Uncertain signs

Emanuel Carneiro (IMPA / ICTP)

Caltech & UCLA Joint Analysis Seminar December 2020

joint work with Oscar E. Quesada-Herrera (IMPA)

Emanuel Carneiro

Uncertain signs

PART I

Prelude

Emanuel Carneiro

Uncertain signs

November 2020 2/32

2

イロト イヨト イヨト イヨト

Eventual non-negativity

f : ℝ^d → ℝ is eventually non-negative if *f*(*x*) ≥ 0 for sufficiently large |*x*|, and we define

 $r(f) := \inf\{r > 0 : f(x) \ge 0 \text{ for all } |x| \ge r\}.$

$$f(x) = (x^{10} - 8x^8 + 15x^6 - x^4 - 2x^2 - 1)e^{-x^2}$$

4 A N

• Let us take a homogeneous polynomial, e.g. in dimension d = 4,

 $P(x_1, x_2, x_3, x_4) = (x_1^3 + x_1^2(x_2 - x_3) - x_1(x_2^2 + 2x_3^2) - x_2^3 + x_2^2x_3 + 2x_2x_3^2)x_4$

4 E 5

• Let us take a homogeneous polynomial, e.g. in dimension d = 4,

 $P(x_1, x_2, x_3, x_4) = (x_1^3 + x_1^2(x_2 - x_3) - x_1(x_2^2 + 2x_3^2) - x_2^3 + x_2^2x_3 + 2x_2x_3^2)x_4$

Consider the family of functions: •

 $\mathcal{A} = \left\{ egin{array}{l} f \in L^1(\mathbb{R}^d) \setminus \{0\} \text{ continuous, real-valued; even;} \end{array}
ight.$

• Let us take a homogeneous polynomial, e.g. in dimension d = 4,

 $P(x_1, x_2, x_3, x_4) = (x_1^3 + x_1^2(x_2 - x_3) - x_1(x_2^2 + 2x_3^2) - x_2^3 + x_2^2x_3 + 2x_2x_3^2)x_4$

• Consider the family of functions:

$$\mathcal{A} = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; even;} \\ \widehat{f}, Pf, P\widehat{f} \in L^{1}(\mathbb{R}^{d}); \end{cases}$$

• Let us take a homogeneous polynomial, e.g. in dimension d = 4,

 $P(x_1, x_2, x_3, x_4) = (x_1^3 + x_1^2(x_2 - x_3) - x_1(x_2^2 + 2x_3^2) - x_2^3 + x_2^2x_3 + 2x_2x_3^2)x_4$

• Consider the family of functions:

$$\mathcal{A} = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; even;} \\ \widehat{f}, Pf, P\widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ Pf, P\widehat{f} \text{ are eventually non-negative.} \end{cases}$$

• Let us take a homogeneous polynomial, e.g. in dimension d = 4,

 $P(x_1, x_2, x_3, x_4) = (x_1^3 + x_1^2(x_2 - x_3) - x_1(x_2^2 + 2x_3^2) - x_2^3 + x_2^2x_3 + 2x_2x_3^2)x_4$

• Consider the family of functions:

$$\mathcal{A} = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; even;} \\ \widehat{f}, Pf, P\widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ Pf, P\widehat{f} \text{ are eventually non-negative.} \\ \int_{\mathbb{R}^{d}} Pf \leq 0, \ \int_{\mathbb{R}^{d}} P\widehat{f} \leq 0; \end{cases}$$

• Let us take a homogeneous polynomial, e.g. in dimension d = 4,

 $P(x_1, x_2, x_3, x_4) = (x_1^3 + x_1^2(x_2 - x_3) - x_1(x_2^2 + 2x_3^2) - x_2^3 + x_2^2x_3 + 2x_2x_3^2)x_4$

• Consider the family of functions:

$$\mathcal{A} = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; even;} \\ \widehat{f}, Pf, P\widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ Pf, \ P\widehat{f} \text{ are eventually non-negative.} \\ \int_{\mathbb{R}^{d}} Pf \leq 0 \ , \ \int_{\mathbb{R}^{d}} P\widehat{f} \leq 0; \end{cases}$$

• Tell me something about:

$$\mathbb{A} := \inf_{f \in \mathcal{A}} \sqrt{r(Pf) r(Pf)}$$

• Let us take a homogeneous polynomial, e.g. in dimension d = 4,

 $P(x_1, x_2, x_3, x_4) = (x_1^3 + x_1^2(x_2 - x_3) - x_1(x_2^2 + 2x_3^2) - x_2^3 + x_2^2x_3 + 2x_2x_3^2)x_4$

• Consider the family of functions:

$$\mathcal{A} = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; even;} \\ \widehat{f}, Pf, P\widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ Pf, \ P\widehat{f} \text{ are eventually non-negative.} \\ \int_{\mathbb{R}^{d}} Pf \leq 0 \ , \ \int_{\mathbb{R}^{d}} P\widehat{f} \leq 0; \end{cases}$$

• Tell me something about:

$$\mathbb{A} := \inf_{f \in \mathcal{A}} \sqrt{r(Pf) r(Pf)}$$

• Let us take a homogeneous polynomial, e.g. in dimension d = 4,

 $P(x_1, x_2, x_3, x_4) = (x_1^3 + x_1^2(x_2 - x_3) - x_1(x_2^2 + 2x_3^2) - x_2^3 + x_2^2x_3 + 2x_2x_3^2)x_4$

• Consider the family of functions:

$$\mathcal{A} = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; even;} \\ \widehat{f}, Pf, P\widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ Pf, \ P\widehat{f} \text{ are eventually non-negative.} \\ \int_{\mathbb{R}^{d}} Pf \leq 0 \ , \ \int_{\mathbb{R}^{d}} P\widehat{f} \leq 0; \end{cases}$$

• Tell me something about:

$$\mathbb{A} := \inf_{f \in \mathcal{A}} \sqrt{r(Pf) r(P\hat{f})} = \sqrt{2}.$$

PART II

Uncertainty

_	1.0	
-manu		rneiro
Linaiu		

2

A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Our guest of honor

Joseph Fourier (1768 - 1830)

West face of the Eiffel tower

イロト イヨト イヨト イヨト

Fourier uncertainty

• Let $f \in L^1(\mathbb{R}^d)$. We define

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i x \cdot \xi} f(x) \, \mathrm{d} x \qquad (\xi \in \mathbb{R}^d).$$

• Plancherel: $\|f\|_{L^2(\mathbb{R}^d)} = \|\widehat{f}\|_{L^2(\mathbb{R}^d)}$.

~

4 6 1 1 4

Fourier uncertainty

• Let $f \in L^1(\mathbb{R}^d)$. We define

$$\widehat{f}(\xi) = \int_{\mathbb{R}^d} e^{-2\pi i x \cdot \xi} f(x) \, \mathrm{d} x \quad (\xi \in \mathbb{R}^d).$$

• Plancherel:
$$\|f\|_{L^2(\mathbb{R}^d)} = \|\widehat{f}\|_{L^2(\mathbb{R}^d)}.$$

Fourier uncertainty: "one cannot have an unrestricted control of a function and its Fourier transform simultaneously."

Subject is broad - no doubt about that...

Some books you may find in Amazon.com

イロト イポト イヨト イヨト

Some examples

• Heisenberg (circa 1927):

$$\int_{\mathbb{R}^d} |f(x)|^2 \, \mathrm{d}x \leq \frac{4\pi}{d} \left(\int_{\mathbb{R}^d} |x|^2 \, |f(x)|^2 \mathrm{d}x \right)^{1/2} \left(\int_{\mathbb{R}^d} |\xi|^2 \, |\widehat{f}(\xi)|^2 \, \mathrm{d}\xi \right)^{1/2}$$

э

Some examples

• Heisenberg (circa 1927):

$$\int_{\mathbb{R}^d} |f(x)|^2 \, \mathrm{d}x \le \frac{4\pi}{d} \left(\int_{\mathbb{R}^d} |x|^2 \, |f(x)|^2 \, \mathrm{d}x \right)^{1/2} \left(\int_{\mathbb{R}^d} |\xi|^2 \, |\widehat{f}(\xi)|^2 \, \mathrm{d}\xi \right)^{1/2}$$

• Hardy (circa 1933): If $f = O(e^{-\pi a|x|^2})$, $\hat{f} = O(e^{-\pi b|\xi|^2})$ with ab > 1 then $f \equiv 0$.

Some examples

• Heisenberg (circa 1927):

$$\int_{\mathbb{R}^d} |f(x)|^2 \, \mathrm{d}x \le \frac{4\pi}{d} \left(\int_{\mathbb{R}^d} |x|^2 \, |f(x)|^2 \, \mathrm{d}x \right)^{1/2} \left(\int_{\mathbb{R}^d} |\xi|^2 \, |\widehat{f}(\xi)|^2 \, \mathrm{d}\xi \right)^{1/2}$$

- Hardy (circa 1933): If $f = O(e^{-\pi a|x|^2})$, $\hat{f} = O(e^{-\pi b|\xi|^2})$ with ab > 1 then $f \equiv 0$.
- Amrein-Berthier (1977): $E, F \subset \mathbb{R}^d$ of finite measure. Then

$$\int_{\mathbb{R}^d} |f(x)|^2 \,\mathrm{d} x \leq C(E,F,d) \left(\int_{E^c} |f(x)|^2 \,\mathrm{d} x + \int_{F^c} |\widehat{f}(\xi)|^2 \,\mathrm{d} \xi\right).$$

PART III

Sign Fourier uncertainty

Emanuel Carneiro

Uncertain signs

November 2020 10/32

2

3 > 4 3

Bourgain, Kahane and Clozel [Ann I Fourier, 2010]

• Consider the family:

$$\mathcal{A}_{+1}(d) = \left\{ egin{array}{l} f \in L^1(\mathbb{R}^d) \setminus \{0\} ext{ continuous, even, real-valued; } \widehat{f} \in L^1(\mathbb{R}^d); \ \end{array}
ight.$$

Bourgain, Kahane and Clozel [Ann I Fourier, 2010]

• Consider the family:

$$\mathcal{A}_{+1}(d) = \begin{cases} f \in L^1(\mathbb{R}^d) \setminus \{0\} \text{ continuous, even, real-valued; } \widehat{f} \in L^1(\mathbb{R}^d); \\ f \text{ and } \widehat{f} \text{ are eventually non-negative;} \end{cases}$$

Bourgain, Kahane and Clozel [Ann I Fourier, 2010]

• Consider the family:

$$\mathcal{A}_{+1}(d) = \begin{cases} f \in L^1(\mathbb{R}^d) \setminus \{0\} \text{ continuous, even, real-valued; } \widehat{f} \in L^1(\mathbb{R}^d); \\ f \text{ and } \widehat{f} \text{ are eventually non-negative;} \\ f(0) = \int_{\mathbb{R}^d} \widehat{f} \le 0 \ ; \ \widehat{f}(0) = \int_{\mathbb{R}^d} f \le 0. \end{cases}$$

Bourgain, Kahane and Clozel [Ann I Fourier, 2010]

• Consider the family:

$$\mathcal{A}_{+1}(d) = \begin{cases} f \in L^1(\mathbb{R}^d) \setminus \{0\} \text{ continuous, even, real-valued; } \widehat{f} \in L^1(\mathbb{R}^d); \\ f \text{ and } \widehat{f} \text{ are eventually non-negative;} \\ f(0) = \int_{\mathbb{R}^d} \widehat{f} \leq 0 \ ; \ \widehat{f}(0) = \int_{\mathbb{R}^d} f \leq 0. \end{cases}$$

Define

$$\mathbb{A}_{+1}(d) := \inf_{f \in \mathcal{A}_{+1}(d)} \sqrt{r(f) r(f)}.$$

(note that this is invariant under dilations $f_{\delta}(x) := f(\delta x)$).

Bourgain, Kahane and Clozel [Ann I Fourier, 2010]

• Consider the family:

$$\mathcal{A}_{+1}(d) = \begin{cases} f \in L^1(\mathbb{R}^d) \setminus \{0\} \text{ continuous, even, real-valued; } \widehat{f} \in L^1(\mathbb{R}^d); \\ f \text{ and } \widehat{f} \text{ are eventually non-negative;} \\ f(0) = \int_{\mathbb{R}^d} \widehat{f} \leq 0 \ ; \ \widehat{f}(0) = \int_{\mathbb{R}^d} f \leq 0. \end{cases}$$

Define

$$\mathbb{A}_{+1}(d) := \inf_{f \in \mathcal{A}_{+1}(d)} \sqrt{r(f) r(f)}.$$

(note that this is invariant under dilations $f_{\delta}(x) := f(\delta x)$).

• They show:

$$\sqrt{rac{d+2}{2\pi}} \geq \mathbb{A}_{+1}(d) \geq \sqrt{rac{d}{2\pi e}}.$$

Pictures

Take, for example, $f(x) = e^{-\pi x^2/2} + e^{-2\pi x^2} - (\sqrt{2} + \frac{1}{\sqrt{2}})e^{-\pi x^2}$.

_	· · ·
Emonuo	1 ornoiro

э

ъ

< 🗇 🕨

The family is:

 $\mathcal{A}_{+1}(d) = \begin{cases} f \in L^1(\mathbb{R}^d) \setminus \{0\} \text{ continuous, even, real-valued ; } \widehat{f} \in L^1(\mathbb{R}^d); \\ f \text{ and } \widehat{f} \text{ are eventually non-negative;} \\ f(0) = \int_{\mathbb{R}^d} \widehat{f} \leq 0 \ ; \ \widehat{f}(0) = \int_{\mathbb{R}^d} f \leq 0. \end{cases}$

• The family is:

 $\mathcal{A}_{+1}(d) = \begin{cases} f \in L^1(\mathbb{R}^d) \setminus \{0\} \text{ continuous, even, real-valued ; } \widehat{f} \in L^1(\mathbb{R}^d); \\ f \text{ and } \widehat{f} \text{ are eventually non-negative;} \\ f(0) = \int_{\mathbb{R}^d} \widehat{f} \leq 0 \ ; \ \widehat{f}(0) = \int_{\mathbb{R}^d} f \leq 0. \end{cases}$

• Let $f \in \mathcal{A}_{+1}(d)$. Let $f_{\delta}(x) := f(\delta x)$, then $\hat{f}_{\delta}(x) = \delta^{-d/2} \hat{f}(x/\delta)$. We may then assume that $r(f) = r(\hat{f})$ by a rescaling.

• The family is:

 $\mathcal{A}_{+1}(d) = \begin{cases} f \in L^1(\mathbb{R}^d) \setminus \{0\} \text{ continuous, even, real-valued ; } \widehat{f} \in L^1(\mathbb{R}^d); \\ f \text{ and } \widehat{f} \text{ are eventually non-negative;} \\ f(0) = \int_{\mathbb{R}^d} \widehat{f} \leq 0 \ ; \ \widehat{f}(0) = \int_{\mathbb{R}^d} f \leq 0. \end{cases}$

- Let $f \in \mathcal{A}_{+1}(d)$. Let $f_{\delta}(x) := f(\delta x)$, then $\widehat{f_{\delta}}(x) = \delta^{-d/2} \widehat{f}(x/\delta)$. We may then assume that $r(f) = r(\widehat{f})$ by a rescaling.
- Then consider

 $w = f + \hat{f}$

It is clear that $w \in A_{+1}(d)$ and $r(w) \leq r(f)$.

• The family is:

 $\mathcal{A}_{+1}(d) = \begin{cases} f \in L^1(\mathbb{R}^d) \setminus \{0\} \text{ continuous, even, real-valued ; } \widehat{f} \in L^1(\mathbb{R}^d); \\ f \text{ and } \widehat{f} \text{ are eventually non-negative;} \\ f(0) = \int_{\mathbb{R}^d} \widehat{f} \leq 0 \ ; \ \widehat{f}(0) = \int_{\mathbb{R}^d} f \leq 0. \end{cases}$

- Let $f \in \mathcal{A}_{+1}(d)$. Let $f_{\delta}(x) := f(\delta x)$, then $\widehat{f_{\delta}}(x) = \delta^{-d/2} \widehat{f}(x/\delta)$. We may then assume that $r(f) = r(\widehat{f})$ by a rescaling.
- Then consider

 $w = f + \hat{f}$

It is clear that $w \in A_{+1}(d)$ and $r(w) \leq r(f)$.

If you want

$$w^{\mathrm{rad}}(x) = \int_{SO(d)} w(Rx) \,\mathrm{d}\mu(R).$$

• Consider the (sub)-family:

$$\mathcal{A}_{+1}^*(d) = \begin{cases} f \in L^1(\mathbb{R}^d) \setminus \{0\} \text{ continuous, even, real-valued ; } \widehat{f} = f; \\ f \text{ is eventually non-negative;} \\ f(0) = \int_{\mathbb{R}^d} f \le 0. \end{cases}$$

Then

$$\mathbb{A}_{+1}(d) = \mathbb{A}_{+1}^*(d) := \inf_{f \in \mathcal{A}_{+1}^*(d)} r(f).$$

э

• The proof is quite simple: let $f \in \mathcal{A}_{+1}^*(d)$ and set r = r(f). Let $x_+ = \max\{x, 0\}$ and $x_- = \max\{-x, 0\}$. Then

$$0 \geq \int_{\mathbb{R}^d} f = \int_{\mathbb{R}^d} f_+ - \int_{\mathbb{R}^d} f_-$$

э

A D F A B F A B F A B F

• The proof is quite simple: let $f \in \mathcal{A}_{+1}^*(d)$ and set r = r(f). Let $x_+ = \max\{x, 0\}$ and $x_- = \max\{-x, 0\}$. Then

$$0\geq \int_{\mathbb{R}^d}f=\int_{\mathbb{R}^d}f_+-\int_{\mathbb{R}^d}f_-$$

and therefore

$$\|f\|_{\infty} \leq \int_{\mathbb{R}^d} |f| = \int_{\mathbb{R}^d} f_+ + \int_{\mathbb{R}^d} f_- \leq 2 \int_{B_r} f_- \leq 2 \|f\|_{\infty} |B_r|.$$

э

• The proof is quite simple: let $f \in \mathcal{A}_{+1}^*(d)$ and set r = r(f). Let $x_+ = \max\{x, 0\}$ and $x_- = \max\{-x, 0\}$. Then

$$0\geq \int_{\mathbb{R}^d}f=\int_{\mathbb{R}^d}f_+-\int_{\mathbb{R}^d}f_-$$

and therefore

$$\|f\|_{\infty} \leq \int_{\mathbb{R}^d} |f| = \int_{\mathbb{R}^d} f_+ + \int_{\mathbb{R}^d} f_- \leq 2 \int_{B_r} f_- \leq 2 \|f\|_{\infty} |B_r|.$$

The conclusion is that

$$|B_r|\geq rac{1}{2}.$$

- - - - - - - - - - - -

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• The proof is quite simple: let $f \in \mathcal{A}_{+1}^*(d)$ and set r = r(f). Let $x_+ = \max\{x, 0\}$ and $x_- = \max\{-x, 0\}$. Then

$$0\geq \int_{\mathbb{R}^d}f=\int_{\mathbb{R}^d}f_+-\int_{\mathbb{R}^d}f_-$$

and therefore

$$\|f\|_{\infty} \leq \int_{\mathbb{R}^d} |f| = \int_{\mathbb{R}^d} f_+ + \int_{\mathbb{R}^d} f_- \leq 2 \int_{B_r} f_- \leq 2 \|f\|_{\infty} |B_r|.$$

The conclusion is that

$$|B_r|\geq \frac{1}{2}.$$

 Gonçalves, Oliveira e Silva, Steinerberger 2017: refined estimates and existence of extremizers.

-	<u> </u>
Emanuel	(arneiro
Linanaci	Garneno

4 D N 4 B N 4 B N 4 B N

A dual sign uncertainty principle

Cohn and Gonçalves [Invent. Math., 2019]

• Let $s = \{+1, -1\}$. Consider the family:

$$\mathcal{A}_{s}(d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, even, real-valued ; } \widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ \end{cases}$$

3
Cohn and Gonçalves [Invent. Math., 2019]

• Let $s = \{+1, -1\}$. Consider the family:

$$\mathcal{A}_{s}(d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, even, real-valued }; \ \widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ f \text{ and } \widehat{sf} \text{ are eventually non-negative;} \end{cases}$$

3

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Cohn and Gonçalves [Invent. Math., 2019]

• Let $s = \{+1, -1\}$. Consider the family:

$$\mathcal{A}_{s}(d) = \left\{ \begin{array}{l} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, even, real-valued ; } \widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ f \text{ and } \widehat{sf} \text{ are eventually non-negative;} \\ s f(0) = \int_{\mathbb{R}^{d}} \widehat{sf} \leq 0 \ ; \ \widehat{f}(0) = \int_{\mathbb{R}^{d}} f \leq 0. \end{array} \right\}$$

E N 4 E N

Cohn and Gonçalves [Invent. Math., 2019]

• Let $s = \{+1, -1\}$. Consider the family:

$$\mathcal{A}_{s}(d) = \left\{ \begin{array}{l} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, even, real-valued ; } \widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ f \text{ and } \widehat{sf} \text{ are eventually non-negative;} \\ s f(0) = \int_{\mathbb{R}^{d}} \widehat{sf} \leq 0 \ ; \ \widehat{f}(0) = \int_{\mathbb{R}^{d}} f \leq 0. \end{array} \right\}$$

and define

$$\mathbb{A}_{s}(d) := \inf_{f \in \mathcal{A}_{s}(d)} \sqrt{r(f) r(\widehat{sf})}.$$

The Sec. 74

Cohn and Gonçalves [Invent. Math., 2019]

• Let $s = \{+1, -1\}$. Consider the family:

$$\mathcal{A}_{s}(d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, even, real-valued }; \ \widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ f \text{ and } \widehat{sf} \text{ are eventually non-negative;} \\ s f(0) = \int_{\mathbb{R}^{d}} \widehat{sf} \leq 0 \ ; \ \widehat{f}(0) = \int_{\mathbb{R}^{d}} f \leq 0. \end{cases}$$

and define

$$\mathbb{A}_{s}(d) := \inf_{f \in \mathcal{A}_{s}(d)} \sqrt{r(f) r(\widehat{sf})}.$$

• Reduction to eigenfunctions: may assume that $\hat{f} = sf$ above.

Cohn and Gonçalves [Invent. Math., 2019]

• Let $s = \{+1, -1\}$. Consider the family:

$$\mathcal{A}_{s}(d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, even, real-valued }; \ \widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ f \text{ and } \widehat{sf} \text{ are eventually non-negative;} \\ s f(0) = \int_{\mathbb{R}^{d}} \widehat{sf} \leq 0 \ ; \ \widehat{f}(0) = \int_{\mathbb{R}^{d}} f \leq 0. \end{cases}$$

and define

$$\mathbb{A}_{s}(d) := \inf_{f \in \mathcal{A}_{s}(d)} \sqrt{r(f) r(\widehat{sf})}.$$

• Reduction to eigenfunctions: may assume that $\hat{f} = sf$ above.

• They show:

$$C\sqrt{d} \ge \mathbb{A}_{s}(d) \ge c\sqrt{d}.$$

Pictures

Example: $(\hat{f} = -f)$

$$f(x) = e^{-\pi x^2/4} - 2e^{-4\pi x^2} + \left(\frac{1}{\sqrt{2}-1}\right) \left(e^{-\pi x^2/2} - \sqrt{2}e^{-2\pi x^2}\right).$$

-	
-manual	(arneiro
Linanue	

2

イロト イヨト イヨト イヨト

Pictures

Example: $f(x) = \frac{\sin^2(\pi x)}{\pi^2(x^2-1)}$ and $\hat{f}(x) = -\frac{1}{2\pi}\sin(2\pi|x|)\chi_{[-1,1]}(x)$.

(this turns out to be an extremal example!)

_	<u> </u>
Emonuo	1 ornoiro
LIIIailue	Garneno

Sharp constants

Theorem

(i) (Corollaries of Cohn and Elkies '03 (d = 1), Viazovska '17 (d = 8) and Cohn, Kumar, Miller, Radchenko and Viazovska '17 (d = 24))

$$\mathbb{A}_{-1}(1) = 1$$
; $\mathbb{A}_{-1}(8) = \sqrt{2}$; $\mathbb{A}_{-1}(24) = 2$.

(ii) (Cohn and Gonçalves '19)

 $\mathbb{A}_{+1}(12)=\sqrt{2}.$

3

イロト イポト イラト イラト

Sharp constants

Theorem

(i) (Corollaries of Cohn and Elkies '03 (d = 1), Viazovska '17 (d = 8) and Cohn, Kumar, Miller, Radchenko and Viazovska '17 (d = 24))

$$\mathbb{A}_{-1}(1) = 1$$
; $\mathbb{A}_{-1}(8) = \sqrt{2}$; $\mathbb{A}_{-1}(24) = 2$.

(ii) (Cohn and Gonçalves '19)

$$\mathbb{A}_{+1}(12)=\sqrt{2}.$$

It is conjectured that

$$\mathbb{A}_{-1}(2) = (4/3)^{1/4}$$
 and $\mathbb{A}_{+1}(1) = \frac{1}{\sqrt{1+\sqrt{5}}}.$

 Gonçalves, Oliveira e Silva and Ramos (preprint, 2020); extensions of the (±1)- sign uncertainty to a suitable operator setting.

Emanuel Carneiro

PART IV

Generalized sign Fourier uncertainty

Emanuel Carneiro

Uncertain signs

November 2020 20/32

э

∃ ► < ∃</p>

A new point of view

• What about the other eigenvalues $\pm i$?

A new point of view

- What about the other eigenvalues $\pm i$?
- Goal: Investigate the situation where the signs of *f* and *f* resonate with a given generic function *P* at infinity, given a suitable competing weighted integral condition.
- All that happened before will be the case $P \equiv 1$.

A new point of view

- What about the other eigenvalues $\pm i$?
- Goal: Investigate the situation where the signs of *f* and *f* resonate with a given generic function *P* at infinity, given a suitable competing weighted integral condition.
- All that happened before will be the case $P \equiv 1$.
- A measurable g : ℝ^d → ℝ is eventually non-negative if g(x) ≥ 0 for sufficiently large |x|, and we define

$$r(g) := \inf\{r > 0 : g(x) \ge 0 \text{ for all } |x| \ge r\}.$$

The function P

Let $P : \mathbb{R}^d \to \mathbb{R}$ be measurable function such that:

(P1) $P \in L^1_{\text{loc}}(\mathbb{R}^d)$.

(P2) *P* is either even or odd. We let $\mathfrak{r} \in \{0, 1\}$ be such that

 $P(-x)=(-1)^{\mathfrak{r}}P(x).$

3

イロト イポト イラト イラト

The function P

Let $P : \mathbb{R}^d \to \mathbb{R}$ be measurable function such that:

(P1) $P \in L^1_{\text{loc}}(\mathbb{R}^d)$.

(P2) *P* is either even or odd. We let $\mathfrak{r} \in \{0, 1\}$ be such that

$$P(-x)=(-1)^{\mathfrak{r}}P(x).$$

(P3) *P* is annihilating in the following sense: if $f \in L^1(\mathbb{R}^d)$ is a continuous eigenfunction of the Fourier transform such that *Pf* is eventually zero then $f \equiv 0$. (e.g. if $\{P(x) \neq 0\}$ is dense).

(P4) *P* is homogeneous. That is, there is a real number $\gamma > -d$ with

$$P(\delta x) = \delta^{\gamma} P(x)$$

for all $\delta > 0$ and $x \in \mathbb{R}^d$.

The generalized setup

 $\mathcal{A}_{s}(P;d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } f(-x) = (-1)^{r} f(x); \end{cases}$

$$\mathcal{A}_{s}(P;d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } f(-x) = (-1)^{\mathfrak{r}} f(x); \\ \widehat{f}, Pf, P\widehat{f} \in L^{1}(\mathbb{R}^{d}); \end{cases}$$

э

< ロ > < 同 > < 回 > < 回 >

$$\mathcal{A}_{s}(P;d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } f(-x) = (-1)^{r} f(x); \\ \widehat{f}, Pf, P\widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ Pf, s(-i)^{r} P\widehat{f} \text{ are eventually non-negative;} \end{cases}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$$\mathcal{A}_{s}(P;d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } f(-x) = (-1)^{r} f(x); \\ \widehat{f}, Pf, P\widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ Pf, s(-i)^{r} P\widehat{f} \text{ are eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0, \ \int_{\mathbb{R}^{d}} s(-i)^{r} P\widehat{f} \leq 0. \end{cases}$$

Define

$$\mathbb{A}_{s}(P; d) = \inf_{f \in \mathcal{A}_{s}(P; d)} \sqrt{r(Pf) r(s(-i)^{\mathfrak{r}} Pf)}.$$

$$\mathcal{A}_{s}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } f(-x) = (-1)^{r} f(x); \\ \widehat{f}, Pf, P\widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ Pf, \ s(-i)^{r} P\widehat{f} \text{ are eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0, \ \int_{\mathbb{R}^{d}} s(-i)^{r} P\widehat{f} \leq 0. \end{cases}$$

Define

$$\mathbb{A}_{s}(P; d) = \inf_{f \in \mathcal{A}_{s}(P; d)} \sqrt{r(Pf) r(s(-i)^{\mathfrak{r}} P\widehat{f})}.$$

Note that if f ∈ A_s(P; d) then so does f_δ(x) := f(δx). So by a rescaling we may assume that r(Pf) = r(s(−i)^rPf̂. (uses (P4))

$$\mathcal{A}_{s}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } f(-x) = (-1)^{r} f(x); \\ \widehat{f}, Pf, P\widehat{f} \in L^{1}(\mathbb{R}^{d}); \\ Pf, \ s(-i)^{r} P\widehat{f} \text{ are eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0, \ \int_{\mathbb{R}^{d}} s(-i)^{r} P\widehat{f} \leq 0. \end{cases}$$

Define

$$\mathbb{A}_{s}(\boldsymbol{P};\boldsymbol{d}) = \inf_{f \in \mathcal{A}_{s}(\boldsymbol{P};\boldsymbol{d})} \sqrt{r(\boldsymbol{P}f) r(s(-i)^{\mathrm{tr}} \boldsymbol{P}\widehat{f})}.$$

• Note that if $f \in \mathbb{A}_{s}(P; d)$ then so does $f_{\delta}(x) := f(\delta x)$. So by a rescaling we may assume that $r(Pf) = r(s(-i)^{r}P\hat{f}.$ (uses (P4))

We may consider

$$w=f+s(-i)^{\mathfrak{r}}\widehat{f}$$

Then $w \in \mathbb{A}_{s}(P; d)$ (uses (P3)) and $r(Pw) \leq r(Pf)$.

$$\mathcal{A}_{s}^{*}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued}; \widehat{f} = s i^{t} f; \\ Pf \in L^{1}(\mathbb{R}^{d}); \end{cases}$$

2

3 > 4 3

$$\mathcal{A}_{s}^{*}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued}; \widehat{f} = s i^{\mathfrak{r}} f; \\ Pf \in L^{1}(\mathbb{R}^{d}); \\ Pf \text{ is eventually non-negative}; \end{cases}$$

2

12 N A 12

$$\mathcal{A}_{s}^{*}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } \widehat{f} = s i^{t} f; \\ Pf \in L^{1}(\mathbb{R}^{d}); \\ Pf \text{ is eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0. \end{cases}$$

****.

$$\mathcal{A}_{s}^{*}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } \widehat{f} = s i^{t} f; \\ Pf \in L^{1}(\mathbb{R}^{d}); \\ Pf \text{ is eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0. \end{cases}$$

Define

$$\mathbb{A}^*_{s}(P; d) = \inf_{f \in \mathcal{A}^*_{s}(P; d)} r(Pf).$$

_		
-manua	l (:ar	noiro
Linanue	i Oai	TIGH U

(.

$$\mathcal{A}_{s}^{*}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } \widehat{f} = s i^{t} f; \\ Pf \in L^{1}(\mathbb{R}^{d}); \\ Pf \text{ is eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0. \end{cases}$$

Define

$$\mathbb{A}^*_{s}(P; d) = \inf_{f \in \mathcal{A}^*_{s}(P; d)} r(Pf).$$

• We may now forget conditions (P3) and (P4).

$$\mathcal{A}_{s}^{*}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } \widehat{f} = s i^{t} f; \\ Pf \in L^{1}(\mathbb{R}^{d}); \\ Pf \text{ is eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0. \end{cases}$$

Define

$$\mathbb{A}^*_{s}(P;d) = \inf_{f \in \mathcal{A}^*_{s}(P;d)} r(Pf).$$

• We may now forget conditions (P3) and (P4).

• $P_1 \equiv 1$ and $P_2(x) = 1$ for all $x \in \mathbb{R} \setminus \{a_n\}_{n \in \mathbb{Z}}$, $P_2(a_n) = -1$, where $|a_n| \to \infty$. Any function $f \in \mathcal{A}_s^*(P_2; 1)$ will necessarily have zeros at a_n for $n \ge n_0$ (even problems when P = 0 a.e. are not trivial!).

$$\mathcal{A}_{s}^{*}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } \widehat{f} = s i^{r} f; \\ Pf \in L^{1}(\mathbb{R}^{d}); \\ Pf \text{ is eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0. \end{cases}$$

Define

$$\mathbb{A}^*_{s}(P;d) = \inf_{f \in \mathcal{A}^*_{s}(P;d)} r(Pf).$$

2

イロト イヨト イヨト イヨト

۶.

$$\mathcal{A}_{s}^{*}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } \widehat{f} = s i^{r} f; \\ Pf \in L^{1}(\mathbb{R}^{d}); \\ Pf \text{ is eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0. \end{cases}$$

Define

$$\mathbb{A}^*_{s}(P;d) = \inf_{f \in \mathcal{A}^*_{s}(P;d)} r(Pf).$$

• $P(x_1, x_2, ..., x_d) = x_1$.

2

イロト イポト イヨト イヨト

\ .

$$\mathcal{A}_{s}^{*}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } \widehat{f} = s i^{r} f; \\ Pf \in L^{1}(\mathbb{R}^{d}); \\ Pf \text{ is eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0. \end{cases}$$

Define

$$\mathbb{A}^*_s(P;d) = \inf_{f \in \mathcal{A}^*_s(P;d)} r(Pf).$$

• $P(x_1, x_2, ..., x_d) = x_1$.

We show, for instance, that $\mathbb{A}^*_{+1}(P; 22) = 2$.

12 N A 12

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

****.

$$\mathcal{A}_{s}^{*}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } \widehat{f} = s i^{r} f; \\ Pf \in L^{1}(\mathbb{R}^{d}); \\ Pf \text{ is eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0. \end{cases}$$

Define

$$\mathbb{A}^*_s(P;d) = \inf_{f \in \mathcal{A}^*_s(P;d)} r(Pf).$$

• $P(x_1, x_2, ..., x_d) = x_1$.

We show, for instance, that $\mathbb{A}^*_{+1}(P; 22) = 2$.

• $P(x_1, x_2, x_3, x_4) = (x_1^3 + x_1^2(x_2 - x_3) - x_1(x_2^2 + 2x_3^2) - x_2^3 + x_2^2x_3 + 2x_2x_3^2)x_4$

3

- E

$$\mathcal{A}_{s}^{*}(P; d) = \begin{cases} f \in L^{1}(\mathbb{R}^{d}) \setminus \{0\} \text{ continuous, real-valued; } \widehat{f} = s i^{r} f; \\ Pf \in L^{1}(\mathbb{R}^{d}); \\ Pf \text{ is eventually non-negative;} \\ \int_{\mathbb{R}^{d}} Pf \leq 0. \end{cases}$$

Define

$$\mathbb{A}^*_{s}(P;d) = \inf_{f \in \mathcal{A}^*_{s}(P;d)} r(Pf).$$

• $P(x_1, x_2, ..., x_d) = x_1$.

We show, for instance, that $\mathbb{A}^*_{+1}(P; 22) = 2$.

• $P(x_1, x_2, x_3, x_4) = (x_1^3 + x_1^2(x_2 - x_3) - x_1(x_2^2 + 2x_3^2) - x_2^3 + x_2^2x_3 + 2x_2x_3^2)x_4$

We will show, for instance, that $\mathbb{A}^*_{+1}(P; 4) = \sqrt{2}$.

The path

Non-empty classes

Theorem (Non-empty classes)

Let P be such that $P e^{-\lambda \pi |\cdot|^2} \in L^1(\mathbb{R}^d)$ for all $\lambda > 0$. Assume that $P = H \cdot Q$, where $H : \mathbb{R}^d \to \mathbb{R}$ is a homogeneous and harmonic polynomial of degree $\ell \ge 0$, and $Q : \mathbb{R}^d \to \mathbb{R}$ is eventually non-negative. Then $\mathcal{A}_s^*(P; d)$ is non-empty.

Admissible functions

Definition (Admissible functions)

P is admissible if there there exists $1 \le q \le \infty$ and a positive constant C = C(P; d; q) such that:

(i) For all $f \in L^1(\mathbb{R}^d)$, with $\hat{f} = \pm i^r f$ and $Pf \in L^1(\mathbb{R}^d)$, we have

$$||f||_q \leq C \, \|Pf\|_1.$$
 (1)

(ii) If
$$q > 1$$
 then $P \in L^{q'}_{loc}(\mathbb{R}^d)$. If $q = 1$ we have $\lim_{r \to 0^+} \|P\|_{L^{\infty}(B_r)} = 0$.

Admissible functions

Definition (Admissible functions)

P is admissible if there there exists $1 \le q \le \infty$ and a positive constant C = C(P; d; q) such that:

(i) For all $f \in L^1(\mathbb{R}^d)$, with $\hat{f} = \pm i^{\mathfrak{r}} f$ and $Pf \in L^1(\mathbb{R}^d)$, we have

$$||f||_q \leq C \, \|Pf\|_1.$$
 (1)

(ii) If
$$q > 1$$
 then $P \in L^{q'}_{loc}(\mathbb{R}^d)$. If $q = 1$ we have $\lim_{r \to 0^+} \|P\|_{L^{\infty}(B_r)} = 0$.

Theorem (Sufficient conditions for admissibility)

Let P be such that the sub-level set $A_{\lambda} = \{x \in \mathbb{R}^d : |P(x)| \le \lambda\}$ has finite Lebesgue measure for some $\lambda > 0$. Then inequality (1) holds with q = 1. In particular, P is admissible with respect to $q = \infty$.
Sign uncertainty

Theorem

Assume that the class $\mathcal{A}_{s}^{*}(P; d)$ is non-empty and that P is admissible with respect to an exponent $1 \leq q \leq \infty$. Then there exists a positive constant $C^{*} = C^{*}(P; d; q)$ such that

 $\mathbb{A}^*_s(P; d) \geq C^*.$

Emanuel Carneiro

E N 4 E N

The path

Theorem (Dimension shifts)

Let $\ell \ge 0$ and $\mathfrak{r}(\ell) \in \{0, 1\}$ be such that $\mathfrak{r}(\ell) \equiv \ell \pmod{2}$. Let $P : \mathbb{R}^{d+2\ell} \to \mathbb{R}$ be a radial function verifying (P3). Write $P(x) = P_0(|x|)$. Let $\widetilde{P} : \mathbb{R}^d \to \mathbb{R}$ be of the form

 $\widetilde{P}(x) = H(x) P_0(|x|) Q(x),$

where $H : \mathbb{R}^d \to \mathbb{R}$ is a non-zero homogeneous and harmonic polynomial of degree ℓ and $Q : \mathbb{R}^d \to \mathbb{R}$ is an even non-negative function, homogeneous of degree 0. If $\mathcal{A}_s^*(P; d + 2\ell)$ is non-empty, then $\mathcal{A}_{s(-1)^{(\mathfrak{r}(\ell)+\ell)/2}}^*(\widetilde{P}; d)$ is also non-empty and

$$\mathbb{A}^*_{\mathcal{S}}(P; d+2\ell) \geq \mathbb{A}^*_{\mathcal{S}(-1)^{(\mathfrak{r}(\ell)+\ell)/2}}(\widetilde{P}; d).$$

If P has a bounded sub-level set, $Q \equiv 1$ and $H \in O(d)(x_1x_2...x_\ell)$ $(0 \le \ell \le d)$, the equality holds.

Useful: $Q = |x|^{\ell} \operatorname{sgn}(H)/H$, when $P(x) = |x|^{\gamma}$, $\gamma \leq 0$.

Corollary (Sharp constants)

Let $\mathfrak{r}(\ell) \in \{0,1\}$ be such that $\mathfrak{r}(\ell) \equiv \ell \pmod{2}$. Then

$$\begin{split} \mathbb{A}_{(-1)^{(\mathfrak{r}(\ell)+\ell+2)/2}}(R(x_1\dots x_\ell); 8-2\ell) &= \sqrt{2}, \quad 0 \le \ell \le 2; \quad R \in O(8-2\ell); \\ \mathbb{A}_{(-1)^{(\mathfrak{r}(\ell)+\ell)/2}}(R(x_1\dots x_\ell); 12-2\ell) &= \sqrt{2}, \quad 0 \le \ell \le 4; \quad R \in O(12-2\ell); \\ \mathbb{A}_{(-1)^{(\mathfrak{r}(\ell)+\ell+2)/2}}(R(x_1\dots x_\ell); 24-2\ell) &= 2, \quad 0 \le \ell \le 8; \quad R \in O(24-2\ell); \end{split}$$

э

イロト イポト イヨト イヨト

Corollary (Sharp constants)

Let $\mathfrak{r}(\ell) \in \{0,1\}$ be such that $\mathfrak{r}(\ell) \equiv \ell \pmod{2}$. Then

$$\begin{split} \mathbb{A}_{(-1)^{(\mathfrak{r}(\ell)+\ell+2)/2}}(R(x_1\dots x_\ell); 8-2\ell) &= \sqrt{2}, \quad 0 \le \ell \le 2; \quad R \in O(8-2\ell); \\ \mathbb{A}_{(-1)^{(\mathfrak{r}(\ell)+\ell)/2}}(R(x_1\dots x_\ell); 12-2\ell) &= \sqrt{2}, \quad 0 \le \ell \le 4; \quad R \in O(12-2\ell); \\ \mathbb{A}_{(-1)^{(\mathfrak{r}(\ell)+\ell+2)/2}}(R(x_1\dots x_\ell); 24-2\ell) &= 2, \quad 0 \le \ell \le 8; \quad R \in O(24-2\ell); \end{split}$$

Thank you for your kind attention!!