Two-phase free boundary problems and the Friedland-Hayman inequality

Thomas Beck

Fordham University

tbeck7@fordham.edu

November 3, 2020

A two-phase free boundary problem

Let $\Omega \subset \mathbb{R}^n$ be an open, bounded, convex domain, with $K \subset \partial \Omega$ closed. Consider the functional

$$J[v] = \int_{\Omega} |\nabla v|^2 + \mathbf{1}_{\{v > 0\}} \,\mathrm{d}x.$$

Here $v \in H^1(\Omega)$, with $v = u_0 \in C^{\infty}(K)$ on K, and $1_{\{v>0\}}$ is the indicator function of the set $\{v > 0\}$.

We assume that u_0 takes positive and negative values on K (two-phase).

It is straightforward to establish the existence of the minimizer $u \in H^1(\Omega)$.

Aim

Determine what further regularity the minimizer u has.

Application to the irrotational flow of two ideal fluids, and other applications in fluid mechanics, electromagnetism, and optimal shape design.

Properties of the minimizer

Aim

Determine what regularity the minimizer u of $J[v] = \int_{\Omega} |\nabla v|^2 + \mathbf{1}_{\{v>0\}}$ has.

Formally, the Euler-Lagrange equations J'[u] = 0 are

- 1) u is harmonic in the positive phase $\Omega^+=\{u>0\}$ and non-negative phase $\Omega^-=\{u\leq 0\};$
- 2) $\partial_{\nu} u = 0$ on the Neumann part of the boundary $\partial \Omega \setminus K$;
- 3) *u* satisfies the gradient jump condition

$$|\nabla u^+(x)|^2 - |\nabla u^-(x)|^2 =$$

on $\Gamma = \partial \Omega^+ \cap \partial \Omega^-$ (the free boundary).

Cartoon picture of the two-phase minimizer:

 $|x||^{2} = 1$

But a priori, u is only in $H^1(\Omega)$ and so a major goal of the regularity theory is to show that 3) holds in a suitable sense.

Using the fact that u is a minimizer it is (fairly) straightforward to show that it satisfies the following properties:

(Alt-Caffarelli-Friedman '84, Gurevich '99, Raynor '08)

- 1) u is subharmonic in Ω and harmonic in the two phases $\Omega^+ = \{u > 0\}$ $\Omega^- = \{u \le 0\}$ (that is, Δu is a positive measure supported on the free boundary)
- 2) *u* is Hölder continuous (up to the boundary) for some exponent $\alpha > 0$
- 3) $\partial_{\nu} u = 0$ weakly on the Neumann boundary $\partial \Omega \setminus K$

The key idea behind proving these properties is to combine u minimizing the functional with harmonic replacement.

The first major step in the regularity theory is to determine if u is **Lipschitz** continuous.

Lipschitz continuity of minimizers

Theorem (Alt-Caffarelli-Friedman (ACF), '84)

The minimizer is Lipschitz continuous in the interior of Ω .

Why is Lipschitz continuity a key step in the regularity theory?

It allows a rescaling of u by dilation and to study the blow-up limit

$$u^{0}(x) = \lim_{r \to 0} \frac{u(x_{0} + rx) - u(x_{0})}{r}.$$

This is used by ACF to show that minimizer and free boundary are smooth.

Question

Is the minimizer u Lipschitz continuous up to the Neumann boundary?

u may only be Hölder continuous at the intersection of K with the free boundary (Gurevich '99).

Convexity is a natural (and close to necessary) restriction on $\boldsymbol{\Omega}$ for a positive answer.

Theorem (Alt-Caffarelli-Friedman (ACF), '84)

The minimizer is Lipschitz continuous in the interior of Ω .

To prove this interior Lipschitz regularity they introduced the following functional:

$$\Phi(t) = \left(\frac{1}{t^2} \int_{B_t(x_0)} \frac{|\nabla u^+|^2}{|x - x_0|^{n-2}} \, \mathrm{d}x\right) \left(\frac{1}{t^2} \int_{B_t(x_0)} \frac{|\nabla u^-|^2}{|x - x_0|^{n-2}} \, \mathrm{d}x\right)$$

Here x_0 is an interior point on the free boundary and t > 0.

Proposition (Monotonicity of the ACF functional, '84)

The functional $\Phi(t)$ is a monotone increasing function of t, and so in particular $\Phi(t)$ is uniformly bounded by $\Phi(1)$ for all $0 < t \le 1$.

This proposition is the key step in their proof of Lipschitz continuity.

Remark

In the one phase case, Lipschitz continuity can be obtained without using the functional (Alt-Caffarelli '81, Raynor '08).

Proposition (Alt-Caffarelli-Friedman, '84)

The functional $\Phi(t)$

$$\Phi(t) = \left(\frac{1}{t^2} \int_{B_t} \frac{|\nabla u^+|^2}{|x|^{n-2}} \,\mathrm{d}x\right) \left(\frac{1}{t^2} \int_{B_t} \frac{|\nabla u^-|^2}{|x|^{n-2}} \,\mathrm{d}x\right)$$

is a monotone increasing function of t.

Idea of the proof: By direct calculation,

$$\frac{\Phi'(1)}{\Phi(1)} = \frac{\int_{\partial B_1} |\nabla u^+|^2 \, \mathrm{d}\sigma}{\int_{B_1} \frac{|\nabla u^+|^2}{|x|^{n-2}} \, \mathrm{d}x} + \frac{\int_{\partial B_1} |\nabla u^-|^2 \, \mathrm{d}\sigma}{\int_{B_1} \frac{|\nabla u^-|^2}{|x|^{n-2}} \, \mathrm{d}x} - 4$$

and also

$$\begin{split} \int_{\partial B_1} |\nabla u^{\pm}|^2 &\geq \int_{\partial B_1} |\partial_r u^{\pm}|^2 + \lambda^{\pm} (1) \int_{\partial B_1} |u^{\pm}|^2, \\ \int_{B_1} \frac{|\nabla u^{\pm}|^2}{|x|^{n-2}} &\leq \left(\int_{\partial B_1} (u^{\pm})^2 \right)^{1/2} \left(\int_{\partial B_1} (\partial_r u^{\pm})^2 \right)^{1/2} + \frac{n-2}{2} \int_{\partial B_1} (u^{\pm})^2. \end{split}$$

Here $\lambda^+(1)$ is the first Dirichlet eigenvalue of $\{u \geq 0\} \cap \partial B_1.$

Thomas Beck (Fordham University)

Two-phase free boundary problems

 \mathcal{N}^+

Setting

$$z^{\pm} = \int_{\partial B_1} |\partial_r u^{\pm}|^2, \qquad w^{\pm} = \int_{\partial B_1} |u^{\pm}|^2,$$

therefore gives

$$\frac{\Phi'(1)}{\Phi(1)} \geq \frac{z^+ + \lambda^+(1)w^+}{(z^+w^+)^{1/2} + \frac{n-2}{2}w^+} + \frac{z^- + \lambda^-(1)w^-}{(z^-w^-)^{1/2} + \frac{n-2}{2}w^-} - 4.$$

It then becomes a calculus exercise to minimize the right hand side over z^\pm , $w^\pm \geq 0,$

$$\frac{\Phi'(1)}{\Phi(1)} \geq 2\left[-\frac{n-2}{2} + \sqrt{\frac{(n-2)^2}{4} + \lambda^+(1)} - \frac{n-2}{2} + \sqrt{\frac{(n-2)^2}{4} + \lambda^-(1)} - 2\right]$$

Question

Is this right hand side positive?

The Friedland-Hayman inequality

To answer this, consider the following eigenvalue problem on \mathbb{S}^{n-1} .

Definition

Given disjoint subsets E^{\pm} of \mathbb{S}^{n-1} , define $\lambda(E^{\pm})$ to be the first Dirichlet eigenvalue of E^{\pm} .

Call

$$\alpha(E^{\pm}) = -\frac{n-2}{2} + \sqrt{\frac{(n-2)^2}{4} + \lambda(E^{\pm})}$$
the characteristic exponent of E^{\pm} .

Theorem (Friedland-Hayman '76, Beckner-Kenig-Pipher '88)

The characteristic exponents $\alpha(E^{\pm})$ satisfy

$$\alpha(E^+) + \alpha(E^-) \ge 2.$$

Equality if and only if E^{\pm} are hemispheres.

Theorem (Friedland-Hayman '76, Beckner-Kenig-Pipher '88)

The characteristic exponents $\alpha(E^{\pm})$ satisfy

 $\alpha(E^+) + \alpha(E^-) \geq 2.$

Equality if and only if E^{\pm} are hemispheres.

The lower bound on $\Phi'(1)/\Phi(1)$ can be written as

$$rac{\Phi'(1)}{\Phi(1)} \geq 2(lpha^+(1)+lpha^-(1)-2).$$

So the monotonicity of Φ follows from the Friedland-Hayman inequality!

Strict monotonicity unless $\{u > 0\} \cap B_t$, $\{u \le 0\} \cap B_t$ are hemispheres.

Remark

The characteristic exponent $\alpha(E^{\pm})$ is the positive homogeneities of the harmonic extensions of the eigenfunctions to the cone generated by E^{\pm} .

Regularity near the convex boundary

So, the Friedland-Hayman inequality directly gives the monotonicity of $\Phi(t)$ and leads to the interior Lipschitz regularity of the minimizer.

Question

Can we extend the Lipschitz continuity to the convex Neumann boundary?

A natural change of functional for $x_0 \in \partial \Omega$ is

$$\Psi(t) = \left(\frac{1}{t^2} \int_{B_t(x_0) \cap \Omega} \frac{|\nabla u^+|^2}{|x - x_0|^{n-2}} \, \mathrm{d}x\right) \left(\frac{1}{t^2} \int_{B_t(x_0) \cap \Omega} \frac{|\nabla u^-|^2}{|x - x_0|^{n-2}} \, \mathrm{d}x\right).$$

Just as in the interior case, Lipschitz regularity reduces to the boundedness of $\Psi(t)$. Betro)al

Following the calculation in the interior case gives

$$\Psi'(1)/\Psi(1) \ge 2(lpha^+(1) + lpha^-(1) - 2) - \mathsf{Error},$$

with the Error term on $\partial \Omega$ measuring the non-conic nature of the boundary.

But the characteristic exponents are now different!

To

A variant of the Friedland-Hayman inequality

Definition

Let $W \subset \mathbb{S}^{n-1}$ be a geodesically convex subset of \mathbb{S}^{n-1} . Given disjoint subsets W^{\pm} of W, define $\mu(W^{\pm})$ to be the first eigenvalue of W^{\pm} with Neumann boundary conditions on $\partial W^{\pm} \cap \partial W$ and Dirichlet boundary conditions otherwise.

Again, call

$$\alpha(W^{\pm}) = -\frac{n-2}{2} + \sqrt{\frac{(n-2)^2}{4} + \mu(W^{\pm})}$$
the characteristic exponent of W^{\pm} .
Theorem (B-Jerison-Raynor '20)
The characteristic exponents $\alpha(W^{\pm})$ satisfy
 $\alpha(W^{+}) + \alpha(W^{-}) \ge 2$.

Remark (Work in preparation with David Jerison)

Equality precisely when $W \subset \mathbb{S}^{n-1}$ has antipodal points.

A variant of the Friedland-Hayman inequality

Theorem (B-Jerison-Raynor '20)

The characteristic exponents $\alpha(W^{\pm})$ satisfy

$$\alpha(W^+) + \alpha(W^-) \ge 2.$$

On S^1 the eigenvalues can be computed explicitly to prove the theorem W^+ (Gemmer-Moon-Raynor '18).

The key steps in the proof of the original Friedland-Hayman inequality:

- 1) A symmetrization argument to reduce to studying Dirichlet eigenvalues of spherical caps;
- 2) Obtain a lower bound for spherical caps either by a direct numerical calculation or comparing to Gaussian eigenvalues.

Step 1) breaks down in our Dirichlet-Neumann case.

A variant of the Friedland-Hayman inequality

Key steps in the proof of the Dirichlet-Neumann version of the inequality:

- 1) Construct a closed manifold \tilde{W} by gluing two copies of W together along its convex boundary;
- 2) Can ensure that \tilde{W} is smooth with a Ricci curvature lower bound of 1⁻;
- The Dirichlet-Neumann eigenvalues μ(W[±]) become Dirichlet eigenvalues on the doubled sets W̃[±];
- An application of the Lévy-Gromov isoperimetric inequality bounds μ(W[±]) from below in terms of eigenvalues of the sphere (Gromov '99, Bérard-Meyer '82);
- 5) The original Friedland-Hayman inequality then gives the result.

Back to the monotonicity of the functional

Theorem (Gemmer-Moon-Raynor, '18)

In 2-dimensions, the functional $\Psi(t)$ is monotonically increasing, and the minimizer is Lipschitz continuous up to the Neumann boundary.

In all dimensions higher than 2, we run into an issue when bounding the functional

$$\Psi(t) = \left(\frac{1}{t^2} \int_{B_t(x_0) \cap \Omega} \frac{|\nabla u^+|^2}{|x - x_0|^{n-2}} \, \mathrm{d}x\right) \left(\frac{1}{t^2} \int_{B_t(x_0) \cap \Omega} \frac{|\nabla u^-|^2}{|x - x_0|^{n-2}} \, \mathrm{d}x\right)$$

for $x_0 \in \partial \Omega$.

In general, the spherical slices $\partial B_t(x_0) \cap \Omega$ will not be geodesically convex, and so our Friedland-Hayman inequality does not directly apply.

However, the limiting spherical slice $V_0 = \lim_{t \to 0} t^{-1} (\partial B_t(x_0) \cap \Omega)$ is geodesically convex.

Remark

When Ω is a cone with vertex at x_0 , then this problem vanishes, and $\Psi(t)$ is monotonic.

A Dini condition on the spherical slices

We therefore want to measure the rate at which the slices $V_t = t^{-1}(\partial B_t(x_0) \cap \Omega)$ approach the limiting slice.

Definition

We impose a Dini integrability assumption on the rate that $M_{x_0}(t)$ approaches 0.

Assumption (Dini condition for $t^{-1}M_{x_0}(t)$)

There exists a constant C_* such that for all $x_0 \in \partial \Omega$,

$$\int_{0^+}^1 \frac{M_{x_0}(t)}{t^2} \, \mathrm{d}t < C_*.$$

This is a sufficient condition to bound the functional $\Psi(t)$.

Thomas Beck (Fordham University)

Two-phase free boundary problems

Lipschitz regularity under the Dini condition

Assumption (Dini condition for $t^{-1}M_{x_0}(t)$)

There exists a constant C_* such that for all $x_0 \in \partial \Omega$,

$$\int_{0^+}^1 \frac{M_{x_0}(t)}{t^2} \, \mathrm{d}t < C_*, \qquad M_{x_0}(t) = \sup_{y \in \partial \Omega: |y-x_0| \le t} \nu(y) \cdot (y-x_0).$$

Theorem (B.-Jerison-Raynor '20)

Under this assumption on $\partial\Omega$, the functional $\Psi(t)$ is bounded and the minimizer is Lipschitz continuous up to the boundary.

The quantity $M_{x_0}(t)$ plays a role, as there exists a geodesically convex set W_t with $Haus_{\mathbb{S}^{n-1}}(W_t, t^{-1}(\partial B_t(x_0) \cap \Omega)) \leq Ct^{-1}M_{x_0}(t).$

Transferring this Hausdorff distance control to Dirichlet-Neumann eigenvalues of the spherical slices, the Dini condition ensures that $\Psi'(t)/\Psi(t)$ is integrable.

Discussion of the Dini condition

Assumption (Dini condition for $t^{-1}M_{x_0}(t)$)

There exists a constant C_* such that for all $x_0 \in \partial \Omega$,

$$\int_{0^+}^1 \frac{M_{x_0}(t)}{t^2} \, \mathrm{d}t < C_*, \qquad M_{x_0}(t) = \sup_{y \in \partial \Omega: |y-x_0| \le t} \nu(y) \cdot (y-x_0).$$

Some remarks:

- 1) If Ω is a cone with vertex at x_0 , then $M_{x_0}(t) \equiv 0$;
- 2) Trivially, $M_{x_0}(t) \le t$, and so $t^{-2}M_{x_0}(t)$ just fails to be automatically integrable;
- 3) The Dini condition holds for any $C^{1,\beta}$ -domain;
- 4) We found it very challenging to find an example where the condition fails. In fact, it always holds for 2-dimensional convex domains, but we have a (very) delicate counterexample in 3 and higher dimensions.

Future directions

Question

Can we establish the Lipschitz continuity result for domains which fail the Dini condition?

Two possible approaches:

- 1) Change the definition of monotonicity functional from spherical slices;
- 2) Interior regularity has been established by Dipierro-Karakhanyan '18 without using the monotonicity formula.

Question

Is the free boundary smooth up to the boundary?

Just as in the interior case, the Friedland-Hayman inequality (plus case of equality) should allow for a classification of blow-up limits.

Numerical evidence in 2 dimensions (Gemmer-Moon-Raynor) that the free boundary avoids corners and meets the convex boundary at right angles.

Thank you for your attention!