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What’s additive combinatorics all about?
Finding WEAK additive structures under WEAK hypotheses.

(In any abelian group - usually either Z/NZ or Fn
p.)

The weakest kind of structure you could come up with, that
involves some addition, is a three-term arithmetic progression
x , x + d , x + 2d (hereafter a 3AP).
So perhaps one of the most natural questions in additive
combinatorics is:

What conditions on a set are enough to guarantee that it contains a
3AP?
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Obviously there are infinite sets that contain no 3APs (e.g.
{1,2,4,8,16, . . .}).
But these are very sparse – the reason they don’t contain any
progressions is that the gaps between successive members keeps
increasing.
After some experimentation, it seems that any set without 3APs
must be ‘sparse’.
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This kind of question was first considered by Erdős and Turán in
1936. They proved a couple of elementary estimates, and
conjectured the following.

Conjecture (Erdős-Turán 1936)
If A ⊂ N is such that A contains no 3APs then

lim
N→∞

|A ∩ {1, . . . ,N}|
N

→ 0.

In fact, in later years, Erdős conjectured something even stronger.

Conjecture (Erdős)

If A ⊂ N is such that A contains no 3APs then
∑

a∈A
1
a converges.
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It took some time before the Erdős-Turán conjecture was proved.

Theorem (Roth 1953)
If A ⊂ N is such that A contains no 3AP then

lim
N→∞

|A ∩ {1, . . . ,N}|
N

→ 0.

It took even longer for the stronger Erdős version to be proved.

Theorem (Bloom-Sisask 2020)

If A ⊂ N is such that A contains no 3APs then
∑

a∈A
1
a converges.
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As a consequence, we know that the primes have infinitely many
three-term arithmetic progressions (already known since the
1930s).
In fact, any dense subset of the primes has infinitely many
three-term arithmetic progressions (already proved by Green in
2005, then extended to arbitrary length progressions by
Green-Tao in 2006).
These proofs use a lot of number theoretic machinery. Now we
know that it is true not because of any special properties of the
primes - just that there are lots of them.
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In fact, Erdős conjectured that both of these conjectures should be
true if we replace 3AP by kAP for any k . The analogue of the first
conjecture was proved in 1975 by Szemerédi:

Theorem (Szemerédi 1975)
For any k ≥ 3, if A ⊂ N is such that A contains no kAPs then

lim
N→∞

|A ∩ {1, . . . ,N}|
N

→ 0.

The second, harder, conjecture, is still wide open for the general
case. It is has the largest bounty of any surviving Erdős
conjecture ($3000):

Conjecture (Erdős)

For any k ≥ 3, if A ⊂ N is such that A contains no kAPs then
∑

a∈A
1
a

converges.
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The qualitative fact r(N) = o(N) was proved by Roth (1953), using
an adaptation of the circle method.
Since then several very different proofs of this - using
combinatorics, ergodic theory, harmonic analysis, or various
combinations of these.
For the quantitative question “how quickly does r(N)/N decay?”
combinatorics and ergodic theory do terribly, not even able to
match Roth’s original bound of r(N)� N/ log log N.
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Roth 1953 N
log log N

Szemerédi 1986 exp(−O(log log N)1/2))N

Heath-Brown 1987 N
(log N)c for some tiny c > 0

Szemerédi 1990 N
(log N)1/4−o(1)

Bourgain 1999 N
(log N)1/2−o(1)

Bourgain 2008 N
(log N)2/3−o(1)
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Sanders 2012 N
(log N)3/4−o(1)

Sanders 2011 (log log N)6

log N N

Bloom 2014 (log log N)4

log N N

Bloom-Sisask 2019 (log log N)7

log N N

Schoen 2020 (log log N)3+o(1)

log N N
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Our actual main result is the following bound.

Theorem (Bloom-Sisask 2020)
There exists a constant c > 0 such that

r(N)� N
(log N)1+c .

In particular, this is o(N/ log N) (and so if A has no non-trivial
3APs then

∑ 1
a converges).

The value of the constant c is in principle effectively computable,
but very very tiny. Something like

c = 2−221000

should work.
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This particular type of bound might look surprising if you’re new to
the area. But it came as no surprise to additive combinatorialists.
Our result uses many of the ideas from previous work by Bateman
and Katz on the ‘cap set problem’: which asks for the maximal
size of a subset of Fn

3 that contains no 3APs.

Theorem (Bateman-Katz 2010)
There exists a constant c > 0 such that

r(Fn
3)� 3n

n1+c .

The use of Fn
3 as an easier ‘model setting’ for understanding the

integers is well-known, and the result of Bateman and Katz,
especially as it used Fourier-analytic techniques, raised the hope
that a similar result could be proved for the integers.
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Our proof does use the ideas of Bateman and Katz, translated to
the integers, and our result would not have been possible without
this breakthrough.
There are significant difficulties in performing this translation, and
several other new ideas were necessary.
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Actually, for Fn
3 a completely different method has since done

much better than Bateman and Katz with a much simpler proof!
Ellenberg and Gijswijt have shown, using a new polynomial
method introduced by Croot, Lev, and Pach, that

r(Fn
3) ≤ 2.756n.

There does not seem to be any way to adapt these polynomial
methods to the integers, however. (Unlike the previous Fourier
analytic techniques.)
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The bound of r(N)� N/(log N)1+c for some tiny c > 0 is very
unlikely to be sharp!
The best lower bound, due to Behrend (1946) (with slight
refinements by Elkin and Green-Wolf), is

r(N)� N

C
√

log N

for some constant C > 1.
We believe that the lower bound is closer to the truth.

Conjecture
There exists c > 0 and C > 1 such that

r(N)� N
C(log N)c .
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Now let’s talk about the proof...
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Let’s approach the problem of estimating r(N), as Roth did,
analytically, using the Fourier transform.
We first ask a different question: not “how big can A be if there are
no non-trivial solutions to x + y = 2z” but instead “can we get a
lower bound for the number of solutions to x + y = 2z knowing
only A ⊂ {1, . . . ,N} and the size of A?”
The second leads directly to an answer to the first, since if there
are only trivial solutions, then there are exactly |A| of them –
comparing this to the lower bound and rearranging gives an upper
bound on |A| /N.
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From few 3APs to the large spectrum

We work with some A ⊂ G = Z/NZ of size |A| = αN.
We will use the compact normalisation for G and the discrete
normalisation for its dual group, so that, for example, if γ ∈ Ĝ is a
character then

1̂A(γ) =
1
N

∑
a∈A

γ(a).

We want to count the number of 3APS in A. A 3AP is a solution to
x + y = 2z, so

# 3APs in A
N2 = 〈1A ∗ 1A,12·A〉.
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From few 3APs to the large spectrum

Applying Parseval’s identity, this gives a Fourier expression for the
number of 3APs,

# 3APs in A
N2 = 〈1A ∗ 1A,12·A〉 =

∑
γ

1̂A(γ)21̂A(−2γ).

Since all we know about A is its size, the only contribution we can
control is the trivial character, where 1̂A(0) = α, and so

# 3APs in A
N2 = α3 + O

∑
γ 6=0

|1̂A(γ)|3
 .
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From few 3APs to the large spectrum

So either we have� α3N2 many 3APs (which for |A| � N1/2 is
≥ |A|, and hence there must be some non-trivial 3APs), or the
error term here must dominate the main term, so∑

γ 6=0

|1̂A(γ)|3 � α3.

This could happen for a number of reasons - a small number of
very large Fourier coefficients, or many small Fourier
coefficients.For simplicity, we focus on the latter case, and
suppose that if

∆ = {γ 6= 0 : |1̂A(γ)| � α2}

then |∆| � α−3.
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From few 3APs to the large spectrum

This set ∆ we call the large spectrum of A.
Most of the progress in understanding three-term arithmetic
progressions has come about by new insights into what sets like
∆ can look like.
(Note that by Parseval’s identity

α4 |∆| �
∑
γ

∣∣∣1̂A(γ)
∣∣∣2 = α,

and so |∆| � α−3, so the lower bound from before is
near-optimal.)
In particular, it’s useful to find subsets of ∆ with small ‘dimension’,
i.e. contained in the linear span of a small number of elements.
Let’s see why.

Thomas Bloom (University of Cambridge) Spectral structure Caltech/UCLA



From large spectrum to density increment

Suppose that we can find some H ⊂ ∆ of size� α−1 and
dimension� 1.
Since H ⊂ ∆, ∑

H

∣∣∣1̂A(γ)
∣∣∣2 � α4 |H| � α3.

Adding in the trivial character, where
∣∣∣1̂A

∣∣∣ = α, we get that

∑
H∪{0}

∣∣∣1̂A(γ)
∣∣∣2 ≥ (1 + Ω(α))α2.
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From large spectrum to density increment

If G′ ≤ G is the set of approximate annihilators of H, then
|1̂G′ | ≈ 1

N |G
′| on H, and also |G′| � |G| (if H has dimension O(1)).

So
‖1A ∗ 1G′‖22 =

∑∣∣∣1̂G′(γ)
∣∣∣2 ∣∣∣1̂A(γ)

∣∣∣2
≥
∣∣G′∣∣2 ∑

H∪{0}

∣∣∣1̂A(γ)
∣∣∣2 ≥ (1 + Ω(α))α2 ∣∣G′∣∣2 /N2.

Since ‖1A ∗ 1G′‖1 = α |G′| /N, we get that
‖1A ∗ 1G′‖∞ ≥ (1 + Ω(α))α |G′| /N, or, unpacking the notation,
there is some translate A′ of A such that

|A′ ∩G′|
|G′|

≥ (1 + Ω(α))α.

Thomas Bloom (University of Cambridge) Spectral structure Caltech/UCLA



Finishing the argument

So we’ve basically shown that either:
1 we have� α3N2 many 3APs in A, or
2 there is some (approximate) subgroup G′ ⊂ G of size |G′| � |G|

and A′, which is a translate of A (so has the same number of 3APs)
such that

|A′ ∩G′|
|G′|

≥ (1 + Ω(α))α.

We then repeat the argument, starting with A′ ∩G′ ⊂ G′, and so
on.
The second ‘density increment’ step can’t happen more than
O(α−1) many times, since the density can never exceed 1.
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Finishing the argument

So in O(α−1) many steps we exit with the first case, and since our
group at that point has size� cα

−1
N for some c > 0, the number

of 3APs in some subset of a translate of A (and hence in A itself)
is at least

� α3cα
−1

N2 ≥ exp(−O(α−1))N2.

This implies, for example, that if A has no non-trivial 3APs to begin
with then

α� 1
log N

.

How do we get past log N?
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More refined structure

We began with ∆ having size α−3, and a subset H ⊂ ∆ having
size α−1 and dimension O(1).
These parameters are all, in some sense, optimal, so we can’t
hope to do better directly (e.g. by finding a larger set with
dimension O(1)).
Instead, following the breakthrough strategy of Bateman and Katz,
we instead obtain more refined information about the relationship
between H and ∆.
So that, roughly speaking, not only is H ⊂ ∆, but also ∆ is ‘almost
invariant under shifts by H ’, so that

∆ + H − H ≈ ∆.

How we do so is a large part of the proof (building on the earlier
work of Bateman and Katz), which we will omit from this talk.
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More refined structure

So in other words, we now have ∆ with size ≈ α−3, and H ⊂ ∆
with size ≈ α−1 and dimension O(1), but ALSO with the stronger
property that ∆ + H − H ≈ ∆.
What can we hope to do with this? We can take inspiration from a
result of Bourgain, that approximately says that, if

∆′ = {γ 6= 0 : |1̂A(γ)| � α3/2},

then
∆′ −∆′ ⊂ ∆.
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Spectral boosting

We prove a partial converse to this result, which in particular
(approximately) implies that not only is H ⊂ ∆, but in fact H ⊂ ∆′.
We call this ‘spectral boosting’, since we have used the
combinatorial information ∆ + H − H ≈ ∆ to ‘boost’ the trivial fact
that |1̂A| � α2 on H to the much stronger fact that |1̂A| � α3/2 on
H.
(Then running the previous density increment argument with this
instead, gives a density increment of (1 + Ω(1))α, rather than the
previous (1 + Ω(α))α. This means that the whole argument only
needs to be iterated O(1) many times before we exit, which is
much stronger!)
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How does spectral boosting work?

The proof of spectral boosting is a careful application of the
Cauchy-Schwarz inequality, coupled with ‘almost-periodicity’, a
physical space random sampling technique.
The latter allows us to assume, for example, that
〈1∆ ∗ 1−∆, |1̂A|2〉 � α2|∆|.
You can then use this coupled with the Cauchy-Schwarz inequality
with the fact that

〈1H ∗ 1−H ∗ 1∆, |1̂A|2〉 � α4 |∆| |H|2 ,

(which is because ∆ + H − H ≈ ∆), to deduce that

‖1H ∗ |1̂A|2‖∞ � α3 |H| ,

or in other words that (on some translate of H we have
|1̂A| � α3/2 as required.
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Summary

1 Convert the additive problem into spectral information, e.g.
showing that there are at least� α−3 many Fourier coefficients of
1A of size� α2 (classical);

2 Show that the set ∆ of such Fourier coefficients has rich
combinatorial structure, e.g. there is a moderately sized H of
small dimension such that ∆ + H − H ≈ ∆ (Bateman-Katz);

3 Exploit this structure to ‘boost’ the initial spectral information, e.g.
find� α−1 many Fourier coefficients of size� α3/2 contained in
a set of very low dimension (Bloom-Sisask).
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