising such realization
is in the context of the fractional quantum Hall effect (FQHE) [21,22,27,30,69], a
strongly correlated planar electron (or bosonic atom [5,10,55,62,73]) system in a
strong transverse external magnetic field, where particles have the freedom to bind
magnetic flux and thereby become anyons [1,30,48]. However, in this scenario
the flux typically has some extent determined by the experimental conditions, and
one therefore talks about extended anyons [9,47,52,71] as opposed to the purely
theoretical (but conceptually attractive) ideal anyons which are purely pointlike.2

Denoting the size of the flux, say its radius if disk-shaped, by R ≥ 0 we can thus
talk about R-extended anyons, and one may also introduce a dimensionless param-
eter γ̄ := R�̄1/2 to describe the state of the system, where �̄ denotes the average
density of the particles. The parameter γ̄ is the ratio of the magnetic dimension to
the average interparticle distance and has therefore been called the magnetic filling
ratio in [71,72].

Our interest in this paper is to study a free gas of such extended anyons, that is
ignoring any additional interactions as a simplifying first step, and focusing on the
most basic aspect: its ground-state energy. We consider this in the thermodynamic
limit (cf. [6,36]), that is the limit as both the number of particles N and the volume
(area) of the system V tends to infinity while keeping the density �̄ = N/V fixed.
In the ideal non-interacting case, the quantum gas consisting of a large number
of bosons or fermions in a large volume at fixed density has been completely
understood since the early days of quantummechanics and is nowadays often given
as a textbook exercise, as it only amounts to adding up eigenvalues of a one-body
operator. However, the purely anyonic case α ∈ (0, 1) still remains an unsolved
problem after almost four decades, owing to the fact that the statistical many-body
interaction cannot be completely removed in favor of a one-body description as for
bosons and fermions. The simplest case of two anyons can be solved exactly [2,
31,77], that of three and four anyons has been studied numerically [56,66,67],
and beyond that various approximative descriptions have been proposed [7,8,17,
25,64,71,72,74,75,78]. One of these is called average-field theory (cf. mean-field
theory [47,78]) whereby the magnetic flux of the anyons is seen as sufficiently

2 By ideal in this context we mean that the only interaction is statistical and independent
of any energy, momentum or length scale (cf. [28, p. 146]).
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spread out (in other words γ̄ should be sufficiently large) so that the particles are
effectively moving in a (locally) uniform magnetic field, say B(x) ∼ 2πα�(x)
where 2πα is the flux of each anyon and �(x) the local density, and therefore have
a definite magnetic ground-state energy given by that of the lowest Landau level,
hence proportional to |B| ∼ 2π |α|�. In other words the energy per particle in this
approximation is given by

2π |α|�̄ (1.3)

in the case of the homogeneous gas. Another approximation has been to assume
that the gas is so dilute that only two-particle interactions are relevant [2,54].

Except for a small number of results concerning the mathematical formulation
of the many-anyon problem [3,12,13,42], there has not been much progress on
the rigorous mathematical side until recently. In [49] the case of ideal anyons was
considered using a local approach involving a relative magnetic Hardy inequality
and a local exclusionprinciple, leading to afirst set of non-trivial rigorous bounds for
the ground-state energy of the ideal anyon gas. These bounds,whichwill be outlined
below, have an interesting non-trivial dependence on the statistics parameter α in
that they depend, in the many-body limit, solely on the quantity

α∗ := inf
p,q∈Z

∣
∣(2p + 1)α − 2q

∣
∣, (1.4)

which is zero unless α is an odd-numerator fraction α = μ/ν ∈ Q (reduced, with
ν ≥ 1) and in which case α∗ = 1/ν. In [51] a fundamental question concerning
operator domains for ideal anyons was settled and applications of the local energy
bounds to interacting systems were considered. Also, the validity of an average-
field approximation for the case of almost-bosonic (α → 0) R-extended anyons
was proved in [47] (see also [11]).

Here we shall consider the homogeneous R-extended anyon gas in the thermo-
dynamic limit and build on the local approach of [49] to prove a lower bound for the
ground-state energy per particle with statistics parameter α ∈ R\{0} and magnetic
filling ratio γ̄ = R�̄1/2 ≥ 0 of the form

Ce(α, γ̄ )�̄,

where C > 0 is a universal constant and (see Fig. 1 below for intermediate values)

e(α, γ ) ∼
{ 2π

|ln γ | + π( j ′α∗)
2 ≥ 2πα∗, γ → 0,

2π |α|, γ � 1.

Here j ′ν denotes the first positive zero of the derivative of the Bessel function
Jν (and j ′0 := 0). This bound effectively interpolates between a dilute regime
involving (1.4) and a high-density regime with a dependence on α matching that of
average-field theory (1.3). Also in the case of even-numerator α, where α∗ = 0, the
bound is strictly positive but vanishes in the dilute limit in a way similar to that of a
dilute Bose gas in two dimensions [41,63]. This may however not be so surprising
in the case that α ∈ 2Z (composite bosons; cf. [27]), considering the periodicity in
the statistics parameter for ideal anyons.
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1.1. The Extended Anyons Model

In order to state our results precisely we need to introduce some notation that
will be used throughout the paper.

We take as our concrete model for R-extended anyons a set of N identical
bosons, to each of which has been attached a magnetic field in the shape of a
disk with radius R and total flux 2πα, and which is felt by all the other particles
(cf. [9,47,48,52,71]). Such flux centered at the origin can be given explicitly by
the magnetic vector potential αA0 with

A0(x) := (x − ·)⊥
|x − · |2 ∗ 1BR(0)

πR2 = x⊥

|x|2R
, curlA0(x) = 2π

1BR(0)

πR2 (x).

Here (x, y)⊥ := (−y, x), that is a π/2 counterclockwise rotation, BR(x) denotes
the open ball/disk of radius R centered at x ∈ R2, and

|x|R := max{|x|, R},
which can be interpreted as a regularized distance. Starting from a conventional
magnetic Hamiltonian formulation, the (non-relativistic) free kinetic energy oper-
ator is then

T̂α :=
N
∑

j=1

D2
j , (1.5)

where we have normalized physical units so that �2/(2m) = 1 and themagnetically
coupled momentum operator for each particle j is given by

Dj := −i∇x j + αA j (x j ),

where

A j (x) := (x − ·)⊥
|x − · |2 ∗

∑

k �= j

1BR(xk )

πR2 =
∑

k �= j

(x − xk)⊥

|x − xk |2R
,

corresponding to the total magnetic field felt by the particle x j

curl αA j = 2πα
∑

k �= j

1BR(xk)

πR2
R→0−→ 2πα

∑

k �= j

δxk . (1.6)

We note that this form for the magnetic interaction is not only convenient but also
realistic from the perspective of the FQHE [48]. Also note that we allow for any
α ∈ R here.

The operator (1.5) acts on the bosonic Hilbert space L2
sym(R2N ) as an

unbounded operator. Let us denote by DN
α,R the natural (minimal as well as maxi-

mal [51, Theorem 5]) domain of the magnetic gradient

D : L2
sym(R2N ;C) → L2(R2N ;CN )

� �→ D� = (−i∇ + αA)� = ((−i∇ j + αA j )�
)N
j=1,
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then this is also the natural form domain of (1.5), and T̂α := D∗D. In the case
R > 0 (as well as for α = 0) we have DN

α,R = H1
sym(R2N ), since A is then a

bounded perturbation of −i∇. On the other hand, if R = 0 then A is singular and
these spaces are typically different (see [51, Section 2.2]). For R = 0 and α ∈ 2Z
(respectivelyα ∈ 2Z+1), however,DN

α,0 is gauge-equivalent toDN
0,0 = H1

sym(R2N )

(respectively DN
1,0 = U−1H1

asym(R2N )):

D(α+2n) = U−2nD(α)U
2n, DN

α+2n,0 = U−2nDN
α,0, n ∈ Z, (1.7)

where U is the isometry (singular gauge transformation)

U : L2
sym/asym → L2

asym/sym, (U�)(x) :=
∏

1≤ j<k≤N

z j − zk
|z j − zk |�(x),

with z j the complex coordinate representatives of x j given by identifying R2 with
C. In other words, for ideal anyons the spectrum of the operator T̂α is 2-periodic in
α, however we will find that this is not the case for extended anyons.

We define the one-body density associated with any normalized state � ∈
L2(R2N ) by

��(x) :=
N
∑

j=1

∫

R2(N−1)
|�(x1, . . . , x j−1, x, x j+1, . . . , xN )|2

∏

k �= j

dxk,

with
∫

	
�� the expected number of particles to be found on 	 ⊆ R2, while �̄ :=

N/|Q0| denotes the average density if confined to a domain (typically a square)
Q0 ⊆ R2, that is for states � with supp� ⊆ QN

0 . Furthermore, with

�� := {x ∈ (R2)N : ∃ j �= k s.t. x j = xk
}

,

the fat diagonal of the configuration space (R2)N , we note that we may use the
density of C∞

c (R2N\��) ∩ L2
sym(R2N ) in the domain DN

α,R (again, see [51, Theo-
rem 5]).

1.2. Main Bounds

We are now ready to state our main results for R-extended anyons. For the
reader’s convenience we outline and compare to the previously studied ideal case,
which is also improved in several aspects in this work.

Our study of the homogeneous anyon gas relies on two key insights which were
brought together in [49] for ideal anyons. On the one hand, we follow an idea origi-
nally used byDyson andLenard in their proof of the stability ofmatter for fermionic
Coulomb systems [16] (see also [15,32]). They realized that the Pauli exclusion
principle is strong enough (for many purposes, including the stability of matter)
acting only between pairs or small numbers of particles. It is in fact sufficient that
the local kinetic energy is strictly positive for two particles and that it grows at least
linearly with the number of particles, in contrast to the true ground-state energy
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for fermions which grows with N according to the Weyl asymptotics for the sum
of Laplacian eigenvalues, that is as N 1+2/d in dimension d. We refer to such a
bound as a local exclusion principle, and the method has recently been generalized
to interacting bosonic gases with the Pauli principle replaced by repulsive interac-
tions [45,46,49–51], and to point-interacting fermionic gases [19]. Essentially the
idea is based on splitting the full domain to which the gas is confined into subdo-
mains whose size is chosen so that the expected number of particles in each domain
is not too large or, for that matter, too small. By estimating the local contribution
to the energy from each subdomain one can obtain bounds for the total energy of
the gas which are of the correct order.

The second key idea that we will use is based on the observation that a pair
of fermions, due to their relative antisymmetry, experience an effective repul-
sion. This may be concretized in the following many-particle Hardy inequality
for fermions [24, Theorem 2.8]:

N
∑

j=1

∫

RdN
|∇ j�|2 dx ≥ d2

N

∑

1≤ j<k≤N

∫

RdN

|�(x)|2
|x j − xk |2 dx, (1.8)

valid for any N -body state� ∈ H1
asym(RdN ) in any dimension d ≥ 1. Antisymme-

try is in fact crucial here, as the inequality is not valid for bosons (the corresponding
optimal Hardy constant vanishes in two dimensions). A local version of (1.8), given
below, was obtained in [49] for ideal anyons, that is with d = 2 and with the right-
hand side remaining linear in N , thus providing a local exclusion principle for
anyons. It was shown that this inequality may be combined with the Dyson–Lenard
approach to yield global bounds for the energy of the gas depending on the statistics
parameter.

We start with an observation which is only helpful in the sufficiently extended
case. Namely, for ideal anyons the singular magnetic potential A effectively
excludes the diagonals�� from the configuration space, much like a strong repulsive
point interaction. For R-extended anyons we have instead the following effective
repulsive short-range interaction of soft-disk type:

Lemma 1.1. (Short-range magnetic interaction) For any α ∈ R, R > 0, N ≥ 1,
and � ∈ DN

α,R = H1
sym(R2N ) we have that

N
∑

j=1

∫

R2N
|Dj�|2 dx ≥ 2π |α|

∑

j �=k

∫

R2N

1BR(0)

πR2 (x j − xk) |�|2 dx. (1.9)

Note that this repulsion is not at all as powerful as (1.8) upon taking the limit R → 0
(or equivalently �̄ → 0), because functions in H1(R2N ) may be approximated by
smooth functions supported away from diagonals as R → 0 [51, Lemma 3], such
that the right-hand side of (1.9) vanishes identically. However the inequality will
be useful in the case that R ∼ �̄−1/2, that is γ̄ ∼ 1.

Now, defining (denoted Cα,N in [49])

αN := min
p∈{0,1,...,N−2}min

q∈Z
|(2p + 1)α − 2q|, α∗ := inf

N≥2αN = lim
N→∞αN ,

(1.10)
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wemay state the following local many-particle magnetic Hardy inequality for ideal
anyons which was given in [49, Theorem 4]:

Theorem 1.2. Let α ∈ R, R = 0, N ≥ 1 and 	 ⊆ R2 be open and convex. Then,
for any � ∈ DN

α,0,

N
∑

j=1

∫

	N
|Dj�|2 dx ≥ α2

N

N

∑

j<k

∫

	N

|�|2
r2jk

1	◦	(x j , xk) dx,

with the reduced support 1	◦	(x j , xk) := 1Bδ(X jk )(0)(r jk), and

r jk := (x j − xk)/2, X jk := (x j + xk)/2, r jk := |r jk |, δ(x) := dist(x, ∂	)

pairwise coordinates and distances.

For fermions,withα = 1 andαN = α∗ = 1, considered on the full two-dimensional
plane 	 = R2, this is exactly the inequality (1.8). For anyons the dependence on
the statistics parameter α comes in via the expressions (1.10) as will be explained
below.

Our firstmain result is the following improvement and extension of Theorem1.2
to R-extended anyons, thereby providing us with a concrete (and indeed useful)
measure of the long-range effect of the statistical magnetic interaction:

Theorem 1.3. (Long-range magnetic interaction) Let α ∈ R, R ≥ 0, N ≥ n ≥ 1
and 	 ⊆ R2 be open and convex. Then, for any � ∈ DN

α,R and κ ∈ [0, 1),
n
∑

j=1

∫

	n
|Dj�|2 dx

≥ 1

n

∫

	n

∣
∣
∣
∣

n
∑

j=1

Dj�

∣
∣
∣
∣

2

dx

+ 1

n

∑

j<k

∫

	n

(

(1− κ)
∣
∣∂r jk |�|∣∣2 + c(κ)2

α2
N

r2jk
1A(x j , xk) |�|2

)

dx

≥ 4π(1− κ)
1

n

∑

j<k

∫

	n
g

(
c(κ)αN√
1− κ

,
3R/δ(X jk)

1− 3R/δ(X jk)

)2 1A(x j , xk)
4πδ(X jk)2

|�|2 dx,

where D j may depend on the positions of all N particles x ∈ R2N , the support

1A(x j , xk) := 1Bδ(X jk )−3R(0)\B3R(0)(r jk)

describes a maximal annulus contained in 	 (with some R-dependent margins)
in terms of the relative coordinate, and g(ν, γ ) for ν ∈ R+ and 0 ≤ γ < 1
is the square root of the smallest positive solution λ associated with the Bessel
equation−u′′−u′/r+ν2u/r2 = λu on the interval [γ, 1]with Neumann boundary
conditions, while g(ν, γ ) := ν for γ ≥ 1.
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In the ideal case R = 0 the inequality is valid with c(κ) ≡ 1 (hence take κ = 0),
while for any R ≥ 0 it holds at least for c(κ) = 4.7 · 10−4κ/(1+ 2κ).

Moreover, the function g has the following properties:

ν ≤ g(ν, γ ) ≤ j ′ν, g(ν, γ ) ∼
{

j ′ν ≥
√
2ν, γ → 0,

ν, γ → 1,

where j ′ν denotes the first positive zero of the derivative of the Bessel function Jν
(and j ′0 := 0).

Theorem 1.3 will be applied to study the energy of the homogeneous anyon gas
according to the local strategy outlined above. In such a setting 	 is typically not
the domain to which our gas is confined, but rather a subdomain thereof, and n is
the number of particles present in 	 while N is the total number of particles in the
gas. This more complicated division of particles is needed in the statement of the
theorem because the magnetic derivatives depend on all particles, not just those in
	, which is even more relevant in the extended case.

We note that the above inequality may in some sense be viewed as a refinement
(with respect to the angular dependence in pairwise relative coordinates) of the
usual (pointwise) diamagnetic inequality:

Lemma 1.4. (Diamagnetic inequality) For any α ∈ R, R ≥ 0, N ≥ 1 and � ∈
DN

α,R we have that

N
∑

j=1

∫

R2N
|Dj�|2 dx ≥

N
∑

j=1

∫

R2N

∣
∣∇ j |�|∣∣2 dx.

For R > 0, the vector potential satisfies A ∈ L∞(R2N ) ⊆ L2
loc(R

2N ) and
hence it is covered by standard theorems; see for example [34, Theorem 7.21]. For
R = 0 it is not, but the above diamagnetic inequality still holds in this case, as was
proved in [51, Lemma 4] (and actually our understanding of the form domain DN

α,0
alluded to above depends on this general formulation of the inequality).

Note that |�| ∈ L2
sym(R2N ). Therefore the diamagnetic inequality of

Lemma 1.4 says that the kinetic energy for anyons is always higher than that for
bosons, while the short-range inequality of Lemma 1.1 tells us that the anyons also
feel an effective repulsion proportional to |α|whenever they overlap. Taking a com-
bination of these two bounds would then correspond to a two-dimensional soft-disk
repulsive Bose gas, whose energy in the dilute limit tends to zero logarithmically
with the density (here the magnetic filling ratio γ̄ := R�̄1/2 → 0) [41]. On the
other hand, Theorem 1.3 provides a local bound for the energy in the form of a long-
range inverse-square repulsion similar to (1.8), and whose strength depends on the
fractionality of α via αN → α∗. While this ‘statistical repulsion’ does not change
the above repulsive picture much in the regime of high densities (γ̄ � 1) where
the anyons already feel each other’s magnetic fields by (partially) overlapping, it
makes a significant difference in the dilute limit, actually resulting in a uniform
bound for the energy from below in terms of ( j ′α∗)

2 ≥ 2α∗.
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γ̄

α∗ = 0

α∗ = 1/3

α∗ = 1

γ̄

α = 1/3

α = 2/3

α = 1

α = 2

α = 3

Fig. 1. The universal lower bound for e(α, γ̄ ) plotted as a function of γ̄ for some fixed values
of α, in the hypothetical case C = 1, c = 1/

√
3 for illustrative purposes. The figure to the

right shows the general behavior over the full range of γ̄ , while that on the left shows the
behavior in the dilute limit plotted in logarithmic scale where the long-range dependence on
α∗ becomes relevant

As discussed in [49], and further in [43], the reason for the dependence on
αN ≥ α∗ and not directly α in the bounds of Theorems 1.2 and 1.3 is the local
gauge invarianceof the pairwise relativemagnetic potential.Namely, in an exchange
of a pair of particles additional flux may also be enclosed. Apart from the flux
corresponding to the simple exchange (1.2), enclosing p other particles in such an
exchange loop contributes an additional 2pmultiples of the exchange flux, yielding
the factor 2p + 1 in (1.10). At the same time, any even multiple of a unit flux may
be compensated for (gauged away) by an opposite and equally large orbital angular
momentum of that same particle pair, thus explaining the subtraction of an arbitrary
even integer 2q in (1.10). However, for odd-numerator rational α there can never be
a complete cancellation of this type, and therefore there is always some long-range
pair repulsion, α∗ > 0 [49, Proposition 5].

All these effects are summarized in the following theorem concerning the R-
extended anyon gas, which is our second main result (see Fig. 1 for an illustration):

Theorem 1.5. (Universal bounds for the homogeneous anyon gas) Let e(α, γ̄ ),
where γ̄ = R�̄1/2, denote the ground-state energy per particle and unit density
of the extended anyon gas in the thermodynamic limit at fixed α ∈ R, R ≥ 0 and
density �̄ > 0 where Dirichlet boundary conditions have been imposed, that is

e(α, γ̄ ) := lim inf
N , |Q0|→∞
N/|Q0|=�̄

(
1

�̄N
inf

�∈DN
α,R∩C∞

c (QN
0 )

‖�‖2=1

〈�, T̂α�〉
)

.

Then

e(α, γ̄ ) ≥ C

(

2π
|α|min

{

2(1− γ̄ 2/4)−1, Kα

}

Kα + 2|α| ln(2/γ̄ )
1γ̄ <2 + 2π |α|1γ̄≥2

+πg(cα∗, 12γ̄ /
√
2)2(1− 12γ̄ /

√
2)3+
)

,
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for some universal constants C, c > 0, Kα ≥ 2 (is defined in Lemma 5.1), and g
as in Theorem 1.3. Furthermore, for any α ∈ R we have for the ideal anyon gas
that

e(α, 0) ≥ 1

2
2πα∗

(

1− O
(

α
1/3∗
))

. (1.11)

As mentioned, our approach to obtain the above theorem is to first formulate
the effects of the short- and long-range interactions in the form of local exclusion
principles, an approach that goes back to Dyson and Lenard’s original proof of the
stability of matter for fermionic Coulomb systems [16]. This method was further
developed in [45,46,49,51], not only to treat homogeneous gases but also to prove
Lieb–Thirring inequalities (that is uniform kinetic energy bounds in accord with the
Thomas–Fermi approximation for the inhomogeneous Fermi gas; cf. [35,37,38])
with the usual Pauli exclusion principle for fermions replaced by more general
repulsive interactions for bosons. The reason for the factor 1/2 in (1.11) compared
to the expected value 2πα∗ (at least if comparing to the Fermi gas at α = α∗ = 1
and assuming a linear interpolation to small α such that α = α∗) is that the long-
range exclusion principle, which is applied locally on boxes of a tunable size, only
increases linearly with the number of particles and is strongest on a scale where
about two particles fit in each box.We provide further bounds for e(α, γ̄ ) in various
parameter regimes in Theorem 6.1.

It should be remarked that our local exclusion principles also can be used to
prove Lieb–Thirring inequalities. We postpone the extended case to future work
but note that the ideal case is directly improved by the present results, namely
replacing [49, Lemma 8] with the local exclusion principle of Lemma 5.3 below
yields the following bounds for ideal anyons, where the constant ( j ′αN

)2 ≥ 2αN ≥
α2
N improves the one in [49, Theorems 1 and 11]:

Theorem 1.6. (Lieb–Thirring inequality for ideal anyons) With α ∈ R, R = 0,
N ≥ 1 and � ∈ DN

α,0 we have that

〈

�, T̂α�
〉

≥ C
(

j ′αN

)2
∫

R2
��(x)2 dx,

and if V : R2 → R is an external one-body potential, acting by V̂ (x) :=
∑N

j=1 V (x j ), then

〈

�,
(

T̂α + V̂
)

�
〉

≥ −C ′ ( j ′αN

)−2
∫

R2
V−(x)2 dx,

for some positive universal constantsC andC ′ = (4C)−1, and V± := max{±V, 0}.
The question concerning optimality of the above bounds with respect to their

dependence on α in the dilute limit is a very difficult one, and will be discussed
elsewhere [43]. However, we would like to point out that it was suggested in [50]
(see also [44]) that a class of FQHE-inspired trial states with a clustering behavior
could minimize the energy for certain fractions, and here we find additional support
for this claim; cf. Fig. 3 below. Furthermore, there was in [50], then based on the
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weaker bounds of [49], a slight inconsistency in the behavior with respect to odd-
numerator α which is remedied by the improved bounds presented here.

The structure of the paper is as follows. We lay the foundations in Sections 2
and 3 by proving the short-range bound of Lemma 1.1, and the basis for the long-
range bound in the form of a relative magnetic Hardy inequality with symmetry.
Then themain body of the paper, Section 4, is concerned with the application of this
Hardy inequality to prove the long-range bound of Theorem 1.3. This turns out to
become surprisingly challenging in the extended case due to the oscillatory nature
of an effective potential, and in fact takes up the largest part of the proofs section.
In Section 5 the long- and short-range bounds are applied to prove local exclusion
principles for anyons, and finally in Section 6 we discuss the homogeneous anyon
gas in the thermodynamic limit.

2. Short-Range Interaction

The short-range interaction given byLemma1.1 comes as a simple consequence
of the well-known magnetic inequality (see for example [18, Lemma 1.4.1] or [4,
p. 171])

∫

	

|(∇ + iA)u|2 ≥ ±
∫

	

curlA |u|2, u ∈ H1
0 (	), 	 ⊆ R2. (2.1)

This inequality also follows directly from integrating the straightforward identity

|(∇ + iA)u|2 = |((∂1 + i A1) ± i(∂2 + i A2))u|2 ± curl J[u] ± A · ∇⊥|u|2,
with J[u] := i

2 (u∇ū − ū∇u).

Proof of Lemma 1.1. Splitting the coordinates according to x = (x j ; x′) for each
particle j , we write for the left-hand side of (1.9)

N
∑

j=1

∫

R2(N−1)

∫

R2
| (∇ j + iαA j

(

x j
))

�
(

x j ; x′
) |2 dx jdx

′

≥
N
∑

j=1

∫

R2(N−1)

∫

R2
2π |α|

∑

k �= j

1BR(xk)

πR2

(

x j
) |� (x j ; x′

) |2 dx jdx
′,

where we used the expression (1.6) for curl αA j (x j ) in (2.1).We have thus obtained
the right-hand side of (1.9). ��

We note that the Dirichlet boundary conditions on� and u are in fact necessary
here since the bound (2.1) is otherwise invalid, as can be seen by taking A = βA0,
β → 0, and the trial state u = 1. Similarly, had we considered the inequality
(1.9) locally on a small enough domain (compared to R) we would have found a
contradiction as α → 0, unless Dirichlet boundary conditions are enforced.
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3. Relative Magnetic Inequality

For the long-range statistical interaction between anyons we take the same
starting point as in [49], namely, the core observation is the validity of a relative
magnetic Hardy inequality which respects the symmetry of the anyon problem.
Non-symmetric versions of this inequalitywere introduced and studied in [29] (one-
particle version) and in [24, Theorem 2.7] (many-particle version); see also [53], [4,
Chapter 5.5] and references therein. However, as was pointed out in [49], symme-
try is crucial in order to obtain non-trivial bounds in the many-particle limit. We
formulate the following version of the inequality quite generally.

Initially, consider a magnetic field b : BR(0) → R defined on a disk of radius
R > 0, and assumed to be determined by a suitable continuous vector potential
a : BR(0) → R2 as b = curl a. Then the normalized flux inside a smaller disk of
radius r ∈ [0, R) is given by

�̂(r) := 1

2π

∫

Br (0)
b = 1

2π

∫

∂Br (0)
a · dr′. (3.1)

Note that if we were only given a : 	 → R2 on some annulus 	 = BR(0)\B̄R′(0),
with 0 < R′ < R, that is if we only knew b on 	 (so that only the right-hand
side of (3.1) makes sense for r ∈ (R′, R)), then b can nevertheless be extended
(non-uniquely) to the full interior BR′(0), for example by taking

b|BR′ (0) =
2π�̂(R′)
π(R′)2

or b|BR′ (0) = 2π�̂(R′)δ0,

with �(R′) here defined in terms of a as in (3.1) (note that we are not considering
extending a). Then both expressions for �̂(r) in (3.1) are well defined and agree
for all r ∈ (R′, R). We also note that if the magnetic field is antipodal-symmetric
on 	, that is b(−r) = b(r) for all r ∈ 	, then the corresponding potential must (if
gauge-normalized correctly) be antipodal-antisymmetric, a(−r) = −a(r), r ∈ 	,
and vice versa.

Lemma 3.1. (MagneticHardy inequalitywith symmetry)Let	 = BR2(0)\B̄R1(0),
with R2 > R1 ≥ 0, be an annular domain in R2. Let a : 	 → R2 be a continuous
vector potential corresponding to a magnetic field b, b|	 = curl a, that is defined
on the entire disk BR2(0) such that the normalized flux �̂(r) given by (3.1) is finite
for all r ∈ (R1, R2). Furthermore, assume that a is antipodal-antisymmetric resp.
b is antipodal-symmetric on 	, that is a(−r) = −a(r) resp. b(−r) = b(r) for
r ∈ 	.

Then, for any antipodal-symmetric u ∈ C∞(	), that is with u(−r) = u(r) for
all r ∈ 	,

∫

	

|(−i∇ + a)u|2 dr ≥
∫

	

(
∣
∣∂r |u|

∣
∣
2 + inf

k∈Z

∣
∣�̂(r)− 2k

∣
∣2
|u|2
r2

)

dr.
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Alternatively, if instead u is antipodal-antisymmetric, u(−r) = −u(r) for all
r ∈ 	, then
∫

	

|(−i∇ + a)u|2 dr ≥
∫

	

(
∣
∣∂r |u|

∣
∣2 + inf

k∈Z

∣
∣�̂(r)− (2k + 1)

∣
∣2
|u|2
r2

)

dr.

Proof. We apply the techniques from [29], with symmetry taken into account as
in [49, Lemma 2]. We start by letting h[a] denote the magnetic quadratic form on
	,

h[a](u) :=
∫

	

|(−i∇ + a)u|2 dr

=
∫ R2

R1

∫ 2π

0

(|(−i∂r + ar )u|2 + r−2|(−i∂ϕ + raϕ)u|2)r dϕdr,

where ar := r−1r · a and aϕ := r−1r⊥ · a. For the first term above we use
the diamagnetic inequality |(∂r + iar )u| ≥

∣
∣∂r |u|

∣
∣, while for the second we can

for each r ∈ (R1, R2) explicitly diagonalize the self-adjoint operator Kϕ(r) :=
−i∂ϕ+raϕ(r, ϕ) acting on L2(S1). The corresponding eigenvalues and normalized
eigenfunctions of this operator are given by:

λk(r) = −k + (2π)−1r
∫ 2π

0
aϕ(r, ϕ) dϕ = −k + �̂(r),

ψk(r, ϕ) = (2π)−1/2ei(ϕλk (r)−r
∫ ϕ
0 aϕ(r,η) dη),

for k ∈ Z. Because of the antipodal-antisymmetry of a, implying antipodal-
symmetry of aϕ , that is aϕ(r, ϕ) = aϕ(r, ϕ + π), we have that

ψk(r, ϕ + π) = (−1)kψk(r, ϕ).

Therefore, only the even/odd terms will contribute upon expanding u ∈
L2
sym/asym(	) as

u(r, ϕ) =
∑

k∈Z
uk(r)ψk(r, ϕ) =

∑

k∈Ze/o

uk(r)ψk(r, ϕ),

with Ze := 2Z and Zo := 2Z + 1.
By the above remarks and Parseval’s identity we find that

h[a](u) =
∫ R2

R1

∫ 2π

0
|(∂r + iar )u|2 r dϕdr +

∫ R2

R1

∑

k∈Ze/o

|λk(r)|2|uk(r)|2 r−1 dr

≥
∫ R2

R1

∫ 2π

0

∣
∣∂r |u|

∣
∣2 r dϕ dr +

∫ R2

R1

inf
k∈Ze/o

|λk(r)|2
∑

k∈Ze/o

|uk(r)|2 r−1 dr

=
∫ R2

R1

∫ 2π

0

(∣
∣∂r |u|

∣
∣
2 + r−2 inf

k∈Ze/o
|λk(r)|2|u|2

)

r dϕ dr.



Exclusion Bounds for Extended Anyons 323

Thus the estimate we are left with is

h[a](u) ≥
∫ R2

R1

∫ 2π

0

(∣
∣∂r |u|

∣
∣2 + r−2 inf

k∈Ze/o

∣
∣�̂(r)− k

∣
∣2|u|2)r dϕ dr,

which proves the lemma. ��
The above lemma not only extends the inequality of [49, Lemma 2] tomore gen-

eral (extended)magnetic fields, but also improves it by keeping the radial derivative.
This turns out to be crucial in order to obtain an improved dependence on α in the
dilute limit. We note that in [24] the radial derivatives were effectively discarded
in two dimensions.

4. Analysis of the Long-Range Interaction

We set out to prove Theorem 1.3 and first note that by the remarks in Section 1.1
we may assume without loss of generality that � ∈ C∞

c (R2N\��). Proceeding as
was done in [49] for the non-extended case R = 0, we start from the expression
for the kinetic energy on a domain 	 ⊆ R2,

∫

	n

n
∑

j=1

|Dj�|2 dx, where Dj = −i∇x j + α

N
∑

k=1
k �= j

(x j − xk)⊥

|x j − xk |2R
,

and we are considering the first n particles x j=1,...,n ∈ 	while the remaining N−n
ones may reside anywhere in R2. Using that, for any z = (z j ) j ∈ Cn ,

n
∑

j=1

|z j |2 = 1

n

∑

1≤ j<k≤n
|z j − zk |2 + 1

n

∣
∣
∣
∣

n
∑

j=1

z j

∣
∣
∣
∣

2

,

we have that

∫

	n

n
∑

j=1

|Dj�|2 dx = 1

n

∑

1≤ j<k≤n

∫

	n−2

∫

	2
|(Dj − Dk)�|2 dx jdxk

∏

l �= j,k

dxl

+ 1

n

∫

	n

∣
∣
∣
∣

n
∑

j=1

Dj�

∣
∣
∣
∣

2

dx, (4.1)

where we also note that the magnetic field present in the last (total momentum)
term simplifies to

n
∑

j=1

Dj = −i
n
∑

j=1

∇x j + α

n
∑

j=1

N
∑

k=n+1

(x j − xk)⊥

|x j − xk |2R
,

by the antisymmetry of the vector potential, and thus vanishes if n = N .
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Wenow study the inner integral in (4.1) for the j < k particle pair, and introduce
relative coordinates:

r jk := (x j − xk)/2, X jk := (x j + xk)/2, r jk := |r jk |,
giving

∫

	2
|(Dj − Dk)�|2 dx jdxk

=
∫

	2

∣
∣
∣

(

−i(∇x j − ∇xk )+ α
∑

l �= j

(x j − xl)⊥

|x j − xl |2R
− α
∑

l �=k

(xk − xl)⊥

|xk − xl |2R
)

�

∣
∣
∣

2
dx jdxk

=
∫

	2

∣
∣
∣

(

−i∇r jk+αa0(r jk)+α
∑

l �= j,k

(al(X jk , r jk)−al(X jk ,−r jk))
)

�

∣
∣
∣

2
dx jdxk ,

(4.2)

where the relative vector potentials are given by

a0(r) := 4r⊥

|2r|2R
= r⊥

|r|2R/2

and al(X, r) := (X+ r − xl)⊥

|X+ r − xl |2R
.

Hence, for any positions x′ = (x1, . . . , x�j , . . . , x�k, . . . , xN ) ∈ R2(N−2) of the
other particles and for each center-of-mass coordinateX = X jk ∈ 	 of the particle
pair, we observe that the resulting magnetic vector potential

a(r) := αa0(r) + α
∑

l �= j,k

(al(X, r) − al(X,−r))

is antipodal-antisymmetric on the relative disk

	X := Bδ(X)(0), δ(x) := dist(x, ∂	),

with a corresponding antipodal-symmetric magnetic field

b := curl a = 2πα

(
1BR/2(0)

π(R/2)2
+
∑

l �= j,k

(
1BR(xl−X)

πR2 + 1BR(−(xl−X))

πR2

))

(4.3)

(given here for R > 0). Also, the smooth function defined relative to X and x′ by

u(r) := �(x1, x2, . . . , x j = X+ r, . . . , xk = X− r, . . . , xn, . . . , xN )

is antipodal-symmetric on 	X. Hence, we may apply the relative magnetic Hardy
inequality of Lemma 3.1 (for R = 0 we split into concentric annuli avoiding the xl
as in [49, Theorem 4]) to obtain that

∫

	2
|(Dj − Dk)�|2 dx jdxk ≥

∫

	

∫

	X

|(−i∇ + a)u|2 4 drdX

≥
∫

	

∫

	X

(
∣
∣∂r |u|

∣
∣2 + ρ(r)

r2
|u|2
)

4 drdX, (4.4)
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where
ρ(r) := inf

q∈Z

∣
∣�̂(r)− 2q

∣
∣
2
, (4.5)

and �̂(r) here, and in what follows, denotes the flux through the disk Br (X) of the
magnetic field (4.3):

�̂(r) = 1

2π

∫

∂Br (0)
a · dr′ = 1

2π

∫

Br (0)
b.

Note that themagnetic field is induced by the particle configuration (x′; x j , xk), and
the only dependence which remains after fixing x′ in (4.1) and X = X jk in (4.4)
is that of the relative coordinate r = r jk . With the remaining particle positions
expressed relative to the coordinate X, yl := xl − X, we can write the normalized
flux �̂(r) as:

�̂(r) = α

(∫

Br (0)

1BR/2(0)

π(R/2)2
+ 2

∑

l �= j,k

∫

Br (0)

1BR(yl )

πR2

)

. (4.6)

Hence ρ(r) depends only on the arbitrary but fixed configuration (yl)l ∈ R2(N−2).
By the above discussion, the problem of bounding the kinetic energy (4.1) has

been reduced to studying the radial Schrödinger operator in (4.4) with explicit
scalar interaction potential ρ(r)/r2. This potential is essentially an inverse-square
repulsion, modulated with a coupling strength ρ(r) which measures how well the
normalized flux �̂(r) stabilizes away from the even integers. In the dilute situation
the flux and hence also ρ would for the most part be constant, however we could
have significant oscillations of ρ(r) between one and zero whenever many particles
are enclosed over short differences in the radial variable r (see Fig. 2). Controlling
these oscillations turns out to be a significant challenge, and the entire remainder
of this section shall be concerned with proving the following theorem, from which
Theorem 1.3 follows.

Theorem 4.1. For any 0 ≤ R ≤ L/6, κ ∈ [0, 1], u ∈ W 1,2([R, L], rdr), and ρ

defined in (4.5)–(4.6) with (yl)l ∈ R2(N−2) arbitrary, we have that
∫ L

R

(

|u′|2+ ρ(r)

r2
|u|2
)

r dr ≥
∫ L

R

(

(1−κ)|u′|2 + c(κ)2
α2
N

r2
1[3R,L−3R]|u|2

)

r dr,

with c(κ) = 4.7 · 10−4κ/(1+ 2κ). In the case R = 0 we may take c(κ) ≡ 1.

Remark 4.2. The margins which appear here as a cut-off for the potential are not
optimal and could be improved with more work, to the cost of an even weaker
constant. The main reason for the weakness of the constant c(κ) is the fact that we
have chosen to control the above form by means of filling the gaps around the zeros
of the potential by smearing it over longer (but not too long) intervals, and that in
the worst possible situation there are very large regions of intense oscillation and
many such zeros.

By considering the special case α = αN = 1 and densely packed, overlapping
particles (that is when γ̄ is large) distributed so that the effective magnetic field
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r

ρ

α2∗

1

r

ρ/r

Fig. 2. The function ρ(r) and the effective potential ρ(r)/r for a random (uniformly dis-
tributed) configuration of 30 particles in a disk of radius L = 20R with α = α∗ = 1/3
plotted from r = 0 to r = L , where α2∗ resp. α2∗/r are shown for comparison. As one can
see, the effective potential is generally quite a lot larger than α2∗/r

r

ρ

α2∗

1

r

ρ/r

Fig. 3. The same as in Fig. 2, now for 10 particles in a disk of radius L = 60R with α = 2/3
(α∗ = 0), and with a single particle close to our center of mass and the remaining nine in
clusters of three. Note that in this case the effective potential can become identically zero on
long intervals

is approximately constant, we find that c(κ) cannot be greater than 1/
√
3, which

is what the corresponding constant would be if one applied the same argument to
the case of a homogeneous magnetic field (see below). However, for α∗ ≤ 1/2
(or small enough so that ρ is larger than α2∗ for a sufficiently large set of radii),
we expect that the ground-state energy of the left-hand side (though difficult to
compute in general) should in almost all situations be bounded by that with ρ(r)
replaced by α2

N (compare Fig. 2). We discuss further possible improvements to the
constant c(κ) at the end of Section 4.5.

Proof of Theorem 1.3. Inserting the bound of Theorem 4.1 with L = δ(X) into
the expressions (4.4), (4.2), and (4.1), we obtain the first bound of the theorem.
Furthermore, by rescaling v(r) := u((L − 3R)r) and considering the minimizer v

which is the solution of the Bessel equation

−v′′(r)− v′(r)/r + ν2v(r)/r2 = λv(r), v′(γ ) = 0, v′(1) = 0,

with the minimal eigenvalue λ = g
(

ν = c(κ)αN√
1−κ

, γ = 3R/L
1−3R/L

)2 ≥ 0, one obtains
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∫ L−3R

3R

(

(1− κ)|u′|2+ c(κ)2
α2
N

r2
|u|2
)

r dr = (1− κ)

∫ 1

γ

(

|v′|2+ c(κ)2

1− κ

α2
N

r2
|v|2
)

r dr

≥ (1−κ)g
( c(κ)αN√

1− κ
, γ
)2
∫ 1

γ

|v|2r dr = (1−κ)
g
(
c(κ)αN√

1−κ
, γ
)2

L2(1− 3R/L)2

∫ L−3R

3R
|u|2r dr,

and therefore, after the simplifying estimate (1−3R/L)−2 ≥ 1, the second bound of
Theorem 1.3. The properties of g described in the theorem are direct consequences
of Proposition A.1 and A.2. ��

Before continuing with the proof of Theorem 4.1 we note that, although this
method involving the magnetic Hardy inequality turns out to be sufficient and
indeed well-suited for our purposes, it does not deal well with strong magnetic
fields (hence also the presence of a large external field), as the following example
shows. The strongmagnetic fields arising from a large overlap between the particles
will instead be handled by the short-range part of the interaction, Lemma 1.1.

Proposition 4.3. (Constantmagnetic field on a disk)The ground-state energyλ1(β)

for the Neumann form (with no symmetry imposed) with a constant magnetic field
b(r) = β ≥ 0 on the unit disk,

λ1(β) := inf‖u‖2=1

∫

B1(0)

∣
∣(−i∇ + βr⊥/2)u

∣
∣2 dr,

satisfies

λ1(β) ∼ �0β as β →∞, where �0 ≈ 0.59.

However, the ground-state energy for the corresponding lower bound obtained from
the Hardy inequality,

μ1(β) := inf‖u‖2=1

∫

B1(0)

(
∣
∣∂r |u|

∣
∣
2 + inf

k∈Z
|k − βr2/2|2 1

r2
|u|2
)

dr,

is bounded from above by g(1/2, 0)2 = ( j ′1/2)2 independent of β.

Proof. The first estimate follows for example from [18, Theorem 5.3.1], while the
second from bounding the infimum by 1/4 and taking as a trial state the Bessel
function u(r) = J1/2( j ′1/2r). ��

4.1. A One-Dimensional Projection Bound

Our strategy in order to find a uniform bound for the scalar interaction of
Theorem 4.1 will be to borrow a bit of the radial kinetic energy to smear ρ over
intervals whenever it has critical oscillations. As a preliminary to the proceeding
analysis we therefore study the localized effective quadratic form

hI,ρ(u) :=
∫

I

(

κ|u′|2 + ρ

r2
|u|2)r dr, κ ∈ [0, 1],
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on an interval I = (r1, r2) ⊆ R+, and our goal is to find a bound of the form

hI,ρ(u) �
∫

I

|u|2
r

dr,

that is corresponding to ρ being constant.

Lemma 4.4. Let I be an interval (r1, r2), such that r1 ≥ R and |r2 − r1| ≤ 2R,
and let ρ ∈ L∞(I ) be non-negative with ‖ρ‖∞ ≤ 1. Then for any κ ∈ [0, 1] we
have that ∫

I

(

κ|u′|2 + ρ

r2
|u|2)r dr ≥ κρ̄

β(κ)

∫

I

|u|2
r

dr,

where ρ̄ denotes the weighted mean on I ,

ρ̄ :=
∫

I

ρ

r
dr
/ ∫

I

dr

r
,

and β(κ) is an explicit function satisfying κ < β(κ) < κ + 1/4.

Remark 4.5. This lemma can be proven under more general conditions; the only
condition on I needed for our proof is that r2/r1 is sufficiently small. The current
setting is simply what we require later.

Proof of Lemma 4.4. By the change of variables r = et and with ũ(t) = u(et )
we find that

hI,ρ(u) = h̃(ũ) :=
∫

ln(I )

(

κ|ũ′|2 + ρ̃|ũ|2) dt.
For this quadratic formwe can perform a projection-type argument to bound the first
eigenvalue of the associated operator H̃ := −κ d2

dt2
+ ρ̃ (with Neumann boundary

conditions), which in turn will imply a bound of the desired form.
Let P denote the orthogonal projection onto the ground state ψ0 ≡ 1/

√|ln(I )|
of −d2/dt2, where |ln(I )| = ln(r2/r1), and let P⊥ = 1 − P . Then

(− d2

dt2
)

P =
0 and

(− d2

dt2
)

P⊥ ≥ π2/|ln(I )|2P⊥ (the first non-zero Neumann eigenvalue of

−d2/dt2).
Since ρ̃ ≥ 0, an application of Cauchy–Schwarz’ and Young’s inequalities

yields, for any u ∈ L2(ln(I )) and μ > 0, that
∣
∣〈u, (P ρ̃P⊥ + P⊥ρ̃P)u〉∣∣ = ∣∣〈ρ̃1/2Pu, ρ̃1/2P⊥u〉 + 〈ρ̃1/2P⊥u, ρ̃1/2Pu〉∣∣

≤ μ‖ρ̃1/2Pu‖22 + μ−1‖ρ̃1/2P⊥u‖22
= 〈u, (μP ρ̃P + μ−1P⊥ρ̃P⊥)u〉.

Hence we see that

ρ̃ = (P + P⊥)ρ̃(P + P⊥) ≥ (1− μ)P ρ̃P + (1− μ−1)P⊥ρ̃P⊥.

The operator P ρ̃P is equal to ‖ρ̃‖1/|ln(I )|P , where

‖ρ̃‖1 =
∫

ln(I )
ρ̃ dt =

∫

I
ρ(r)r−1 dr,
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and P⊥ρ̃P⊥ we bound from above by ‖ρ̃‖∞P⊥.
We find that for any μ ∈ (0, 1) the operator H̃ satisfies

H̃ ≥ κ
(

− d2

dt2

)

P + κ
(

− d2

dt2

)

P⊥ + (1− μ)P ρ̃P + (1− μ−1)P⊥ρ̃P⊥

≥ (1− μ)

|ln(I )| ‖ρ̃‖1P +
(

κπ2

|ln(I )|2 + (1− μ−1)‖ρ̃‖∞
)

P⊥

≥ min

{
(1− μ)‖ρ̃‖1

|ln(I )| ,
κπ2

|ln(I )|2 + (1− μ−1)‖ρ̃‖∞
}

.

With |r2 − r1| = |I | ≤ 2R and r1 ≥ R we find that

|ln(I )| = ln
(r2
r1

)

= ln
(

1+ |I |
r1

)

≤ ln
(

1+ 2R

R

)

= ln(3).

Hence, writing μ = 1 − κ/β, β > κ , and using that ‖ρ̃‖∞ = ‖ρ‖∞ ≤ 1,
‖ρ̃‖1/|ln(I )| ≤ 1 we have that

min

{
(1− μ)‖ρ̃‖1

|ln(I )| ,
κπ2

|ln(I )|2 + (1− μ−1)‖ρ̃‖∞
}

≥ κ
‖ρ̃‖1
|ln(I )| min

{
1

β
,

π2

ln(3)2
− 1

β − κ

}

,

where we assumed the positivity of the second argument (this will be clear by the
choice of β below). Note that the first argument of the minimum is decreasing in
β > κ while the second one is increasing. Thus to find the maximizing β we only
need to solve the equation 1/β = π2/ ln(3)2 − 1/(β − κ). Plugging the solution,
given by

β(κ) = π2κ +√π4κ2 + 4 ln(3)4 + 2 ln(3)2

2π2 > κ,

into the above yields

H̃ ≥ κ

β(κ)

‖ρ̃‖1
|ln(I )| =

κρ̄

β(κ)
.

Finally, since β(κ) is a convex function for κ ∈ [0, 1] we can simplify this
expression using

β(κ) ≤ β(0) + (β(1) − β(0))κ =: Lβ(κ),

and by simple numerical estimates one finds that Lβ(κ) < κ + 1/4. ��
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4.2. Number-Theoretic Structure of the Effective Scalar Potential

To proceed with the analysis we will need a more precise understanding of how
ρ depends on the positions of the other particles. Note first that we may assume
that α > 0 using the reflection-conjugation symmetry. We then begin by writing
for the normalized flux

�̂(r) = α(1+ 2N(r)), r ≥ R/2,

where we introduce the particle counting function

N(r) :=
N−2
∑

l=1

∫

Br (0)

1BR(yl )

πR2 . (4.7)

Recall that in the expression (4.6) for the flux �̂, all particles are treated relative
to the fixed center of mass X of the considered particle pair, and have also been
renumbered for convenience: yl := xl − X ∈ R2, with l ∈ {1, . . . , N − 2}.

In terms of the function N we have that

ρ(r) = min
q∈Z

(

α(1+ 2N(r))− 2q
)2

, N(r) = 1

2α
�̂(r)− 1

2
, (4.8)

and we may cover the interval [R/2, L] by smaller intervals Jq labeled by the
minimizer q ∈ N (note the monotonicity of the function N(r), and that we might
already have q � 1 on the first such interval at r = R/2). Each Jq contains, except
possibly for the first and last such interval, exactly one zero of ρ which we denote
by rq :

ρ(rq) = (α(1+ 2N(rq))− 2q)2 = 0 ⇔ N(rq) = q

α
− 1

2
,

so that

|N(rq) − p| = 1

2α
|(2p + 1)α − 2q| ≥ αN

2α
∀p ∈ {0, 1, . . . , N − 2}. (4.9)

We then also have the very useful identity

ρ(r) = |α(1+ 2N(r))− 2q|2 = |α(1+ 2N(r))− α(1+ 2N(rq))|2
= 4α2|N(r)−N(rq)|2, (4.10)

whenever r ∈ Jq . Let us denote by e−q and e+q the nearest points to the left resp.
right of rq where ρ(r) = 1, then

ρ(e±q ) = 1, and ρ(r) = 4α2(N(r)−N(rq))
2 < 1 ∀r ∈ (e−q , e+q ) ⊆ Jq .3

3 Typically we have that e+q = e−q+1 and Jq = [e−q , e+q ] unless ρ stabilizes at 1 on some

interval between rq and rq+1, in which case e+q < e−q+1 and the intervals Jq and Jq+1
overlap.
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Fig. 4. The function N(r) (green) together with ρ(r) (blue) and α2∗ (yellow), for α = 3/7,
over an interval where the enclosed number of particles increases from 12 to 30. Two separate
zeros rq and rq ′ of ρ, with q ′ = q + 2, are indicated together with the corresponding points
z±q , e±q and z±q ′ , e

±
q ′

Finally, we also denote by z−q and z+q the nearest points to the left resp. right of rq
where N(z−q ),N(z+q ) ∈ Z, and hence N(z+q ) − N(z−q ) = 1, and we observe due to
(4.9), (4.10) and monotonicity that

ρ(r) ≥ α2
N ∀r ∈ Jq\

(

z−q , z+q
)

. (4.11)

Recall that this constant depends in a non-trivial way on number-theoretic aspects
of the parameter α, and that it remains bounded away from zero for all N if and
only if α is an odd-numerator rational number (see [49, Proposition 5]). To clarify
the above definitions, two sets of points rq , e±q , z

±
q are illustrated in Fig. 4 for a

particular particle configuration.
Hence, we can reduce our problem to studying precisely those smaller intervals

around each zero of ρ not covered by (4.11). To this endwe let Iq denote the interval
(z−q , z+q ) around the zero rq ∈ [R/2, L]. When considering a fixed Iq we may for
notational simplicity drop the subscripts q when referring to its endpoints. Observe
by the size of each particle that |Iq | ≤ 2R, and furthermore that there is always at
least one particle covering the entire interval:

Lemma 4.6. If rq ≥ R/2 is a zero of ρ then with Iq constructed as above there
exists a particle centered at yl , at a distance d = |yl | = |xl − X|, such that
Iq ⊆ [d − R, d + R]. In other words, the angular projection of some particle
completely covers Iq .
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Proof. Let Iq = (z−, z+) and let Ñ(r) be the particle counting function corre-
sponding to our particle configuration but where we remove all particles (seen as
closed disks B̄R(yl)) that have empty intersection with the closed disk B̄z−(0), that
is we remove all particles that are centered at a distance strictly larger than z− + R
from the origin. By the construction of Iq , there is at least one particle that has
non-empty intersection with ∂Bz−(0) (not counting any fully enclosed ones), since
otherwiseN(r)would be constant here which contradicts the choice of z−. Let now
r ′ be the radius such that all the particles that intersected ∂Bz−(0) are completely
contained in the closed disk B̄r ′(0). By the construction of Ñ(r), its value at r ′ is
an integer which, since there were particles intersecting ∂Bz−(0), is strictly larger
than Ñ(z−) = N(z−), but then, since Ñ(r) ≤ N(r), the function N(r) must take at
least one integer value on (z−, r ′]. Thus, by the definition of z+ we conclude that
z+ ≤ r ′, which completes the proof. ��

4.3. Geometric Structure of the Particle Counting Function

To proceed we will need more information on the local behavior of the particle
counting function N(r). We note that

N(r) =
N−2
∑

l=1

|Br (0) ∩ BR(yl)|
πR2 ,

where yl are the centers (in relative coordinates) of the N − 2 particles not in our
presently studied pair.

To analyze N(r) we thus need to work with the area of the intersection of pairs
of disks. An elementary, although slightly tedious, calculation yields the following
expression.

Proposition 4.7. Let B1 = Br1(x1) and B2 = Br2(x2) be disks of radii r1, r2, with
r1 ≤ r2, centered at the points x1 and x2. Then with d = |x1 − x2| we have for the
area of intersection, in the non-trivial regime d ≤ r1 + r2 and d + r1 ≥ r2, that

|B1 ∩ B2| = r21 arccos
(d2 + r21 − r22

2dr1

)

+ r22 arccos
(d2 + r22 − r21

2dr2

)

− 1

2

√

(−d + r1 + r2)(d + r1 − r2)(d − r1 + r2)(d + r1 + r2).

If d > r1 + r2 the area is zero and if d + r1 < r2 the area is πr21 .

Differentiating the flux contribution from a single particle located at yl ∈ R2,
given by

F(|yl |, r) := |Br (0) ∩ BR(yl)|/(πR2),

we find for arbitrary d, r ≥ 0 that

f (d, r) := ∂

∂r
F(d, r) =

⎧

⎪⎨

⎪⎩

2r/R2, if r ≤ R − d,

0, if r > R + d or r < d − R,
2r

πR2 arccos
(
d2+r2−R2

2dr

)

, otherwise.

(4.12)
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d − R d rmax(d) d + R

Fig. 5. The one-particle profile f (d, ·) and its lower bound f∧(d, ·) plotted over the support
of f . The profile depicted is for d = 3R/2, while as d increases this profile more and more
resembles the upper half of a disk

In what follows we will frequently use that f (d, ·) is essentially concave on its
support (compare Fig. 5); the precise statement and its proof is found inAppendixB.
Furthermore, it satisfies some simple bounds:

Lemma 4.8. With f (d, ·) denoting the one-particle profile (4.12)we have for d ≥ 0
and r ≥ R the following bounds:

f (d, r) ≤ f�(d, r) := 2

R
1(d−R,d+R)(r),

f (d, r) ≥ f∧(d, r) := 2(R − d + r)

πR2 1(d−R,d)(r)+ 2(d + R − r)

πR2 1[d,d+R)(r).

Proof of Lemma 4.8. The upper bound for f given by the lemma is clear from
the geometric construction of f and F . The value of f is equal to the length of the
circle segment ∂Br (0) ∩ BR(x) where |x| = d, divided by πR2, and clearly this
cannot exceed 2/R. For the lower bound we use concavity.

For d ≥ R the function f (d, ·) is concave on its support [d − R, d + R]
(see Appendix B). Moreover, f∧(d, ·) is continuous, piecewise linear and has the
same support as f (d, ·). By the construction of f∧ and the concavity of f (d, ·) it
suffices to prove that the inequality holds at the maximum of f∧(d, ·), that is that
f (d, d) ≥ f∧(d, d), which is clear: for d ≥ R we have that f (d, d) is a decreasing
function and that limd→∞ f (d, d) = 2

πR = f∧(d, d).
For d < R we have that f (d, ·) and f∧(d, ·) are concave on [R, d + R] and

zero otherwise (see Appendix B). By the linearity of f∧(d, ·) on this interval it
is sufficient to prove that f (d, R) ≥ f∧(d, R), which follows since f (d, R) =
2

πR arccos
( d
2R

) ≥ 2d
πR2 = f∧(d, R). ��

The following lemma captures in a convenient form essential aspects of the
shape of the particle profile, and will play an important role in the analysis on
intervals of oscillation below:
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Lemma 4.9. (Shape lemma) If r ∈ [r1, r2] with r1 ≥ R and r2 − r1 ≤ R/2, we
have that

N ′(r1) +N ′(r2) ≥ N ′(r).

Remark 4.10. The assumption r2 − r1 ≤ R/2 can be relaxed slightly by instead
requiring that r1 is sufficiently large. In particular, in the limit r1 → ∞ the one-
particle profile approaches a half disk and it is then geometrically clear that the
statement holds whenever r2 − r1 ≤ R.

Proof of Lemma 4.9. By linearity it is sufficient to prove that the inequality holds
with N ′ replaced by the one-particle profile f (d, ·) for any d ≥ 0.

The proof utilizes that the profile f (d, ·) is concave on its support intersected
with [R,∞), which is shown in Appendix B. If in addition d ≥ R the profile
is concave on its full support (d − R, d + R), also shown in Appendix B. Thus,
whenever (r1, r2) does not contain the maximum of f (d, ·) the statement is clear,
since if this is the case f (d, ·) is monotone here and thus has its maximum value
in either r1 or r2.

Thus we may assume that the unique maximum of f (d, ·) is attained at a point
rmax(d) in (r1, r2). Moreover, by the concavity of f (d, ·) it suffices to consider the
case when |r2− r1| = R/2. The inequality we wish to prove can now be written as

f (d, rmax(d)) ≤ f (d, r1)+ f (d, r1 + R/2), (4.13)

which should hold for all r1 ≥ R such that rmax(d) ∈ (r1, r1 + R/2).
Case 1: d ≥ R. In this case it holds that (r1, r1 + R/2) ⊆ (d − R, d +

R), since rmax(d) ∈ (d − R/2, d + R/2). This can be verified by considering
∂
∂r f (d, r)|r=d+R/2, which can be shown by straightforward computation to be
decreasing in d and moreover it is negative at d = R. Similarly, ∂

∂r f (d, r)|r=d−R/2
can be verified to be positive, and hence d − R/2 < rmax(d) < d + R/2.

This implies that the right-hand side of (4.13) is a concave function of r1, and
hence its minimum value is attained at one of the extremal points of the allowed
intervals. But this is precisely when either r1 or r2 is equal to rmax(d), in which
case the statement is trivial by the non-negativity of f .

Case 2: d ≤ 2R/3. By similar calculations as in Case 1, we have that
∂
∂r f (d, r)|r=R < 0 for d ≤ 2R/3. Then by concavity f (d, ·) is a monotonically
decreasing function on [R, d + R]. Thus f (d, r1) ≥ f (d, r) and the statement
follows.

Case 3: 2R/3 < d < R. Again the function f (d, ·) is concave on (R, d + R).
Thus we again only need to consider the extremal cases of the intervals (r1, r2)
containing the maximum of f (d, ·) on this interval. This reduces to three different
options. Either r1 = R, or r2 = d + R, or one of the endpoints of the interval is
located at the maximum. In the last case the statement is trivially true.

If we were in the second option then (r1, r2) = (d + R/2, d + R). Through a
similar computation as above one checks that on this interval f (d, ·) is monotone,
and hence the statement follows.

If however (r1, r2) = (R, 3R/2) the inequality is reduced to

f (d, r) ≤ f (d, R) + f (d, 3R/2).
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By scaling wemay without loss of generality assume that R = 1. Using the explicit
expression of f we need to show that

2r

π
arccos

(
d2 + r2 − 1

2dr

)

≤ 2

π
arccos

(
d

2

)

+ 3

π
arccos

(
d2 + 5/4

3d

)

.

Since for d ≤ R = 1 we have that rmax(d) ≤ 3/2, it follows that

f (d, rmax(d)) ≤ 3

π
arccos

(
d2 + rmax(d)2 − 1

2drmax(d)

)

,

but the function 3
π
arccos

( d2+r2−1
2dr

)

is decreasing in r , for 1 ≤ r ≤ d + 1, and thus
we only need to verify the inequality

3

π
arccos

(
d

2

)

≤ 2

π
arccos

(
d

2

)

+ 3

π
arccos

(
d2 + 5/4

3d

)

.

This is equivalent to arccos
( d
2

) ≤ 3 arccos
( d2+5/4

3d

)

. We observe that the left-hand
side of this inequality is decreasing whilst the right is increasing. Thus it suffices
to check the validity at d = 2/3, which is a simple numerical evaluation. ��

4.4. Local Bounds for the Mean Potential

In this subsection we use the explicit form of N(r) uncovered above for r ∈
(R, L) and the projection argument of Lemma 4.4 to locally replace the effective
one-dimensional potential ρ(r)/r with some constant times α2

N/r . By Lemma 4.4
it suffices to prove that given an interval I ⊆ (R, L) of small enough measure we
have a suitable bound for the weighted mean ρ̄ on I . On intervals (4.11) where ρ

is already larger than α2
N we need not perform any detailed analysis. Thus the only

intervals that remain are those of the form Iq = (z−q , z+q ) ⊆ Jq close to the zeros
of ρ. The analysis is split into several parts depending on the behavior of ρ near a
specific zero. Our first bound provides a general estimate for ρ̄ on any subinterval
of the Jq constructed above (Section 4.2) which contains the unique zero of ρ on
this interval.

Lemma 4.11. Let (r1, r2), with r1 ≥ R/2, be such that on this interval ρ(r) =
|�̂(r) − 2q|2 for some fixed q ∈ Z and such that there exists some r0 ∈ (r1, r2)
with ρ(r0) = 0. Then, with δ(r) := min{r − r1, r2 − r}, we have that

∫ r2

r1

ρ(r)

r
dr ≥ 2α2

r2(r2 − r1)

(∫ r2

r1
N ′(r)δ(r) dr

)2

,

where as before N(r) denotes the particle counting function (4.7).

Proof of Lemma 4.11. On such an interval (r1, r2) we can, according to (4.10),
express ρ in terms of N as

ρ(r) = |α(1+ 2N(r))− α(1+ 2N(r0))|2 = 4α2|N(r)−N(r0)|2.
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Inserting this into the integral we wish to bound and using the trivial estimate
1/r ≥ 1/r2, we have that

∫ r2

r1

ρ(r)

r
dr ≥ 4α2

r2

∫ r2

r1
|N(r)−N(r0)|2 dr.

We split the above integral into two parts,
∫ r2

r1
|N(r)−N(r0)|2 dr =

∫ r0

r1
(N(r)−N(r0))

2 dr +
∫ r2

r0
(N(r0) −N(r))2 dr

=
∫ r0

r1

(∫ r0

r
N ′(t) dt

)2

dr +
∫ r2

r0

(∫ r

r0
N ′(t) dt

)2

dr.

Using the Cauchy–Schwarz inequality and changing the order of integration one
finds that

∫ r2

r1
|N(r)− N(r0)|2 dr

≥ 1

r2 − r1

((∫ r0

r1

∫ r0

r
N ′(t) dtdr

)2

+
(∫ r2

r0

∫ r

r0
N ′(t) dtdr

)2)

= 1

r2 − r1

((∫ r0

r1

∫ t

r1
N ′(t) drdt

)2

+
(∫ r2

r0

∫ r2

t
N ′(t) drdt

)2)

= 1

r2 − r1

((∫ r0

r1
N ′(t)(t − r1) dt

)2

+
(∫ r2

r0
N ′(t)(r2 − t) dt

)2)

.

To obtain the desired estimate we combine the above with the observation that both
t − r1 and r2 − t are larger than δ(t), and the elementary inequality 2(a2 + b2) ≥
(a + b)2,

∫ r2

r1

ρ(r)

r
dr ≥ 4α2

r2(r2 − r1)

((∫ r0

r1
N ′(r)δ(r) dr

)2

+
(∫ r2

r0
N ′(r)δ(r) dr

)2)

≥ 2α2

r2(r2 − r1)

(∫ r2

r1
N ′(r)δ(r) dr

)2

.

��
We now study ρ̄ on the intervals Iq = (z−q , z+q ) constructed earlier around zeros

of ρ, with N(z±q ) ∈ Z. We begin with a lemma providing a bound for the local
weighted mean on a certain subclass of these intervals where the potential is in
some sense well behaved.

Lemma 4.12. (Good intervals)Let Iq = (z−, z+)beoneof the intervals constructed
above which satisfies z− ≥ R. Then if either

|Iq | ≥ CR or
inf Iq N ′

supIq N ′ ≥
C2

π
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for some 0 < C ≤ 1, we have that

ρ̄Iq :=
∫

Iq

ρ(r)

r
dr

/ ∫

Iq

dr

r
≥ α2C4

24π2 .

Remark 4.13. We will later see that for our treatment of intervals Iq that are not
covered by this lemma we will need to choose C rather small, approximately C ≈
1/10.

Proof of Lemma 4.12. By Lemma 4.11 wemay estimate the integral of the poten-
tial by

∫

Iq

ρ(r)

r
dr ≥ 2α2

z+(z+ − z−)

(∫

Iq
N ′(r)δ(r) dr

)2

.

By Lemma 4.6 the interval Iq is covered by at least one particle. Thus for
r ∈ Iq we can bound N ′(r) from below by using our lower bound for the one-
particle profile f (d, r) and minimizing over particle positions d such that Iq ⊆
(d − R, d + R). Let as before f∧(d, r) denote the lower bound for f given by
Lemma 4.8. We conclude that

∫

Iq
N ′(r)δ(r) dr ≥ inf

d∈(z−−2R,z++2R)

∫

Iq
f∧(d, r)δ(r) dr.

As this integrand is piecewise linear in d wemust have that the integral isminimized
in one of the extremal points: a particle starting at z−, a particle ending at z+ or a
particle centered at (z+ − z−)/2. By symmetry the last alternative maximizes the
integral and thus we can discard this option. Moreover, the same symmetry implies
that the first two alternatives are equal. Through a straightforward calculation we
find that

∫

Iq
N ′(r)δ(r) dr ≥ 1

4π

{

|Iq |3/R2, if |Iq | ≤ R,

|Iq |, if |Iq | > R.

Thus if |Iq | ≥ CR, 0 < C ≤ 1, the above yields

∫

Iq

ρ(r)

r
dr ≥ α2C4

8π2z+
|Iq |.

If instead of |Iq | ≥ CR we have that

inf Iq N ′

supIq N ′ ≥
C2

π

we can obtain the same bound. Namely, if we again consider the bound given by
Lemma 4.11,

∫

Iq

ρ(r)

r
dr ≥ 2α2

z+(z+ − z−)

(∫

Iq
N ′(r)δ(r) dr

)2

,
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we find, using
∫

Iq
δ(r) dr = |Iq |2/4, that

∫

Iq

ρ(r)

r
dr ≥ α2

8z+
(inf
Iq

N ′)2|Iq |3 ≥
α2(inf Iq N ′)2

8z+(supIq N ′)2
|Iq | ≥ α2C4

8π2z+
|Iq |,

where we also used that (supIq N ′)|Iq | ≥
∫

Iq
N ′ = 1 for each q.

For the weighted mean we now find that

ρ̄Iq =
∫

Iq
ρ(r)/r dr
∫

Iq
1/r dr

≥ z−

|Iq |
∫

Iq

ρ(r)

r
dr ≥ z−α2C4

z+8π2 ≥ α2C4

24π2 ,

where we used that |Iq | ≤ 2R and z− ≥ R implies that z−/z+ ≥ 1/3. ��
The previous lemma does not cover the scenario where N(r) increases rapidly,

resulting in rapid oscillations on many short intervals Iq . In the next lemma we
consider the remaining intervals Iq and use our geometric knowledge of N(r) to
show that these intervals cannot cover toomuchof our large-scale interval [R, L]. To
achieve this we first cover the remaining collection of intervals Iq with a collection
of intervals Jl such that |Jl | = R/2 for all l.

Lemma 4.14. (Bad intervals) Let J ⊆ (R, L] be an interval of length R/2. Then
the fraction of J covered by intervals Iq satisfying both

|Iq | < CR and
inf Iq N ′

supIq N ′ <
C2

π
, (4.14)

with C <
√

π/2, is less than
8C(π − C2)

π − 2C2 .

Proof. Let {Ik}mk=1 denote the subset of the intervals Iq for which (4.14) is satisfied
and J ∩ Ik �= ∅ for each k = 1, . . . ,m, and ordered from left to right (note in
particular that throughout this proof the labeling of the intervals differs from that
described below (4.8)). For further notational convenience we will let infk and supk
denote inf Ik N ′ and supIk N ′, respectively.Wewill also denote by ik and sk a (fixed)
choice of points in each Ik such that N ′(ik) = infk and N ′(sk) = supk .

We begin by showing that we may assume that the distance between any two
points in two consecutive intervals is less than R/2, allowing us to applyLemma4.9.
If, for some k ∈ {1, . . . ,m}, Ik = (z+k , z−k ) and Ik+1 = (z+k+1, z

−
k+1) are such that

z+k+1 − z−k > R/2, then since both intervals have non-empty intersection with J
we must have that m = 2. But this implies that |J ∩ (∪m

k=1 Ik)| ≤ 2CR and the
statement follows. Similarly the statement is true if m = 1.

Suppose that there exists a j such that i j < s j < s j+1 < i j+1. Then, since by
the above we may assume that i j+1 − i j < R/2, Lemma 4.9 implies that

max{sup j , sup j+1} ≤ inf j + inf j+1,
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but combined with (4.14) this leads to a contradiction:

max{sup j , sup j+1} ≤ inf j + inf j+1

≤ 2max{inf j , inf j+1} <
2C2

π
max{sup j , sup j+1},

which is impossible since 2C2

π
< 1.

Let us say that an interval Ik where sk < ik is of type A, and one where instead
ik < sk is of type B (note that ik �= sk by the assumption on Ik). We let A and B
denote the collections of intervals of type A and type B respectively.

The above contradiction argument yields that an interval of typeAcannot follow
one of type B, that is if we for some j have that I j ∈ A then Ik ∈ A for all k < j ,
and similarly, if I j ∈ B then Ik ∈ B for all k > j . We conclude that there is at most
one k such that Ik and Ik+1 are of different type, and Ik must then be of type A.

Aswewill now show, it turns out that the sequence of lengths |Ik | of consecutive
intervals starting at any interval of typeAandgoing to the left, resp. typeBandgoing
to the right, is monotonically decreasing and bounded from above by a geometric
sequence. By assumption (4.14), all |Ik | < CR, and in particular this holds for
the first interval in any such sequence. Using these observations we will be able to
bound the total measure of ∪k Ik .

We begin by studying a sequence starting at an interval of type A and going to
the left (note that such a sequence may not exist if all Ik ∈ B). We wish to prove
that |Ik | decreases along this sequence.

Let j be such that I j ∈ A. Then i j−1 < s j < i j , and by Lemma 4.9 we have
that sup j ≤ inf j−1+ inf j . Since we assume that inf j < C2/π sup j this implies
that

π − C2

C2 inf j <
(

1− C2

π

)

sup j < inf j−1 .

Theonly thingweused abovewas that I j ∈ A. Since this implies that also I j−1 ∈ A,
we can iterate this argument until we reach I1. This yields for k < j that

(π − C2

C2

) j−k
inf j <

(π − C2

C2

) j−k C2

π
sup j < infk . (4.15)

Using that |Ik | infk ≤ 1 ≤ |Ik | supk (for any k) we, for k < j , find that (4.15)
implies

|I j | ≥ 1

sup j
≥
(π − C2

C2

) j−k C2

π

1

infk
≥
(π − C2

C2

) j−k C2

π
|Ik |,

where we used that, for k ≤ j , infk > 0 since otherwise sup j would be zero which
cannot happen by the construction of the Ik’s. SinceC is small this proves the claim
in the case of type A intervals.

For the case of type B intervals the proof is almost identical and one finds
instead that, if I j ∈ B,

|I j | ≥
(π − C2

C2

)k− j C2

π
|Ik |, k > j.
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We are now ready to complete the proof of the lemma. Begin by finding j such
that I j ∈ A and I j+1 ∈ B (ifA, alt. B, is the empty set we take j = 0, alt. j = m).
Then using the above estimates we obtain that
∣
∣
∣
∣
J ∩
⋃

k

Ik

∣
∣
∣
∣
≤
∑

k

|Ik | =
∑

k≤ j

|Ik | +
∑

k> j

|Ik |

≤ |I j |
(

1+ π

C2

j−1
∑

k=1

( C2

π − C2

) j−k)

+ |I j+1|
(

1+ π

C2

m
∑

k= j+2

( C2

π − C2

)k− j−1)

< CR
(

1+ π

C2

∞
∑

l=1

( C2

π − C2

)l)+ CR
(

1+ π

C2

∞
∑

l=1

( C2

π − C2

)l)

= 4C(π − C2)

π − 2C2 R,

and dividing this quantity by |J | = R/2 completes the proof. ��

4.5. Proof of Theorem 4.1

What we have found is that the Lebesgue measure of the subset of J where ρ

is already large, or can be averaged to be large, is at least

(1

2
− 4C(π − C2)

π − 2C2

)

R.

Using this we can find a non-trivial uniform lower bound on ρ̄J and therefore,
using the local projection argument, we finally obtain that there exists a constant
c(κ) > 0 such that

∫ L

R

(

|u′|2 + ρ

r2
|u|2
)

r dr ≥
∫ L

R

(

(1− κ)|u′|2 + c(κ)2
α2
N

r2
1[3R,L−3R]|u|2

)

r dr.

We proceed as follows:

∫ L

R

(

|u′|2 + ρ

r2
|u|2
)

r dr =
∫ L

R
(1− κ)|u′|2r dr +

∫ L

R

(

κ|u′|2 + ρ

r2
|u|2
)

r dr

≥
∫ L

R
(1− κ)|u′|2r dr +

∫ L

R

(κ

2
|u′|2 + ρ̂

r2
|u|2
)

r dr,

where ρ̂ denotes a new weight obtained by replacing ρ(r) with 2κ
1+2κ

α2C4

24π2 on all
Iq covered by Lemma 4.12 that intersect (3R, L − 2R), by using Lemma 4.4 with
κ/2. Thus the only remaining zeros of ρ̂ on (3R, L − 2R) are those contained in
intervals Iq which satisfy the assumptions of Lemma 4.14. Let Q ⊂ N denote the
set of integers q for which Iq is such an interval. We now cover (3R, L − 3R) by
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a collection of disjoint intervals J ⊂ (3R, L − 2R), each of length |J | = R/2.
Specifically, we take the intervals

(

3R + (n−1)R
2 , 3R + nR

2

)

where n runs from 1

to
⌊ 2(L−5R)

R

⌋

. On each such J = (r1, r2) we then have that

∫

J

ρ̂

r
dr ≥ 1

r2

∫

J
ρ̂ dr ≥ 1

r2

∫

J∩(∪q∈Q Iq )c
ρ̂ dr ≥ 2κ

1+ 2κ

α2
NC

4

r224π2

∣
∣
∣J ∩

(⋃

q∈Q
Iq
)c∣
∣
∣.

By Lemma 4.14 we then obtain for the weighted mean of ρ̂ that

∫

J

ρ̂

r
dr
/ ∫

J

dr

r
≥ r1

r2

2κ

1+ 2κ

α2
NC

4

12π2

(1

2
− 4C(π − C2)

π − 2C2

)

, with
r1
r2

≥ 6

7
.

Thus for each J we can again apply Lemma 4.4 and obtain

∫

J

(κ

2
|u′|2 + ρ̂

r2
|u|2
)

r dr ≥
( 2κ

1+ 2κ

)2 C4

14π2

(1

2
− 4C(π − C2)

π − 2C2

) ∫

J

α2
N

r
|u|2 dr.

Applying this for each J we obtain the desired estimate with

c(κ)2 =
( 2κ

1+ 2κ

)2 C4

14π2

(1

2
− 4C(π − C2)

π − 2C2

)

.

Maximizing this in C ∈ (0, 1) we obtain for C ≈ 0.0996 the extremely small (but
positive) constant

c(κ) ≥ 5.3 · 10−4 κ

1+ 2κ
.

This concludes the proof of Theorem 4.1 and hence the treatment of the long-range
interaction of Theorem 1.3.

We note that with this choice of C we allow for approximately 80% of any
(and all) R/2 long interval contained in (R, L] to be covered by the intervals Iq
satisfying (4.14). As we expect that this is rather far from the actual situation for
most particle configurations there seems to be room for improvement in the above
considerations. One such improvement could be to use that the effective potential
must between every two Iq intervals go up to one and then back down again. Our
current method does not take this into account and is blind to the fact that there
must be helpful gaps between the Iq ’s.

Another way of improving this constant would be to refine the bounds in
Lemma 4.12 by using the precise shape of the one-particle profile instead of the
simpler lower bound provided by f∧. One could also take into account that all
intervals cannot be at the edge of a particle, that is make use of the observation that
a large number of the particles are likely to cover more than one interval Iq .
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5. Local Exclusion

We now formulate the obtained energy bounds for anyons in terms of local
exclusion principles, following [45,46,49–51], with some refinements to take both
the short- and the long-range magnetic interactions into account.

With a weight partition κ = (κ1, κ2, κ3) ∈ [0, 1]3, κ1 + κ2 + κ3 = 1, we can
write for the total kinetic energy for N anyons in a normalized state � ∈ DN

α,R

〈�, T̂α�〉 = κ1

N
∑

j=1

∫

R2N
|Dj�|2 dx+ κ2

N
∑

j=1

∫

R2N
|Dj�|2 dx+ κ3

N
∑

j=1

∫

R2N
|Dj�|2 dx

≥
∫

R2N

N
∑

j=1

(

κ1
∣
∣∇ j |�|∣∣2 + κ2

N
∑

k=1
k �= j

2π |α|1BR(0)

πR2 (x j − xk) |�|2 + κ3|Dj�|2
)

dx,

where we used Lemmas 1.4 and 1.1. We then make a partitioning of the plane R2

into disjoint squares Q’s:

〈�, T̂α�〉 ≥
∑

Q

T κ
Q[�],

where the expected local energy on each square Q is given by (the definitions extend
to all κ ∈ R3)

T κ
Q [�] :=

N
∑

j=1

∫

R2N

(

κ1
∣
∣∇ j |�|∣∣2 + κ2

N
∑

k=1
k �= j

2π |α|1BR (0)

πR2 (x j − xk) |�|2 + κ3|Dj�|2
)

1Q(x j ) dx

(5.1)≥
N
∑

n=0

Eκ
n (|Q|)pn(�; Q).

Here the local n-particle energy (translation invariant and with Neumann b.c.) is
given by

Eκ
n (|Q|) := inf∫

Qn |ψ |2=1

n
∑

j=1

∫

Qn

(

κ1
∣
∣∇ j |ψ |∣∣2+κ2

n
∑

k=1
k �= j

2π |α|1BR (0)

πR2 (x j − xk) |ψ |2+κ3|Djψ |2
)

dx,

(5.2)

and pn(�; Q) denotes the n-particle probability distribution induced from �,

pn(�; Q) :=
∑

A⊆{1,...,N },|A|=n

∫

(Qc)N−n

∫

Qn
|�|2

∏

k∈A
dxk
∏

l /∈A
dxl ,

having the normalizations
∑N

n=0 pn(�; Q) = 1 and
∑N

n=0 npn(�; Q) = ∫Q �� ,
the expected number of particles on Q. In (5.2) the operators Dj still depend on
all N particles, with the first n on Q, and we take the infimum over the remaining
N − n positions in R2\Q.

The inequality (5.1) is obtained by simply partitioning the configuration
space R2N , for example by inserting into the integrand the partition of unity
1 =∏N

k=1(1Q(xk)+1Qc (xk)) and expanding. This approach to bound the energy
goes all the way back to Dyson and Lenard [16].
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5.1. Short-Range Exclusion

We consider first the contribution to the local energy coming solely from the
short-range part of the magnetic interaction.

Lemma 5.1. (Local exclusion—short range) For any α ∈ R, R > 0 and Q ⊆ R2

a square, and with γ (Q) := R|Q|− 1
2 , we have that

E (1,1,0)
n (|Q|) ≥ eSR(α, γ (Q), n)

|Q| (n − 1)+,

and

T (1,1,0)
Q [�] ≥ eSR(α, γ (Q),

∫

Q ��)

|Q|
(∫

Q
�� − 1

)

+
,

where

eSR(α, γ, n) :=

⎧

⎪⎨

⎪⎩

|α|min
{

(1− γ 2/2)−1+ , Kα/2
}

Kα + 2|α|(− ln(γ /
√
2)
)

+
for γ <

√
2,

2|α|γ−2n for γ ≥ √
2.

Here

Kα := √2|α| I0(
√
2|α|)

I1(
√
2|α|) ≥ 2, K0 := 2,

and Iν denotes the modified Bessel function of order ν.

Proof of Lemma 5.1. We consider the local energy form in (5.2). In the case that
γ (Q) ≥ √

2, the short-range potential in the second term covers the full domain Q
for every particle, and hence

E (1,1,0)
n (|Q|) ≥ 2π |α|

πR2 n(n − 1)+ = 2|α|
|Q| γ (Q)−2n(n − 1)+.

By convexity we then also have that

N
∑

n=0

E (1,1,0)
n (|Q|)pn(�; Q) ≥ 2|α|

|Q| γ (Q)−2
(∫

Q
��

)(∫

Q
�� − 1

)

+
.

In the case thatγ (Q) <
√
2,weuseDyson’s lemma [14] in twodimensions (see [36,

41,46]) to smear the potential to the full domain as done in [46, Proposition 19],
keeping part of the potential intact and smearing the rest. For n > 1 and any
κ ∈ [0, 1] we can bound the energy form in E (1,1,0)

n (Q) from below by

n
∫

Q2

(

(1− κ)
(∣
∣∇1|ψ |∣∣2 + 2π |α|

πR2 1BR(x2)(x1) |ψ |2
)

+ κ
2π |α|
πR2 1BR(x2)(x1) |ψ |2

)

dx

≥ (n − 1)+
∫

Q2

(

(1− κ)U (|x1 − x2|)1BR(x2)c (x1) + κ
2π |α|
πR2 1BR(x2)(x1)

)

|ψ |2 dx,
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with

U (r) := |Q|−1
(

1− R2

2|Q|
)−1( Kα

2|α| + ln

√
2|Q|1/2
R

)−1

1[R,
√
2|Q|1/2](r).

This expression arises from the application of Dyson’s lemma [36, Lemma 3.1] on
the star-shaped domain Q − x2 with the requirement that

∫
√
2|Q|1/2

R
U (r) ln(r/aR) rdr ≤ 1, U (r) = 0 for r < R,

and where the considered pair potential is

W (x) := W0

R2 1BR(0)(x), W0 = 4|α|,

with scattering length (see for example [46, Appendix A.2.4])

aR = R exp

(

− 1√
W0/2

I0(
√
W0/2)

I1(
√
W0/2)

)

= R exp

(

− Kα

2|α|
)

. (5.3)

We now demand that κ be chosen such that the potentials match:

(1− κ)U (r) = κ
2|α|
R2 ,

that is,

κ

1− κ
= γ (Q)2

(

1− γ (Q)2/2
)−1(

Kα + 2|α|(− ln(γ (Q)/
√
2)
))−1

.

However, note that the factor (1 − γ (Q)2/2)−1 in U diverges as γ (Q) → √
2

while the other potential term stays bounded, implying κ → 1. Hence, in order to
be able to bound 1− κ uniformly we instead truncate the potential U by replacing
the unbounded factor with

min
{(

1− γ (Q)2/2
)−1

, Kα/2
} ∈ [1, Kα/2],

also using that Kα ≥ 2 (see [59, Eqn. 10.33.1]). With this replacement in the above
we then find that

κ

1− κ
= γ (Q)2

min
{(

1− γ (Q)2/2
)−1

, Kα/2
}

Kα + 2|α|(− ln(γ (Q)/
√
2))

≤ γ (Q)2

2
≤ 1,

and hence κ ≤ 1/2 and 1− κ ≥ 1/2. Summing up, we find for all n ≥ 0 that

En(Q) ≥ (n − 1)+
|Q| (1− κ)2|α|min

{(

1− γ (Q)2/2
)−1
+ , Kα/2

}

Kα + 2|α|(− ln(γ (Q)/
√
2)
)

+
,

and may again use convexity in n to obtain the corresponding bound for
TQ[�]. ��
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Although not aiming to provide the sharpest possible bound, the above lemma
has the advantage of being relatively simple and it captures the overall dependence
of the pure short-range interaction on the parameters. In a certain regime however,
referred to below as the soft-core regime, the following version (which could in
some sense be viewed as amix between the two and three-dimensional cases studied
in [36,39–41]) will yield a comparatively good bound.

Lemma 5.2. (Soft-core exclusion) For any R ≥ 0 and Q ⊆ R2 a square, and with

γ (Q) := R|Q|− 1
2 , we have that

E (κ,1−κ,0)
n (Q)

≥ 2π |α|(1−κ)
(

1−2γ (Q)
)2
+
n(n − 1)

|Q|
(

1− 2|α|γ (Q)−2n(n − 1)

π2κ/(1−κ)−2π |α|n(n − 1)

)

+
,

for any κ ∈ (0, 1), α ∈ R and n ≥ 2 such that π2κ/(1− κ) > 2π |α|n(n − 1).

Proof. Following [36] we write for the operator of the left-hand side

H = κ

n
∑

j=1

(−�x j ) + (1− κ)W,

with (assuming α > 0 for notational simplicity)

W = 2πα
∑

j �=k

1BR(0)

πR2 (x j − xk).

We apply the following result due to Temple [36,70]: If H = H0 + V , for some
Schrödinger operator H0 ≥ 0 and scalar potential V ≥ 0, then the ground-state
energy of H is bounded from below by

λ0(H0) + 〈V 〉ψ0 −
〈V 2〉ψ0 − 〈V 〉2ψ0

λ1(H0) − 〈V 〉ψ0

,

as long as λ1(H0)−〈V 〉ψ0 is positive. Hereψ0 denotes the normalized ground state
of H0, 〈V 〉ψ0 :=

∫

V |ψ0|2 is the expectation of V in the state ψ0, and λ0(H0) resp.
λ1(H0) is the first resp. second eigenvalue of H0.

In our case, H0 = −κ�N
Qn (the Neumann Laplacian) and ψ0 ≡ |Q|−n/2, we

have that

2πα
n(n − 1)

|Q| ≥ 〈W 〉ψ0 ≥ 2πα(1− 2γ (Q))2
n(n − 1)

|Q| ,

where for the lower bound one integrates the first particle of each pair on a smaller
domain with margin R away from the boundary. Moreover, by Cauchy–Schwarz

〈W 2〉ψ0 ≤
2α

R2 n(n − 1)〈W 〉ψ0 .
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Thus Temple’s inequality yields that

H ≥ 〈(1− κ)W 〉ψ0 −
〈(1− κ)2W 2〉ψ0 − 〈(1− κ)W 〉2ψ0

λ1(κ
∑

j (−� j )) − 〈(1− κ)W 〉ψ0

≥ (1− κ)〈W 〉ψ0

(

1− (1− κ)2αR−2n(n − 1)

κπ2/|Q| − (1− κ)〈W 〉ψ0

)

≥ 2πα(1− κ)(1− 2γ (Q))2
n(n − 1)

|Q|
(

1− 2αγ (Q)−2n(n − 1)

π2κ/(1− κ)− 2παn(n − 1)

)

,

as claimed. ��

5.2. Long-Range Exclusion

Wenow turn to local energy bounds for the pure long-range part of themagnetic
interaction.

Lemma 5.3. (Local exclusion—long range) For any α ∈ R, R ≥ 0 and Q ⊆ R2 a

square, and with γ (Q) := R|Q|− 1
2 , we have that

E (0,0,1)
n (Q) ≥ eLR(α, γ (Q))

|Q| (n − 1)+,

and

T (0,0,1)
Q [�] ≥ eLR(α, γ (Q))

|Q|
(∫

Q
�� − 1

)

+
,

with
eLR(α, γ ) := π

24
g
(

cαN , 12γ
)2

(1− 12γ )3+,

where c = 5.3/
√
8 · 10−4.

For R = 0, the above bounds are valid with eLR(α, 0) = f (( j ′αN
)2) for all

α ∈ R, where f : [0, ( j ′1)2] → R is a function defined below satisfying

t/6 ≤ f (t) ≤ 2π t and f (t) = 2π t
(

1− O(t1/3)
)

(5.4)

(see Fig. 6 for both lower and upper bounds for f ).

The tiny constant c stems fromTheorem 1.3 and again we expect that it could be
replaced with c = 1/

√
3 or just slightly smaller (recall Remark 4.2). Accordingly

we have not aimed for the sharpest possible bounds in our proof for R > 0. Note
however that for R = 0 and in the limit α → 0, the two-particle energy per particle
is exactly the expected one from average-field theory, π( j ′α∗)

2 ∼ 2πα∗ ∼ 2π |α|
for suitable α, however the bound is only linear (and not quadratic) in n and hence
only good for small enough boxes Q, resulting in a worse constant (by a factor 1/2)
when applied below in the thermodynamic limit. Also note that the bounds involve
αN and not αn or α%∫Q ��& because there is a probability that more particles (in fact
all the way up to N ) can be found on Q.
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ν α

Fig. 6. Left A comparison between the optimized energy bounds for f (( j ′ν)2) on the unit
square as a function of ν ∈ [0, 1], obtained by means of the projection method (blue) and
Temple (yellow), as well as the upper and lower bounds given in (5.4) (green). Right A
numerical lower bound to the energy eLR(α, 0) = f (( j ′α∗)2) on the unit square as a function
of α. The bound uses the projection method and the erratic behavior is due to the function
α �→ α∗ being discontinuous at all odd-numerator rationals

Proof of Lemma 5.3. Ideal case.We begin with the more transparent case of R =
0, and note that we may set |Q| = 1 by scaling. Our starting point is the long-range
magnetic interaction bound provided byTheorem1.3. For the ideal case the theorem
states that

n
∑

j=1

∫

Qn
|Dj�|2 dx ≥ 1

n

∑

j<k

∫

Qn
( j ′αN

)2
1Bδ(X jk )

(r jk)

δ(X jk)2
|�|2 dx.

In order to convert this non-uniform potential to a uniform bound for the energy
we take part of the kinetic energy and then apply either Temple’s inequality as in
Lemma 5.2 or a projection argument as in [49, Lemma 7] or Lemma 4.4. To this
end we take a fraction κ ∈ [0, 1] of the original kinetic energy for which we use
the diamagnetic inequality and the identity

n
∑

j=1

|z j |2 = 1

n − 1

∑

j<k

(

|z j |2 + |zk |2
)

, z j ∈ C,

and on the remaining fraction 1− κ we use Theorem 1.3. We then obtain that

n
∑

j=1

∫

Qn
|Dj�|2 dx

≥ 1

n

∑

j<k

∫

Qn

(
κn

n − 1

(∣
∣∇ j |�|∣∣2 + ∣∣∇k |�|∣∣2)

+ (1− κ)( j ′αN
)2
1Bδ(X jk )

(r jk)

δ(X jk)2
|�|2
)

dx

≥ 1

n

∑

j<k

∫

Qn−2

∫

Q2

(

κ
(∣
∣∇ j |�|∣∣2 + ∣∣∇k |�|∣∣2)

+ (1− κ)( j ′αN
)2
1Bδ(X jk )

(r jk)

δ(X jk)2
|�|2
)

dx jdxkdx′



348 Simon Larson & Douglas Lundholm

≥ (n − 1)+ eLR(α, 0),

where eLR(α, 0) := f (( j ′αN
)2) and

f (t) := 1

2
sup

κ∈(0,1)
inf∫

Q2 |ψ |2=1

∫

Q2

(

κ
(∣
∣∇1|ψ |∣∣2+∣∣∇2|ψ |∣∣2)+(1−κ)t

1Bδ(X)
(r)

δ(X)2
|ψ |2
)

dx1dx2.4

(5.5)
We then use the convexity in n to obtain the corresponding bound for TQ[�] in
terms of eLR(α, 0). The upper bound f (t) ≤ 2π t is found simply by taking the
trial state ψ = ψ0 ≡ 1 and then κ = 0, carrying out the integration as below (with
δ̂ = 0).

We now wish to find a lower bound for the integral in f (t), which then is to be
maximized in κ . This is equivalent to finding a lower bound for the ground-state
energy of the Schrödinger operator

H := −κ�N
Q2 + t (1− κ)V, V (x1, x2) := V (r,X) = 1Bδ(X)

(r)

δ(X)2
.

However, to apply a projection bound or use Temple’s inequality requires that
V ∈ L∞(Q2) and V ∈ L2(Q2), respectively. As neither of these conditions are
satisfied for our V we use the fact that V ≥ 0 and thus truncating our potential will
only lower the energy. Therefore we instead study the eigenvalue problem with V
replaced by the truncated potential V̂ defined in relative coordinates by

V̂ (r,X) :=

⎧

⎪⎪⎨

⎪⎪⎩

1Bδ(X)
(r)

δ(X)2
, δ(X) ≥ δ̂

1Bδ(X)
(r)

δ̂2
, δ(X) < δ̂

(in slightly more compact notation, V̂ = min{V, 1/δ̂2}). As V̂ ∈ L∞(Q2),
‖V̂ ‖∞ = 1/δ̂2, it follows that also V̂ ∈ L2(Q2).

We proceed by calculating the expectation of V̂ and V̂ 2 in the ground state
ψ0 ≡ 1 of−�N

Q2 , as needed for the bounds. Through a straightforward calculation
one finds that

〈V̂ 〉ψ0 = 4
∫

Q

∫

QX

V̂ (r,X) drdX

= 4

(∫

[δ̂,1−δ̂]2

∫

QX

1

δ(X)2
drdX+

∫

Q\[δ̂,1−δ̂]2

∫

QX

1

δ̂2
drdX

)

= 4π
(

1+ 2δ̂2 − 8δ̂

3

)

,

4 It also turns out that we do not gain much by keeping the n-dependence in the first term
if we are aiming for a bound which is convex in n.
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and correspondingly for V̂ 2 we obtain

〈V̂ 2〉ψ0 = 4
∫

Q

∫

QX

V̂ (r,X)2 drdX

= 4

(∫

[δ̂,1−δ̂]2

∫

QX

1

δ(X)4
drdX+

∫

Q\[δ̂,1−δ̂]2

∫

QX

1

δ̂4
drdX

)

= 8π
( 8

3δ̂
+ 4 ln(2δ̂) − 5

)

.

Choosing δ̂ = η/2 for some η ∈ [0, 1] (this normalization is convenient) results in

〈V̂ 〉ψ0 = 4π
(

1+ η2

2
− 4η

3

)

, and 〈V̂ 2〉ψ0 = 8π
(16

3
η−1 + 4 ln η − 5

)

.

Our considerations here have been for	 = Q the unit square but also other domains
	 could be of interest. Similar calculations when 	 is the unit disk and δ̂ = η give
instead

〈V̂ 〉ψ0 = 4
(

1+ η2

2
− 4η

3

)

, and 〈V̂ 2〉ψ0 = 2
(16

3
η−1 + 4 ln η − 5

)

.

Let P denote the orthogonal projection onto the ground state ψ0 ≡ 1, and
let P⊥ = 1 − P . Then (−�N

Q2)P = 0, and with λ1(−�N
Q2) the first non-zero

Neumann eigenvalue,

(−�N
Q2)P

⊥ ≥ λ1(−�N
Q )P⊥ = π2P⊥.

Arguing as in Lemma 4.4, for any μ ∈ (0, 1) we obtain that

V̂ ≥ (1− μ)PV̂ P + (1− μ−1)P⊥V̂ P⊥,

the first of these operators is equal to 〈V̂ 〉ψ0 P , and we can control the second term
by using that ‖P⊥V̂ P⊥‖ ≤ ‖V̂ ‖∞ = 4/η2.

Thus, for any μ, κ, η ∈ (0, 1), we find that

H ≥ (1− μ)4π t (1− κ)
(

1+ η2

2
− 4η

3

)

P +
(

κπ2 + (1− μ−1)
4t (1− κ)

η2

)

P⊥

≥ min

{

(1− μ)4π t (1− κ)
(

1+ η2

2
− 4η

3

)

, κπ2 + (1− μ−1)
4t (1− κ)

η2

}

(P + P⊥).

The last expression, seen as a function in t , is piecewise linear and concave. Thus to
obtain the largest linear minorant of this function it suffices to find the largest value
attained at the right endpoint of our range of values t , that is at t = ( j ′1)2 ≈ 3.8996.

By the μ dependence of each of the two terms in the minimum this quantity is
seen to be maximal when the two terms are equal. Solving this quadratic equation
in μ and choosing η = κ = 0.68 we find that

H ≥ t/3 and hence f (t) ≥ t/6.
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To obtain that f (t) = 2π t (1 − O(t1/3)) we apply Temple’s inequality (as in
Lemma 5.2). In our current setting it yields that

H ≥ 〈t (1− κ)V̂ 〉ψ0 −
〈t2(1− κ)2V̂ 2〉ψ0 − 〈t (1− κ)V̂ 〉2ψ0

κλ1(−�N
Q2) − 〈t (1− κ)V̂ 〉ψ0

= 4π t (1− κ)

(

1+ η2

2
− 4η

3

− 2t (1− κ)

π

16
3 η−1 + 4 ln η − 5− 2π

(

1+ η2

2 − 4η
3

)2

κπ − 4t (1− κ)
(

1+ η2

2 − 4η
3

)

)

,

provided that κπ − 4t (1− κ)
(

1+ η2

2 − 4η
3

)

> 0. We decrease the above quantity
by throwing away positive terms and increasing the denominator of the last term
yielding

H ≥ 4π t (1− κ)

(

1− 4η

3
− 32

3π

(1− κ)tη−1

κπ − 4(1− κ)t

)

.

The positivity of denominator is then ensured if κ ≥ 4t
π
. We can thus, for t suffi-

ciently small, choose κ = tβ for some 0 < β < 1 to be fixed later. Inserting this
into our expression we find that

H ≥ 4π t (1− tβ)

(

1− 4η

3
− 32

3π

(1− tβ)tη−1

tβπ − 4(1− tβ)t

)

.

Setting η = tγ , γ > 0, we obtain that

H ≥ 4π t (1− O(tβ)− O(tγ )− O(t1−β−γ )),

and choosing β = γ = 1/3 yields

H ≥ 4π t (1− O(t1/3)).

Inserting this into (5.5) we have

f (t) = 2π t (1− O(t1/3)),

which completes the proof.
Extended case. Let, in the case that R ≥ 0, γ denote the relative length scale

of the interaction, γ = γ (Q) = R|Q|−1/2, and note that we may again rescale
everything so that |Q| = 1. We then proceed as above using projection, where the
bound from Theorem 1.3 is replaced by

n
∑

j=1

∫

Qn
|Dj�|2 dx ≥ (1−κ ′)1

n

∑

j<k

∫

Qn
g
(

ν,
3γ

δ(X jk) − 3γ

)21A(x j , xk)
δ(X jk)2

|�|2 dx,

where ν = c(κ ′)αN/
√
1− κ ′ and κ ′ ∈ (0, 1) is an additional parameter thatwemay

optimize over, howeverwewill in order to simplify the analysis take κ ′ = 1/2. Since
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δ(X jk) maximally takes the value 1/2, the above expression is zero for γ ≥ 1/12.
For 0 ≤ γ < 1/12 we can proceed by truncating to the, in γ , uniformly bounded
potential

V̂ (X, r) := 1

2
g
(

ν,
3γ

δ(X) − 3γ

)21 Â(x1, x2)

δ(X)2
,

with the support (consisting of truncated relative annuli)

Â := {(x1, x2) ∈ Q2 : 3γ + 1/4 ≤ δ(X) ≤ 1/2 and 3γ ≤ |r| ≤ δ(X)− 3γ },
and therefore, since g(ν, γ ) is monotonically decreasing in γ ,

‖V̂ ‖∞ ≤ 1

2(3γ + 1/4)2
g(ν, 0)2 ≤ 8( j ′ν)2.

Also, using the coarea formula and that |∇δ| = 1 almost everywhere, we obtain
that

〈V̂ 〉ψ0 =
1

2

∫

Q

∫

QX

g
(

ν,
3γ

δ(X)− 3γ

)21 Â(x1, x2)

δ(X)2
4drdX

= 2π
∫

Q
g
(

ν,
3γ

δ(X) − 3γ

)2
(

(δ(X)− 3γ )2 − (3γ )2
)

+
δ(X)2

dX

= 8π
∫ 1/2

3γ+1/4
g
(

ν,
3γ

t − 3γ

)2
(1− 6γ /t)(1− 2t) dt

≥ π

3
g(ν, 12γ )2(1− 12γ )3,

where in the last step we again used the monotonicity of g, and
∫ 1/2

3γ+1/4
(1− 6γ /t)(1− 2t) dt =

(
1

16
+
(3

2
− 6 ln

2

1+ 12γ

)

γ − 27γ 2
)

≥ 1

24
(1− 12γ )3,

where the lower bound is found by Taylor expansion around γ = 1/12.
Thus, the corresponding projection bound for the operator H = −κ�N

Q2+(1−
κ)V̂ reads

H ≥ min
{

(1−μ)(1−κ)
π

3
g(ν, 12γ )2(1−12γ )3+, κπ2−(μ−1−1)8(1−κ)( j ′ν)2

}

.

We take, for simplicity, μ = 1/2 and κ = 1/2, and use that g(ν, 12γ ) ≤ j ′ν ' π ,
to obtain the claimed bound
n
∑

j=1

∫

Qn
|Dj�|2 dx ≥ (n−1)+ eLR(α, γ ), eLR(α, γ ) = π

24
g(ν, 12γ )2(1−12γ )3+,

with ν = cαN and c = c(κ ′)/
√
1− κ ′ = 5.3/

√
8 · 10−4. Again we may use the

convexity in n to obtain the corresponding bound for TQ[�]. ��
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6. Application to the Homogeneous Anyon Gas

Let us finally consider the homogeneous gas in the thermodynamic limit, that
is N particles confined to a large box (square) Q0 ⊆ R2, where we shall take
simultaneously N → ∞ and |Q0| → ∞ while keeping the density �̄ := N/|Q0|
fixed. The only dimensionless parameters are then themagnetic interaction strength

α ∈ R and the relative interaction length scale (magnetic filling ratio) γ̄ := R�̄
1
2 ,

also held fixed, so that in the limit the ground-state energy,

E0(N , Q0, α, R) := inf
{

〈�, T̂α�〉 : � ∈ DN
α,R ∩ C∞

c (QN
0 ), ‖�‖2 = 1

}

,

per particle must for dimensional reasons be given by

E0(N , Q0, α, R)

N
→ e(α, γ̄ )�̄, (6.1)

where e(α, γ̄ ) ≥ 0 is dimensionless. We have that e(0, γ̄ ) = 0 for all γ̄ ≥ 0,
corresponding to non-interacting bosons, and e(1, 0) = 2π for ideal fermions in
two dimensions due to the Weyl asymptotics for the Laplacian eigenvalues. We
also have a reflection-conjugation symmetry e(−α, γ̄ ) = e(α, γ̄ ) for all α, γ̄ .
Furthermore, in the dilute limit we should see a periodicity in the entire spectrum
with respect to any shift in α by an even integer, and in particular

e(α + 2n, 0) = e(α, 0) ∀ α ∈ R, n ∈ Z,

due to the gauge equivalence (1.7). On the other hand, average-field theory (1.3)
suggests a linear dependence e(α, γ̄ ) = 2π |α| for arbitrary α and large enough γ̄ .
Hence there must be some non-trivial interpolation between these two regimes of
low respectively high density.

Although the existence of the thermodynamic limit (6.1) might be expected on
physical grounds, as is indeed the case for bosons and fermions with reasonable
scalar interactions (see for example [6,35]), we are not aware of any proof of it
for anyons, whose interaction is long-range and magnetic instead of scalar. Fur-
thermore, there is for anyons also a subtlety in the choice of boundary conditions,
partly since topology plays an important role in the whole problem and therefore
periodic b.c. may seem problematic, and even in the case of a constant magnetic
field we know that Neumann and Dirichlet b.c. differ substantially (cf. Section 2
and Proposition 4.3). We shall therefore replace the limit (6.1) with the lim inf and
also stick to Dirichlet b.c. (‘hard-wall’ confined anyons) in all that follows.

Theorem 6.1. (Universal bounds for the homogeneous anyon gas) Let e(α, γ̄ ),
where γ̄ = R�̄1/2, denote the ground-state energy per particle and unit density
of the extended anyon gas in the thermodynamic limit at fixed α ∈ R, R ≥ 0 and
density �̄ > 0 where Dirichlet boundary conditions have been imposed, that is

e(α, γ̄ ) := lim inf
N , |Q0|→∞
N/|Q0|=�̄

E0(N , Q0, α, R)

�̄N
.
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Then

e(α, γ̄ ) ≥ C

(

2π
|α|min

{

2(1− γ̄ 2/4)−1, Kα

}

Kα + 2|α|(− ln(γ̄ /2)
) 1γ̄ <2 + 2π |α|1γ̄≥2

+ πg
(

cα∗, 12γ̄ /
√
2
)2

(1− 12γ̄ /
√
2)3+
)

, (6.2)

for some universal constant C > 0, with Kα given in Lemma 5.1, and c > 0 in
Lemma 5.3. Furthermore, for any α ∈ R and with f given in Lemma 5.3, we have
for the ideal gas that

e(α, 0) ≥ 1

4
f
((

j ′α∗
)2) = 1

2
2πα∗

(

1− O
(

α
1/3∗
))

. (6.3)

Moreover, for any fixed α ∈ R\{0} we obtain in the dilute limit that

lim inf
γ̄→0

e (α, γ̄ )

2π |ln γ̄ |−1 ≥ 1, and lim inf
γ̄→0

e (α, γ̄ ) ≥ π

81

(

j ′cα∗
)2 ≥ c

81
2πα∗,

(6.4)
while if γ̄ > 0 is arbitrary but fixed, and

|α| ≤ ε5 min
{

γ̄ 2, ε3γ̄−4}, 0 < ε <
√

π/8, (6.5)

then
e(α, γ̄ ) ≥ 2π |α|(1− O(ε)). (6.6)

Note that for the short-range part of the interaction, one can view the height
of the potential compared to the average density as a dimensionless interaction
strength, and that in the dilute limit (6.4) with fixed α > 0 we have that

α

R2 /�̄ = αγ̄−2 →∞,

corresponding to a hard-core interaction. On the other hand, under the conditions
in (6.5),

α

R2 /�̄ = αγ̄−2 ≤ ε5 ' 1,

and thus corresponding to a very weak soft-core interaction rather than a hard-core
one in this regime.

We also note that the average-field description with its linear dependence on
α has indeed been proved to be correct for the trapped anyon gas in a certain
almost-bosonic regime; see [47]. In the present context this corresponds to taking
Q0 fixed, α ∼ β/N and R ∼ N−η with 0 < η < 1/4, in which case we have that
γ̄ ∼ N 1/2−η → ∞ and αγ̄−2 ∼ N 2η−2 → 0 as N → ∞, that is a combined
high-density and weak soft-core limit. However, the sense in which average-field
theory then holds is that all the anyons become identically distributed subject to a
self-consistent magnetic field, and it should be remarked that the constant 2π that
is predicted by the usual (constant-field) average-field approximation and which
appears above does not take such self-interactions fully into account and may ulti-
mately be replaced by a larger effective constant, at least in a particular limit [11].
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Proof of Theorem 6.1. Let us begin with the universal bound (6.2) for all α, γ̄ .We
have a sequence of N ≥ 1 and squares Q0 ⊆ R2 with N/|Q0| = �̄, and consider
in each case an arbitrary function � ∈ DN

α,R supported on QN
0 . Let us again write

T [�] := 〈�, T̂α�〉 = κ1

N
∑

j=1

∫

R2N
|Dj�|2 dx+ κ2

N
∑

j=1

∫

R2N
|Dj�|2 dx

+ κ3

N
∑

j=1

∫

R2N
|Dj�|2 dx (6.7)

≥
∫

R2N

N
∑

j=1

(

κ1
∣
∣∇ j |�|∣∣2 + κ2

∑

k �= j

2π |α|1BR(0)

πR2 (x j − xk) |�|2

+ κ3|Dj�|2
)

dx.

Take κ1 = κ2 = κ/2 and κ3 = 1− κ , and a partition of Q0 into M2 squares Q of
equal size. Then, by the local exclusion principles of Lemmas 5.1 and 5.3,

N−1T [�] ≥ N−1
∑

Q

T (κ/2,κ/2,1−κ)
Q [�] (6.8)

≥ N−1
∑

Q

|Q|−1
(κ

2
eSR
(

α, γ (Q),
∫

Q ��

)+ (1− κ)eLR
(

α, γ (Q)
))
(∫

Q
�� − 1

)

+

≥ N−1|Q0|−1M2
∑

Q

(∫

Q
�� − 1

)

+

×

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

κ
2 |α|min

{

(1− γ (Q)2/2)−1, Kα/2
}(

Kα + 2|α|(− ln(γ (Q)/
√
2)
))−1

+(1− κ) π
24 g
(

cαN , 12γ (Q)
)2

(1− 12γ (Q))3+, for γ (Q) <
√
2

κ|α|γ (Q)−2
∫

Q ��, forγ (Q) ≥ √
2.

Note that γ (Q)= γ̄ MN−1/2 and we are free to choose κ ∈ [0, 1] and the integer
M ≥ 1 as we like.We chooseM := μN 1/2 for suitableμ > 0, so that γ (Q) = μγ̄ .
Then for μ < min{√2/γ̄ , 1} we have, using

∑

Q(
∫

Q �� − 1)+ ≥ (N − M2)+,
that

N−1T [�] ≥ �̄μ2(1− μ2)+
(

κ

2
|α|min

{

(1− μ2γ̄ 2/2)−1+ , Kα/2
}

Kα + 2|α|(− ln(μγ̄ /
√
2)
) (6.9)

+ (1− κ)
π

24
g(cαN , 12μγ̄ )2(1− 12μγ̄ )3+

)

.

On the other hand for
√
2/γ̄ ≤ μ ≤ 1, we may use

1

M2

∑

Q

∫

Q
��

(∫

Q
�� − 1

)

+
≥ N

M2

(
N

M2 − 1

)

+
,
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which follows from convexity, to obtain that

N−1T [�] ≥ κ|α|�̄γ̄−2(μ−2 − 1)+.

Hence, in the case γ̄ ≥ 2 >
√
2 we can in the thermodynamic limit choose κ = 1

and μ = √
2/γ̄ in order to obtain that

e(α, γ̄ ) ≥ 1

2
|α|(1− 2/γ̄ 2) ≥ 1

4
|α|,

while for γ̄ < 2 we choose, for simplicity, κ = 2/3 and μ = 1/
√
2 obtaining that

e(α, γ̄ ) ≥ 1

288

(

12|α|min
{

2(1− γ̄ 2/4)−1+ , Kα

}

Kα + 2|α|(− ln(γ̄ /2))

+πg(cαN , 12γ̄ /
√
2)2(1− 12γ̄ /

√
2)3+
)

.

This proves the first part of the theorem with C = 1/288.
In the ideal case R = 0, and hence γ̄ = 0, we take κ = 0 and M ∼ √

N/2
in (6.8) (which means approximately 2 particles in each box) to obtain (6.3) from
(5.4) of Lemma 5.3.

The second bound in (6.4) follows immediately from (6.9) and the properties
of g, by setting κ = 0 and μ = 1/

√
2. For the first bound we set κ1 = 1 − κ ,

κ2 = κ and κ3 = 0 in (6.7) and use the result [41] of Lieb and Yngvason for
the dilute repulsive Bose gas in two dimensions. We find for the (bosonic, and
therefore positive; see [35, Corollary 3.1]) ground state �0 of this expression, with
fixed κ ∈ (0, 1) and α > 0, that

T [�]
N �̄

≥ 1− κ

N �̄

∫

R2N

( N
∑

j=1

∣
∣∇ j�0

∣
∣
2 +
∑

j<k

W (x j − xk) |�0|2
)

dx

= 4π(1− κ)

|ln a2R �̄|
(

1+ O
(|ln a2R �̄|−1/5))

= 2π(1− κ)

K ′
α,κ − ln γ̄

(

1+ O
(

(K ′
α,κ − ln γ̄ )−1/5)),

where we used that the pair potential

W (x) := W0

R2 1BR(0)(x), W0 = 4ακ/(1− κ),

has scattering length (cf. (5.3))

aR = R exp

(

− 1√
W0/2

I0(
√
W0/2)

I1(
√
W0/2)

)

= R exp(−K ′
α,κ ),

with

K ′
α,κ := 1√

2ακ/(1− κ)

I0(
√
2ακ/(1− κ))

I1(
√
2ακ/(1− κ))

= Kακ/(1−κ)

2ακ/(1− κ)
.
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Hence for any α > 0 and 0 < ε ' 1 we, by setting κ = ε and then taking the limit
γ̄ → 0, obtain that

|ln γ̄ |
2π

e(α, γ̄ ) ≥ (1− ε)
(

1+ K ′
α,ε|ln γ̄ |−1)−1(1+ O

(

(K ′
α,ε + |ln γ̄ |)−1/5))

→ 1− ε.

So for each fixed α ∈ R\{0}

lim inf
γ̄→0

e(α, γ̄ )

2π |ln γ̄ |−1 ≥ 1.

To obtain the bound (6.6) for the soft-core regime we follow [36,39–41]. Again
we partition Q0 intoM2 squares Q of equal size, and let � = |Q|1/2.With κ ∈ [0, 1]
we then have that

N−1T [�] ≥ N−1
∑

Q

T (κ,1−κ,0)
Q [�] ≥ N−1

∑

Q

∑

n≥0
E (κ,1−κ,0)
n (|Q|)pn(�; Q).

Set cn = ∑Q pn(�; Q)|Q|/|Q0|, that is cn is the fraction of cells Q containing
precisely n particles, then

∑

n≥0
cn = 1 and

∑

n≥0
cnn = �̄�2.

Rearranging the sum and from now on suppressing the weight κ = (κ, 1 − κ, 0)
we find that

N−1T [�] ≥ 1

�̄�2

∑

n≥0
En(|Q|)cn, (6.10)

which is precisely the starting point of the argument in [39–41].
Fix p ∈ N. Since the energy is superadditive, En+n′ ≥ En + En′ , we for all

n ≥ p have that

En(|Q|) ≥ (n/p)Ep(|Q|) ≥ n

2p
Ep(|Q|).

Applying Lemma 5.2 yields

En(|Q|) ≥ π |α|n(p − 1)

�2
K (p, �),

where

K (n, �) := (1− κ)

(

1− 2R

�

)2

+

(

1− 2|α|�2R−2n(n − 1)

π2κ/(1− κ)− 2π |α|n(n − 1)

)

+
,

if the expression in the last denominator is positive and K (n, �) := 0 otherwise.
If instead n < p we use that K (n, �) is decreasing in n to find

En(|Q|) ≥ 2π |α|n(n − 1)

�2
K (p, �).
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Splitting the sum (6.10) into two we thus find that

∑

n≥0
En(|Q|)cn =

∑

n<p

En(|Q|)cn +
∑

n≥p

En(|Q|)cn

≥ 2π |α|
�2

K (p, �)

(
∑

n<p

n(n − 1)cn + 1

2

∑

n≥p

n(p − 1)cn

)

.

We wish to minimize

∑

n<p

n(n − 1)cn + 1

2

∑

n≥p

n(p − 1)cn . (6.11)

Set

k := �̄�2 and t :=
∑

n<p

cnn ≤ k,

by convexity (6.11) is then larger than

t (t − 1) + 1

2
(k − t)(p − 1).

If p ≥ 4k − 1 and t ≤ k this is minimized at t = k, where it is equal to k(k − 1).
Thus by choosing p = (4�̄�2) we have shown that

N−1T [�] ≥ 2π |α|�̄
(

1− 1

�̄�2

)

+K (4�̄�2, �),

and hence, upon taking the thermodynamic limit N , |Q0| → ∞ with all the other
parameters kept fixed,

e(α, γ̄ ) ≥ 2π |α|(1−κ)
(

1− 1

�̄�2

)

+

(

1−2
γ̄

�̄1/2�

)2

+

(

1− 32|α|γ̄−2�̄3�6

π2κ/(1−κ)−32π |α|�̄2�4

)

+
,

(6.12)
as long as 32|α|�̄2�4 < πκ/(1− κ).

Given ε > 0, let us choose κ = ε and also demand that (�̄�2)−1 ≤ ε,
γ̄ (�̄1/2�)−1 ≤ ε, |α|γ̄−2�̄3�6 ≤ ε2, and |α|�̄2�4 ≤ επ/64. We therefore choose

� = (ε�̄)−1/2 max
{

1, ε−1/2γ̄
}

and then find that, together with the requirement (6.5) on α and ε which implies
|α|�̄2�4 ≤ ε3 < επ/64, all conditions above are satisfied, and the error terms in
(6.12) are of order ε or higher. ��
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Appendix A. Some Properties of Bessel Functions

Proposition A.1. For ν > 0 we let j ′ν denote the first positive zero of the derivative
of the Bessel function Jν . Then we have that√

2ν ≤ j ′ν ≤
√

2ν(1+ ν).

A proof of the above proposition and much more refined bounds for the zeros of
Bessel functions and their derivatives can be found in [26]. For completeness we
provide an elementary proof which covers our needs.

Proof. By a standard variational argument it can be shown that

inf
u

∫ 1
0

(|u′|2 + ν2r−2|u|2)r dr
∫ 1
0 |u|2r dr = ( j ′ν)2,

where the infimum is taken over all u ∈ W 1,2([0, 1], rdr) and is attained by u(r) =
Jν( j ′νr).

For ν > 0 and u ∈ W 1,2([0, 1], rdr) with u(0) = 0 we obtain using Hölder’s
inequality that

|u(t)|2 = 2*
[∫ t

0
ū(r)u′(r) dr

]

≤ 2

(∫ t

0
|u′(r)|2r dr

)1/2(∫ t

0
|u(r)|2r−1 dr

)1/2

= 2

ν

(∫ t

0
|u′(r)|2r dr

)1/2(

ν2
∫ t

0
|u(r)|2r−1 dr

)1/2

.

Through an application of Young’s inequality we then find

|u(t)|2 ≤ 1

ν

∫ t

0

(

|u′(r)|2 + ν2

r2
|u(r)|2

)

r dr ≤ 1

ν

∫ 1

0

(

|u′(r)|2 + ν2

r2
|u(r)|2

)

r dr,

and integrating both sides in t over (0, 1) against t dt yields
∫ 1

0
|u(t)|2t dt ≤ 1

ν

(∫ 1

0
t dt

)(∫ 1

0

(

|u′(r)|2 + ν2

r2
|u(r)|2

)

r dr

)

= 1

2ν

∫ 1

0

(

|u′(r)|2 + ν2

r2
|u(r)|2

)

r dr,

which implies that
∫ 1
0

(|u′|2 + ν2r−2|u|2)r dr
∫ 1
0 |u|2r dr ≥ 2ν.

Taking the infimum over all functions u ∈ W 1,2([0, 1], rdr) such that u(0) = 0, in
particular this includes Jν , we see that

( j ′ν)2 ≥ 2ν,

which completes the proof of the lower bound. To obtain the upper bound, simply
take u(r) = rν in the variational quotient above. ��
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In the case of R-extended anyons our bounds result in studying the behavior of
solutions to a Bessel-type eigenvalue equation of order ν with Neumann boundary
conditions on the interval (γ, 1), for some 0 < γ < 1. Thus it is of interest for
us to understand the behavior of the lowest eigenvalue of such an equation in both
parameters γ and ν.

Proposition A.2. Given ν > 0 and 0 < γ < 1, let g(ν, γ ) := √
λ, where λ denotes

the first positive solution to the eigenvalue equation

−u′′(r)− u′(r)
r

+
(ν2

r2
− λ
)

u(r) = 0, (A.1)

with the Neumann boundary conditions u′(γ ) = u′(1) = 0. Then, for fixed γ ,
g(ν, γ ) is a monotonically increasing function in ν. Also, for fixed ν, g(ν, γ ) is a
monotonically decreasing function of γ , and satisfies

ν < g(ν, γ ) < min{ j ′ν, ν/γ }.
Moreover, we have that limγ→0 g(ν, γ ) = j ′ν and limγ→1 g(ν, γ ) = ν.

Proof. That g(ν, γ ) is monotonically increasing in ν is clear from the variational
characterization of λ,

λ = inf
u

∫ 1
γ

(|u′|2 + ν2r−2|u|2)r dr
∫ 1
γ
|u|2r dr .

It is well known that the solution of the above differential equation is given
by a linear combination of the Bessel functions Jν(

√
λr) and Yν(

√
λr). Only if γ

were zero could we exclude the Bessel function of the second kind since it fails to
be in W 1,2([0, 1], rdr) and thus cannot be a solution. Thus the problem reduces to
finding the smallest λ > 0 such that the system

α J ′ν(
√

λγ ) + βY ′
ν(
√

λγ ) = 0

α J ′ν(
√

λ) + βY ′
ν(
√

λ) = 0

admits a non-trivial solution, which is equivalent to the determinant equation

J ′ν(
√

λγ )Y ′
ν(
√

λ) − Y ′
ν(
√

λγ )J ′ν(
√

λ) = 0.

Assuming that
√

λ is smaller than the first zero of Y ′
ν (this will be seen to be true

once we find our solution) we can equivalently solve the equation

J ′ν(
√

λ)

Y ′
ν(
√

λ)
= J ′ν(

√
λγ )

Y ′
ν(
√

λγ )
.

Letting Gν(x) := J ′ν(x)/Y ′
ν(x) we find that

G ′
ν(x) =

2(ν2 − x2)

πx3Y ′
ν(x)

2 ,
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0 ν
√

λ jν ν/γ

Fig. 7. The function Gν(x) (blue) and its dilation Gν(γ x) (yellow) plotted for ν = 1 and
γ = 1/2

where we used that Jν and Yν satisfy the Bessel Equation (A.1) and the well-known
identity Jν(x)Y ′

ν(x) − J ′ν(x)Yν(x) = 2/(πx); see for example [59, Eqn. 10.5.2].
Thus Gν(x) is strictly increasing on (0, ν) and decreasing after that. We also

know thatGν(0) = Gν( j ′ν) = 0. But then it is clear that the graph ofGν(x) and that
of its dilation Gν(γ x) must intersect between x = ν and the minimum of x = ν/γ

and x = j ′ν (compare Fig. 7), and as this solution is less than the first zero of Y ′
ν the

assumption above is seen to be true. Moreover, as γ → 0 we see that the solution
x = √

λ tends to the zero j ′ν and if instead γ → 1 it tends to the maximum point ν.
By the above geometric considerations we can conclude that for 0 < γ < 1

and ν > 0 we have that λ, the smallest positive eigenvalue of (A.1), satisfies

λ ∈ [ν2,min{ j ′ν, ν/γ }2],
and is monotonically decreasing in γ . ��

Appendix B. Concavity of the One-Particle Profile

We have several times used concavity properties of the one-particle profile
f (d, ·), which howevermay fail if d is small.More preciselywe have the following:

Proposition B.1. For any d ≥ 0 the function f (d, ·) given by (4.12) is concave on
its support intersected with [R,∞). If in addition d ≥ R the function is concave
on its full support [d − R, d + R].
Proof. Without loss of generality we may, and do, assume that R = 1. The proof
is then a straightforward computation. We begin with assuming that d < R = 1.
For such d the function f (d, ·) is C2 on [1, d + 1] (and zero on (d + 1,∞)) which
reduces the statement to proving that ∂2r f (d, r) ≤ 0 in this region. Calculating this
derivative one finds

∂2r f (d, r) = − 2((d2 − 1)3 − 3(d2 − 1)2r2 + (5+ 3d2)r4 − r6)

πr((r + 1− d)(1+ d − r)(d + r − 1)(1+ d + r))3/2
,
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and clearly the overall sign is determined by that of the polynomial in the denomi-
nator

p(d, r) := (d2 − 1)3 − 3(d2 − 1)2r2 + (5+ 3d2)r4 − r6.

Weneed to prove that p ≥ 0 for (r, d) in the triangular region given by1 ≤ r ≤ d+1
where 0 ≤ d ≤ 1.

We first check the statement on the boundary of the region:

p(1, r) = r4(8− r2) > 0

p(d, 1) = d2(12− 6d2 + d4) > 0

p(d, d + 1) = (1+ r)(r − 1)(4r2 + 1− r4) > 0.

Thus all that remains is to check that we have no stationary points for p in the
interior of the region. Calculating the derivative in r one finds that

∂r p(d, r) = 6d(d2 − 1)2 − 12d(d2 − 1)r2 + 6dr4.

As this is a quadratic polynomial in r2 we can solve the equation pr (d, r) = 0 and
find that there are no solutions in our region. This completes the proof of the claim
in the case d < R = 1.

In the case d ≥ R = 1wewish to prove that f (d, ·) is concave on [d−1, d+1].
It is here convenient to study the problem in the variables d and η = r − d, and
letting

g(d, η) := f (d, d + η) = 2(d + η)

π
arccos

(
d2 + (d + η)2 − 1

2d(d + η)

)

,

d ≥ 1, η ∈ [−1, 1].
Differentiating twice in η we find that

∂2ηg(d, η) = 2P(d, η)

π(d + η)((1− η2)(2d + η − 1)(2d + η + 1))3/2
, (B.1)

where

P(d, η) := −8d4 + 8d3(η3 − 4η) + 12d2(η4 − 3η) + d(6η5 − 20η3 + 6η)

+ η6 − 5η4 + 3η2 + 1.

As before the sign of (B.1) is determined by that of the polynomial P . If we can
prove that P(d, η) ≤ 0 for all d ≥ 1 and −1 ≤ η ≤ 1 the claim follows. To this
end we proceed as above. The values of P on the boundaries of this region are (in
the same manner as before) readily checked to be negative:

P(d, 1) = −8d(d + 1)3 < 0,

P(d,−1) = −8d(d − 1)3 ≤ 0,

P(1, η) = (1+ η)4(η2 + 2η − 7) ≤ 0.
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What remains is to check stationary points in the interior. For this polynomial
solving either of the equations ∂ηP(d, η) = 0 or ∂d P(d, η) = 0 is slightly harder.
However, since certain terms cancel one can instead solve the equation

∂ηP(d, η) = ∂d P(d, η),

and the solutions are d = 0, η = −d − √
d2 − 1 and η = −d + √

d2 − 1. The
third solution is the only one contained within our region. Evaluating the derivative
at this solution we obtain

∂ηP(d,−d +
√

d2 − 1) = −32(d2 − 1)3/2,

and since this is non-zero in the interior of our domain, the proof is complete. ��
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LIEB–THIRRING INEQUALITIES FOR WAVE FUNCTIONS

VANISHING ON THE DIAGONAL SET

SIMON LARSON, DOUGLAS LUNDHOLM, AND PHAN THÀNH NAM

Abstract. We propose a general strategy to derive Lieb–Thirring inequalities for scale-
covariant quantum many-body systems. As an application, we obtain a generalization
of the Lieb–Thirring inequality to wave functions vanishing on the diagonal set of the
configuration space, without any statistical assumption on the particles.
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1. Introduction

The celebrated Lieb–Thirring inequality states that the expected kinetic energy of a free
Fermi gas is bounded from below by its semiclassical approximation up to a universal factor,
namely

〈
ΨN ,

N∑

i=1

(−∆xi)
sΨN

〉
≥ K

∫

Rd
%ΨN (x)1+2s/ddx. (1.1)

Here ΨN is an N -particle wave function in L2((Rd)N ), normalized so that ‖ΨN‖L2(RdN ) = 1
and thus encoding in its squared amplitude a probability distribution for particle positions
x = (x1, . . . ,xN ), xj ∈ Rd, with one-body density

%ΨN (x) :=

N∑

j=1

∫

Rd(N−1)

|Ψ(x1, . . . ,xj−1,x,xj+1, . . . ,xN )|2
∏

i 6=j
dxi,

and, crucially, subject to the anti-symmetry

ΨN (x1, . . . ,xi, . . . ,xj , . . . ,xN ) = −ΨN (x1, . . . ,xj , . . . ,xi, . . . ,xN ), ∀i 6= j. (1.2)

2010 Mathematics Subject Classification. 81V70, 35R11, 46E35, 81Q10.
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This is Pauli’s exclusion principle for fermions(1). Replacing the minus sign in (1.2) by a plus
sign defines bosonic particles, while if the particles are non-identical, i.e. distinguishable,
no exchange symmetry may be imposed.

The inequality (1.1) was first proved by Lieb and Thirring in 1975 for the case s = 1
relevant to non-relativistic particles [13, 14], and extended by Daubechies in 1983 to general
s > 0, thus also including the relativistic case s = 1/2 [2]. The constant K = K(d, s) > 0
is independent of N and ΨN (see [5] for the best known value of K).

The Lieb–Thirring inequality is a beautiful combination of the uncertainty and exclusion
principles of quantum mechanics, and has also been very actively studied in the mathemati-
cal literature from the dual perspective of estimation of eigenvalues of one-body Schrödinger
operators (see e.g. [12, 9] for reviews). Historically, the Lieb–Thirring inequality was in-
vented to give a short, elegant proof of the stability of ordinary non-relativistic matter with
Coulomb forces [13]. In that context it is well known that stability of the first kind, i.e.
that the ground state energy of the Coulomb system is finite, follows easily from some sort
of the uncertainty principle (e.g. Sobolev’s inequality). On the other hand, the stability of
the second kind, that the ground state energy does not diverge faster than the number of
particles, is much more subtle: for this the fermionic nature of particles is crucial. In fact,
the stability of the second kind fails for bosonic (or distinguishable) charged systems [3].

Without the anti-symmetry condition (1.2), the Lieb–Thirring inequality (1.1) fails and
the best one can get is the Gagliardo-Nirenberg-Sobolev inequality

〈
ΨN ,

N∑

i=1

(−∆xi)
sΨN

〉
≥ KN−2s/d

∫

Rd
%ΨN (x)1+2s/ddx (1.3)

(see e.g. [17]). The emergence of the factor N−2s/d can be seen by considering the bosonic
trial state ΨN = u⊗N (whose density is %ΨN (x) = N |u(x)|2). This factor is small when N
becomes large, making (1.3) not very useful in applications.

Note that Pauli’s exclusion principle (1.2) implies that the wave function ΨN vanishes
on the diagonal set

44 :=
{

(x1, . . . ,xN ) ∈ (Rd)N : xi = xj for some i 6= j
}
, (1.4)

namely there is zero probability for two quantum particles to occupy a common single
position in the configuration space.

In this paper, we want to address the following

Question: Does the Lieb–Thirring inequality (1.1) remain valid if the anti-symmetry as-
sumption (1.2) is replaced by the weaker condition ΨN |44 = 0 ?

We will show that the answer is yes if and only if 2s > d. In fact, 2s > d is the optimal
condition for the vanishing assumption ΨN |44 = 0 to be non-trivial (heuristically this follows

from Sobolev’s embedding Hs(Rd) ⊆ C(Rd) for 2s > d). The precise statement of our result
and its consequences will be presented in the next section.

(1) Here we ignore the spin of particles for simplicity (in our analysis the effect of the spin is mathematically
trivial).
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2. Main results

Recall that for every s > 0 (not necessarily an integer) the operator (−∆)s on L2(Rd) is
defined as the multiplication operator |p|2s in Fourier space, namely

[
(−∆)sf

]∧
(p) = |p|2sf̂(p), f̂(p) :=

1

(2π)d/2

∫

Rd
f(x)e−ip·x dx.

The associated space Hs(Rd) is a Hilbert space with norm

‖u‖2Hs(Rd) := ‖u‖2L2(Rd) + ‖u‖2
Ḣs(Rd)

, ‖u‖2
Ḣs(Rd)

:= 〈u, (−∆)su〉.

The N -particle space Hs(RdN ) is defined in the same way. Let us denote the subspace of
functions vanishing on the diagonal set 44 in (1.4) by

Hs,N (Rd) :=
{

ΨN ∈ C∞c (RdN ) : ΨN |44 = 0
}Hs(RdN )

.

Our main result is

Theorem 2.1 (Lieb–Thirring inequality for wave functions vanishing on diagonals). Let
2s > d ≥ 1. Then for every N ≥ 1 and ΨN ∈ Hs,N (Rd), with ‖ΨN‖L2(RdN ) = 1, we have

〈
ΨN ,

N∑

i=1

(−∆xi)
sΨN

〉
≥ C

∫

Rd
%ΨN (x)1+2s/d dx. (2.1)

Here C = C(d, s) > 0 is a universal constant independent of N and ΨN .

We have some immediate remarks.
1. The condition 2s > d in Theorem 2.1 is optimal. If 2s ≤ d, then

Hs,N (Rd) = Hs(RdN )

by the relatively small size, i.e. the large codimensionality, of the diagonal set (see Appen-
dix B) and thus the Lieb–Thirring inequality fails.

2. For d = 1 and s = 1, it is well known that a symmetric wave function which vanishes
on the diagonal set is equal to an anti-symmetric wave function up to multiplication by an
appropriate sign function [7], and hence (2.1) reduces to the usual Lieb–Thirring inequal-
ity [14] in this case. However, when d > 1 this boson-fermion correspondence is no longer
available and our result is new. Furthermore, one may consider hard-core bosons defined
by the higher-order vanishing around diagonals

Hs,N0 (Rd) :=
{

ΨN ∈ C∞c (RdN \ 44)
}Hs(RdN )

, (2.2)

and subject to symmetry. For large enough order 2s > d there is even for d = 1 a non-
trivial difference between these spaces, and our result assumes only the weaker vanishing
conditions imposed by Hs,N (Rd) (see Appendix B for some further remarks).

3. Theorem 2.1 verifies a conjecture in [17, page 1362] that the Lieb–Thirring inequal-
ity (2.1) holds for all wave functions in the form domain of the interaction potential

Ws(x) :=
∑

1≤i<j≤N
|xi − xj |−2s, x = (x1, . . . ,xN ) ∈ (Rd)N .
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In fact, we have (again, see Appendix B for details)
{

ΨN ∈ Hs(RdN ) :

∫

RdN
Ws(x)|ΨN (x)|2 dx <∞

}
⊆ Hs,N0 (Rd) ⊆ Hs,N (Rd), (2.3)

by the singular nature of the potential at the diagonals. We may think of the potential
Ws as defining (by Friedrichs extension) a one-parameter family of non-negative and scale-
covariant (scaling homogeneously to degree −2s) interacting N -body Hamiltonian operators

Hβ :=
N∑

j=1

(−∆xj )
s + βWs, β ≥ 0.

The case β > 0 was treated in [18, 17], while our setting here concerns the limit β → 0 of
zero-range/contact interaction. A crucial difference is the strength of the interaction term,
which is of order N2 and thus provides a large repulsive energy for fixed β > 0, while for
β � 1/N it ought to be much weaker than the kinetic term. Nevertheless, for 2s > d the
potential Ws is singular enough to impose the vanishing condition at 44, and Theorem 2.1
yields a non-trivial bound (a generalized uncertainty principle) for Hβ=0.

4. The original proof of the Lieb–Thirring inequality [13, 14] is based on the following
operator bound

0 ≤ γ(1)
ΨN
≤ 1 (2.4)

which is a consequence of Pauli’s exclusion principle (1.2). Here γ
(1)
ΨN

is the one-body density

matrix of ΨN , a trace-class operator on L2(Rd) with kernel

γ
(1)
ΨN

(x;x′) =
N∑

j=1

∫

Rd(N−1)

ΨN (x1, . . . ,xj = x, . . . ,xN )ΨN (x1, . . . ,xj = x′, . . . ,xN )
∏

k 6=j
dxk.

However, unlike the full anti-symmetry condition (1.2), the vanishing condition ΨN |44 = 0
alone is not known to be sufficient to ensure the operator inequality (2.4), and therefore
the original proof in [13, 14] as well as subsequent proofs based on (2.4) (e.g. Rumin’s
method [25]) do not apply.

Our result is in fact more general than as previously formulated. More precisely, define
for any k ≥ 2 the diagonal set of k-particle coincidences

44k :=
{

(x1, . . . ,xN ) ∈ (Rd)N : xj1 = . . . = xjk for distinct indices j1, . . . , jk
}
, (2.5)

and the corresponding space of N -particle wave functions with a vanishing condition on 44k
Hs,Nk (Rd) :=

{
ΨN ∈ C∞c (RdN ) : ΨN |44k = 0

}Hs(RdN )
.

We have

Theorem 2.2 (Lieb–Thirring inequality for wave functions vanishing on k-diagonals). Let

d ≥ 1, k ≥ 2 and 2s > d(k − 1). Then for every N ≥ 1 and every ΨN ∈ Hs,Nk (Rd), with
‖ΨN‖L2(RdN ) = 1, we have

〈
ΨN ,

N∑

i=1

(−∆xi)
sΨN

〉
≥ C

∫

Rd
%ΨN (x)1+2s/d dx. (2.6)

Here C = C(d, s, k) > 0 is a universal constant independent of N and ΨN .
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The proof of Theorem 2.2 occupies the rest of the paper. Our proof is based on a
general strategy of deriving Lieb–Thirring inequalities for wave functions satisfying some
partial exclusion properties, which was proposed by Lundholm and Solovej in [20] and
developed further in [6, 21, 22, 18, 17, 10, 23, 19, 16]. We will quickly review this strategy
in Section 3 for the reader’s convenience, following the simplification by Lundholm, Nam
and Portmann [17].

The main new ingredient is a local version of the exclusion principle using the vanishing
condition on the diagonal set. In Section 4, we will discuss a very useful reduction of the
desired local exclusion to simply the positivity of a local energy using the scale-covariance of
the kinetic operator (−∆)s. This step refines and generalizes a recent bootstrap argument
for the energy of ideal anyons by Lundholm and Seiringer [19]. In Section 5, the remaining
crucial fact that the local energy eventually becomes positive with increasing particle num-
ber will be settled by means of a new many-particle Poincaré inequality. Some standard
and non-standard results on relevant function spaces are collected in the appendices for
completeness.

We stress that our method will also work for any other deformations of the Laplacian
which retain similar positivity and scale-covariance properties, including other types of point
interactions as well as particles subject to intermediate statistics (ideal anyons) in one and
two dimensions.

Acknowledgments. S.L. and D.L. thank John Andersson for helpful discussions. S.L.
acknowledges financial support from the Swedish Research Council grant no. 2012-3864.
D.L. acknowledges financial support by the grant no. 1804 from the Göran Gustafsson
Foundation and the Swedish Research Council grant no. 2013-4734. Part of this work was
carried out during the Conference “Eigenvalues and Inequalities” at the Institut Mittag-
Leffler, Stockholm, May 2018.

3. General strategy of deriving Lieb–Thirring inequalities

In the following we will summarize the proof of the usual Lieb–Thirring inequality (1.1)
for fermionic wave functions, mainly following the simplified representation in [17]. The
starting point is the following obvious localization formula: if {Ω} is a collection of disjoint
subsets of Rd, then

(−∆)s|Rd ≥
∑

Ω

(−∆)s|Ω, (3.1)

where the Neumann localization (−∆)s|Ω is defined via the quadratic form (Sobolev semi-

norm)

〈u, (−∆)s|Ωu〉 = ‖u‖2
Ḣs(Ω)

:=





∑
|α|=m

m!

α!

∫
Q |Dαu|2 if s = m,

cd,σ
∑
|α|=m

m!

α!

∫∫
Ω×Ω

|Dαu(x)−Dαu(y)|2
|x− y|d+2σ

dxdy if s = m+ σ,

for all u ∈ Hs(Rd), with m ∈ N0, α ∈ Nd0 multi-indices, Dα corresponding derivatives, and

0 < σ < 1, cd,σ :=
22σ−1

πd/2
Γ((d+ 2σ)/2)

|Γ(−σ)| .
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Consequently, for any N -body wave function ΨN ∈ Hs(RdN ) we have

ERd [ΨN ] ≥
∑

Ω

EΩ[ΨN ], (3.2)

where the expected local energy on Ω is

EΩ[ΨN ] :=

〈
ΨN ,

N∑

j=1

(−∆xj )
s
|ΩΨN

〉
=

N∑

j=1

∫

Rd(N−1)

‖ΨN‖2Ḣs
xj

(Ω)

∏

`6=j
dx` (3.3)

Next, we have the following three key tools [17, Lemmas 8, 11, 12].

Lemma 3.1 (Local uncertainty). Let d ≥ 1 and s > 0. Let ΨN be a wave function in
Hs(RdN ) for arbitrary N ≥ 1 and let Q be an arbitrary cube in Rd. Then

EQ[ΨN ] ≥ 1

C

∫
Q %

1+2s/d
ΨN(∫

Q %ΨN

)2s/d
− C

|Q|2s/d
∫

Q
%ΨN . (3.4)

Hereafter, C = C(d, s) > 0 denotes a universal constant (independent of N , ΨN and Q).
Lemma 3.1 can be interpreted as a local version of the lower bound (1.3) (the negative

term appears due to the lack of Dirichlet boundary condition).

Lemma 3.2 (Local exclusion for fermions). Let d ≥ 1 and s > 0. Let ΨN be a fermionic
wave function in Hs(RdN ) satisfying (1.2) for N ≥ 2 and let Q be an arbitrary cube in Rd.
Then

EQ[ΨN ] ≥ C|Q|−2s/d

[∫

Q
%ΨN (x) dx− q

]

+

, (3.5)

where q := #{multi-indices α ∈ Nd0 : 0 ≤ |α| < s}.
In the non-relativistic case s = 1, Lemma 3.2 simply states that as soon as there is more

than one particle on Q the energy must be strictly positive, and furthermore that it grows
at least linearly with the number of particles. Such a weak formulation of the exclusion
principle was used by Dyson and Lenard in their first proof of the stability of matter [4],
while its general applicability in the above format was noted by Lundholm and Solovej
in [20, 21].

Lemma 3.3 (Covering lemma). Let 0 ≤ f ∈ L1(Rd) be a function with compact support
such that

∫
Rd f ≥ Λ > 0. Then the support of f can be covered by a collection of disjoint

cubes {Q} in Rd such that ∫

Q
f ≤ Λ, ∀Q (3.6)

and
∑

Q

1

|Q|α

([∫

Q
f − q

]

+

− b
∫

Q
f

)
≥ 0 (3.7)

for all α > 0 and 0 ≤ q < Λ2−d, where

b :=

(
1− 2dq

Λ

)
2dα − 1

2dα + 2d − 2
> 0.
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Conclusion of (1.1). Let q be as in Lemma 3.2 and let Λ = 2dq + 1. If N ≤ Λ, then (1.1)
follows immediately from (1.3), whose proof is similar to (indeed simpler than) that of
Lemma 3.1. If N > Λ, then we can apply Lemma 3.3 with f = %ΨN (by standard approx-
imation we may reduce to compact support), α = 2s/d, and obtain a collection of disjoint
cubes {Q}. Combining with (3.2), (3.4) and (3.5) we obtain

(ε+ 1)ERd [ΨN ] ≥ ε
∑

Q


 1

C1

∫
Q %

1+2s/d
ΨN(∫

Q %ΨN

)2s/d −
C1

|Q|2s/d
∫

Q
%ΨN




+
∑

Q

C2|Q|−2s/d

[∫

Q
%Ψ(x) dx− q

]

+

≥ ε

C1

∫
Rd %

1+2s/d
ΨN

Λ2s/d

for any fixed constant ε > 0 satisfying εC1 ≤ C2b. Thus (1.1) holds true.

As we can see from the above strategy, the only place where the anti-symmetry (1.2)
plays a role is the local exclusion bound in Lemma 3.2. Extending this result to the weaker
condition ΨN |44 = 0 is the main task of our proof below.

4. Reduction of local exclusion

In this section, we prove a very useful observation, that allows to reduce the local exclusion
(3.5) to the positivity of the local energy, using the scale-covariance of the kinetic energy.
This step is inspired by the recent work of Lundholm and Seiringer [19] on the energy of
ideal anyons. We formulate it abstractly as follows:

Lemma 4.1 (Covariant energy bound). Assume that to any n ∈ N0 and any cube Q ⊂ Rd
there is associated a non-negative number (‘energy’) En(Q) satisfying the following proper-
ties, for some constant s > 0:

• (scale-covariance) En(λQ) = λ−2sEn(Q) for all λ > 0;
• (translation-invariance) En(Q+ x) = En(Q) for all x ∈ Rd;
• (superadditivity) For any collection of disjoint cubes {Qj}Jj=1 such that their union

is a cube,

En

( J⋃

j=1

Qj

)
≥ min
{nj}∈NJ0 s.t.

∑
j nj=n

J∑

j=1

Enj (Qj);

• (a priori positivity) There exists q ≥ 0 such that En(Q) > 0 for all n ≥ q.
Then there exists a constant C > 0 independent of n and Q such that

En(Q) ≥ C|Q|−2s/dn1+2s/d, ∀n ≥ q. (4.1)

Proof. Note that for q ≤ n ≤ N , (4.1) holds for some C = CN > 0 by the a priori positivity.
The main point here is to remove the N -dependence of the constant.

Denote En := En(Q0) with Q0 = [0, 1]d. Assume by induction in N that

En ≥ Cn1+2s/d, ∀q ≤ n ≤ N − 1 (4.2)
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with a uniform constant C > 0 and consider n = N . Split Q0 into 2d subcubes of half side
length and obtain by the superadditivity, translation-invariance and scale-covariance

EN ≥ 22s min
{nj} s.t.

∑
j nj=N

2d∑

j=1

Enj . (4.3)

Consider a configuration {nj} ⊂ N2d
0 such that the minimum in (4.3) is attained. The a

priori positivity EN > 0 ensures that none of the nj can be N (in the same way we deduce

that E0 = 0). Assume that there exist exactly M numbers nj < q with 0 ≤M ≤ 2d. Then
∑

nj≥q
1 = 2d −M and

∑

nj≥q
nj = N −

∑

nj<q

nj ≥ N − qM.

Therefore, from (4.3), (4.2) and Hölder’s inequality we deduce that

EN ≥ C22s
∑

nj≥q
n

1+2s/d
j ≥ C22s

(∑
nj≥q nj

)1+2s/d

(∑
nj≥q 1

)2s/d
≥ CN1+2s/d (1− qMN−1)1+2s/d

(1−M2−d)2s/d
(4.4)

with the same constant C as in (4.2). If we take

N ≥ q2d
(

1 +
d

2s

)
,

so that also qMN−1 ≤ 1, then by Bernoulli’s inequality

(1− qMN−1)1+d/(2s) ≥ 1− qMN−1
(

1 +
d

2s

)
≥ 1−M2−d,

and hence (4.4) reduces to

EN ≥ CN1+2s/d (4.5)

with the same constant C as in (4.2).
By induction we obtain (4.5) for all N ≥ q, with a constant C independent of N . This is

the desired bound (4.1) for the unit cube Q0. The result for the general cube follows from
scale-covariance and translation-invariance. �

Remark 4.2. It is in fact also possible to allow for En < 0 for finitely many n > 0 in
Lemma 4.1, under a small refinement of the assumption of a priori positivity. It is sufficient
that there exists q > 0 and c > 1 such that for all n ≥ q

En > c
d

2s
2d+2sE−, E− := max

0≤n<q
(−En). (4.6)

Namely, with this assumption, the bound in (4.4) may again be used for all nj ≥ q, and

one obtains EN ≥ CN1+2s/df(M/2d), C = minq≤n≤N−1En/n
1+2s/d, where the function

f(x) :=
(1− q2dN−1x)1+2s/d

(1− x)2s/d
− E−2d+2s

CN1+2s/d
x, x ∈ [0, 1),

is strictly increasing if N is large enough.
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We will apply the above general bound to the local ground-state energy among wave
functions satisfying the vanishing condition on k-particle diagonals

EN (Ω) := inf
{
‖ΨN‖2Ḣs,N (Ω)

: ΨN ∈ Hs,Nk (Rd), ‖ΨN‖L2(ΩN ) = 1
}
, (4.7)

where we have introduced the ‘completely localized’ kinetic functional

‖ΨN‖2Ḣs,N (Ω)
:=

〈
1ΩNΨN ,

N∑

j=1

(−∆xj )
s
|Ω1ΩNΨN

〉
=

N∑

j=1

∫

ΩN−1

‖ΨN‖2Ḣs
xj

(Ω)

∏

`6=j
dx`. (4.8)

Note that ‖ΨN‖2Ḣs,N (Ω)
is different from the functional EΩ[ΨN ] in (3.3), and its properties

will be crucial to deduce the desired local exclusion for EΩ[ΨN ]. The seminorm ‖ · ‖Ḣs,N (Ω)

in general contains only some of the terms of the standard homogeneous Sobolev seminorm
‖ · ‖Ḣs(ΩN ); however, the corresponding norms (i.e. the seminorms plus the L2-norm) are

actually equivalent moduloN -dependent constants, not only globally on RdN but also locally
on QN (see Appendix A).

The superadditivity of the energy EN (Ω) follows from the partitioning of the many-body
space and by locality respectively non-negativity of any non-local part of the kinetic energy,
i.e. (3.1). The method was also used in [19, Lemma 4.2] for anyons.

Lemma 4.3 (Superadditivity of En(Ω)). Let {Ωj}Jj=1 be a collection of disjoint subsets

of Rd and Ω = ∪jΩj. Then

EN (Ω) ≥ min
{nj}∈NJ0 s.t.

∑
j nj=N

J∑

j=1

Enj (Ωj). (4.9)

Proof. For any partition A = {Aj}Jj=1 of {1, 2, . . . , N} (i.e. the Aj are disjoint subsets of

{1, 2, . . . , N} such that
∑

j |Aj | = N), we denote by 1A the characteristic function of the
set

{
(x1, . . . ,xN ) ∈ (Rd)N : xi ∈ Ωj ⇔ i ∈ Aj , for all i, j

}
.

Using the operator bound similar to (3.1)

(−∆xi)
s
|Ω ≥

J∑

j=1

(−∆xi)
s
|Ωj ,

the partition of unity

1ΩN =
∑

A

1A, (4.10)
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and the fact that 1A commutes with (−∆xi)
s
|Ωj , we can write for any Ψ ∈ Hs,Nk (Rd)

‖Ψ‖2
Ḣs,N (Ω)

=

〈
1ΩNΨ,

N∑

i=1

(−∆xi)
s
|Ω1ΩNΨ

〉

≥
J∑

j=1

〈
1ΩNΨ,

N∑

i=1

(−∆xi)
s
|Ωj1ΩNΨ

〉

=
J∑

j=1

∑

A

〈
1AΨ,

N∑

i=1

(−∆xi)
s
|Ωj1AΨ

〉

=

J∑

j=1

∑

A

∫

Rd(N−|Aj |)
‖Ψ( · ; xAcj )‖

2

Ḣs,|Aj |(Ωj)

∏

`6=j

[
1

Ω
|A`|
`

(xA`)dxA`

]
.

Here we have introduced the shorthand notation

(x1, . . . ,xN ) = (xAj ; xAcj ), xAj = (x`)`∈Aj ∈ (Rd)|Aj |.

Since Ψ ∈ Hs,Nk (Rd), for a.e. xAcj ∈ Rd(N−|Aj |) the function Ψ( · ; xAcj ) is in Hs,|Aj |k (Rd), and

hence

‖Ψ( · ; xAcj )‖
2

Ḣs,|Aj |(Ωj)
≥ E|Aj |(Ωj)

∫

Ω
|Aj |
j

|Ψ(xAj ; xAcj )|
2dxAj

= E|Aj |(Ωj)

∫

Rd|Aj |
|Ψ(xAj ; xAcj )|

21
Ω
|Aj |
j

(xAj )dxAj .

Thus in summary

‖Ψ‖2
Ḣs,N (Ω)

≥
J∑

j=1

∑

A

E|Aj |(Ωj)

∫

RdN
|Ψ|2

J∏

`=1

[
1

Ω
|A`|
`

(xA`)dxA`

]

=

J∑

j=1

∑

A

E|Aj |(Ωj)〈Ψ,1AΨ〉 =
∑

A

[ J∑

j=1

E|Aj |(Ωj)
]
〈Ψ,1AΨ〉

≥
[

min
{nj}∈NJ0 s.t.

∑
j nj=N

J∑

j=1

Enj (Ωj)
]∑

A

〈Ψ,1AΨ〉

=
[

min
{nj}∈NJ0 s.t.

∑
j nj=N

J∑

j=1

Enj (Ωj)
]
‖Ψ‖2L2(ΩN ).

Here in the last identity we have used the partition of unity (4.10) again. This implies the
desired estimate (4.9). �

Now we are ready to prove the reduction of the local exclusion.

Lemma 4.4 (Energy positivity implies local exclusion). Assume that there exists a constant
q > 0 such that for any cube Q ⊂ Rd,

EN (Q) > 0, ∀N ≥ q. (4.11)
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Then for all N ≥ 1 and for all wave functions ΨN ∈ Hs,Nk (Rd), ‖ΨN‖L2(RdN ) = 1, we have

EQ[ΨN ] ≥ C|Q|−2s/d

[∫

Q
%ΨN (x) dx− q

]

+

. (4.12)

Here C > 0 is a constant independent of N , ΨN and Q.

Proof. Given (4.11), the energy functional En(Q) defined in (4.7) verifies all conditions in
Lemma 4.1. Therefore, there exists a constant C > 0 independent of n and Q such that

En(Q) ≥ C|Q|−2s/dn1+2s/d1{n≥q} ≥ C|Q|−2s/d[n− q]+, ∀n ≥ 0. (4.13)

Now we adapt the localization method in the proof of Lemma 4.3 to treat the functional
EQ[ΨN ] (instead of ‖ΨN‖2Ḣs,N (Q)

). To be precise, for any subset B of {1, . . . , N} we denote

by 1B the characteristic function of the set
{

(x1, . . . ,xN ) ∈ (Rd)N : xi ∈ Q⇔ i ∈ B, for all i
}
.

For any ΨN ∈ Hs,Nk (Rd), ‖ΨN‖L2(RdN ) = 1, by inserting the partition of unity

1RdN =
∑

B

1B (4.14)

we can write

EQ[ΨN ] =

〈
ΨN ,

N∑

i=1

(−∆xi)
s
|QΨN

〉
=
∑

B

〈
1BΨN ,

N∑

i=1

(−∆xi)
s
|Q1BΨN

〉

=
∑

B

∫

(Rd\Q)N−|B|
‖ΨN ( · ; xBc)‖2Ḣs,|B|(Q)

1(Rd\Q)ddxBc

≥
∑

B

∫

(Rd\Q)N−|B|
E|B|(Q)‖ΨN ( · ; xBc)‖2L2(Q|B|)dxBc

=
∑

B

E|B|(Q)〈ΨN ,1BΨN 〉. (4.15)

Here we have used the fact that 1B commutes with (−∆xi)
s
|Q and the shorthand notation

(x1, . . . ,xN ) = (xB; xBc), xB = (x`)`∈B ∈ (Rd)|B|.

On the other hand, the partition of unity (4.14) implies that

∑

B

〈ΨN ,1BΨN 〉 = 〈ΨN ,ΨN 〉 = 1

and

∑

B

|B|〈ΨN ,1BΨN 〉 =
∑

B

〈
1BΨN ,

N∑

i=1

1Q(xi)1BΨN

〉
=

〈
ΨN ,

N∑

i=1

1Q(xi)ΨN

〉
=

∫

Q
%ΨN .
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Thus from (4.15) and (4.13) we conclude that

EQ[ΨN ] ≥ C

|Q|2s/d
∑

B

[
|B| − q

]
+
〈ΨN ,1BΨN 〉

≥ C

|Q|2s/d
[∑

B

(|B| − q)〈ΨN ,1BΨN 〉
]

+

=
C

|Q|2s/d
[∫

Q
%ΨN − q

]
+

by Jensen’s inequality and the convexity of the function t 7→ [t]+. �

5. Many-body Poincaré inequality

The crucial fact that the local energy En(Ω) in (4.7) eventually becomes positive with
increasing particle number is the content of the following Poincaré inequality:

Theorem 5.1 (Poincaré inequality for functions vanishing on diagonals). Fix an integer
k ≥ 2 and a bounded connected Lipschitz domain Ω ⊂ Rd. Assume that 2s > d(k − 1). For
N ∈ N large enough (N ≥ dsedk is sufficient) there exists a positive constant C depending
only on s, k,N,Ω so that

‖u‖Ḣs,N (Ω) ≥ C‖u‖L2(ΩN ) (5.1)

for all u ∈ C∞(ΩN ) whose restriction to 44k is zero.

Since Theorem 5.1 is of independent interest, we state the result for more general domains
although the result for cubes is sufficient for our application.

Conclusion of Theorem 2.2. From Theorem 5.1 and Lemma 4.4 we obtain the local ex-
clusion bound (4.12). Theorem 2.2 then immediately follows from the proof strategy in
Section 3. �

It remains to prove Theorem 5.1. The central fact used in the proof is that a function
minimizing (5.1) must be a polynomial, and that if a polynomial vanishes on too many
diagonals it must be zero.

Lemma 5.2 (Low-degree polynomials vanishing on diagonals are trivial). Given d, k, S ∈
N1 and N ≥ (S+1)dk. Let the dN -variable polynomial f(x1, . . . ,xN ), with xi ∈ Rd, satisfy

• degxj f ≤ S for all j ∈ {1, . . . , N},
• f(x1, . . . ,xN ) = 0 on 44k.

Then f ≡ 0.

Proof. The case k = 1 (441 = Rd) is trivial. We prove the other cases by induction.

Step 1: Consider d = 1 and k = 2. Then f(x1, . . . , xN ) = 0 if xi = xj for some i 6= j.
Consequently, when x2, . . . , xN are mutually different, the one variable polynomial g(x1) =
f(x1, x2, . . . , xN ) has deg g ≤ S but it has N − 1 different roots x1 = x2, . . . , x1 = xN .
Therefore, if

N − 1 > S

(which holds if N ≥ (S + 1)k) then g(x1) ≡ 0. Thus

f(x1, . . . , xN ) = 0
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for all x1, . . . , xN ∈ R satisfying that x2, . . . , xN are mutually different. By continuity, we
conclude that f ≡ 0.

Step 2: Consider d = 1 and k > 2. Then f(x1, . . . , xN ) = 0 if at least k points xi’s coincide.
Then if xk, . . . , xN are mutually different, the one-variable polynomial

g(x1) = f(x1, . . . , x1, xk, . . . , xN )

has deg g ≤ S(k − 1) but it has N − k + 1 different roots x1 = xk, . . . , x1 = xN . Therefore,
if

N − k + 1 > S(k − 1)

(which holds if N ≥ (S + 1)k) then g ≡ 0. Thus

f(x1, . . . , x1, xk, . . . , xN ) = 0

if xk, . . . , xN are mutually different. By continuity, we conclude that

f(x1, . . . , x1, xk, . . . , xN ) = 0

for all x1, . . . , xN . Similarly, by a renumbering, we can show that

f(x1, x2, . . . , xN ) = 0

if at least (k − 1) points xi’s coincide. By induction in k, we conclude that f ≡ 0.

Step 3: Now consider d > 1 and k ≥ 2. Let us denote

xi = (yi, zi) ∈ R× Rd−1.

Take

n = (S + 1)k, N ≥ (S + 1)dk = (S + 1)d−1n.

Then for any z ∈ Rd−1 and xn+1, . . . ,xN ∈ Rd, the polynomial

g(y1, . . . , yn) = f((y1, z), . . . , (yn, z),xn+1, . . . ,xN )

satisfies that degyi g ≤ S and g = 0 if (at least) k points yi’s coincide. By the result in the
1D case (with the choice n = (S + 1)k) we conclude that g ≡ 0. Similarly, we obtain that

f(x1, . . . ,xN ) = f((y1, z1), . . . , (yN , zN )) = 0

if at least n points zi’s coincide. By induction in d (i.e. using the induction hypothesis with
d− 1 and k = n, N ≥ (S + 1)d−1n) we conclude that f ≡ 0. �

We will also need the following technical lemma, which essentially states that if a mul-
tivariable function is a polynomial in each variable separately, then it is a multivariable
polynomial. The proof of this seemingly obvious fact is indeed non-trivial; see Carroll [1]
for an elegant proof in the two variables case. Here we provide an alternative proof for n
variables.

Lemma 5.3. Let f(x1, . . . , xn) ∈ L1
loc(Rn) satisfy that for any j = 1, 2, . . . , n and for a.e.

(x1, . . . , xj−1, xj+1, . . . , xn) ∈ Rn−1 the mapping xj 7→ f(x1, . . . , xj , . . . , xn) is a polynomial
of degree at most Mj. Then f is a polynomial of n variables (x1, . . . , xn) of degree at most
M =

∑n
j=1Mj.

From the proof below, it is clear that we can replace Rn by a subdomain (e.g. a cube).
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Proof. Step 1. We use the notation x = (x1, . . . , xn) ∈ Rn, α = (α1, . . . , αn) ∈ Nn0 , and for
every j = 1, 2, . . . , n we write

x = (xj ; x′j), α = (αj ;α
′
j).

By assumption, for a.e. x′j ∈ Rn−1, the mapping xj 7→ f(xj ; x′j) is a polynomial of degree

at most Mj . Therefore, for any αj > Mj , D
αjf( · ; x′j) = 0 as distribution on R, namely

∫

R
f(xj ; x′j)D

αjh(xj) dxj = 0, ∀h ∈ C∞c (R). (5.2)

Consequently, Dαf = 0 as distribution in Rn if |α| > M . Indeed, since |α| > M we have
αj > Mj for some j, and hence for any test function ϕ ∈ C∞c (Rn) using Fubini’s theorem
and (5.2) we can write

∫

Rn
fDαϕdx =

∫

Rn−1

[∫

R
f(xj ; x′j)D

αj
(
Dα′jϕ(xj ; x′j)

)
dxj

]
dx′j = 0.

Step 2. Thus it remains to prove that if Dαf = 0 as distribution in Rn for any |α| > M ,
then f is a polynomial of n variables. We prove this statement by induction in M .

If M = 0, then Dxjf = 0 as distribution for any j = 1, 2, . . . , n, and hence f is constant
by [11, Theorem 6.1].

Now we prove the statement for M ≥ 1 using the induction hypothesis for M − 1. From

Dαf = 0, ∀|α| > M

we have for any j = 1, 2, . . . , n,

Dα(Dxjf) = 0, ∀|α| > M − 1.

Thus by the induction hypothesis for M − 1, Dxjf is a polynomial of n variables for any

j = 1, 2, . . . , n. Since Dxjf ∈ C(Rn) for all j = 1, 2, . . . , n, we obtain that f ∈ C1(Rn)
by [11, Theorem 6.10] and we have the formula [11, Theorem 6.9]

f(x) = f(0) +

∫ 1

0
x · (∇f)(tx) dt, ∀x ∈ Rn.

The latter formula and the fact that Dxjf is a polynomial of n variables for any j =
1, 2, . . . , n imply that f is a polynomial of n variables. This ends the proof. �

Proof of Theorem 5.1. We argue by contradiction. Assume that (5.1) is false, then there
exists a sequence un ∈ C∞(ΩN ) satisfying ‖un‖L2 = 1, un

∣∣
44k≡ 0, and

‖un‖Ḣs,N (Ω) → 0, as n→∞. (5.3)

In particular, un is bounded in the Sobolev space Hν(ΩN ) with ν = min{s, 1}. Indeed,
for d = 1 this follows from Lemma A.1 and Sobolev’s embedding theorem. If d ≥ 2 then
s > 1 and the claim follows from Sobolev’s embedding theorem combined with that for any
Ω the Ḣ1(ΩN ) and Ḣ1,N (Ω) seminorms are equivalent. By compactness of the embedding
Hν(ΩN ) ⊂ L2(ΩN ), up to a subsequence, un converges strongly to a function P in L2(ΩN ).
Since ‖un‖L2(ΩN ) = 1 we have that ‖P‖L2(ΩN ) = 1.
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On the other hand, by Poincaré’s inequality for Ḣs(Ω) (combining [11, Theorem 8.11]
and [8, Lemma 2.2])

‖un‖2Ḣs,N (Ω)
=

N∑

j=1

∫

ΩN−1

‖un(xj ; x′)‖2
Ḣs

xj
(Ω)
dx′

≥ C
N∑

j=1

∫

ΩN

∣∣un(x)− P (n)
j (x)

∣∣2 dx,

where P
(n)
j (x) is a polynomial in xj of degree ≤ ds − 1e. In fact, the polynomial can be

written explicitly as

P
(n)
j (x) =

∑

|β|≤ds−1e
xβj 〈ϕβ(xj), un(xj ; x′)〉L2

xj
(Ω) (5.4)

for universal functions ϕβ ∈ C∞(Ω). Since un converges strongly in L2(ΩN ), we can con-

clude that P
(n)
j (x)→ Pj(x) strongly in L2(ΩN ) and the limit is again a polynomial in xj of

degree ≤ ds− 1e. The assumption (5.3) allows us to identify the limiting functions and we
find that

P (x) = Pj(x) in L2(ΩN ), ∀j.
Thus the function P (x) is a polynomial in each variable xj (of degree ≤ ds − 1e). By

Lemma 5.3, P (x) is a multivariate polynomial whose degree in each xj is ≤ ds− 1e.
We now want to use that un = 0 on 44k to prove that P = 0 on 44k. Once this is done,

then Lemma 5.2 implies that P ≡ 0 if N ≥ dsedk. This contradicts that ‖P‖L2(ΩN ) = 1
and hence completes our proof. Note that if we can prove that P ≡ 0 in some open subset
this is sufficient, in particular we can find some open cube Q ⊆ Ω and consider instead un
and P restricted to QN .

We consider the diagonal x1 = x2 = . . . = xk; the other cases are treated identically. By
Lebesgue’s differentiation theorem it suffices to prove that

lim
δ→0

1

δd(k−1)

∫

QN−k+1

∫

maxj≤k |x1−xj |<δ
|P (x1, . . . ,xk; x′)| dx = 0. (5.5)

By Fatou’s lemma we have for any δ > 0 that
∫

QN−k+1

∫

maxj≤k |x1−xj |<δ
|P (x1, . . . ,xk; x′)| dx

≤ lim
n→∞

∫

QN−k+1

∫

maxj≤k |x1−xj |<δ
|un(x1, . . . ,xk; x′)| dx.

(5.6)

Since un = 0 on 44k it holds that
∫

QN−k+1

∫

maxj≤k |x1−xj |<δ
|un(x1, . . . ,xk; x′)| dx

=

∫

QN−k+1

∫

maxj≤k |x1−xj |<δ
|un(x1, . . . ,xk; x′)− un(x1, . . . ,x1; x′)| dx.

(5.7)
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By Lemma A.1, any u ∈ L2(Ql) with ‖u‖Ḣs,l(Q) <∞ satisfies that u ∈ Hs(Ql) and moreover

there is a constant C depending only on Q, l, s such that

‖u‖Hs(Ql) ≤ C
(
‖u‖L2(Ql) + ‖u‖Ḣs,l(Q)

)
. (5.8)

If 2s > dl, by Sobolev’s embedding theorem (see for instance [24, Theorem 8.2]), there is
for any γ ∈

(
0,min

{
1, 2s−dl

2

})
a constant C so that

‖u‖C0,γ(Ql) ≤ C‖u‖Hs(Ql), for all u ∈ Hs(Ql).

By assumption 2s > d(k − 1), and hence we can apply this result to the function

(x2, . . . ,xk) 7→ un(x1, . . . ,xk; x′)

(whose Ḣs,k−1(Q)-seminorm is bounded for a.e. (x1, x
′)). Equation (5.7) then implies that

∫

QN−k+1

∫

maxj≤k |x1−xj |<δ
|un(x1, . . . ,xk; x′)| dx

≤ C
∫

QN−k+1

∫

maxj≤k |x1−xj |<δ
‖un(x1, x

′′; x′)‖Hs
x′′ (Q

k−1)|x′′ − x′′1|γdx′′dx1dx′,

where we set x′′ = (x2, . . . ,xk) and x′′1 = (x1, . . . ,x1). Applying (5.8) and Hölder’s inequal-
ity yields
∫

QN−k+1

∫

maxj≤k |x1−xj |<δ
|un(x1, . . . ,xk; x′)| dx ≤ Cδd(k−1)+γ

(
‖un‖L2(QN ) + ‖un‖Ḣs,N (Q)

)
.

Since ‖un‖L2(QN ) + ‖un‖Ḣs,N (Q) ≤ C and γ > 0, we arrive at (5.5) which completes the

proof of Theorem 5.1. �

We finally note that the many-body nature of the wave functions is crucial for Theorem 5.1
to hold. The following example shows that the requirement that the particle number N is
large, in fact typically strictly larger than k, is necessary.

Proposition 5.4 (Counterexample to the k-body case). Theorem 5.1 cannot hold for N <
k, or for N = k if s is integer and

max{d, 2}(k − 1) < 2s < (d+ k)(k − 1).

Replacing the condition u|44k = 0 by the stronger condition

u ∈ Hs,N0,k (Rd) :=
{

Ψ ∈ C∞c (RdN \ 44k)
}Hs(RdN )

,

or

u ∈ Hs,NW,k(Rd) :=

{
Ψ ∈ Hs(RdN ) :

∫

RdN
Ws,k|Ψ|2 <∞

}
,

with the k-particle generalization of Ws,

Ws,k(x) :=
∑

A⊆{1,...,N}
|A|=k

(∑

j,l∈A
j<l

|xj − xl|2
)−2s

,

does not help.
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Proof. If N < k there is no diagonal set 44k and we may take the constant function as a
counterexample. For N = k we consider the polynomial

u(x1, . . . ,xk) :=
∏

1≤j<l≤k
(xj,1 − yl,1),

for which, by the arithmetic mean-geometric mean inequality and the triangle inequality,

|u(x)|2 .
(∑

j<l

|xj,1 − xl,1|2
)(k2)

≤
(∑

j<l

|xj − xl|2
)(k2)

.
(∑

l≥2

|x1 − xl|2
)(k2)

=: R2(k2),

where R ≥ 0 may serve as a radial coordinate on Rd(k−1) relative to x1. Hence, we have
that

∫

Qk
Ws,k|u|2 .

∫

Q

∫

Qk−1

R2(k2)

R2s
dx2 . . . dxkdx1 .

∫ C

0
Rk(k−1)−2s+d(k−1)−1dR <∞,

if d(k − 1) < 2s < (d+ k)(k − 1). Thus (analogously to Lemma B.2, and by extension)

u ∈ Hs,NW,k(Rd) ⊆ H
s,N
0,k (Rd).

On the other hand

‖u‖2
Ḣs,k(Ω)

=
k∑

j=1

∑

|α|=m

m!

α!

∫

Qk
|Dα

xju|2 = 0,

if s = m > k − 1. �
A particular case included in the above is d = 3, s = 2, k = 2, with the function

u(x,y) := x1 − y1.

Appendix A. Equivalence of Sobolev spaces

In this appendix we discuss the N -particle space

Hs,N (Ω) :=
{
u ∈ L2(ΩN ) : ‖u‖Ḣs,N (Ω) <∞

}

and its relation to the standard Sobolev space Hs(ΩN ).
If Ω = Rd the equivalence of the seminorms (and consequently the spaces)

cs,N‖u‖Ḣs(RdN ) ≤ ‖u‖Ḣs,N (Rd) ≤ Cs,N‖u‖Ḣs(RdN ) (A.1)

can be seen via the Fourier transform. However, the constants in the equivalence depend on
N and s. In particular, if s 6= 1 the equivalence degenerates as N tends to infinity; either
cs,N → 0 or Cs,N →∞. Specifically, the sharp constants in (A.1) are given by

cs,N = min{1, N (1−s)/2} and Cs,N = max{1, N (1−s)/2}.
Thus it is a slightly subtle question of what happens to these spaces in the many-body
limit. An even more subtle question is what happens to the local versions of these spaces,
i.e. when Rd is replaced by Ω ( Rd. For us, the following equivalence of the spaces in the
case of cubes will suffice:

Lemma A.1. Let u ∈ L2(QN ), Q = [0, 1]d. There exist positive constants c, C depending
only on d, s,N so that

c
(
‖u‖L2(QN ) + ‖u‖Ḣs,N (Q)

)
≤ ‖u‖Hs(QN ) ≤ C

(
‖u‖L2(QN ) + ‖u‖Ḣs,N (Q)

)
.
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Lemma A.1 is an immediate consequence of the equivalence (A.1) of the two seminorms
on RdN and the following extension lemma:

Lemma A.2. Let u ∈ L2(QN ), Q = [0, 1]d, and assume that ‖u‖L2(QN ) + ‖u‖Ḣs,N (Q) <∞.

There exists a function ũ ∈ L2(RdN ) with compact support satisfying

ũ
∣∣
QN

= u, and ‖ũ‖L2(RdN ) + ‖ũ‖Ḣs,N (Rd) ≤ C
(
‖u‖L2(QN ) + ‖u‖Ḣs,N (Q)

)
,

where C is a constant depending only on s, d and N .

Proof. We shall prove the lemma by using higher-order reflection through one side of the
hypercube Q at a time. To this end we recall that if v ∈ Cn([0, 1]), for some n ≥ 0, we can
construct an explicit extension ṽ ∈ Cn((−∞, 1]) satisfying ṽ(x) = 0 when x < −δ. Namely,
set

ṽ(x) =

{
v(x), if x ∈ [0, 1],

ϕ(x)
∑n+1

j=1 λjv(−x/j), if x < 0,

where ϕ ∈ C∞((−∞, 0]) such that ϕ(x) ≡ 0 for x < −δ and ϕ(x) ≡ 1 in [−δ/2, 0]. What
remains is to verify that we can choose the λj ’s so that ṽ ∈ Cn. But if we differentiate ṽ
for x away from zero we see that the system of equations that we need the λj to satisfy to
get continuity of the derivatives across x = 0 is

[
(−j)1−i

]n+1

i,j=1




λ1
...

λn+1


 =




1
...
1


 .

But the determinant of this matrix is non-zero (it is a Vandermonde matrix) and hence
there exists a unique solution (λ1, . . . , λn+1).

We shall now prove that we can use this one-dimensional extension repeatedly to construct
an extension of u to RdN . The idea is to use the one-dimensional result one coordinate at
a time and show that the new function in each step has the quantity corresponding to the
Ḣs,N -seminorm controlled by that of u.

Without loss we can assume that u ∈ Cn(QN ) (the construction is stable under approx-
imation), where we take n = dse. Consider u(x1; x′), x1 ∈ [0, 1] and x′ ∈ [0, 1]dN−1. And
apply the above lemma for each fixed x′, that is, we define v1 by

v1(x1; x′) =

{
u(x1; x′), if x1 ∈ [0, 1],

ϕ(x1)
∑n+1

j=1 λju(−x1/j; x′), if x1 ∈ [−1, 0).

It is a simple calculation to use Sobolev’s embedding theorem to prove that we can bound
the Lp-norm of l-th order derivatives of v1 by the corresponding one for u if l ≤ n. We need
to prove that also the fractional order seminorm is preserved. That is, we wish to show
that, with s = m+ σ and Q′ = [−1, 1]× [0, 1]d−1,

∫

QN−1

∫∫

Q′×Q′

|Dα
x1
v1(x1; x′)−Dα

y1
v1(y1; x′)|2

|x1 − y1|d+2σ
dx1dy1dx′

+

N∑

i=2

∫

Q′×QN−2

∫∫

Q×Q

|Dα
xiv1(xi; x′)−Dα

yiv1(yi; x′)|2
|xi − yi|d+2σ

dxidyidx′

≤ C
(
‖u‖2

Ḣs,N (Q)
+ ‖u‖2L2(QN )

)
,

(A.2)
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for all multi-indices |α| = m. If we can prove this inequality, then by repeating the procedure

to extend v1 to x1 > 1 the same proof gives that we can bound the corresponding Ḣs,N

quantity in terms of that of v1, and hence u. By repeating the procedure for each coordinate
at a time we, after 2dN reflections, find a function ũ ∈ L2(RdN ) satisfying the claims of the
lemma. Thus all that remains is to prove (A.2).

We start with the first term which is also the most difficult:

∫

QN−1

∫∫

Q′×Q′

|Dα
x1
v1(x1; x′)−Dα

y1
v1(y1; x′)|2

|x1 − y1|d+2σ
dx1dy1dx′

=

∫

QN−1

[∫∫

Q×Q

|Dα
x1
u(x1; x′)−Dα

y1
u(y1; x′)|2

|x1 − y1|d+2σ
dx1dy1

+ 2

∫∫

Q×(Q′\Q)

|Dα
x1
u(x1; x′)−∑n+1

j=1 λjD
α
y1

(ϕ(y1,1)u(−y1,1/j,y
′
1; x′))|2

|x1 − y1|d+2σ
dx1dy1

+

∫∫

(Q′\Q)×(Q′\Q)
|x1 − y1|−d−2σ

∣∣∣
n+1∑

j=1

λj

(
Dα

x1

[
ϕ(x1,1)u(−x1,1/j,x

′
1; x′)

]

−Dα
y1

[
ϕ(y1,1)u(−y1,1/j,y

′
1; x′)

])∣∣∣
2
dx1dy1

]
dx′.

(A.3)

Clearly the integral over Q × Q is bounded by ‖u‖Ḣs,N (Q). We treat the two remaining

terms separately. In order to bound the integral over Q× (Q′ \Q) we write

Q1 = {x ∈ Q′ \Q : x1 > −δ/2},
Q2 = {x ∈ Q′ \Q : x1 ≤ −δ/2}.

Thus we can bound the second integral in (A.3) as follows:

∫

QN−1

∫∫

Q×(Q′\Q)

|Dα
x1
u(x1; x′)−∑n+1

j=1 λjD
α
y1

(ϕ(y1,1)u(−y1,1/j,y
′
1; x′))|2

|x1 − y1|d+2σ
dx1dy1dx′

=

∫

QN−1

∫∫

Q×Q1

|Dα
x1
u(x1; x′)−∑n+1

j=1 λjD
α
y1

(u(−y1,1/j,y
′
1; x′))|2

|x1 − y1|d+2σ
dx1dy1dx′

+

∫

QN−1

∫∫

Q×Q2

|Dα
x1
u(x1; x′)−∑n+1

j=1 λjD
α
y1

(ϕ(y1,1)u(−y1,1/j,y
′
1; x′))|2

|x1 − y1|d+2σ
dx1dy1dx′

≤
∫

QN−1

∫∫

Q×Q1

|Dα
x1
u(x1; x′)−∑n+1

j=1 λj(−j)−α1Dα
y1
u(−y1,1/j,y

′
1; x′)|2

|x1 − y1|d+2σ
dx1dy1dx′

+
C

δd+2σ

∫

QN−1

∫∫

Q×Q2

|Dα
x1
u(x1; x′)−

n+1∑

j=1

λjD
α
y1

(ϕ(y1,1)u(−y1,1/j,y
′
1; x′))|2dx1dy1dx′.

Using the triangle inequality and Sobolev’s embedding theorem one finds that the second
term is . ‖u‖2

L2(QN )
+‖u‖2

Ḣs,N (Q)
. Since

∑
j λj(−j)−α1 = 1 for any α1 ≤ m+1, one obtains
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for the first integral
∫

QN−1

∫∫

Q×Q1

|Dα
x1
u(x1; x′)−∑n+1

j=1 λj(−j)−α1Dα
y1
u(−y1,1/j,y

′
1; x′)|2

|x1 − y1|d+2σ
dx1dy1dx′

=

∫

QN−1

∫∫

Q×Q1

|∑n+1
j=1 λj(−j)−α1

(
Dα

x1
u(x1; x′)−Dα

y1
u(−y1,1/j,y

′
1; x′)

)
|2

|x1 − y1|d+2σ
dx1dy1dx′

≤ C
n+1∑

j=1

∫

QN−1

∫∫

Q×Q1

|Dα
x1
u(x1; x′)−Dα

y1
u(−y1,1/j,y

′
1; x′)|2

|x1 − y1|d+2σ
dx1dy1dx′

≤ C
n+1∑

j=1

∫

QN−1

∫∫

Q×Q

|Dα
x1
u(x1; x′)−Dα

y1
u(y1; x′)|2

(|x′1 − y′1|2 + (x1,1 + jy1,1)2)d/2+σ
dx1dy1dx′

≤ C‖u‖2
Ḣs,N (Q)

.

In the last step we used the inequality (x+ jy)2 ≥ (x− y)2 for x, y ≥ 0 and j ≥ 1.

For the last integral in (A.3) we have

∫

QN−1

∫∫

(Q′\Q)×(Q′\Q)
|x1 − y1|−d−2σ

∣∣∣
n+1∑

j=1

λj

(
Dα

x1

[
ϕ(x1,1)u(−x1,1/j,x

′
1; x′)

]

−Dα
y1

[
ϕ(y1,1)u(−y1,1/j,y

′
1; x′)

])∣∣∣
2
dx1dy1dx′

=

∫

QN−1

∫∫

(Q′\Q)×(Q′\Q)
|x1 − y1|−d−2σ

∣∣∣
n+1∑

j=1

∑

γ+β=α1

λj(−j)−β

×
(
ϕ(γ)(x1,1)Dα′

x1
u(−x1,1/j,x

′
1; x′)− ϕ(γ)(y1,1)Dα′

y1
u(−y1,1/j,y

′
1; x′)

)∣∣∣
2
dx1dy1dx′,

where we set α′ as the multi-index α but with α1 exchanged for β. By the triangle inequality
and the fact that

∑
j λj(−j)−β = 1 the integral is smaller than

C

n+1∑

j=1

∫

QN−1

∫∫

(Q′\Q)×(Q′\Q)
|x1 − y1|−d−2σ

∣∣∣
∑

γ+β=α1

(
ϕ(γ)(x1,1)Dα′

x1
u(−x1,1/j,x

′
1; x′)

− ϕ(γ)(y1,1)Dα′
y1
u(−y1,1/j,y

′
1; x′)

)∣∣∣
2
dx1dy1dx′

≤ C
n+1∑

j=1

∫

QN−1

∫∫

Q×Q
(|x′1 − y′1|2 + j2(x1,1 − y1,1)2)−d/2−σ

×
∣∣∣
∑

γ+β=α1

(
ϕ(γ)(−jx1,1)Dα′

x1
u(x1; x′)− ϕ(γ)(−jy1,1)Dα′

y1
u(y1; x′)

)∣∣∣
2
dx1dy1dx′

≤ C
n+1∑

j=1

∫

QN−1

∫∫

Q×Q

∣∣Dα
x1

[
ϕ(−jx1,1)u(x1; x′)

]
−Dα

y1

[
ϕ(−jy1,1)u(y1; x′)

]∣∣2

|x1 − y1|d+2σ
dx1dy1dx′

≤ C‖u‖2
Ḣs,N (Q)

,
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where we used that ‖ψu‖Ḣs(Q) ≤ Cψ‖u‖Ḣs(Q) for any ψ ∈ C∞(Q).

To show that the remaining terms in (A.2) are . ‖u‖2L2 + ‖u‖2
Ḣs,N one can proceed in an

almost identical manner. The main difference is that in these terms the differentiation is
with respect other variables than the variable in which the extension has been made, and
the splitting of the integrals is slightly different. However, in the end this only simplifies
each step of the proof. �

Appendix B. Spaces of contact interaction

We consider in the following only 2-particle diagonals44, for simplicity, however analogous
statements can be made for the case of k-particle diagonals.

Define for N ≥ 2 the restricted N -particle spaces

Hs,NW (Rd) :=

{
Ψ ∈ Hs(RdN ) :

∫

RdN
Ws|Ψ|2 <∞

}
,

Hs,N0 (Rd) :=
{

Ψ ∈ C∞c (RdN \ 44)
}Hs(RdN )

,

Hs,N (Rd) :=
{

Ψ ∈ C∞c (RdN ) : Ψ|44 = 0
}Hs(RdN )

.

Then we have for all s > 0 the chain of inclusions

Hs,NW (Rd) ⊆ Hs,N0 (Rd) ⊆ Hs,N (Rd) ⊆ Hs(RdN ).

The latter two inclusions are trivial while the first one will be proved below. Moreover, for
2s < d all four spaces are equal by the Hardy–Rellich inequality (see e.g. [27]):

∫

RdN
|x1 − x2|−2s|Ψ(x1; x′)|2 dx1dx′ ≤ C

∫

Rd(N−1)

‖Ψ‖2
Ḣs

x1
(Rd)

dx′ ≤ C‖Ψ‖2Hs(RdN ).

In the critical case 2s = d we still have Hs,N0 (Rd) = Hs,N (Rd) = Hs(RdN ), as is also shown

below, but a strict inclusion Hs,NW (Rd) ( Hs,N0 (Rd), as illustrated by

Ψ(x) = e−|x|
2

which is in Hs(RdN ) but not in Hs,NW (Rd) due to the non-integrability of Ws. For 2s > d

and s− d/2 /∈ Z it again holds by the Hardy–Rellich inequality that Hs,NW (Rd) = Hs,N0 (Rd),
while not necessarily Hs,N0 (Rd) = Hs,N (Rd), as with the example

Ψ(x1, x2) = (x1 − x2)e−|x|
2

which is in Hs,2(Rd) but not in Hs,2W (Rd) for s = 2 and d = 1.

Let χ
(∗)
ε (x) :=

∏
1≤j<k≤N ϕ

(∗)
ε (xj − xk) where ϕε(x) = ϕ(|x|/ε) and ϕ∗ε(x) = ϕ∗(ε ln |x|).

We take ϕ(∗) as smooth functions from R to [0, 1] such that ϕ(x) = 0 for x ≤ 1, ϕ(x) = 1
for x ≥ 2, and ϕ∗(x) = 0 for x ≤ −2, ϕ∗(x) = 1 for x ≥ −1.

Lemma B.1. Let Ω ⊂ Rd be open and bounded. For all s = m+ σ > 0, d ≥ 1 and N ≥ 1
it holds as ε→ 0 that

‖χε‖Ḣs,N (Ω) ≤ Cεd/2−s, ‖Dαχε‖Ḣσ,N (Ω) ≤ Cεd/2−|α|−σ,
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while for 2s = d

‖χ∗ε‖Ḣs,N (Ω) ≤ Cε1/2, ‖Dαχ∗ε‖Ḣσ,N (Ω) ≤ Cε1/2

for |α| ≤ d/2− σ.

Proof. For α 6= 0 there are in Dα
xjχε a total of |α| derivatives of functions ϕε(xj−xk), k 6= j,

and remaining factors involving the other particles. These factors are uniformly bounded
while each derivative yields an additional factor 1/ε, while reducing the support in xj to
B2ε(xk) \Bε(xk). Furthermore, we thus have

|Dαϕε(x)| ≤ Cε−|α|1B2ε(0)\Bε(0),

|Dαϕε(x)−Dαϕε(y)| ≤ Cε−|α|−1|x− y|1x,y∈B2ε(0)\Bε(0),

and for B(j, ε) = ∪k 6=jB2ε(xk) \ ∪k 6=jBε(xk),
|χε(xj ; x′)− χε(yj ; x′)| ≤ Cε−1|xj − yj |1xj ,yj∈B(j,ε),

and

|Dαχε(xj ; x′)−Dαχε(yj ; x′)| ≤ Cε−|α|−1|xj − yj |1xj ,yj∈B(j,ε).

Hence, ‖Dαχε‖2L2
xj

(Ω) . ε−2|α|+d, and for any 0 < σ < 1

‖Dαχε‖2Ḣσ
xj

(Ω)
=

∫∫

Ω×Ω

|Dαχε(x; x′)−Dαχε(y; x′)|2
|x− y|d+2σ

dxdy

. ε−2|α|−2
∑

k 6=j

∫∫

B2ε(xk)×B2ε(xk)
|x− y|−d−2σ+2dxdy . ε−2|α|−2σ+d,

so that ‖χε‖2Ḣs,N (Ω)
. ε−2s+d.

Similarly, for χ∗ε we consider B(j, ε) = ∪k 6=jBe−1/ε(xk) \ ∪k 6=jBe−2/ε(xk) and

|Dαϕ∗ε(x)| = |Dα
xϕ
∗(ε ln |x|)| ≤ Cε|x|−|α|1B

e−1/ε (0)\B
e−2/ε (0). (B.1)

In χ∗ε this could involve different points xk but the worst case is if they are the same,

‖Dαχ∗ε‖2L2
xj

(Ω) . ε2

∫

B(j,ε)
|xj − xk|−2|α| dxj .

{
ε2 for 0 < 2|α| < d,

ε2
∫ −ε−1

−2ε−1 ds = ε for 2|α| = d.

This covers the even-dimensional critical case d = 2m, m ∈ N1.
In the odd-dimensional critical case d = 2m+ 2σ, σ = 1/2, we observe that

‖Dαχε‖2Ḣσ
xj

(Ω)
=

∫∫

Ω×Ω

|Dαχε(x; x′)−Dαχε(y; x′)|2
|x− y|d+1

dxdy

. ε−2|α|−2
∑

k 6=j

∫∫

B2ε(xk)×B2ε(xk)
|x− y|−d+1dxdy . ε−2|α|−1+d,

which is not enough for 2|α| = d− 1. Instead we shall use χ∗ε.
For the case 2|α| = d − 1 things are a bit less straightforward. We start with the case

d = 1 which is the easiest. Here our approach differs slightly due to the fact that in this
case |α| = 0.

Let U1 = ∩k 6=jBe−1/ε(xk)
c, U2 = ∪k 6=jBe−2/ε(xk) and U = Ω \ (U1 ∪ U2).
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We estimate the seminorm ‖χ∗ε‖Ḣs
xj

(Ω). By construction of χ∗ε we have that

|χ∗ε(x; x′)− χ∗ε(y; x′)| ≤ 1, ∀x,y ∈ Ω.

Moreover, the difference is zero whenever (x,y) ∈ U2
1 ∪ U2

2 .
For x and y close we need to estimate this quantity more precisely. By Taylor’s theorem

we can estimate

|χ∗ε(x; x′)− χ∗ε(y; x′)|

=

∣∣∣∣
∫ 1

0

N∑

k 6=j

( ∏

i/∈{k,j}
ϕ∗ε(x− xi)

)
(ϕ∗)′(ε(ln |x− xk|+ t(ln |y − xk| − ln |x− xk|)))

× ε(ln |y − xk| − ln |x− xk|) dt
∣∣∣∣

≤ Cε
∑

k 6=j

∣∣ln |x− xk| − ln |y − xk|
∣∣.

By symmetry in x,y we find

‖χ∗ε‖2Ḣs
xj

(Ω)
=

∫∫

Ω×Ω

|χ∗ε(x; x′)− χ∗ε(y; x′)|2
|x− y|2 dxdy

≤ 2

∫∫

U×Ω

|χ∗ε(x; x′)− χ∗ε(y; x′)|2
|x− y|2 dxdy + 2

∫∫

U1×U2

1

|x− y|2dxdy.
(B.2)

The latter term is fairly easy to estimate:

∫∫

U1×U2

1

|x− y|2dxdy ≤ 2|U1|e−2/ε

∫ e−2/ε

−e−2/ε

1

(e−1/ε + r)2
dr ≤ Ce−2/ε.

We return to the remaining term of (B.2):

∫∫

U×Ω

|χ∗ε(x; x′)− χ∗ε(y; x′)|2
|x− y|2 dxdy ≤ Cε2

∑

k 6=j

∫∫

U×Ω

(ln |x− xk| − ln |y − xk|)2

|x− y|2 dxdy

= Cε2
∑

k 6=j

∫∫

(U−xk)×(Ω−xk)

1

|x|2
ln2
∣∣y
x

∣∣
(
1−

∣∣y
x

∣∣)2dydx

≤ Cε2
∑

k 6=j

∫

U−xk

1

|x|

∫ ∞

0

ln2 z

(1− z)2
dzdx.

The inner integral is convergent and hence we are left with

ε2
∑

k 6=j

∫

U−xk

1

|x|dx ≤ Cε
2

∫ e−1/ε

e−2/ε

z−1dz = Cε.
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When 2|α| = d − 1 and d > 1 the estimates for the difference quotient are a bit more
technical. Similarly to above, Taylor’s theorem combined with (B.1) yields

|Dα
xjχ
∗
ε(x; x′)−Dα

xjχ
∗
ε(y; x′)| =

∣∣∣∣
∑

|β|=1

∫ 1

0
Dα+β

xj χ∗ε(x + t(y − x); x′)(y − x)βdt

∣∣∣∣

≤ Cε|x− y|
∑

k 6=j

∫ 1

0

1Bc
e−2/ε

(xk)(x + t(y − x))

|x− t(y − x)− xk||α|+1
dt.

We estimate the integral

∫ 1

0
|x− t(y − x)− xk|−|α|−1dt.

Choosing coordinates in a plane containing xk,x and y such that xk = (0, 0), x = (r1, 0)
and y = (r2 cos(θ), r2 sin(θ)) with θ ∈ [0, π) we can write this integral as

∫ 1

0
(((1− t)r1 − tr2 cos θ)2 + t2r2

2 sin2 θ)−
|α|+1

2 dt

=

∫ 1

0

((
1− tr2

(1− t)r1
cos θ

)2
+

t2r2
2

(1− t)2r2
1

sin2 θ
)− |α|+1

2
dt

=
1

r1r
|α|
2

∫ ∞

0

(s+ r2/r1)|α|−1

((1 + s cos θ)2 + s2 sin2 θ)
|α|+1

2

ds

≤ 1

r1r
|α|
2

∫ ∞

0

(s+ 1)|α|−1

((1− s)2 + 2s(1 + cos θ))
|α|+1

2

ds

=:
g(θ)

r1r
|α|
2

The integral g(θ) tends to infinity in the limit θ → π. However, this corresponds to x and y
being far apart relative to their distance to the xk.

When θ is far from 0 we shall instead use the following bound which follows directly from
the supremum bound in (B.1)

|Dα
xjχ
∗
ε(x; x′)−Dα

xjχ
∗
ε(y; x′)| ≤ Cε

∑

k 6=j

[
1Bc

e−2/ε
(xk)(x)

|x− xk||α|
+
1Bc

e−2/ε
(xk)(y)

|y − xk||α|

]
(B.3)

together with the fact that

|x− y| ≥ sin(θ/2) max{|x− xk|, |y − xk|}, (B.4)

where θ is the angle between the vectors y − xk and x− xk. Note that the bound in (B.3)
does not capture the continuity of Dαχ∗ε and hence cannot be sufficiently accurate for our
purposes when |x− y| is small.
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We are now ready to start estimating the Hs-seminorm of χ∗ε. Using the same notation
as in the d = 1 case

‖χ∗ε‖2Ḣs
xj

(Ω)
=

∫∫

Ω×Ω

|Dα
xjχ
∗
ε(x; x′)−Dα

xjχ
∗
ε(y; x′)|2

|x− y|d+1
dxdy

≤ 2

∫∫

U×Ω

|Dα
xjχ
∗
ε(x; x′)−Dα

xjχ
∗
ε(y; x′)|2

|x− y|d+1
dxdy,

where we used that |Dα
xjχ
∗
ε(x; x′)| = 0 for x ∈ U1 ∪ U2, since |α| ≥ 1.

To bound the integral we use the estimates derived earlier. Recalling that in the case
under consideration |α| = d−1

2 the derived bounds tells us that
∫∫

U×Ω

|Dα
xjχ
∗
ε(x; x′)−Dα

xjχ
∗
ε(y; x′)|2

|x− y|d+1
dxdy

≤ Cε2
∑

k 6=j

∫∫

U×Ω

min
{ g(θk)2

|x−xk|d−1|y−xk|2 ,
g(θk)2

|x−xk|2|y−xk|d−1 ,
|x−y|−2

|x−xk|d−1 + |x−y|−2

|y−xk|d−1

}

|x− y|d−1
dxdy,

here θk denotes the angle between the vectors x − xk and y − xk. For each fixed x we
rewrite the integral over Ω in spherical coordinates around xk, oriented so that x is located
at the south pole. With R = |x− xk|, r = |y − xk| and θk as before, the integral becomes

∫∫

U×Ω

min
{ g(θk)2

Rd−1r2
, g(θk)2

R2rd−1 ,
|x−y|−2

Rd−1 + |x−y|−2

rd−1

}

|x− y|d−1
dxdy

≤
∫

U

∫ ∞

0

∫ π

0

∫

Sd−2

min
{ g(θk)2

Rd−1r2
, g(θk)2

R2rd−1 ,
|x−y|−2

Rd−1 + |x−y|−2

rd−1

}

((R− r cos θk)2 + r2 sin2 θk|θ̂|2)(d−1)/2
rd−1 sind−2 θkdrdθkdS(θ̂)dx

= C

∫

U

∫ ∞

0

∫ π

0

min
{ g(θk)2

Rd−1r2
, g(θk)2

R2rd−1 ,
|x−y|−2

Rd−1 + |x−y|−2

rd−1

}

((R− r cos θk)2 + r2 sin2 θk)(d−1)/2
rd−1 sind−2 θkdrdθkdx.

For θ ∈ [π/2, π] we use the bounds in (B.3), (B.4):
∫

U

∫ ∞

0

∫ π

π/2

R−d+1 + r−d+1

sind+1(θk/2) max{R, r}d+1
rd−1 sind−2 θkdrdθkdx

=

∫

U

∫ ∞

R

∫ π

π/2

R−d+1 + r−d+1

sind+1(θk/2)r2
sind−2(θk)drdθkdx

+

∫

U

∫ R

0

∫ π

π/2

R−d+1 + r−d+1

sind+1(θk/2)Rd+1
rd−1 sind−2(θk)drdθkdx

≤ C
∫

U

∫ ∞

R

R−d+1 + r−d+1

r2
drdx + C

∫

U

∫ R

0

R−d+1 + r−d+1

Rd+1
rd−1drdx

= C

∫

U
R−ddx

≤ C
∫ e−1/ε

e−2/ε

R−1dR = Cε−1.

Thus this part of the integral is O(ε−1).
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What remains is to bound the integral when r ≥ 0 and θk ∈ [0, π/2). To accomplish
this we shall use the bound for the difference of the derivatives derived earlier. Note that
since θk < π/2 we can replace the factor g(θk) by a constant without any loss. Using that
|x− y|2 = R2 + r2 − 2rR cos θ ≥ max{(R− r)2, 2rR(1− cos θk)} we for any fixed µ ∈ (0, 1)
find
∫

U

∫ ∞

0

∫ π/2

0

min
{

1
Rd−1r2

, 1
R2rd−1

}

((R− r cos θk)2 + r2 sin2 θk)(d−1)/2
rd−1 sind−2 θkdrdθkdx

=

∫

U

∫ R

0

∫ π/2

0
((R− r cos θk)

2 + r2 sin2 θk)
−(d−1)/2R−d+1rd−3 sind−2 θkdrdθkdx

+

∫

U

∫ ∞

R

∫ π/2

0
((R− r cos θk)

2 + r2 sin2 θk)
−(d−1)/2R−2 sind−2 θkdrdθkdx

≤
∫

U

∫ R

0
(R− r)−µr(d−5+µ)/2R−(3d−3−µ)/2drdx

∫ π/2

0

sind−2 θk
(1− cos θk)(d−1−µ)/2

dθk

+

∫

U

∫ ∞

R
(r −R)−µr−(d−1−µ)/2R−(d−3−µ)/2drdx

∫ π/2

0

sind−2 θk
(1− cos θk)(d−1−µ)/2

dθk

≤ C
∫

U
(R−d +R−d+3)dx

≤ C
∫ e−1/ε

e−2/ε

(R−1 +R2)dR = Cε−1.

Consequently, also this part of the integral is O(ε−1) which completes the proof. �

Lemma B.2. For all s > 0 it holds that Hs,NW (Rd) ⊆ Hs,N0 (Rd).

Proof. Take Ψ ∈ Hs(RdN ) s.t.
∫
Ws|Ψ|2 < ∞ and let Ψε := χεΨ. Since Ψε is supported

away from44ε := 44+Bε(0) and thus may be approximated in C∞c (RdN \44), it is sufficient to
prove that ‖Ψ−Ψε‖Hs(RdN ) → 0 to conclude the lemma. We have by dominated convergence

‖Ψ−Ψε‖2L2(RdN ) .
∫

44ε∩RdN
|1− χε|2|Ψ|2 → 0,

while for α 6= 0

Dα
xj ((1− χε)Ψ) =

∑

0≤β≤α
Dβ

xj (1− χε)Dα−β
xj Ψ,

so for s = m+ σ, |α| = m, 0 ≤ σ < 1 (for σ = 0 we replace by L2)

‖Ψ−Ψε‖Ḣs,N (Rd) .
∑

j,α

‖(1− χε)Dα
xjΨ‖Ḣσ,N (Rd) +

∑

j,α

∑

0<β<α

‖(Dβ
xjχε)(D

α−β
xj Ψ)‖Ḣσ,N (Rd)

+
∑

j,α

‖(Dα
xjχε)Ψ‖Ḣσ,N (Rd).

We may estimate as in the proof of Lemma B.1,

‖(1− χε)DαΨ‖2
Ḣσ,N (Rd)

.
∑

j

∑

k 6=j

∫

Rd(N−1)

‖Ψ‖2Hs
xj

(Bε(xk)) → 0,
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‖ΨDαχε‖2Ḣσ
xj

(Rd)
=

∫∫

Rd×Rd
|ΨDαχε(x; x′)−ΨDαχε(y; x′)|2

|x− y|d+2σ
dxdy

. Iα + ε−2|α|−2
∑

k,l 6=j

∫∫

B2ε(xk)×B2ε(xl)
|Ψ(x; x′)|2|x− y|−d−2σ+2dxdy

. Iα + ε−2|α|−2
∑

k 6=j

∫

B2ε(xk)
|Ψ(x; x′)|2

∫

B4ε(x)
|x− y|−d−2σ+2dy dx

. Iα + ε−2|α|−2σ
∑

k 6=j

∫

B2ε(xk)
|Ψ(x; x′)|2 dx,

where

Iα =
∑

k 6=j

∫

B2ε(xk)
|Dαχε(x; x′)|2

∫

B4ε(xk)

|Ψ(x; x′)−Ψ(y; x′)|2
|x− y|d+2σ

dy dx.

For the highest-order derivatives 2|α| = 2s− 2σ:

‖ΨDαχε‖2Ḣσ,N (Ω)
.
∫

ΩN−1

Iα + ε−2s

∫

442ε

|Ψ(x)|2 dx .
∫

ΩN−1

Iα +

∫

442ε

Ws(x)|Ψ(x)|2 dx,

where the last term tends to zero as ε→ 0 by dominated convergence.
For Iα we have that

Iα =
∑

k 6=j

∫

B2ε(xk)
|Dαχε(x; x′)|2

∫

B4ε(xk)

|Ψ(x; x′)−Ψ(y; x′)|2
|x− y|d+2σ

dy dx

. ε−2|α|∑

k 6=j

∫∫

B4ε(xk)×B4ε(xk)

|Ψ(x; x′)−Ψ(y; x′)|2
|x− y|d+2σ

dy dx

. ε−2|α|∑

k 6=j
‖Ψ‖2

Ḣσ
xj

(B4ε(xk))
.

By interpolation of Sobolev spaces and scaling we have for C = C(d, σ,m) > 0

‖Ψ‖2
Ḣσ

xj
(B4ε(xk))

≤ Cε2m
(
‖Ψ‖2

Ḣs
xj

(B4ε(xk))
+ ‖Ψ

√
Ws‖2L2

xj
(B4ε(xk))

)
,

and thus by dominated convergence
∫

Rd(N−1)

Iα .
∑

k 6=j

∫

Rd(N−1)

(
‖Ψ‖2

Ḣs
xj

(B4ε(xk))
+ ‖Ψ

√
Ws‖2L2

xj
(B4ε(xk))

)
→ 0,

for |α| = s− σ. Similarly, for the lower-order mixed terms

‖(Dα−β
xj Ψ)(Dβ

xjχε)‖Ḣσ
xj

(Rd) . ε
−2|β|∑

k 6=j
‖Dα−β

xj Ψ‖2
Ḣσ

xj
(B4ε(xk))

+ ε−2|β|−2σ
∑

k 6=j
‖Dα−β

xj Ψ‖2L2
xj

(B4ε(xk))

.
∑

k 6=j

(
‖Ψ‖2

Ḣs
xj

(B4ε(xk))
+ ‖Ψ

√
Ws‖2L2

xj
(B4ε(xk))

)
,

which implies that also ‖(Dα−βΨ)(Dβχε)‖Ḣσ,N (Rd) → 0. �
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Lemma B.3. For all 0 < 2s ≤ d it holds that Hs,N0 (Rd) = Hs,N (Rd) = Hs(RdN ).

Proof. As mentioned above, combining Lemma B.2 with the Hardy–Rellich inequality im-
plies the claim when 0 < 2s < d. For 2s = d we argue as follows.

It suffices to prove that C∞c (RdN \44) is dense in Hs, and moreover, using that C∞c (RdN )
is dense in Hs, it suffices to prove that if Ψ ∈ C∞c (RdN ) then Ψε := χ∗εΨ → Ψ in Hs as
ε→ 0. Clearly

‖Ψ−Ψε‖2L2(RdN ) .
∫

44ε∩ suppΨ
|1− χ∗ε|2 → 0.

Moreover, by Lemma B.1 and arguing as in the proof of Lemma B.2

‖Ψ−Ψε‖2Ḣs,N (Rd)
. ε→ 0. �

The above generalizes the case d = 2 and s = 1 where it is well known that hard-core
bosons have non-extensive energy in the dilute limit [15] and thus that a Lieb–Thirring
inequality of the type (2.1) cannot hold. See also [26] for generalizations with integer s.
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