Invariant Gibbs measures for the three-dimensional wave equation with a Hartree nonlinearity

Bjoern Bringmann

University of California, Los Angeles

October 6th, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

"Baby" equation

Nonlinear wave equations (main result)

The Gibbs measure

Local dynamics

Global dynamics

"Baby" equation

Linear and nonlinear oscillator

(Osc)
$$\frac{\mathrm{d}^2 u}{\mathrm{d}t^2} + u + \lambda \cdot u^3 = 0.$$

 $\lambda = 0$: Harmonic oscillator. $\lambda > 0$: Duffing oscillator.

We define the Hamiltonian $H \colon \mathbb{R}^2 \to \mathbb{R}$ by

$$H(q,p) = \frac{p^2}{2} + \frac{q^2}{2} + \lambda \frac{q^4}{4}.$$

Using the variables q = u and $p = \frac{\mathrm{d}u}{\mathrm{d}t}$, we obtain that

(Osc)
$$\iff \frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} q \\ p \end{pmatrix} = \begin{pmatrix} p \\ -q - \lambda q^3 \end{pmatrix} = \begin{pmatrix} \partial_p H \\ -\partial_q H \end{pmatrix}.$$

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

The Gibbs measure

(1) Conservation of energy: For any initial data $q(0), p(0) \in \mathbb{R}$,

 $H(q(t), p(t)) = H(q(0), p(0)) \quad \text{for all } t \in \mathbb{R}.$

(2) Liouville's theorem: Since $(q, p) \mapsto (\partial_p H, -\partial_q H)$ is divergence-free, the solution map

$$(q(0), p(0)) \in \mathbb{R}^2 \rightarrow (q(t), p(t)) \in \mathbb{R}^2$$

preserves the Lebesgue measure dq dp.

Theorem (Invariance). The Gibbs measure

$$\mathrm{d}\mu = \mathcal{Z}^{-1} \exp(-H(q, p)) \,\mathrm{d}q \mathrm{d}p$$

is invariant under the Hamiltonian flow.

Example: Harmonic Oscillator → Gaussian measure

$$H(q,p) = rac{p^2}{2} + rac{q^2}{2}.$$

Gibbs measure:

$$\mathrm{d}\mu = \mathcal{Z}^{-1} \exp\left(-\frac{1}{2}q^2 - \frac{1}{2}p^2\right) \mathrm{d}q \mathrm{d}p.$$

→ Gaussian measure.

Hamiltonian flow:

$$egin{pmatrix} q(t)\ p(t) \end{pmatrix} = egin{pmatrix} \cos(t) & -\sin(t)\ \sin(t) & \cos(t) \end{pmatrix} egin{pmatrix} q(0)\ p(0) \end{pmatrix}.$$

 \rightarrow Rotation in phase-space.

Then: Theorem (Invariance) \rightarrow (Standard) Gaussian measure is rotation invariant.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Example: Duffing oscillator

$$H(q,p) = rac{p^2}{2} + rac{q^2}{2} + \lambda rac{q^4}{4}.$$

Gibbs measure:

$$d\mu = \mathcal{Z}^{-1} \exp\left(-\frac{1}{2}q^2 - \frac{\lambda}{4}q^4 - \frac{1}{2}p^2\right) dqdp$$
$$= \mathcal{Z}^{-1} \underbrace{\exp\left(-\frac{\lambda}{4}q^4\right)}_{\leqslant 1} \exp\left(-\frac{1}{2}q^2 - \frac{1}{2}p^2\right) dqdp$$

is absolutely continuous with respect to the Gaussian measure.

Hamiltonian ODE:

$$\frac{\mathrm{d}q}{\mathrm{d}t} = p, \quad \frac{\mathrm{d}p}{\mathrm{d}t} = -q - \lambda q^3.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \rightarrow Complicated (Jacobi elliptic functions).

Gibbs measure: Implications

Most Hamiltonian ODEs cannot be solved explicitly and individual solutions are difficult to analyze. However,

Theorem (Invariance) \Rightarrow Information on typical solutions.

For example, one can use:

- Poincaré recurrence theorem.
- Furstenberg multiple recurrence theorem.

Nonlinear wave equations (main result)

Nonlinear wave equations

$$\begin{array}{ll} (\mathsf{NLW}) & -\partial_t^2 u - u + \Delta_x u = u^p & (t,x) \in \mathbb{R} \times \mathbb{T}^d \\ (\mathsf{HNLW}) & -\partial_t^2 u - u + \Delta_x u = (V * u^2) u & (t,x) \in \mathbb{R} \times \mathbb{T}^d \end{array}$$

In the Hartree-nonlinearity, $V \colon \mathbb{T}^d o \mathbb{R}$ is an interaction potential.

Hamiltonian structure:

$$\begin{aligned} H(u,\partial_t u) &= \frac{1}{2} \int_{\mathbb{T}^d} \left(|\partial_t u|^2 + |u|^2 + |\nabla u|^2 \right) \mathrm{d}x + \mathcal{V}(u), \\ \text{with} \quad \mathcal{V}(u) &= \frac{1}{p+1} \int_{\mathbb{T}^d} u^{p+1} \mathrm{d}x \quad \text{or} \quad \mathcal{V}(u) = \frac{1}{4} \int_{\mathbb{T}^d} (V * u^2) u^2 \mathrm{d}x. \end{aligned}$$

Then: Hamiltonian + Symplectic form \rightarrow (NLW) and (HNLW).

Nonlinear wave equations

Question: Since (NLW) and (HNLW) exhibit a Hamiltonian structure, do they also have invariant Gibbs measures?

Three parts of the question:

- (1) Can the Gibbs measure be constructed rigorously?
- (2) What are the properties of the Gibbs measure?
- (3) Can the invariance of the Gibbs measure be proven?

Similar questions can be posed for other Hamiltonian PDEs, such as nonlinear Schrödinger equations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Overview of current results

Theorem. Existence and invariance of the Gibbs measure (after a renormalization).

Dim. & Nonlinearity	Wave	Schrödinger
$d=1$, $ u ^{p-1}u$	Friedlander '85, Zhidkov '94	Bourgain '94
$d=2, u ^2 u$	Oh Thomann (19	Bourgain '96
$d = 2, u ^{p-1}u$	On-Thomann 16	Deng-Nahmod-Yue '19
$d=3, (V_{\beta}* u ^2)u$	$\beta > 1$: Oh-Okamoto- Tolomeo '20 $\beta > 0$: B. '20	eta > 2: Bourgain '97 eta > 1/2: Feasible. eta > 0: Open.
$d=3, u ^2 u$	Open	(Extremely) open

The (periodic) interaction potential $V_{\beta} \colon \mathbb{T}^3 \to \mathbb{R}$ behaves like $|x|^{-(3-\beta)}$. Smaller $\beta \to$ higher difficulty.

Main result

 $(\mathsf{HNLW}) \quad -\partial_t^2 u - u + \Delta_x u = :(V * u^2)u: \qquad (t,x) \in \mathbb{R} \times \mathbb{T}^3.$

- $V = V_{\beta}$ is a periodic version of $|x|^{-(3-\beta)}$.
- $:(V * u^2)u$: is a renormalization of $(V * u^2)u$.

Theorem (B. '20). The Gibbs measure corresponding to (HNLW) exists and, for $0 < \beta < 1/2$, is *mutually singular* with respect to the Gaussian free field. Furthermore, it is invariant under (HNLW).

Remark. This is the only theorem on the invariance of a *singular* Gibbs measure for any dispersive equation.

The singularity heavily affects the global (but not local) dynamics.

B., Invariant Gibbs measures for the three-dimensional wave equation with a Hartree nonlinearity I/II (65 and 133 pages)

The Gibbs measure

Gaussian free field

$$\mathrm{d}g = \mathcal{Z}^{-1} \exp\left(-\frac{1}{2} \int_{\mathbb{T}^d} |u|^2 + |\nabla u|^2 \mathrm{d}x\right) \mathrm{d}u$$

For any $n \in \mathbb{Z}^d$, we define $\langle n \rangle = \sqrt{1 + |n|^2}$. By using the "Fourier" transformation

$$(g_n)_{n\in\mathbb{Z}^d}\mapsto u=\sum_{n\in\mathbb{Z}^d}\frac{g_n}{\langle n\rangle}e^{i\langle n,x\rangle},$$

we can view $\mathrm{d} g$ as the push-forward of the Gaussian measure

$$\bigotimes_{n\in\mathbb{Z}^d}\mathcal{Z}_n^{-1}\exp\Big(-\frac{|g_n|^2}{2}\Big)\mathrm{d}g_n$$

Spatial regularity:

$$\sum_{n \in \mathbb{Z}^d} \frac{g_n}{\langle n \rangle} e^{i \langle n, x \rangle} \in C^s_x(\mathbb{T}^d) \text{ a.s. } \iff s < 1 - \frac{d}{2}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Gibbs measure and the Gaussian free field The Gibbs measure is (formally) given by

$$\begin{split} \mathrm{d}\mu^{\otimes}(u, u_t) = & \mathcal{Z}_0^{-1} \exp\left(-\mathcal{V}(u)\right) \exp\left(-\frac{1}{2} \int_{\mathbb{T}^d} |u|^2 + |\nabla u|^2 \mathrm{d}x\right) \mathrm{d}u \\ & \otimes \mathcal{Z}_1^{-1} \exp\left(-\frac{1}{2} \int_{\mathbb{T}^d} |\partial_t u|^2 \mathrm{d}x\right) \mathrm{d}u_t. \end{split}$$

Using our Gaussian free field, we (rigorously) define

$$g^{\otimes} = g \otimes (\langle \nabla \rangle_{\#} g).$$

Idea: Show that the potential energy \mathcal{V} is g-a.s. finite and

$$\exp\left(-\mathcal{V}(u)\right)\in L^{1}(\mathcal{G})\setminus\{0\}.$$

Then, we can (rigorously) define

$$\mathrm{d}\mu^{\otimes}/\mathrm{d}g^{\otimes} = \mathcal{Z}^{-1}\exp\big(-\mathcal{V}(u)\big).$$

Gibbs measure and the Gaussian free field

Regularity: s < 1 - d/2. Difficulty: If $d \ge 2$, then s < 0. $\rightarrow \mathcal{V}(u) = \infty$ g-a.s.

The previous idea can (only) be implemented if

(i):
$$d = 1$$
,
(ii): $d = 2$,
(iii): $d = 3$ and $\beta > 1/2$.

In (ii) and (iii), the potential energy \mathcal{V} needs to be renormalized. This is indicated by writing : \mathcal{V} : instead of \mathcal{V} .

Remark. If $\mu^{\otimes} \ll q^{\otimes}$, we can use Gaussian initial data in the local theory for (NLW) and (HNLW).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Stochastic quantization

Stochastic quantization: The Gibbs measure is formally invariant under the stochastic heat equation

(Heat)
$$\partial_t u + u - \Delta u = :u^3: +\sqrt{2}\eta, \qquad u(0) = \phi.$$

where η is space-time white noise.

Physics: Nelson '66, Parisi-Wu '81. Mathematics: Da Prato-Debussche '03, Hairer-Matetski '15, Mourrat-Weber '17, Gubinelli-Hofmanová '18, ...

Variational approach: Barashkov-Gubinelli '18, '20. Similar spirit but relies on stochastic control theory.

 \rightarrow Used here.

Gibbs measure for the 3d Hartree nonlinearity

$$\mathcal{V}(u) = \frac{1}{4} \int_{\mathbb{T}^d} (V * u^2) u^2 dx$$
 and $V(x) \approx |x|^{-(3-\beta)}$

Theorem (B. '20, Measures). The Gibbs measure μ^{\otimes} corresponding to a (renormalization of) \mathcal{V} exists and, for $0 < \beta < 1/2$, is mutually singular with respect to the Gaussian free field. Furthermore, there exists a reference measure ν^{\otimes} , an ambient probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and random functions $\bullet : \Omega \to C_x^{-1/2-\epsilon}(\mathbb{T}^3)$ and $\circ : \Omega \to C_x^{1/2+\beta-\epsilon}(\mathbb{T}^3)$ such that

$$\mu^{\otimes} \ll \nu^{\otimes}, \quad \nu^{\otimes} = \mathsf{Law}_{\mathbb{P}}\left({}^{\bullet} + {}^{\circ}\right), \quad \mathsf{and} \quad g^{\otimes} = \mathsf{Law}_{\mathbb{P}}({}^{\bullet}).$$

Remark. Oh-Okamoto-Tolomeo '20 independently obtained a similar result.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Why the "dots"? \rightarrow Stay tuned!

Local dynamics

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Local dynamics

Theorem (B. '20, LWP). On any small interval, (HNLW) is well-posed with high probability under the Gibbs measure.

Replace Gibbs measure \rightarrow Reference measure $\nu^{\otimes} = Law_{\mathbb{P}}(\bullet + \circ)$.

We write $u[t] = (u(t), \partial_t u(t))$. Recall that (HNLW) is given by

$$\begin{cases} -\partial_t^2 u - u + \Delta_x u = :(V * u^2)u: \quad (t, x) \in \mathbb{R} \times \mathbb{T}^3, \\ u[0] = \bullet + \circ. \end{cases}$$

Deterministic critical regularity: $s_c = 1/2 - \beta$. Regularity of •: s < -1/2.

 \rightarrow Almost a *full derivative* below the deterministic theory.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ansatz

Ansatz:
$$u = 1 + 4 + X + Y$$
, where:

• is the linear evolution of •.

• is the "first" Picard iterate, which solves

$$\left(-\partial_t^2 - 1 + \Delta\right) \bigvee =: \left(V * \left(\uparrow\right)^2\right)^{\uparrow}$$

- X has regularity 1/2- but exhibits a *para-controlled structure*, as introduced by Gubinelli, Imkeller, and Perkowski.
- Y is a smooth remainder at regularity 1/2+ which contains \hat{P} .

The threshold s = 1/2 determines whether the multiplication by \uparrow is well-defined.

Mourrat, Weber, Xu, Construction of Φ_3^4 diagrams for pedestrians.

Fleeting impression: Terms

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Message: (1) The evolution equations are quite involved. (2) Stochastic diagrams are amazing!

Techniques

- ロ ト - 4 回 ト - 4 □

We combine ingredients from several different fields, such as:

- Gaussian hypercontractivity (Probability theory).
- Lattice point estimates (Number theory).
- Moment method (Random matrix theory).
- Multi-linear dispersive estimates (PDE).
- Multiple Itô integrals (Probability theory).
- Para-product estimates (Harmonic analysis).
- Para-controlled calculus (Stochastic PDE).
- Strichartz estimates (PDE).

Global dynamics

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Global well-posedness and invariance

Recall: μ^{\otimes} is called invariant if Law $(u[0]) = \mu^{\otimes} \Rightarrow Law (u[t]) = \mu^{\otimes}$ for all $t \in \mathbb{R}$.

Danger: Circular argument?

Solution: Bourgain!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Singularity meets the dynamics

(1): The truncated Gibbs measures μ_N^{\otimes} only converge *weakly* to μ^{\otimes} but *not* in total-variation.

Serious difficulty, which requires new ideas.

(2): (Subtle) In our globalization argument, we want to use

$$u = \uparrow + \checkmark + X + Y.$$

The Gaussian data • is only defined on the ambient probability space $(\Omega, \mathcal{F}, \mathbb{P})$. However, we cannot use $(\Omega, \mathcal{F}, \mathbb{P})$ and invariance-methods together.

Thank you

Questions