Uncertain signs

Emanuel Carneiro (IMPA / ICTP)

Caltech \& UCLA Joint Analysis Seminar
 December 2020

joint work with Oscar E. Quesada-Herrera (IMPA)

PART I

Prelude

Eventual non-negativity

- $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is eventually non-negative if $f(x) \geq 0$ for sufficiently large $|x|$, and we define

$$
r(f):=\inf \{r>0: f(x) \geq 0 \text { for all }|x| \geq r\}
$$

$$
f(x)=\left(x^{10}-8 x^{8}+15 x^{6}-x^{4}-2 x^{2}-1\right) e^{-x^{2}}
$$

An example

- Let us take a homogeneous polynomial, e.g. in dimension $d=4$,

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{3}+x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{1}\left(x_{2}^{2}+2 x_{3}^{2}\right)-x_{2}^{3}+x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}\right) x_{4}
$$

An example

- Let us take a homogeneous polynomial, e.g. in dimension $d=4$,

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{3}+x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{1}\left(x_{2}^{2}+2 x_{3}^{2}\right)-x_{2}^{3}+x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}\right) x_{4}
$$

- Consider the family of functions:

$$
\mathcal{A}=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; even; } \\
\\
\end{array}\right.
$$

An example

- Let us take a homogeneous polynomial, e.g. in dimension $d=4$,

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{3}+x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{1}\left(x_{2}^{2}+2 x_{3}^{2}\right)-x_{2}^{3}+x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}\right) x_{4}
$$

- Consider the family of functions:

$$
\mathcal{A}=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; even; } \\
\widehat{f}, P f, \widehat{P f} \in L^{1}\left(\mathbb{R}^{d}\right) \\
\end{array}\right.
$$

An example

- Let us take a homogeneous polynomial, e.g. in dimension $d=4$,

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{3}+x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{1}\left(x_{2}^{2}+2 x_{3}^{2}\right)-x_{2}^{3}+x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}\right) x_{4}
$$

- Consider the family of functions:

$$
\mathcal{A}=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; even; } \\
\widehat{f}, P f, \widehat{P f} \in L^{1}\left(\mathbb{R}^{d}\right) \\
P f, \widehat{P f} \text { are eventually non-negative. }
\end{array}\right.
$$

An example

- Let us take a homogeneous polynomial, e.g. in dimension $d=4$,

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{3}+x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{1}\left(x_{2}^{2}+2 x_{3}^{2}\right)-x_{2}^{3}+x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}\right) x_{4}
$$

- Consider the family of functions:

$$
\mathcal{A}=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; even; } \\
\widehat{f}, P f, \widehat{P f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\
P f, \widehat{P f} \text { are eventually non-negative. } \\
\int_{\mathbb{R}^{d}} P f \leq 0, \int_{\mathbb{R}^{d}} \widehat{P f} \leq 0 ;
\end{array}\right\} .
$$

An example

- Let us take a homogeneous polynomial, e.g. in dimension $d=4$,

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{3}+x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{1}\left(x_{2}^{2}+2 x_{3}^{2}\right)-x_{2}^{3}+x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}\right) x_{4}
$$

- Consider the family of functions:

$$
\mathcal{A}=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; even; } \\
\widehat{f}, P f, \widehat{P f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\
P f, P \widehat{f} \text { are eventually non-negative. } \\
\int_{\mathbb{R}^{d}} P f \leq 0, \int_{\mathbb{R}^{d}} \widehat{P f} \leq 0 ;
\end{array}\right\} .
$$

- Tell me something about:

$$
\mathbb{A}:=\inf _{f \in \mathcal{A}} \sqrt{r(P f) r(\widehat{P f})}
$$

An example

- Let us take a homogeneous polynomial, e.g. in dimension $d=4$,

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{3}+x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{1}\left(x_{2}^{2}+2 x_{3}^{2}\right)-x_{2}^{3}+x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}\right) x_{4}
$$

- Consider the family of functions:

$$
\mathcal{A}=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; even; } \\
\widehat{f}, P f, \widehat{P f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\
P f, P \widehat{f} \text { are eventually non-negative. } \\
\int_{\mathbb{R}^{d}} P f \leq 0, \int_{\mathbb{R}^{d}} \widehat{P f} \leq 0 ;
\end{array}\right\} .
$$

- Tell me something about:

$$
\mathbb{A}:=\inf _{f \in \mathcal{A}} \sqrt{r(P f) r(\widehat{P f})}
$$

An example

- Let us take a homogeneous polynomial, e.g. in dimension $d=4$,

$$
P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{3}+x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{1}\left(x_{2}^{2}+2 x_{3}^{2}\right)-x_{2}^{3}+x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}\right) x_{4}
$$

- Consider the family of functions:

$$
\mathcal{A}=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; even; } \\
\widehat{f}, P f, \widehat{P f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\
P f, P \widehat{f} \text { are eventually non-negative. } \\
\int_{\mathbb{R}^{d}} P f \leq 0, \int_{\mathbb{R}^{d}} \widehat{P f} \leq 0 ;
\end{array}\right\} .
$$

- Tell me something about:

$$
\mathbb{A}:=\inf _{f \in \mathcal{A}} \sqrt{r(P f) r(P \widehat{f})}=\sqrt{2}
$$

PART II

Uncertainty

Our guest of honor

West face of the Eiffel tower

Joseph Fourier (1768-1830)

Fourier uncertainty

- Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$. We define

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{d}} e^{-2 \pi i x \cdot \xi} f(x) \mathrm{d} x \quad\left(\xi \in \mathbb{R}^{d}\right)
$$

- Plancherel: $\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\|\widehat{f}\|_{L^{2}\left(\mathbb{R}^{d}\right)}$.

Fourier uncertainty

- Let $f \in L^{1}\left(\mathbb{R}^{d}\right)$. We define

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{d}} e^{-2 \pi i x \cdot \xi} f(x) \mathrm{d} x \quad\left(\xi \in \mathbb{R}^{d}\right)
$$

- Plancherel: $\|f\|_{L^{2}\left(\mathbb{R}^{d}\right)}=\|\widehat{f}\|_{L^{2}\left(\mathbb{R}^{d}\right)}$.

Fourier uncertainty: "one cannot have an unrestricted control of a function and its Fourier transform simultaneously."

Subject is broad - no doubt about that...

Some books you may find in Amazon.com

Heisenberg uncertainty principle, indeterminacy principle
Uncertainty prideiple and spplications

On Generalized Uncertainty
Principle

(2) EAMBERT

Some examples

- Heisenberg (circa 1927):

$$
\int_{\mathbb{R}^{d}}|f(x)|^{2} \mathrm{~d} x \leq \frac{4 \pi}{d}\left(\int_{\mathbb{R}^{d}}|x|^{2}|f(x)|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{\mathbb{R}^{d}}|\xi|^{2}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi\right)^{1 / 2}
$$

Some examples

- Heisenberg (circa 1927):

$$
\int_{\mathbb{R}^{d}}|f(x)|^{2} \mathrm{~d} x \leq \frac{4 \pi}{d}\left(\int_{\mathbb{R}^{d}}|x|^{2}|f(x)|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{\mathbb{R}^{d}}|\xi|^{2}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi\right)^{1 / 2}
$$

- Hardy (circa 1933): If $f=O\left(e^{-\pi a|x|^{2}}\right), \widehat{f}=O\left(e^{-\pi b|\xi|^{2}}\right)$ with $a b>1$ then $f \equiv 0$.

Some examples

- Heisenberg (circa 1927):

$$
\int_{\mathbb{R}^{d}}|f(x)|^{2} \mathrm{~d} x \leq \frac{4 \pi}{d}\left(\int_{\mathbb{R}^{d}}|x|^{2}|f(x)|^{2} \mathrm{~d} x\right)^{1 / 2}\left(\int_{\mathbb{R}^{d}}|\xi|^{2}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi\right)^{1 / 2}
$$

- Hardy (circa 1933): If $f=O\left(e^{-\pi a|x|^{2}}\right), \widehat{f}=O\left(e^{-\pi b|\xi|^{2}}\right)$ with $a b>1$ then $f \equiv 0$.
- Amrein-Berthier (1977): $E, F \subset \mathbb{R}^{d}$ of finite measure. Then

$$
\int_{\mathbb{R}^{d}}|f(x)|^{2} \mathrm{~d} x \leq C(E, F, d)\left(\int_{E^{c}}|f(x)|^{2} \mathrm{~d} x+\int_{F^{c}}|\widehat{f}(\xi)|^{2} \mathrm{~d} \xi\right) .
$$

PART III

Sign Fourier uncertainty

Sign uncertainty principle

Bourgain, Kahane and Clozel [Ann I Fourier, 2010]

- Consider the family:
$\mathcal{A}_{+1}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued; } \hat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ \end{array}\right.$

Sign uncertainty principle

Bourgain, Kahane and Clozel [Ann I Fourier, 2010]

- Consider the family:
$\mathcal{A}_{+1}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued; } \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ f \text { and } \widehat{f} \text { are eventually non-negative; }\end{array}\right.$

Sign uncertainty principle

Bourgain, Kahane and Clozel [Ann I Fourier, 2010]

- Consider the family:
$\mathcal{A}_{+1}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued; } \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ f \text { and } \widehat{f} \text { are eventually non-negative; } \\ f(0)=\int_{\mathbb{R}^{d}} \widehat{f} \leq 0 ; \widehat{f}(0)=\int_{\mathbb{R}^{d}} f \leq 0 .\end{array}\right.$

Sign uncertainty principle

Bourgain, Kahane and Clozel [Ann I Fourier, 2010]

- Consider the family:
$\mathcal{A}_{+1}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued; } \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ f \text { and } \widehat{f} \text { are eventually non-negative; } \\ f(0)=\int_{\mathbb{R}^{d}} \widehat{f} \leq 0 ; \widehat{f}(0)=\int_{\mathbb{R}^{d}} f \leq 0 .\end{array}\right.$
- Define

$$
\mathbb{A}_{+1}(d):=\inf _{f \in \mathcal{A}_{+1}(d)} \sqrt{r(f) r(\widehat{f})}
$$

(note that this is invariant under dilations $f_{\delta}(x):=f(\delta x)$).

Sign uncertainty principle

Bourgain, Kahane and Clozel [Ann I Fourier, 2010]

- Consider the family:
$\mathcal{A}_{+1}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued; } \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ f \text { and } \widehat{f} \text { are eventually non-negative; } \\ f(0)=\int_{\mathbb{R}^{d}} \widehat{f} \leq 0 ; \widehat{f}(0)=\int_{\mathbb{R}^{d}} f \leq 0 .\end{array}\right.$
- Define

$$
\mathbb{A}_{+1}(d):=\inf _{f \in \mathcal{A}_{+1}(d)} \sqrt{r(f) r(\widehat{f})}
$$

(note that this is invariant under dilations $f_{\delta}(x):=f(\delta x)$).

- They show:

$$
\sqrt{\frac{d+2}{2 \pi}} \geq \mathbb{A}_{+1}(d) \geq \sqrt{\frac{d}{2 \pi e}} .
$$

Pictures

Take, for example, $f(x)=e^{-\pi x^{2} / 2}+e^{-2 \pi x^{2}}-\left(\sqrt{2}+\frac{1}{\sqrt{2}}\right) e^{-\pi x^{2}}$.

Symmetrization: reducing to eigenfunctions

- The family is:
$\mathcal{A}_{+1}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued ; } \hat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ f \text { and } \widehat{f} \text { are eventually non-negative; } \\ f(0)=\int_{\mathbb{R}^{d}} \widehat{f} \leq 0 ; \hat{f}(0)=\int_{\mathbb{R}^{d}} f \leq 0 .\end{array}\right.$

Symmetrization: reducing to eigenfunctions

- The family is:
$\int f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ continuous, even, real-valued $; \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ;$
$\mathcal{A}_{+1}(d)=\{f$ and \widehat{f} are eventually non-negative;

$$
f(0)=\int_{\mathbb{R}^{d}} \widehat{f} \leq 0 ; \hat{f}(0)=\int_{\mathbb{R}^{d}} f \leq 0 .
$$

- Let $f \in \mathcal{A}_{+1}(d)$. Let $f_{\delta}(x):=f(\delta x)$, then $\widehat{f}_{\delta}(x)=\delta^{-d / 2} \widehat{f}(x / \delta)$. We may then assume that $r(f)=r(\widehat{f})$ by a rescaling.

Symmetrization: reducing to eigenfunctions

- The family is:
$\int f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ continuous, even, real-valued $; \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ;$
$\mathcal{A}_{+1}(d)=\{f$ and \widehat{f} are eventually non-negative;

$$
f(0)=\int_{\mathbb{R}^{d}} \widehat{f} \leq 0 ; \hat{f}(0)=\int_{\mathbb{R}^{d}} f \leq 0 .
$$

- Let $f \in \mathcal{A}_{+1}(d)$. Let $f_{\delta}(x):=f(\delta x)$, then $\widehat{f_{\delta}}(x)=\delta^{-d / 2 \widehat{f}}(x / \delta)$. We may then assume that $r(f)=r(\widehat{f})$ by a rescaling.
- Then consider

$$
w=f+\widehat{f}
$$

It is clear that $w \in \mathcal{A}_{+1}(d)$ and $r(w) \leq r(f)$.

Symmetrization: reducing to eigenfunctions

- The family is:
$\int f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ continuous, even, real-valued ; $\hat{f} \in L^{1}\left(\mathbb{R}^{d}\right)$;
$\mathcal{A}_{+1}(d)=\{f$ and \widehat{f} are eventually non-negative;

$$
f(0)=\int_{\mathbb{R}^{d}} \widehat{f} \leq 0 ; \widehat{f}(0)=\int_{\mathbb{R}^{d}} f \leq 0 .
$$

- Let $f \in \mathcal{A}_{+1}(d)$. Let $f_{\delta}(x):=f(\delta x)$, then $\widehat{f_{\delta}}(x)=\delta^{-d / 2} \widehat{f}(x / \delta)$. We may then assume that $r(f)=r(\widehat{f})$ by a rescaling.
- Then consider

$$
w=f+\widehat{f}
$$

It is clear that $w \in \mathcal{A}_{+1}(d)$ and $r(w) \leq r(f)$.

- If you want

$$
w^{\mathrm{rad}}(x)=\int_{S O(d)} w(R x) \mathrm{d} \mu(R)
$$

- Consider the (sub)-family:
$\mathcal{A}_{+1}^{*}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued } ; \hat{f}=f ; \\ f \text { is eventually non-negative; } \\ f(0)=\int_{\mathbb{R}^{d}} f \leq 0 .\end{array}\right\}$.
- Then

$$
\mathbb{A}_{+1}(d)=\mathbb{A}_{+1}^{*}(d):=\inf _{f \in \mathcal{A}_{+1}^{*}(d)} r(f) .
$$

$$
f(x)=e^{-\pi x^{2} / 2}+\sqrt{2} e^{-2 \pi x^{2}}-(1+\sqrt{2}) e^{-\pi x^{2}}
$$

Proof

- The proof is quite simple: let $f \in \mathcal{A}_{+1}^{*}(d)$ and set $r=r(f)$. Let $x_{+}=\max \{x, 0\}$ and $x_{-}=\max \{-x, 0\}$. Then

$$
0 \geq \int_{\mathbb{R}^{d}} f=\int_{\mathbb{R}^{d}} f_{+}-\int_{\mathbb{R}^{d}} f_{-}
$$

Proof

- The proof is quite simple: let $f \in \mathcal{A}_{+1}^{*}(d)$ and set $r=r(f)$. Let $x_{+}=\max \{x, 0\}$ and $x_{-}=\max \{-x, 0\}$. Then

$$
0 \geq \int_{\mathbb{R}^{d}} f=\int_{\mathbb{R}^{d}} f_{+}-\int_{\mathbb{R}^{d}} f_{-}
$$

and therefore

$$
\|f\|_{\infty} \leq \int_{\mathbb{R}^{d}}|f|=\int_{\mathbb{R}^{d}} f_{+}+\int_{\mathbb{R}^{d}} f_{-} \leq 2 \int_{B_{r}} f_{-} \leq 2\|f\|_{\infty}\left|B_{r}\right|
$$

Proof

- The proof is quite simple: let $f \in \mathcal{A}_{+1}^{*}(d)$ and set $r=r(f)$. Let $x_{+}=\max \{x, 0\}$ and $x_{-}=\max \{-x, 0\}$. Then

$$
0 \geq \int_{\mathbb{R}^{d}} f=\int_{\mathbb{R}^{d}} f_{+}-\int_{\mathbb{R}^{d}} f_{-}
$$

and therefore

$$
\|f\|_{\infty} \leq \int_{\mathbb{R}^{d}}|f|=\int_{\mathbb{R}^{d}} f_{+}+\int_{\mathbb{R}^{d}} f_{-} \leq 2 \int_{B_{r}} f_{-} \leq 2\|f\|_{\infty}\left|B_{r}\right|
$$

The conclusion is that

$$
\left|B_{r}\right| \geq \frac{1}{2}
$$

Proof

- The proof is quite simple: let $f \in \mathcal{A}_{+1}^{*}(d)$ and set $r=r(f)$. Let $x_{+}=\max \{x, 0\}$ and $x_{-}=\max \{-x, 0\}$. Then

$$
0 \geq \int_{\mathbb{R}^{d}} f=\int_{\mathbb{R}^{d}} f_{+}-\int_{\mathbb{R}^{d}} f_{-}
$$

and therefore

$$
\|f\|_{\infty} \leq \int_{\mathbb{R}^{d}}|f|=\int_{\mathbb{R}^{d}} f_{+}+\int_{\mathbb{R}^{d}} f_{-} \leq 2 \int_{B_{r}} f_{-} \leq 2\|f\|_{\infty}\left|B_{r}\right|
$$

The conclusion is that

$$
\left|B_{r}\right| \geq \frac{1}{2}
$$

- Gonçalves, Oliveira e Silva, Steinerberger 2017: refined estimates and existence of extremizers.

A dual sign uncertainty principle

Cohn and Gonçalves [Invent. Math., 2019]

- Let $s=\{+1,-1\}$. Consider the family:
$\mathcal{A}_{s}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued } ; \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ \end{array}\right.$

A dual sign uncertainty principle
 Cohn and Gonçalves [Invent. Math., 2019]

- Let $s=\{+1,-1\}$. Consider the family:
$\mathcal{A}_{s}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued } ; \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ f \text { and } \widehat{s f} \text { are eventually non-negative; }\end{array}\right.$

A dual sign uncertainty principle

Cohn and Gonçalves [Invent. Math., 2019]

- Let $s=\{+1,-1\}$. Consider the family:
$\mathcal{A}_{s}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued } ; \hat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ f \text { and } \widehat{s f} \text { are eventually non-negative; } \\ s f(0)=\int_{\mathbb{R}^{d}} \widehat{s f} \leq 0 ; \widehat{f}(0)=\int_{\mathbb{R}^{d}} f \leq 0 .\end{array}\right\}$

A dual sign uncertainty principle

Cohn and Gonçalves [Invent. Math., 2019]

- Let $s=\{+1,-1\}$. Consider the family:
$\mathcal{A}_{s}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued } ; \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ f \text { and } \widehat{s f} \text { are eventually non-negative; } \\ s f(0)=\int_{\mathbb{R}^{d}} \widehat{s f} \leq 0 ; \widehat{f}(0)=\int_{\mathbb{R}^{d}} f \leq 0 .\end{array}\right\}$
and define

$$
\mathbb{A}_{s}(d):=\inf _{f \in \mathcal{A}_{s}(d)} \sqrt{r(f) r(\widehat{s f})}
$$

A dual sign uncertainty principle
 Cohn and Gonçalves [Invent. Math., 2019]

- Let $s=\{+1,-1\}$. Consider the family:
$\mathcal{A}_{s}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued } ; \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ f \text { and } \widehat{s f} \text { are eventually non-negative; } \\ s f(0)=\int_{\mathbb{R}^{d}} \widehat{s f} \leq 0 ; \widehat{f}(0)=\int_{\mathbb{R}^{d}} f \leq 0 .\end{array}\right\}$
and define

$$
\mathbb{A}_{s}(d):=\inf _{f \in \mathcal{A}_{s}(d)} \sqrt{r(f) r(\widehat{s f})}
$$

- Reduction to eigenfunctions: may assume that $\widehat{f}=s f$ above.

A dual sign uncertainty principle
 Cohn and Gonçalves [Invent. Math., 2019]

- Let $s=\{+1,-1\}$. Consider the family:
$\mathcal{A}_{s}(d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, even, real-valued ; } \hat{f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ f \text { and } \widehat{s f} \text { are eventually non-negative; } \\ s f(0)=\int_{\mathbb{R}^{d}} \widehat{s f} \leq 0 ; \widehat{f}(0)=\int_{\mathbb{R}^{d}} f \leq 0 .\end{array}\right\}$
and define

$$
\mathbb{A}_{s}(d):=\inf _{f \in \mathcal{A}_{s}(d)} \sqrt{r(f) r(\widehat{s f})}
$$

- Reduction to eigenfunctions: may assume that $\widehat{f}=s f$ above.
- They show:

$$
C \sqrt{d} \geq \mathbb{A}_{s}(d) \geq c \sqrt{d}
$$

Pictures

Example: $(\widehat{f}=-f)$

$$
f(x)=e^{-\pi x^{2} / 4}-2 e^{-4 \pi x^{2}}+\left(\frac{1}{\sqrt{2}-1}\right)\left(e^{-\pi x^{2} / 2}-\sqrt{2} e^{-2 \pi x^{2}}\right) .
$$

Pictures

Example: $f(x)=\frac{\sin ^{2}(\pi x)}{\pi^{2}\left(x^{2}-1\right)}$ and $\widehat{f}(x)=-\frac{1}{2 \pi} \sin (2 \pi|x|) \chi_{[-1,1]}(x)$.

(this turns out to be an extremal example!)

Sharp constants

Theorem
(i) (Corollaries of Cohn and Elkies '03 $(d=1)$, Viazovska '17 $(d=8)$ and Cohn, Kumar, Miller, Radchenko and Viazovska '17 ($d=24$))

$$
\mathbb{A}_{-1}(1)=1 ; \mathbb{A}_{-1}(8)=\sqrt{2} ; \mathbb{A}_{-1}(24)=2
$$

(ii) (Cohn and Gonçalves '19)

$$
\mathbb{A}_{+1}(12)=\sqrt{2}
$$

Sharp constants

Theorem

(i) (Corollaries of Cohn and Elkies '03 $(d=1)$, Viazovska '17 $(d=8)$ and Cohn, Kumar, Miller, Radchenko and Viazovska '17 ($d=24$))

$$
\mathbb{A}_{-1}(1)=1 ; \mathbb{A}_{-1}(8)=\sqrt{2} ; \mathbb{A}_{-1}(24)=2
$$

(ii) (Cohn and Gonçalves '19)

$$
\mathbb{A}_{+1}(12)=\sqrt{2}
$$

- It is conjectured that

$$
\mathbb{A}_{-1}(2)=(4 / 3)^{1 / 4} \quad \text { and } \quad \mathbb{A}_{+1}(1)=\frac{1}{\sqrt{1+\sqrt{5}}}
$$

- Gonçalves, Oliveira e Silva and Ramos (preprint, 2020); extensions of the (± 1)- sign uncertainty to a suitable operator setting.

PART IV

Generalized sign Fourier uncertainty

A new point of view

- What about the other eigenvalues $\pm i$?

A new point of view

- What about the other eigenvalues $\pm i$?
- Goal: Investigate the situation where the signs of f and \widehat{f} resonate with a given generic function P at infinity, given a suitable competing weighted integral condition.
- All that happened before will be the case $P \equiv 1$.

A new point of view

- What about the other eigenvalues $\pm i$?
- Goal: Investigate the situation where the signs of f and \widehat{f} resonate with a given generic function P at infinity, given a suitable competing weighted integral condition.
- All that happened before will be the case $P \equiv 1$.
- A measurable $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is eventually non-negative if $g(x) \geq 0$ for sufficiently large $|x|$, and we define

$$
r(g):=\inf \{r>0: g(x) \geq 0 \text { for all }|x| \geq r\}
$$

The function P

Let $P: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be measurable function such that:
(P1) $P \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{d}\right)$.
(P2) P is either even or odd. We let $\mathfrak{r} \in\{0,1\}$ be such that

$$
P(-x)=(-1)^{\mathrm{r}} P(x) .
$$

The function P

Let $P: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be measurable function such that:
(P1) $P \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$.
(P2) P is either even or odd. We let $\mathfrak{r} \in\{0,1\}$ be such that

$$
P(-x)=(-1)^{\mathrm{t}} P(x) .
$$

(P3) P is annihilating in the following sense: if $f \in L^{1}\left(\mathbb{R}^{d}\right)$ is a continuous eigenfunction of the Fourier transform such that $P f$ is eventually zero then $f \equiv 0$. (e.g. if $\{P(x) \neq 0\}$ is dense).
(P4) P is homogeneous. That is, there is a real number $\gamma>-d$ with

$$
P(\delta x)=\delta^{\gamma} P(x)
$$

for all $\delta>0$ and $x \in \mathbb{R}^{d}$.

The generalized setup

Let $s \in\{+1,-1\}$. Consider the family:
$\mathcal{A}_{s}(P ; d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } f(-x)=(-1)^{\mathrm{r}} f(x) ; \\ \end{array}\right.$

The generalized setup

Let $s \in\{+1,-1\}$. Consider the family:
$\mathcal{A}_{s}(P ; d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } f(-x)=(-1)^{\mathrm{r}} f(x) ; \\ \widehat{f}, P f, \widehat{P f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ \end{array}\right.$

The generalized setup

Let $s \in\{+1,-1\}$. Consider the family:
$\mathcal{A}_{s}(P ; d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } f(-x)=(-1)^{\mathrm{r}} f(x) ; \\ \widehat{f}, P f, \widehat{P f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ P f, s(-i)^{\mathrm{r}} P \widehat{f} \text { are eventually non-negative; }\end{array}\right.$

The generalized setup

Let $s \in\{+1,-1\}$. Consider the family:
$\left(f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\}\right.$ continuous, real-valued; $f(-x)=(-1)^{\mathrm{r}} f(x) ;$
$\mathcal{A}_{s}(P ; d)=\left\{\begin{array}{l}\widehat{f}, P f, \widehat{P f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ P f, s(-i)^{\mathrm{t}} P \widehat{f} \text { are eventually non-negative; }\end{array}\right.$

$$
\int_{\mathbb{R}^{d}} P f \leq 0, \int_{\mathbb{R}^{d}} S(-i)^{r} P \widehat{f} \leq 0 .
$$

Define

$$
\mathbb{A}_{s}(P ; d)=\inf _{f \in \mathcal{A}_{s}(P ; d)} \sqrt{r(P f) r\left(s(-i)^{\mathrm{r}} P \widehat{f}\right)}
$$

The generalized setup

Let $s \in\{+1,-1\}$. Consider the family:
$\mathcal{A}_{s}(P ; d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } f(-x)=(-1)^{\mathrm{r}} f(x) ; \\ \widehat{f}, P f, \widehat{P f} \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ P f, s(-i)^{\mathrm{r}} P \widehat{f} \text { are eventually non-negative; } \\ \int_{\mathbb{R}^{d}} P f \leq 0, \int_{\mathbb{R}^{d}} s(-i)^{\mathrm{r}} \widehat{P f} \leq 0 .\end{array}\right\}$
Define

$$
\mathbb{A}_{s}(P ; d)=\inf _{f \in \mathcal{A}_{s}(P ; d)} \sqrt{r(P f) r\left(s(-i)^{\mathrm{r}} P \widehat{f}\right)}
$$

- Note that if $f \in \mathbb{A}_{s}(P ; d)$ then so does $f_{\delta}(x):=f(\delta x)$. So by a rescaling we may assume that $r(P f)=r\left(s(-i)^{\mathrm{r}} P \widehat{f}\right.$. (uses (P4))

The generalized setup

Let $s \in\{+1,-1\}$. Consider the family:

Define

$$
\mathbb{A}_{s}(P ; d)=\inf _{f \in \mathcal{A}_{s}(P ; d)} \sqrt{r(P f) r\left(s(-i)^{\mathfrak{r}} P \widehat{f}\right)}
$$

- Note that if $f \in \mathbb{A}_{s}(P ; d)$ then so does $f_{\delta}(x):=f(\delta x)$. So by a rescaling we may assume that $r(P f)=r\left(s(-i)^{\mathfrak{r}} \widehat{P f}\right.$. (uses (P4))
- We may consider

$$
w=f+s(-i)^{\mathfrak{\imath}} \widehat{f}
$$

Then $w \in \mathbb{A}_{s}(P ; d)$ (uses (P3)) and $r(P w) \leq r(P f)$.

Generalized eigenfunction problem

$$
\mathcal{A}_{s}^{*}(P ; d)=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued } ; \hat{f}=s i^{i} f ; \\
P f \in L^{1}\left(\mathbb{R}^{d}\right) ; \\
\end{array}\right.
$$

Generalized eigenfunction problem

$$
\mathcal{A}_{s}^{*}(P ; d)=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } \hat{f}=s i^{r} f \\
P f \in L^{1}\left(\mathbb{R}^{d}\right) ; \\
P f \text { is eventually non-negative; }
\end{array}\right.
$$

Generalized eigenfunction problem

$\mathcal{A}_{s}^{*}(P ; d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } \hat{f}=s i^{i f} ; \\ P f \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ P f f \text { is eventually non-negative; } \\ \int_{\mathbb{R}^{d}} P f \leq 0 .\end{array}\right\}$.

Generalized eigenfunction problem

$\mathcal{A}_{s}^{*}(P ; d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } \hat{f}=s i^{i} f ; \\ P f \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ P f \text { is eventually non-negative; } \\ \int_{\mathbb{R}^{d}} P f \leq 0 .\end{array}\right\}$.
Define

$$
\mathbb{A}_{s}^{*}(P ; d)=\inf _{f \in \mathcal{A}_{s}^{*}(P ; d)} r(P f) .
$$

Generalized eigenfunction problem

$\mathcal{A}_{s}^{*}(P ; d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } \hat{f}=s i^{i} f ; \\ P f \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ P f \text { is eventually non-negative; } \\ \int_{\mathbb{R}^{d}} P f \leq 0 .\end{array}\right\}$.
Define

$$
\mathbb{A}_{s}^{*}(P ; d)=\inf _{f \in \mathcal{A}_{s}^{*}(P ; d)} r(P f) .
$$

- We may now forget conditions (P3) and (P4).

Generalized eigenfunction problem

$$
\mathcal{A}_{s}^{*}(P ; d)=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } \hat{f}=s i^{\mathrm{r}} f ; \\
P f \in L^{1}\left(\mathbb{R}^{d}\right) ; \\
P f \text { is eventually non-negative; } \\
\int_{\mathbb{R}^{d}} P f \leq 0 .
\end{array}\right\} .
$$

Define

$$
\mathbb{A}_{s}^{*}(P ; d)=\inf _{f \in \mathcal{A}_{s}^{*}(P ; d)} r(P f) .
$$

- We may now forget conditions (P3) and (P4).
- $P_{1} \equiv 1$ and $P_{2}(x)=1$ for all $x \in \mathbb{R} \backslash\left\{a_{n}\right\}_{n \in \mathbb{Z}}, P_{2}\left(a_{n}\right)=-1$, where $\left|a_{n}\right| \rightarrow \infty$. Any function $f \in \mathcal{A}_{s}^{*}\left(P_{2} ; 1\right)$ will necessarily have zeros at a_{n} for $n \geq n_{0}$ (even problems when $P=0$ a.e. are not trivial!).

Examples

$$
\mathcal{A}_{s}^{*}(P ; d)=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } \hat{f}=s i^{i} f ; \\
P f \in L^{1}\left(\mathbb{R}^{d}\right) ; \\
P f \text { is eventually non-negative; } \\
\int_{\mathbb{R}^{d}} P f \leq 0 .
\end{array}\right\} .
$$

Define

$$
\mathbb{A}_{s}^{*}(P ; d)=\inf _{f \in \mathcal{A}_{s}^{*}(P ; d)} r(P f) .
$$

Examples

$$
\mathcal{A}_{s}^{*}(P ; d)=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } ; \hat{f}=s i^{\mathrm{r}} f ; \\
P f \in L^{1}\left(\mathbb{R}^{d}\right) ; \\
P f \text { is eventually non-negative; } \\
\int_{\mathbb{R}^{d}} P f \leq 0 .
\end{array}\right\} .
$$

Define

$$
\mathbb{A}_{s}^{*}(P ; d)=\inf _{f \in \mathcal{A}_{s}^{*}(P ; d)} r(P f) .
$$

- $P\left(x_{1}, x_{2}, \ldots, x_{d}\right)=x_{1}$.

Examples

$\mathcal{A}_{s}^{*}(P ; d)=\left\{\begin{array}{l}f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } \hat{f}=s i^{\mathrm{r}} f ; \\ P f \in L^{1}\left(\mathbb{R}^{d}\right) ; \\ P f \text { is eventually non-negative; } \\ \int_{\mathbb{R}^{d}} P f \leq 0 .\end{array}\right\}$.
Define

$$
\mathbb{A}_{s}^{*}(P ; d)=\inf _{f \in \mathcal{A}_{s}^{*}(P ; d)} r(P f) .
$$

- $P\left(x_{1}, x_{2}, \ldots, x_{d}\right)=x_{1}$.

We show, for instance, that $\mathbb{A}_{+1}^{*}(P ; 22)=2$.

Examples

$$
\mathcal{A}_{s}^{*}(P ; d)=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } \hat{f}=s i^{i f} ; \\
P f \in L^{1}\left(\mathbb{R}^{d}\right) ; \\
P f \text { is eventually non-negative; } \\
\int_{\mathbb{R}_{d} P f} P 0 .
\end{array}\right\} .
$$

Define

$$
\mathbb{A}_{s}^{*}(P ; d)=\inf _{f \in \mathcal{A} s(P ; d)} r(P f) .
$$

- $P\left(x_{1}, x_{2}, \ldots, x_{d}\right)=x_{1}$.

We show, for instance, that $\mathbb{A}_{+1}^{*}(P ; 22)=2$.

- $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{3}+x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{1}\left(x_{2}^{2}+2 x_{3}^{2}\right)-x_{2}^{3}+x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}\right) x_{4}$

Examples

$$
\mathcal{A}_{s}^{*}(P ; d)=\left\{\begin{array}{l}
f \in L^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \text { continuous, real-valued; } \hat{f}=s i^{i} f ; \\
P f \in L^{1}\left(\mathbb{R}^{d}\right) ; \\
P f \text { is eventually non-negative; } \\
\int_{\mathbb{R}^{d}} P f \leq 0 .
\end{array}\right\} .
$$

Define

$$
\mathbb{A}_{s}^{*}(P ; d)=\inf _{f \in \mathcal{A}_{s}^{*}(P ; d)} r(P f) .
$$

- $P\left(x_{1}, x_{2}, \ldots, x_{d}\right)=x_{1}$.

We show, for instance, that $\mathbb{A}_{+1}^{*}(P ; 22)=2$.

- $P\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}^{3}+x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{1}\left(x_{2}^{2}+2 x_{3}^{2}\right)-x_{2}^{3}+x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}\right) x_{4}$

We will show, for instance, that $\mathbb{A}_{+1}^{*}(P ; 4)=\sqrt{2}$.

The path

Non-empty classes

Theorem (Non-empty classes)

Let P be such that $P e^{-\lambda \pi|\cdot|^{2}} \in L^{1}\left(\mathbb{R}^{d}\right)$ for all $\lambda>0$. Assume that $P=H \cdot Q$, where $H: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a homogeneous and harmonic polynomial of degree $\ell \geq 0$, and $Q: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is eventually non-negative. Then $\mathcal{A}_{s}^{*}(P ; d)$ is non-empty.

Admissible functions

Definition (Admissible functions)

P is admissible if there there exists $1 \leq q \leq \infty$ and a positive constant $C=C(P ; d ; q)$ such that:
(i) For all $f \in L^{1}\left(\mathbb{R}^{d}\right)$, with $\widehat{f}= \pm i^{\mathfrak{r}} f$ and $P f \in L^{1}\left(\mathbb{R}^{d}\right)$, we have

$$
\begin{equation*}
\|f\|_{q} \leq C\|P f\|_{1} \tag{1}
\end{equation*}
$$

(ii) If $q>1$ then $P \in L_{\mathrm{loc}}^{q^{\prime}}\left(\mathbb{R}^{d}\right)$. If $q=1$ we have $\lim _{r \rightarrow 0^{+}}\|P\|_{L^{\infty}\left(B_{r}\right)}=0$.

Admissible functions

Definition (Admissible functions)

P is admissible if there there exists $1 \leq q \leq \infty$ and a positive constant $C=C(P ; d ; q)$ such that:
(i) For all $f \in L^{1}\left(\mathbb{R}^{d}\right)$, with $\widehat{f}= \pm i^{\mathfrak{r}} f$ and $P f \in L^{1}\left(\mathbb{R}^{d}\right)$, we have

$$
\begin{equation*}
\|f\|_{q} \leq C\|P f\|_{1} . \tag{1}
\end{equation*}
$$

(ii) If $q>1$ then $P \in L_{\mathrm{loc}}^{q^{\prime}}\left(\mathbb{R}^{d}\right)$. If $q=1$ we have $\lim _{r \rightarrow 0^{+}}\|P\|_{L^{\infty}\left(B_{r}\right)}=0$.

Theorem (Sufficient conditions for admissibility)

Let P be such that the sub-level set $A_{\lambda}=\left\{x \in \mathbb{R}^{d}:|P(x)| \leq \lambda\right\}$ has finite Lebesgue measure for some $\lambda>0$. Then inequality (1) holds with $q=1$. In particular, P is admissible with respect to $q=\infty$.

Sign uncertainty

Theorem

Assume that the class $\mathcal{A}_{s}^{*}(P ; d)$ is non-empty and that P is admissible with respect to an exponent $1 \leq q \leq \infty$. Then there exists a positive constant $C^{*}=C^{*}(P ; d ; q)$ such that

$$
\mathbb{A}_{s}^{*}(P ; d) \geq C^{*} .
$$

The path

Theorem (Dimension shifts)

Let $\ell \geq 0$ and $\mathfrak{r}(\ell) \in\{0,1\}$ be such that $\mathfrak{r}(\ell) \equiv \ell(\bmod 2)$. Let $P: \mathbb{R}^{d+2 \ell} \rightarrow \mathbb{R}$ be a radial function verifying (P3). Write $P(x)=P_{0}(|x|)$. Let $\widetilde{P}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be of the form

$$
\widetilde{P}(x)=H(x) P_{0}(|x|) Q(x)
$$

where $H: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is a non-zero homogeneous and harmonic polynomial of degree ℓ and $Q: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is an even non-negative function, homogeneous of degree 0. If $\mathcal{A}_{s}^{*}(P ; d+2 \ell)$ is non-empty, then $\mathcal{A}_{s(-1)^{(r)(\ell)+\ell) / 2}}^{*}(\widetilde{P} ; d)$ is also non-empty and

$$
\mathbb{A}_{s}^{*}(P ; d+2 \ell) \geq \mathbb{A}_{s(-1)^{(r(\ell)+\ell) / 2}}^{*}(\widetilde{P} ; d)
$$

If P has a bounded sub-level set, $Q \equiv 1$ and $H \in O(d)\left(x_{1} x_{2} \ldots x_{\ell}\right)$ ($0 \leq \ell \leq d$), the equality holds.

Useful: $Q=|x|^{\ell} \operatorname{sgn}(H) / H$, when $P(x)=|x|^{\gamma}, \gamma<0$.

Corollary (Sharp constants)

Let $\mathfrak{r}(\ell) \in\{0,1\}$ be such that $\mathfrak{r}(\ell) \equiv \ell(\bmod 2)$. Then

$$
\begin{array}{lll}
\mathbb{A}_{(-1)^{(\mathrm{r}(\ell)+\ell+2) / 2}}\left(R\left(x_{1} \ldots x_{\ell}\right) ; 8-2 \ell\right)=\sqrt{2}, & 0 \leq \ell \leq 2 ; & R \in O(8-2 \ell) ; \\
\mathbb{A}_{(-1)^{(\mathrm{r}(\ell)+\ell) / 2}}\left(R\left(x_{1} \ldots x_{\ell}\right) ; 12-2 \ell\right)=\sqrt{2}, & 0 \leq \ell \leq 4 ; & R \in O(12-2 \ell) \\
\mathbb{A}_{(-1)^{(\mathrm{r}(\ell)+\ell+2) / 2}}\left(R\left(x_{1} \ldots x_{\ell}\right) ; 24-2 \ell\right)=2, & 0 \leq \ell \leq 8 ; & R \in O(24-2 \ell) ;
\end{array}
$$

Corollary (Sharp constants)

Let $\mathfrak{r}(\ell) \in\{0,1\}$ be such that $\mathfrak{r}(\ell) \equiv \ell(\bmod 2)$. Then

$$
\begin{array}{lll}
\mathbb{A}_{(-1)^{(\mathrm{r}(\ell)+\ell+2) / 2}}\left(R\left(x_{1} \ldots x_{\ell}\right) ; 8-2 \ell\right)=\sqrt{2}, & 0 \leq \ell \leq 2 ; & R \in O(8-2 \ell) ; \\
\mathbb{A}_{(-1)^{(\mathrm{r}(\ell)+\ell) / 2}}\left(R\left(x_{1} \ldots x_{\ell}\right) ; 12-2 \ell\right)=\sqrt{2}, & 0 \leq \ell \leq 4 ; & R \in O(12-2 \ell) \\
\mathbb{A}_{(-1)^{(\mathrm{r}(\ell)+\ell+2) / 2}}\left(R\left(x_{1} \ldots x_{\ell}\right) ; 24-2 \ell\right)=2, & 0 \leq \ell \leq 8 ; & R \in O(24-2 \ell) ;
\end{array}
$$

Thank you for your kind attention!!

