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Overview

1. Three ”elementary” questions on spherical harmonics and
eigenfunctions on T2.

2. Geometry of zero sets of Laplace eigenfunctions, Yau’s
conjecture, Nadirashvili’s conjecture.

3. Harmonic functions: Growth vs Zeroes

4. Application: Landis’ conjecture on the plane.



Eigenfunctions of the Laplace operator

Let M be a closed Riemannian manifold of dimension n and ∆ be
the Laplace operator on M. There is a sequence of eigenfunctions:

∆ϕ = −λϕ, 0 = λ0 < λ1 ≤ λ2 ≤ ...

Example 1.
ϕ(x , y) = sin(ax) sin(by)

is an eigenfunction on the torus T2 with eigenvalue λ = a2 + b2.
Linear combinations ∑

a2
k+b2

k=λ

ck sin(akx) sin(bky)

.



Spherical harmonics

Value distribution |ϕ| of a
spherical harmonic. Red and blue
areas represent the sign.

Picture credits:
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Example 2. Eigenfunctions on S2 are
restrictions of homogeneous harmonic
polynomials in R3 to S2. They are
called spherical harmonics.

The corresponding eigenvalue is
λ = n(n + 1), where n is the degree of
the polynomial. The multiplicity is
2n + 1.

There is a standard basis of each
eigenspace consisting of relatively
simple polynomials. However, the value
distribution of their (random) linear
combinations can be complicated.



Three ”elementary” questions on eigenfunctions

Value distribution |ϕ| of a
spherical harmonic. Red and blue
areas represent the sign.
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Consider any sequence of eigenfunctions
ϕλ on S2 with λ→∞.

Yau’s Conjecture
The number of critical points of ϕλ
grows to infinity.

Sarnak’s Conjecture

‖ϕλ‖∞
‖ϕλ‖2

→∞.

Symmetry Conjecture

Area(ϕλ > 0)

Area(ϕλ < 0)
→ 1.
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Symmetry Conjecture

Area(ϕλ > 0)

Area(ϕλ < 0)
→ 1.

Thm(Donnelly and Fefferman)

c <
Area(ϕλ > 0)

Area(ϕλ < 0)
< C .



Number of critical points.

Conjecture (Yau) Does the number of the critical points of
eigenfunctions ϕλ,

Cϕλ
= {x : ∇ϕλ(x) = 0},

tends to infinity as λ→∞?
The question is open for spherical harmonics on S2.

Jakobson & Nadirashvili, 1999: There is a metric on T2 such that
there is an infinite sequence of Laplace eigenfunctions with only 16
critical points;

Buhovsky & AL & Sodin, 2018: There is a metric on T2 with an
infinite sequence of eigenfunctions (λ→∞) such the number of
isolated critical points for each of them is infinite.
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Sarnak’s Conjecture

I Flat eigenfunctions: Is there a sequence of eigenfunctions ϕλ
on S2 with λ→∞ such that

max
M
|ϕλ| ≤ C‖ϕλ‖2?

I Example: On S1 all eigenfunctions sin(ax + b) are flat.

I Ryll & Wojtaszczyk, 1983: There a sequence of flat
eigenfunctions on S2d+1,
Bourgain, 1985, 2016: stronger results for S3 and S5

I Sarnak’s Conjecture: there is no such sequence on S2.

I No one knows whether there is L2 basis of spherical harmonics
with bounded L∞norm.
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Nodal sets and Chladni’s resonance experiments.

Downloaded from William Henry
Stone (1879), Elementary
Lessons on Sound, Macmillan
and Co., London, p. 26, fig. 12;

Chladni patterns published by
John Tyndall in 1869.



Nodal geometry

Nodal sets = zeroes of solutions to elliptic
differential equations.

Zeroes of solutions to ∆2u = λ2u.
Vibration modes of a plate.

Zeroes of eigenfunctions of the Laplace operator: ∆u + λu = 0.
(a) vibration modes of a plate with half-free boundary conditions,
(b) the vibration modes of a membrane, (c) the stationary wave
equation, (d) the Helmholtz equation and (e) quantum mechanics.
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Nodal domains and Courant theorem

The sign of a spherical harmonic.

Picture credits: Dmitry Belyaev.

The nodal set separates the manifold M
into several connected components,
which are called nodal domains.

Thm(Courant, 1923). The k-th
eigenfunction of the Laplace operator
on any closed manifold has at most k
nodal domains.

A. Stern(1924), H. Lewy(1977): there
are spherical harmonics of any odd
degree with only two nodal domains.



Topology of nodal loops

The sign of a spherical harmonic.

Picture credits: Dmitry Belyaev.

Thm(Eremenko,Nadirashvili,Jacobson).
On S2 every symmetric topological
configuration of nodal loops (without
intersections) is possible.



Nodal domains and Courant’s theorem

The sign of a spherical harmonic.
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Thm(Courant, 1923). The k-th
eigenfunction of the Laplace operator
on a closed manifold M has at most k
nodal domains.

Thm(Chanillo, AL, Malinnikova, 2019,
work in progress)
Local version of Courant’s theorem.
The number of nodal domains of the
k-th eigenfunction, which intersect a
geodesic ball B is bounded by

k |B|/|M|+ Ck1−εd .



Spherical harmonic localized near equator

u(x , y , z) = <(x + iy)n.

ϕ = u|S2 is the k-th eigenfunction on
S2 with

k ∼ λ ∼ n2



Nodal domains and Courant’s theorem

Thm(Courant, 1923). The k-th eigenfunction of the Laplace
operator on a closed manifold M has at most k nodal domains.

Proof is one page long and uses only variational methods (minmax
principle) and the fact that eigenfunctions can not vanish on open
set.



Local version of Courant’s theorem

Thm(Chanillo, AL, Malinnikova, 2019, work in progress)
The number of nodal domains of the k-th eigenfunction, which
intersect a geodesic ball B is bounded by

k|B|/|M|+ Ck1−εd .

The main question in the proof:
Why nodal domains can not be long and narrow?
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The main question in the proof: why nodal domains can not be
long and narrow?

I Well-known ingredient: Estimates of harmonic measure.
Eigenfunctions should grow fast in narrow domains.

I New ingredient: It appears that eigenfunctions can not grow
too fast in narrow domains because of some global reasons:
the function is defined not only in the nodal domain, but on
the whole manifold.

The proof requires to prove sharp BMO bounds
Conjecture(Donnelly, Fefferman)/Thm(AL, Malinnikova):

‖log |ϕλ|‖BMO ≤ C
√
λ

and to resolve a related question of Landis on three balls
inequality for wild sets.
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Two conjectures

The sign of a random spherical
harmonic.

Picture credits: Dmitry Belyaev.

Let M be a compact C∞ -smooth
Riemannian manifold M (without
boundary) of dimension n.
Fact. For any Laplace eigenfunction ϕ,
∆ϕ = −λϕ,
the nodal set Zϕ = {x ∈ M : ϕ(x) = 0}
is C/

√
λ dense.

Yau’s conjecture

c
√
λ ≤ Hn−1(Zϕ) ≤ C

√
λ

Quasi-symmetry conjecture

c ≤ Hn(ϕ > 0)

Hn(ϕ < 0)
≤ C
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Yau’s conjecture: c
√
λ ≤ Hn−1(Zϕλ

) ≤ C
√
λ

Previous bounds
• Brunning 1978, Yau: Lower bound is true for n = 2.

• Donnelly & Fefferman 1988: True for real analytic metrics.

• Nadirashvili 1988: n = 2, H1(Zϕλ
) ≤ Cλ log λ

• Donnelly & Fefferman 1990, Dong 1992: n = 2,
H1(Zϕλ

) ≤ Cλ3/4

• Hardt & Simon 1989: n ≥ 2, Hn−1(Zϕλ
) ≤ CλC

√
λ

• Colding & Minicozzi 2011, Sogge & Zelditch 2011, 2012,

Steinerberger 2014: cλ
3−n

4 ≤ Hn−1(Zϕλ
).



Yau’s conjecture: c
√
λ ≤ Hn−1(Zϕλ

) ≤ C
√
λ

New results

Thm(AL, Eu. Malinnikova, 2016). n = 2

H1(Zϕλ
) ≤ Cλ3/4−ε.

Thm(AL, 2016). n ≥ 3

c
√
λ ≤ Hn−1(Zϕλ

) ≤ CλCn .



Yau’s conjecture: c
√
λ ≤ Hn−1(Zϕλ

) ≤ C
√
λ

Thm(AL, Malinnikova, Nazarov, Nadirashvili, work in progress):
Let Ω be a bounded domain in Rn with smooth boundary. Then
for the eigenfunctions of the Laplace operator in Ω with Dirichlet
boundary conditions

∆ϕ = −λϕ, ϕ|∂Ω = 0

we have

Hn−1(Zϕλ
) ≤ C

√
λ.



Nadirashvili’s conjecture

Let u be a non-constant harmonic function in R3.

Area({u = 0}) =∞?

• Thm(2016). Yes.

• Thm(2016). If u(0) = 0, then

Area({u = 0} ∩ B1(0)) ≥ c > 0,

where c is a universal constant.

• Rescaled version in Rn:
If u(0) = 0, then

Hn−1({u = 0} ∩ BR(0)) ≥ cnR
n−1.
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From Laplace eigenfunctions to harmonic functions

∆ϕ+ λϕ = 0 vs ∆u = 0.

Let ϕ satisfy ∆ϕ+ λϕ = 0 in Rn.

Old trick: define a harmonic function u in Rn+1 by

u(x , t) = ϕ(x) exp(
√
λt),

Zu = Zϕ × R.

The same lifting trick works for eigenfunctions on manifolds.



From Nadirashvili’s conjecture to Yau’s conjecture

• Let ϕ satisfy ∆ϕ+ λϕ = 0 in Rn.
Why Hn−1(Zϕ ∩ {|x | < 1}) ≥ c

√
λ for λ > λ0?

• We will use another fact: Zϕ is C√
λ

dense in Rn.

• One can find ∼ λn/2 disjoint balls B(xi ,
1√
λ

) in B1 such that

ϕ(xi ) = 0.

• Using Nadirashvili’s conjecture on the scale 1/
√
λ and the

lifting trick we have

Hn−1(Zϕ ∩ B1/
√
λ(xi )) ≥ c

(
1√
λ

)n−1

.

Thus Hn−1(Zϕ ∩ {|x | < 1}) ≥ c
√
λ.

• The proof of Nadirashvili’s conjecture is beyond the scope of
this lecture.
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Style of the proofs.

The works of Donnelly and Fefferman brought many ideas to nodal
geometry. In particular they explained how to use complex and
harmonic analysis to study nodal sets and proved Yau’s and
quasi-symmetry conjectures in the case of real-analytic Riemannian
metrics. One of their ideas: geometry of nodal sets is controlled
growth properties of functions.

The proof of Nadirashvili’s conjecture (3D) is a multiscale
induction argument. Complex analysis tools are not working for
Nadirashvili’s conjecture (at least we don’t know how).

Tools in the proof Nadirashvili’s conjecture: monotonicity formulas
and unique continuation for elliptic PDE.



Growth of Laplace eigenfunctions on compact manifolds

∆ϕ+ λϕ = 0

Donnelly-Fefferman growth estimate for Laplace eigenfunctions on
compact Riemannian manifolds:
For any geodesic ball Br (x) ⊂ M

log
maxB2r (x) |ϕ|
maxBr (x) |ϕ|

≤ C
√
λ.

2r is assumed to be smaller than the injectivity radius of M.



Harmonic counterpart of Yau’s conjecture

Yau’s conjecture: Hn−1(Zϕλ
) ≤ C

√
λ.

Lifting trick: u(x , t) = ϕ(x) exp(
√
λt)

satisfies an elliptic PDE of the second order in the divergence form

div(A∇u) = 0.

Doubling index:

N(Br ) = log

max
B2r

|u|

max
Br

|u|

Harmonic counterpart of Yau’s conjecture:

Hn−1(Zu ∩ B1) ≤ CN(B1).

Recent result (2016):

Hn−1(Zu ∩ B1) ≤ CN(B1)Cn .



Zeroes and growth of harmonic functions on the plane

For entire functions one can estimate the number of zeroes from
above in terms of growth. But there is a plenty of holomorphic
functions that have no zeroes.

Let u be a harmonic function (real valued) in R2.
Doubling index:

N(Br ) = log

max
B2r

|u|

max
Br

|u|

Thm(Gelfond, Robertson, Nadirashvili)

cN(B1/4)− C ≤ H1(Zu ∩ B1) ≤ CN(B2) + C



Length of nodal lines and doubling index

Let n = 2. So M is a surface and nodal sets are unions of curves.
Consider an eigenfunction ϕ : ∆ϕ+ λϕ = 0.
Fact. On the scale 1/

√
λ eigenfunctions behave like harmonic

functions.
Estimate of length of nodal lines (Donnelly-Fefferman,
Nadirashvili, Nazarov-Polterovich-Sodin, Roy-Fortin).

cN(B 1
4
√
λ

(x))− C ≤
√
λ · H1(Zϕ ∩ B 1√

λ

(x)) ≤ CN(B 1√
λ

(x)) + C



Distribution of doubling index
Let n = 2. So M is a surface and nodal sets are unions of curves.
Let M be covered by ∼ λ geodesic balls Bi of radius 1/

√
λ so that

each point of M is covered at most 10 times.
Conjecture(Nazarov-Polterovich-Sodin). There is a numerical
constant C (independent of λ and of the covering) such that∑

N(Bi )

#Bi
≤ C .

Weak form. At least half of Bi have a bounded doubling index.

Comment. In the case when the metric is real analytic Donnelly
and Fefferman proved the weak conjecture on the distribution of
doubling indices and used it show that quasisymmetry holds.
Comment. The weak conjecture implies the quasisymmetry
conjecture:

c <
Area(ϕ > 0)

Area(ϕ < 0)
< C .

Comment. The strong NPS conjecture is equivalent to the Yau
conjecture in dimension 2.
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Upper bounds in Yau’s conjecture, n ≥ 3

Yau’s conjecture: Hn−1(Zϕλ
) ≤ C

√
λ.

Lifting trick: u(x , t) = ϕ(x) exp(
√
λt)

satisfies an elliptic PDE of second order in divergence form

div(A∇u) = 0.

Doubling index:

N(Br ) = log

max
B2r

|u|

max
Br

|u|

Harmonic counterpart of Yau’s conjecture:

Hn−1(Zu ∩ B1) ≤ CN(B1).



Lemma on distribution of doubling indices.

Consider a harmonic function u in Rn and let Q be a unit cube.

N = Nu(Q) = log
max
2Q
|u|

max
Q
|u|
.

Let’s partition Q into Kn equal cubes qi of size 1/K .

Lemma on distribution of doubling index.
If K and N are sufficiently large, then there are at least
Kn − 1

2K
n−1 good cubes qi such that N(qi ) ≤ N/2.

A version of the lemma above is used in the multiscale argument
to prove polynomial upper bounds in Yau’s conjecture and the
lower bound.



Toolbox: Monotonicity of the doubling index for harmonic
functions

Nu(rB) ≤ (1 + ε)Nu(B) + C (ε)

for any r ∈ (0, 1) and any harmonic function u in Rn.

Monotonicity of the frequency function.

Hu(x , r) = |∂Br |−1

∫
∂Br (x)

|u|2, Fu(x , r) =
rH ′(r)

H(r)
.

Fu(x , r) is monotone in r .
For more general elliptic equations Garofalo and Lin showed that
Fu(x , r)eCr is a non-decreasing function
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Simplex lemma

Simplex Lemma (informal formulation):
Let u be a harmonic function in R3

such that for each blue ball
N(B i ) ≥ A > 1000, n = 1, 2, 3, 4.

Then the doubling index of the giant
red ball, which contains small blue balls,
is larger than A:

N(B) > A(1 + c), c > 0.



Toolbox: three balls theorem

Let u be a harmonic function. If maxB |u| ≤ 1 and max 1
4
B |u| ≤ ε,

then
max

1
2
B
|u| ≤ Cεα.

for some α ∈ (0, 1) and C that do not depend on u.



Toolbox: quantitative Cauchy uniqueness.

div(A∇u) = 0, A is elliptic

and with Lipschitz coefficients.

If Γ ⊂ ∂Ω is relatively open and K ⊂ Ω
is a compact set, then

max
K
|∇u| ≤ C sup

Γ
|∇u|β sup

Ω
|∇u|1−β



Second question from Nadirashvili’s plan

Cauchy uniqueness problem.
Let u be a harmonic function in a unit ball B ⊂ R3. Assume that
u ∈ C∞(B) and ∇u = 0 on a set S ⊂ ∂B with positive area. Does
it imply that ∇u ≡ 0?

Comment. If S is a relatively open subset the answer is yes. It is
also true in dimension two for any set of positive length. In R3 if
C∞ class of functions is replaced by C 1,ε the answer is no
(Bourgain, Wolff). Attempts to construct C 2 counterexamples
were not successful.



Application of zero sets and quasiconformal mappings:
Landis conjecture

Let u be a solution to ∆u + Vu = 0 in R2,
where V is a bounded potential: |V | < 1.
Landis’ conjecture: if |u(x)| ≤ exp(−|x |1+ε), then u ≡ 0.

Example: The function exp(−|x |) decays exponentially and outside
of the unit ball |∆ exp(−|x |)| ≤ C exp(−|x |). One can construct a
solution in the whole R2, which decays exponentially.
Meshkov: Landis conjecture is false for complex-valued potentials.
There is a non-zero complex solution u: |∆u| ≤ |u| such that
|u(x)| ≤ exp(−c|x |4/3).
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Landis’ conjecture is true for real potentials.

The proof is using zero sets and quasiconformal mappings.
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Application of zero sets and quasiconformal mappings:
Landis conjecture

Landis conjecture is a problem about solutions to ∆u + Vu = 0 on
the plane.
Quasiconformal mappings and nodal sets help to reduce the
problem to a simpler one about a harmonic function h : ∆h = 0 on
the plane with holes.



Toy problem. Let {zi} be a set of points in R2 with |zi − zj | > 10.

Ω = R2 \ ∪B1(zi )

Let h be a harmonic function in Ω with

unusual boundary conditions:
h does not change sign in each of the annuli B2(zi ) \ B1(zi ).

Show that |h(z)| cannot be too small near infinity:

|h(z)| ≤ exp(−|x |1+ε) =⇒ h ≡ 0.

One can reduce the quantitative version of Landis conjecture to
the quantitative version of the toy problem using quasiconformal
mappings and nodal sets.
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Question

Can one find a way in higher dimensions to simplify PDEs?
Quasiconformal mappings allow to find a smart change of variables
in 2D, which transforms the solution of

div(A∇u) = 0

to a solution of
∆h = 0.

The change of variables depends on the solution itself, but has
good quantitative estimates that depend on A only.

In higher dimensions there is no hope to simplify the equation to
the equation with constant coefficients.
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Question. Can one find a change of variables for one fixed solution
to div(A∇u) = 0 in R3 such that the new equation has a
symmetry (is not depending on one of the coordinates)?

Non-standard logic: There is one fixed function and we study all
Riemannian metrics such that the function is harmonic with
respect to the metric. So it is the equation for the metric. There
are many metrics, which solve it and we want to find the one,
which is simple.

The change of variables/metric should depend on the solution and
cannot serve for all solutions at the same time.



Question

Thm(AL, Malinnikova, Nadirashvili, Nazarov, work in progress) If
M is a closed Riemannian surface an u is a real-valued function on
M with |∆u| ≤ λ|u|, then the vanishing order of u at any point is
smaller than Cλ1/2+ε

Question If M is a closed Riemannian surface an u is a real-valued
function on M with |∆u| ≤ λ|u| is it true that

H1(Zu) ≤ Cλ1/2+ε?


