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A two-phase free boundary problem

Let ⌦ ⇢ Rn be an open, bounded, convex domain, with K ⇢ @⌦ closed. Consider
the functional

J[v ] =

ˆ
⌦
|rv |2 + 1{v>0} dx .

Here v 2 H
1(⌦), with v = u0 2 C

1(K ) on K , and 1{v>0} is the indicator
function of the set {v > 0}.

We assume that u0 takes positive and negative values on K (two-phase).

It is straightforward to establish the existence of the minimizer u 2 H
1(⌦).

Aim

Determine what further regularity the minimizer u has.

Application to the irrotational flow of two ideal fluids, and other applications in
fluid mechanics, electromagnetism, and optimal shape design.
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Properties of the minimizer

Aim

Determine what regularity the minimizer u of J[v ] =
´
⌦ |rv |2 + 1{v>0} has.

Formally, the Euler-Lagrange equations J 0[u] = 0 are

1) u is harmonic in the positive phase ⌦+ = {u > 0} and non-negative phase
⌦� = {u  0};

2) @⌫u = 0 on the Neumann part of the boundary @⌦\K ;

3) u satisfies the gradient jump condition

|ru
+(x)|2 � |ru

�(x)|2 = 1

on � = @⌦+ \ @⌦� (the free boundary).

Cartoon picture of the two-phase minimizer:

But a priori, u is only in H
1(⌦) and so a major goal of the regularity theory is to

show that 3) holds in a suitable sense.
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Properties of the minimizer

Using the fact that u is a minimizer it is (fairly) straightforward to show that it
satisfies the following properties:
(Alt-Ca↵arelli-Friedman ’84, Gurevich ’99, Raynor ’08)

1) u is subharmonic in ⌦ and harmonic in the two phases ⌦+ = {u > 0}
⌦� = {u  0}
(that is, �u is a positive measure supported on the free boundary)

2) u is Hölder continuous (up to the boundary) for some exponent ↵ > 0

3) @⌫u = 0 weakly on the Neumann boundary @⌦\K

The key idea behind proving these properties is to combine u minimizing the
functional with harmonic replacement.

The first major step in the regularity theory is to determine if u is Lipschitz
continuous.
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Lipschitz continuity of minimizers

Theorem (Alt-Ca↵arelli-Friedman (ACF), ’84)

The minimizer is Lipschitz continuous in the interior of ⌦.

Why is Lipschitz continuity a key step in the regularity theory?

It allows a rescaling of u by dilation and to study the blow-up limit

u
0(x) = lim

r!0

u(x0 + rx)� u(x0)

r
.

This is used by ACF to show that minimizer and free boundary are smooth.

Question

Is the minimizer u Lipschitz continuous up to the Neumann boundary?

u may only be Hölder continuous at the intersection of K with the free boundary
(Gurevich ’99).

Convexity is a natural (and close to necessary) restriction on ⌦ for a positive
answer.
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The Alt-Ca↵arelli-Friedman functional

Theorem (Alt-Ca↵arelli-Friedman (ACF), ’84)

The minimizer is Lipschitz continuous in the interior of ⌦.

To prove this interior Lipschitz regularity they introduced the following
functional:

�(t) =

 
1

t2

ˆ
Bt(x0)

|ru
+|2

|x � x0|n�2
dx

! 
1

t2

ˆ
Bt(x0)

|ru
�|2

|x � x0|n�2
dx

!

Here x0 is an interior point on the free boundary and t > 0.

Proposition (Monotonicity of the ACF functional, ’84)

The functional �(t) is a monotone increasing function of t, and so in particular

�(t) is uniformly bounded by �(1) for all 0 < t  1.

This proposition is the key step in their proof of Lipschitz continuity.

Remark

In the one phase case, Lipschitz continuity can be obtained without using the

functional (Alt-Ca↵arelli ’81, Raynor ’08).
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The Alt-Ca↵arelli-Friedman functional

Proposition (Alt-Ca↵arelli-Friedman, ’84)

The functional �(t)

�(t) =

✓
1

t2

ˆ
Bt

|ru
+|2

|x |n�2
dx

◆✓
1

t2

ˆ
Bt

|ru
�|2

|x |n�2
dx

◆

is a monotone increasing function of t.

Idea of the proof: By direct calculation,

�0(1)

�(1)
=

´
@B1

|ru
+|2 d�´

B1

|ru+|2
|x|n�2 dx

+

´
@B1

|ru
�|2 d�´

B1

|ru�|2
|x|n�2 dx

� 4

and alsoˆ
@B1

|ru
±|2 �

ˆ
@B1

|@ru±|2 + �±(1)

ˆ
@B1

|u±|2,

ˆ
B1

|ru
±|2

|x |n�2

✓ˆ

@B1

(u±)2
◆1/2✓ˆ

@B1

(@ru
±)2
◆1/2

+
n � 2

2

ˆ
@B1

(u±)2.

Here �+(1) is the first Dirichlet eigenvalue of {u > 0} \ @B1.
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The Alt-Ca↵arelli-Friedman functional

Setting

z
± =

ˆ
@B1

|@ru±|2, w
± =

ˆ
@B1

|u±|2,

therefore gives

�0(1)

�(1)
� z

+ + �+(1)w+

(z+w+)1/2 + n�2
2 w+

+
z
� + ��(1)w�

(z�w�)1/2 + n�2
2 w� � 4.

It then becomes a calculus exercise to minimize the right hand side over
z
±, w± � 0,

�0(1)

�(1)
� 2

"
�n � 2

2
+

r
(n � 2)2

4
+ �+(1)� n � 2

2
+

r
(n � 2)2

4
+ ��(1)� 2

#
.

Question

Is this right hand side positive?

Thomas Beck (Fordham University) Two-phase free boundary problems November 3, 2020 8 / 20



The Friedland-Hayman inequality

To answer this, consider the following eigenvalue problem on Sn�1.

Definition

Given disjoint subsets E
±

of Sn�1
, define �(E±) to be the first Dirichlet

eigenvalue of E
±
.

Call

↵(E±) = �n � 2

2
+

r
(n � 2)2

4
+ �(E±)

the characteristic exponent of E±.

Theorem (Friedland-Hayman ’76, Beckner-Kenig-Pipher ’88)

The characteristic exponents ↵(E±) satisfy

↵(E+) + ↵(E�) � 2.

Equality if and only if E
±

are hemispheres.
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The Alt-Ca↵arelli-Friedman functional

Theorem (Friedland-Hayman ’76, Beckner-Kenig-Pipher ’88)

The characteristic exponents ↵(E±) satisfy

↵(E+) + ↵(E�) � 2.

Equality if and only if E
±

are hemispheres.

The lower bound on �0(1)/�(1) can be written as

�0(1)

�(1)
� 2(↵+(1) + ↵�(1)� 2).

So the monotonicity of � follows from the Friedland-Hayman inequality!

Strict monotonicity unless {u > 0} \ Bt , {u  0} \ Bt are hemispheres.

Remark

The characteristic exponent ↵(E±) is the positive homogeneities of the harmonic

extensions of the eigenfunctions to the cone generated by E
±
.
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Regularity near the convex boundary

So, the Friedland-Hayman inequality directly gives the monotonicity of �(t) and
leads to the interior Lipschitz regularity of the minimizer.

Question

Can we extend the Lipschitz continuity to the convex Neumann boundary?

A natural change of functional for x0 2 @⌦ is

 (t) =

 
1

t2

ˆ
Bt(x0)\⌦

|ru
+|2

|x � x0|n�2
dx

! 
1

t2

ˆ
Bt(x0)\⌦

|ru
�|2

|x � x0|n�2
dx

!
.

Just as in the interior case, Lipschitz regularity reduces to the boundedness of
 (t).

Following the calculation in the interior case gives

 0(1)/ (1) � 2(↵+(1) + ↵�(1)� 2)� Error,

with the Error term on @⌦ measuring the non-conic nature of the boundary.

But the characteristic exponents are now di↵erent!
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A variant of the Friedland-Hayman inequality

Definition

Let W ⇢ Sn�1
be a geodesically convex subset of Sn�1

. Given disjoint subsets

W
±

of W , define µ(W±) to be the first eigenvalue of W
±

with Neumann

boundary conditions on @W± \ @W and Dirichlet boundary conditions otherwise.

Again, call

↵(W±) = �n � 2

2
+

r
(n � 2)2

4
+ µ(W±)

the characteristic exponent of W±.

Theorem (B-Jerison-Raynor ’20)

The characteristic exponents ↵(W±) satisfy

↵(W+) + ↵(W�) � 2.

Remark (Work in preparation with David Jerison)

Equality precisely when W ⇢ Sn�1
has antipodal points.
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A variant of the Friedland-Hayman inequality

Theorem (B-Jerison-Raynor ’20)

The characteristic exponents ↵(W±) satisfy

↵(W+) + ↵(W�) � 2.

On S1 the eigenvalues can be computed explicitly to prove the theorem
(Gemmer-Moon-Raynor ’18).

The key steps in the proof of the original
Friedland-Hayman inequality:

1) A symmetrization argument to reduce to studying Dirichlet eigenvalues of
spherical caps;

2) Obtain a lower bound for spherical caps either by a direct numerical
calculation or comparing to Gaussian eigenvalues.

Step 1) breaks down in our Dirichlet-Neumann case.
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A variant of the Friedland-Hayman inequality

Key steps in the proof of the Dirichlet-Neumann version of the inequality:

1) Construct a closed manifold W̃ by gluing two copies of W together along its
convex boundary;

2) Can ensure that W̃ is smooth with a Ricci curvature lower bound of 1�;

3) The Dirichlet-Neumann eigenvalues µ(W±) become Dirichlet eigenvalues on
the doubled sets W̃±;

4) An application of the Lévy-Gromov isoperimetric inequality bounds µ(W±)
from below in terms of eigenvalues of the sphere (Gromov ’99, Bérard-Meyer
’82);

5) The original Friedland-Hayman inequality then gives the result.
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Back to the monotonicity of the functional

Theorem (Gemmer-Moon-Raynor, ’18)

In 2-dimensions, the functional  (t) is monotonically increasing, and the

minimizer is Lipschitz continuous up to the Neumann boundary.

In all dimensions higher than 2, we run into an issue when bounding the
functional

 (t) =

 
1

t2

ˆ
Bt(x0)\⌦

|ru
+|2

|x � x0|n�2
dx

! 
1

t2

ˆ
Bt(x0)\⌦

|ru
�|2

|x � x0|n�2
dx

!

for x0 2 @⌦.

In general, the spherical slices @Bt(x0) \ ⌦ will not be geodesically convex, and so
our Friedland-Hayman inequality does not directly apply.

However, the limiting spherical slice V0 = lim
t!0

t
�1 (@Bt(x0) \ ⌦) is geodesically

convex.

Remark

When ⌦ is a cone with vertex at x0, then this problem vanishes, and  (t) is
monotonic.
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A Dini condition on the spherical slices

We therefore want to measure the rate at which the slices Vt = t
�1(@Bt(x0) \ ⌦)

approach the limiting slice.

Definition

Given x0 2 @⌦, t 2 (0, 1), define the function Mx0(t) by

Mx0(t) = sup
y2@⌦:|y�x0|t

⌫(y) · (y � x0).

We impose a Dini integrability assumption on the rate that Mx0(t) approaches
0.

Assumption (Dini condition for t�1Mx0(t))

There exists a constant C⇤ such that for all x0 2 @⌦,

ˆ 1

0+

Mx0(t)

t2
dt < C⇤.

This is a su�cient condition to bound the functional  (t).
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Lipschitz regularity under the Dini condition

Assumption (Dini condition for t�1Mx0(t))

There exists a constant C⇤ such that for all x0 2 @⌦,

ˆ 1

0+

Mx0(t)

t2
dt < C⇤, Mx0(t) = sup

y2@⌦:|y�x0|t
⌫(y) · (y � x0).

Theorem (B.-Jerison-Raynor ’20)

Under this assumption on @⌦, the functional  (t) is bounded and the minimizer

is Lipschitz continuous up to the boundary.

The quantity Mx0(t) plays a role, as there exists a geodesically convex set Wt

with
HausSn�1

�
Wt , t

�1 (@Bt(x0) \ ⌦)
�
 Ct

�1
Mx0(t).

Transferring this Hausdor↵ distance control to Dirichlet-Neumann eigenvalues of
the spherical slices, the Dini condition ensures that  0(t)/ (t) is
integrable.
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Discussion of the Dini condition

Assumption (Dini condition for t�1Mx0(t))

There exists a constant C⇤ such that for all x0 2 @⌦,

ˆ 1

0+

Mx0(t)

t2
dt < C⇤, Mx0(t) = sup

y2@⌦:|y�x0|t
⌫(y) · (y � x0).

Some remarks:

1) If ⌦ is a cone with vertex at x0, then Mx0(t) ⌘ 0;

2) Trivially, Mx0(t)  t, and so t
�2

Mx0(t) just fails to be automatically
integrable;

3) The Dini condition holds for any C
1,�-domain;

4) We found it very challenging to find an example where the condition fails.
In fact, it always holds for 2-dimensional convex domains, but we have a
(very) delicate counterexample in 3 and higher dimensions.

Thomas Beck (Fordham University) Two-phase free boundary problems November 3, 2020 18 / 20

*¥!



Future directions

Question

Can we establish the Lipschitz continuity result for domains which fail the Dini

condition?

Two possible approaches:

1) Change the definition of monotonicity functional from spherical slices;

2) Interior regularity has been established by Dipierro-Karakhanyan ’18 without
using the monotonicity formula.

Question

Is the free boundary smooth up to the boundary?

Just as in the interior case, the Friedland-Hayman inequality (plus case of
equality) should allow for a classification of blow-up limits.

Numerical evidence in 2 dimensions (Gemmer-Moon-Raynor) that the free
boundary avoids corners and meets the convex boundary at right angles.
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Thank you for your attention!
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