Zero sets of Laplace eigenfunctions

A. Logunov

Based on joint works with L.Buhovsky, S.Chanillo, Eu.Malinnikova, N.Nadirashvili, F.Nazarov, M.Sodin

December 2020

Overview

1. Three "elementary" questions on spherical harmonics and eigenfunctions on \mathbb{T}^{2}.
2. Geometry of zero sets of Laplace eigenfunctions, Yau's conjecture, Nadirashvili's conjecture.
3. Harmonic functions: Growth vs Zeroes
4. Application: Landis' conjecture on the plane.

Eigenfunctions of the Laplace operator

Let M be a closed Riemannian manifold of dimension n and Δ be the Laplace operator on M. There is a sequence of eigenfunctions:

$$
\Delta \varphi=-\lambda \varphi, \quad 0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \ldots
$$

Example 1.

$$
\varphi(x, y)=\sin (a x) \sin (b y)
$$

is an eigenfunction on the torus \mathbb{T}^{2} with eigenvalue $\lambda=a^{2}+b^{2}$. Linear combinations

$$
\sum_{a_{k}^{2}+b_{k}^{2}=\lambda} c_{k} \sin \left(a_{k} x\right) \sin \left(b_{k} y\right)
$$

Spherical harmonics

Example 2. Eigenfunctions on S^{2} are restrictions of homogeneous harmonic polynomials in \mathbb{R}^{3} to S^{2}. They are called spherical harmonics.

The corresponding eigenvalue is $\lambda=n(n+1)$, where n is the degree of the polynomial. The multiplicity is $2 n+1$.

There is a standard basis of each eigenspace consisting of relatively simple polynomials. However, the value distribution of their (random) linear combinations can be complicated.
Picture credits:
Matthew de Courcy-Ireland

Three "elementary" questions on eigenfunctions

Consider any sequence of eigenfunctions φ_{λ} on S^{2} with $\lambda \rightarrow \infty$.

Value distribution $|\varphi|$ of a spherical harmonic. Red and blue areas represent the sign.

Picture credits:
Matthew de Courcy-Ireland

Three "elementary" questions on eigenfunctions

Consider any sequence of eigenfunctions φ_{λ} on S^{2} with $\lambda \rightarrow \infty$.

Yau's Conjecture
The number of critical points of φ_{λ} grows to infinity.

Value distribution $|\varphi|$ of a spherical harmonic. Red and blue areas represent the sign.

Picture credits:
Matthew de Courcy-Ireland

Three "elementary" questions on eigenfunctions

Consider any sequence of eigenfunctions φ_{λ} on S^{2} with $\lambda \rightarrow \infty$.

Yau's Conjecture
The number of critical points of φ_{λ} grows to infinity.

Sarnak's Conjecture

$$
\frac{\left\|\varphi_{\lambda}\right\|_{\infty}}{\left\|\varphi_{\lambda}\right\|_{2}} \rightarrow \infty
$$

Value distribution $|\varphi|$ of a spherical harmonic. Red and blue areas represent the sign.

Picture credits:
Matthew de Courcy-Ireland

Three "elementary" questions on eigenfunctions

Consider any sequence of eigenfunctions φ_{λ} on S^{2} with $\lambda \rightarrow \infty$.

Yau's Conjecture
The number of critical points of φ_{λ} grows to infinity.

Sarnak's Conjecture

$$
\frac{\left\|\varphi_{\lambda}\right\|_{\infty}}{\left\|\varphi_{\lambda}\right\|_{2}} \rightarrow \infty
$$

Value distribution $|\varphi|$ of a spherical harmonic. Red and blue areas represent the sign.

Symmetry Conjecture

$$
\frac{\operatorname{Area}\left(\varphi_{\lambda}>0\right)}{\operatorname{Area}\left(\varphi_{\lambda}<0\right)} \rightarrow 1
$$

Picture credits:
Matthew de Courcy-Ireland

Three "elementary" questions on eigenfunctions

Symmetry Conjecture

$$
\frac{\operatorname{Area}\left(\varphi_{\lambda}>0\right)}{\operatorname{Area}\left(\varphi_{\lambda}<0\right)} \rightarrow 1
$$

Thm(Donnelly and Fefferman)

$$
c<\frac{\operatorname{Area}\left(\varphi_{\lambda}>0\right)}{\operatorname{Area}\left(\varphi_{\lambda}<0\right)}<C
$$

Value distribution $|\varphi|$ of a spherical harmonic. Red and blue areas represent the sign.

Picture credits:
Matthew de Courcy-Ireland

Number of critical points.

Conjecture (Yau) Does the number of the critical points of eigenfunctions φ_{λ},

$$
C_{\varphi_{\lambda}}=\left\{x: \nabla \varphi_{\lambda}(x)=0\right\},
$$

tends to infinity as $\lambda \rightarrow \infty$?
The question is open for spherical harmonics on S^{2}.

Number of critical points.

Conjecture (Yau) Does the number of the critical points of eigenfunctions φ_{λ},

$$
C_{\varphi_{\lambda}}=\left\{x: \nabla \varphi_{\lambda}(x)=0\right\}
$$

tends to infinity as $\lambda \rightarrow \infty$?
The question is open for spherical harmonics on S^{2}.
Jakobson \& Nadirashvili, 1999: There is a metric on \mathbb{T}^{2} such that there is an infinite sequence of Laplace eigenfunctions with only 16 critical points;

Number of critical points.

Conjecture (Yau) Does the number of the critical points of eigenfunctions φ_{λ},

$$
C_{\varphi_{\lambda}}=\left\{x: \nabla \varphi_{\lambda}(x)=0\right\}
$$

tends to infinity as $\lambda \rightarrow \infty$?
The question is open for spherical harmonics on S^{2}.
Jakobson \& Nadirashvili, 1999: There is a metric on \mathbb{T}^{2} such that there is an infinite sequence of Laplace eigenfunctions with only 16 critical points;

Buhovsky \& AL \& Sodin, 2018: There is a metric on \mathbb{T}^{2} with an infinite sequence of eigenfunctions $(\lambda \rightarrow \infty)$ such the number of isolated critical points for each of them is infinite.

Sarnak's Conjecture

- Flat eigenfunctions: Is there a sequence of eigenfunctions φ_{λ} on S^{2} with $\lambda \rightarrow \infty$ such that

$$
\max _{M}\left|\varphi_{\lambda}\right| \leq C\left\|\varphi_{\lambda}\right\|_{2} ?
$$

- Example: On S^{1} all eigenfunctions $\sin (a x+b)$ are flat.

Sarnak's Conjecture

- Flat eigenfunctions: Is there a sequence of eigenfunctions φ_{λ} on S^{2} with $\lambda \rightarrow \infty$ such that

$$
\max _{M}\left|\varphi_{\lambda}\right| \leq C\left\|\varphi_{\lambda}\right\|_{2} ?
$$

- Example: On S^{1} all eigenfunctions $\sin (a x+b)$ are flat.
- Ryll \& Wojtaszczyk, 1983: There a sequence of flat eigenfunctions on $S^{2 d+1}$, Bourgain, 1985, 2016: stronger results for S^{3} and S^{5}
- Sarnak's Conjecture: there is no such sequence on S^{2}.
- No one knows whether there is L^{2} basis of spherical harmonics with bounded L^{∞} norm.

Nodal sets and Chladni's resonance experiments.

Downloaded from William Henry Stone (1879), Elementary Lessons on Sound, Macmillan and Co., London, p. 26, fig. 12;

Chladni patterns published by John Tyndall in 1869.

Nodal geometry

Nodal sets $=$ zeroes of solutions to elliptic differential equations.

Nodal geometry

Nodal sets $=$ zeroes of solutions to elliptic differential equations.

Zeroes of solutions to $\Delta^{2} u=\lambda^{2} u$. Vibration modes of a plate.

Nodal geometry

Nodal sets $=$ zeroes of solutions to elliptic differential equations.

Zeroes of solutions to $\Delta^{2} u=\lambda^{2} u$.
Vibration modes of a plate.

Zeroes of eigenfunctions of the Laplace operator: $\Delta u+\lambda u=0$. (a) vibration modes of a plate with half-free boundary conditions, (b) the vibration modes of a membrane, (c) the stationary wave equation, (d) the Helmholtz equation and (e) quantum mechanics.

Nodal domains and Courant theorem

The nodal set separates the manifold M into several connected components, which are called nodal domains.

Thm(Courant, 1923). The k-th eigenfunction of the Laplace operator on any closed manifold has at most k nodal domains.
A. Stern(1924), H. Lewy(1977): there are spherical harmonics of any odd degree with only two nodal domains.
The sign of a spherical harmonic.
Picture credits: Dmitry Belyaev.

Topology of nodal loops

Thm(Eremenko,Nadirashvili,Jacobson). On S^{2} every symmetric topological configuration of nodal loops (without intersections) is possible.

The sign of a spherical harmonic.

Picture credits: Dmitry Belyaev.

Nodal domains and Courant's theorem

Thm(Courant, 1923). The k-th eigenfunction of the Laplace operator on a closed manifold M has at most k nodal domains.

Thm(Chanillo, AL, Malinnikova, 2019, work in progress)
Local version of Courant's theorem.
The number of nodal domains of the k-th eigenfunction, which intersect a geodesic ball B is bounded by

$$
k|B| /|M|+C k^{1-\varepsilon_{d}} .
$$

Picture credits: Dmitry Belyaev.

Spherical harmonic localized near equator

$$
u(x, y, z)=\Re(x+i y)^{n} .
$$

$\varphi=\left.u\right|_{S^{2}}$ is the k-th eigenfunction on S^{2} with

$$
k \sim \lambda \sim n^{2}
$$

Nodal domains and Courant's theorem

Thm(Courant, 1923). The k-th eigenfunction of the Laplace operator on a closed manifold M has at most k nodal domains.

Proof is one page long and uses only variational methods (minmax principle) and the fact that eigenfunctions can not vanish on open set.

Local version of Courant's theorem

Thm(Chanillo, AL, Malinnikova, 2019, work in progress)
The number of nodal domains of the k-th eigenfunction, which intersect a geodesic ball B is bounded by

$$
k|B| /|M|+C k^{1-\varepsilon_{d}}
$$

The main question in the proof:
Why nodal domains can not be long and narrow?

Local version of Courant's theorem

The main question in the proof: why nodal domains can not be long and narrow?

- Well-known ingredient: Estimates of harmonic measure. Eigenfunctions should grow fast in narrow domains.

Local version of Courant's theorem

The main question in the proof: why nodal domains can not be long and narrow?

- Well-known ingredient: Estimates of harmonic measure. Eigenfunctions should grow fast in narrow domains.
- New ingredient: It appears that eigenfunctions can not grow too fast in narrow domains because of some global reasons: the function is defined not only in the nodal domain, but on the whole manifold.

Local version of Courant's theorem

The main question in the proof: why nodal domains can not be long and narrow?

- Well-known ingredient: Estimates of harmonic measure. Eigenfunctions should grow fast in narrow domains.
- New ingredient: It appears that eigenfunctions can not grow too fast in narrow domains because of some global reasons: the function is defined not only in the nodal domain, but on the whole manifold.

The proof requires to prove sharp BMO bounds Conjecture(Donnelly, Fefferman)/Thm(AL, Malinnikova):

$$
\left\|\log \left|\varphi_{\lambda}\right|\right\|_{B M O} \leq C \sqrt{\lambda}
$$

and to resolve a related question of Landis on three balls inequality for wild sets.

Two conjectures

Let M be a compact C^{∞}-smooth Riemannian manifold M (without boundary) of dimension n. Fact. For any Laplace eigenfunction φ, $\Delta \varphi=-\lambda \varphi$, the nodal set $Z_{\varphi}=\{x \in M: \varphi(x)=0\}$ is $C / \sqrt{\lambda}$ dense.

The sign of a random spherical harmonic.

Picture credits: Dmitry Belyaev.

Two conjectures

Let M be a compact C^{∞}-smooth Riemannian manifold M (without boundary) of dimension n.
Fact. For any Laplace eigenfunction φ,
$\Delta \varphi=-\lambda \varphi$,
the nodal set $Z_{\varphi}=\{x \in M: \varphi(x)=0\}$ is $C / \sqrt{\lambda}$ dense.
Yau's conjecture

$$
c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi}\right) \leq C \sqrt{\lambda}
$$

The sign of a random spherical harmonic.

Picture credits: Dmitry Belyaev.

Two conjectures

Let M be a compact C^{∞}-smooth Riemannian manifold M (without boundary) of dimension n.
Fact. For any Laplace eigenfunction φ,
$\Delta \varphi=-\lambda \varphi$,
the nodal set $Z_{\varphi}=\{x \in M: \varphi(x)=0\}$ is $C / \sqrt{\lambda}$ dense.
Yau's conjecture

$$
c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi}\right) \leq C \sqrt{\lambda}
$$

Quasi-symmetry conjecture

$$
c \leq \frac{H^{n}(\varphi>0)}{H^{n}(\varphi<0)} \leq C
$$

Picture credits: Dmitry Belyaev.

Yau's conjecture: $c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq c \sqrt{\lambda}$

Previous bounds

- Brunning 1978, Yau: Lower bound is true for $n=2$.
- Donnelly \& Fefferman 1988: True for real analytic metrics.
- Nadirashvili 1988: $n=2, H^{1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda \log \lambda$
- Donnelly \& Fefferman 1990, Dong 1992: $n=2$, $H^{1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda^{3 / 4}$
- Hardt \& Simon 1989: $n \geq 2, H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda^{C \sqrt{\lambda}}$
- Colding \& Minicozzi 2011, Sogge \& Zelditch 2011, 2012, Steinerberger 2014: $c \lambda^{\frac{3-n}{4}} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right)$.

Yau's conjecture: $c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq c \sqrt{\lambda}$

New results

Thm(AL, Eu. Malinnikova, 2016). $n=2$

$$
H^{1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda^{3 / 4-\varepsilon} .
$$

Thm(AL, 2016). $n \geq 3$

$$
c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \lambda^{C_{n}}
$$

Yau's conjecture: $c \sqrt{\lambda} \leq H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \sqrt{\lambda}$

Thm(AL, Malinnikova, Nazarov, Nadirashvili, work in progress): Let Ω be a bounded domain in \mathbb{R}^{n} with smooth boundary. Then for the eigenfunctions of the Laplace operator in Ω with Dirichlet boundary conditions

$$
\Delta \varphi=-\lambda \varphi,\left.\varphi\right|_{\partial \Omega}=0
$$

we have

$$
H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \sqrt{\lambda}
$$

Nadirashvili's conjecture

Let u be a non-constant harmonic function in \mathbb{R}^{3}.

$$
\text { Area }(\{u=0\})=\infty ?
$$

Nadirashvili's conjecture

Let u be a non-constant harmonic function in \mathbb{R}^{3}.

$$
\text { Area }(\{u=0\})=\infty ?
$$

- Thm(2016). Yes.
- Thm(2016). If $u(0)=0$, then

$$
\text { Area }\left(\{u=0\} \cap B_{1}(0)\right) \geq c>0
$$

where c is a universal constant.

Nadirashvili's conjecture

Let u be a non-constant harmonic function in \mathbb{R}^{3}.

$$
\text { Area }(\{u=0\})=\infty ?
$$

- Thm(2016). Yes.
- Thm(2016). If $u(0)=0$, then

$$
\text { Area }\left(\{u=0\} \cap B_{1}(0)\right) \geq c>0
$$

where c is a universal constant.

- Rescaled version in \mathbb{R}^{n} :

If $u(0)=0$, then

$$
H^{n-1}\left(\{u=0\} \cap B_{R}(0)\right) \geq c_{n} R^{n-1}
$$

From Laplace eigenfunctions to harmonic functions

$$
\Delta \varphi+\lambda \varphi=0 \quad \text { vs } \quad \Delta u=0
$$

Let φ satisfy $\Delta \varphi+\lambda \varphi=0$ in \mathbb{R}^{n}.
Old trick: define a harmonic function u in \mathbb{R}^{n+1} by

$$
\begin{gathered}
u(x, t)=\varphi(x) \exp (\sqrt{\lambda} t) \\
Z_{u}=Z_{\varphi} \times \mathbb{R}
\end{gathered}
$$

The same lifting trick works for eigenfunctions on manifolds.

From Nadirashvili's conjecture to Yau's conjecture

- Let φ satisfy $\Delta \varphi+\lambda \varphi=0$ in \mathbb{R}^{n}.

Why $H^{n-1}\left(Z_{\varphi} \cap\{|x|<1\}\right) \geq c \sqrt{\lambda}$ for $\lambda>\lambda_{0}$?

- We will use another fact: Z_{φ} is $\frac{C}{\sqrt{\lambda}}$ dense in \mathbb{R}^{n}.

From Nadirashvili's conjecture to Yau's conjecture

- Let φ satisfy $\Delta \varphi+\lambda \varphi=0$ in \mathbb{R}^{n}. Why $H^{n-1}\left(Z_{\varphi} \cap\{|x|<1\}\right) \geq c \sqrt{\lambda}$ for $\lambda>\lambda_{0}$?
- We will use another fact: Z_{φ} is $\frac{C}{\sqrt{\lambda}}$ dense in \mathbb{R}^{n}.
- One can find $\sim \lambda^{n / 2}$ disjoint balls $B\left(x_{i}, \frac{1}{\sqrt{\lambda}}\right)$ in B_{1} such that $\varphi\left(x_{i}\right)=0$.

From Nadirashvili's conjecture to Yau's conjecture

- Let φ satisfy $\Delta \varphi+\lambda \varphi=0$ in \mathbb{R}^{n}.

Why $H^{n-1}\left(Z_{\varphi} \cap\{|x|<1\}\right) \geq c \sqrt{\lambda}$ for $\lambda>\lambda_{0}$?

- We will use another fact: Z_{φ} is $\frac{C}{\sqrt{\lambda}}$ dense in \mathbb{R}^{n}.
- One can find $\sim \lambda^{n / 2}$ disjoint balls $B\left(x_{i}, \frac{1}{\sqrt{\lambda}}\right)$ in B_{1} such that $\varphi\left(x_{i}\right)=0$.
- Using Nadirashvili's conjecture on the scale $1 / \sqrt{\lambda}$ and the lifting trick we have

$$
H^{n-1}\left(Z_{\varphi} \cap B_{1 / \sqrt{\lambda}}\left(x_{i}\right)\right) \geq c\left(\frac{1}{\sqrt{\lambda}}\right)^{n-1}
$$

Thus $H^{n-1}\left(Z_{\varphi} \cap\{|x|<1\}\right) \geq c \sqrt{\lambda}$.

From Nadirashvili's conjecture to Yau's conjecture

- Let φ satisfy $\Delta \varphi+\lambda \varphi=0$ in \mathbb{R}^{n}.

Why $H^{n-1}\left(Z_{\varphi} \cap\{|x|<1\}\right) \geq c \sqrt{\lambda}$ for $\lambda>\lambda_{0}$?

- We will use another fact: Z_{φ} is $\frac{C}{\sqrt{\lambda}}$ dense in \mathbb{R}^{n}.
- One can find $\sim \lambda^{n / 2}$ disjoint balls $B\left(x_{i}, \frac{1}{\sqrt{\lambda}}\right)$ in B_{1} such that $\varphi\left(x_{i}\right)=0$.
- Using Nadirashvili's conjecture on the scale $1 / \sqrt{\lambda}$ and the lifting trick we have

$$
H^{n-1}\left(Z_{\varphi} \cap B_{1 / \sqrt{\lambda}}\left(x_{i}\right)\right) \geq c\left(\frac{1}{\sqrt{\lambda}}\right)^{n-1}
$$

Thus $H^{n-1}\left(Z_{\varphi} \cap\{|x|<1\}\right) \geq c \sqrt{\lambda}$.

- The proof of Nadirashvili's conjecture is beyond the scope of this lecture.

Style of the proofs.

The works of Donnelly and Fefferman brought many ideas to nodal geometry. In particular they explained how to use complex and harmonic analysis to study nodal sets and proved Yau's and quasi-symmetry conjectures in the case of real-analytic Riemannian metrics. One of their ideas: geometry of nodal sets is controlled growth properties of functions.

The proof of Nadirashvili's conjecture (3D) is a multiscale induction argument. Complex analysis tools are not working for Nadirashvili's conjecture (at least we don't know how).

Tools in the proof Nadirashvili's conjecture: monotonicity formulas and unique continuation for elliptic PDE.

Growth of Laplace eigenfunctions on compact manifolds

$$
\Delta \varphi+\lambda \varphi=0
$$

Donnelly-Fefferman growth estimate for Laplace eigenfunctions on compact Riemannian manifolds:
For any geodesic ball $B_{r}(x) \subset M$

$$
\log \frac{\max _{B_{2 r}(x)}|\varphi|}{\max _{B_{r}(x)}|\varphi|} \leq C \sqrt{\lambda}
$$

$2 r$ is assumed to be smaller than the injectivity radius of M.

Harmonic counterpart of Yau's conjecture

Yau's conjecture: $H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \sqrt{\lambda}$.
Lifting trick: $u(x, t)=\varphi(x) \exp (\sqrt{\lambda} t)$
satisfies an elliptic PDE of the second order in the divergence form

$$
\operatorname{div}(A \nabla u)=0
$$

Doubling index:

$$
N\left(B_{r}\right)=\log \frac{\max _{B_{2 r}}|u|}{\max _{B_{r}}|u|}
$$

Harmonic counterpart of Yau's conjecture:

$$
H^{n-1}\left(Z_{u} \cap B_{1}\right) \leq C N\left(B_{1}\right)
$$

Recent result (2016):

$$
H^{n-1}\left(Z_{u} \cap B_{1}\right) \leq C N\left(B_{1}\right)^{C_{n}}
$$

Zeroes and growth of harmonic functions on the plane

For entire functions one can estimate the number of zeroes from above in terms of growth. But there is a plenty of holomorphic functions that have no zeroes.

Let u be a harmonic function (real valued) in \mathbb{R}^{2}.
Doubling index:

$$
N\left(B_{r}\right)=\log \frac{\max _{B_{2 r}}|u|}{\max _{B_{r}}|u|}
$$

Thm(Gelfond, Robertson, Nadirashvili)

$$
c N\left(B_{1 / 4}\right)-C \leq H^{1}\left(Z_{u} \cap B_{1}\right) \leq C N\left(B_{2}\right)+C
$$

Length of nodal lines and doubling index

Let $n=2$. So M is a surface and nodal sets are unions of curves.
Consider an eigenfunction $\varphi: \Delta \varphi+\lambda \varphi=0$.
Fact. On the scale $1 / \sqrt{\lambda}$ eigenfunctions behave like harmonic
functions.
Estimate of length of nodal lines (Donnelly-Fefferman, Nadirashvili, Nazarov-Polterovich-Sodin, Roy-Fortin).

$$
c N\left(B_{\frac{1}{4 \sqrt{\lambda}}}(x)\right)-C \leq \sqrt{\lambda} \cdot H^{1}\left(Z_{\varphi} \cap B_{\frac{1}{\sqrt{\lambda}}}(x)\right) \leq C N\left(B_{\frac{1}{\sqrt{\lambda}}}(x)\right)+C
$$

Distribution of doubling index

Let $n=2$. So M is a surface and nodal sets are unions of curves. Let M be covered by $\sim \lambda$ geodesic balls B_{i} of radius $1 / \sqrt{\lambda}$ so that each point of M is covered at most 10 times. Conjecture(Nazarov-Polterovich-Sodin). There is a numerical constant C (independent of λ and of the covering) such that

$$
\frac{\sum N\left(B_{i}\right)}{\# B_{i}} \leq C
$$

Weak form. At least half of B_{i} have a bounded doubling index.

Distribution of doubling index

Let $n=2$. So M is a surface and nodal sets are unions of curves. Let M be covered by $\sim \lambda$ geodesic balls B_{i} of radius $1 / \sqrt{\lambda}$ so that each point of M is covered at most 10 times.
Conjecture(Nazarov-Polterovich-Sodin). There is a numerical constant C (independent of λ and of the covering) such that

$$
\frac{\sum N\left(B_{i}\right)}{\# B_{i}} \leq C
$$

Weak form. At least half of B_{i} have a bounded doubling index. Comment. In the case when the metric is real analytic Donnelly and Fefferman proved the weak conjecture on the distribution of doubling indices and used it show that quasisymmetry holds. Comment. The weak conjecture implies the quasisymmetry conjecture:

$$
c<\frac{\operatorname{Area}(\varphi>0)}{\operatorname{Area}(\varphi<0)}<C
$$

Comment. The strong NPS conjecture is equivalent to the Yau conjecture in dimension 2.

Upper bounds in Yau's conjecture, $n \geq 3$

Yau's conjecture: $H^{n-1}\left(Z_{\varphi_{\lambda}}\right) \leq C \sqrt{\lambda}$.
Lifting trick: $u(x, t)=\varphi(x) \exp (\sqrt{\lambda} t)$
satisfies an elliptic PDE of second order in divergence form

$$
\operatorname{div}(A \nabla u)=0
$$

Doubling index:

$$
N\left(B_{r}\right)=\log \frac{\max _{B_{2 r}}|u|}{\max _{B_{r}}|u|}
$$

Harmonic counterpart of Yau's conjecture:

$$
H^{n-1}\left(Z_{u} \cap B_{1}\right) \leq C N\left(B_{1}\right) .
$$

Lemma on distribution of doubling indices.

Consider a harmonic function u in \mathbb{R}^{n} and let Q be a unit cube.

$$
N=N_{u}(Q)=\log \frac{\max _{2 Q}|u|}{\max _{Q}|u|}
$$

Let's partition Q into K^{n} equal cubes q_{i} of size $1 / K$.
Lemma on distribution of doubling index.
If K and N are sufficiently large, then there are at least
$K^{n}-\frac{1}{2} K^{n-1}$ good cubes q_{i} such that $N\left(q_{i}\right) \leq N / 2$.
A version of the lemma above is used in the multiscale argument to prove polynomial upper bounds in Yau's conjecture and the lower bound.

Toolbox: Monotonicity of the doubling index for harmonic functions

$$
N_{u}(r B) \leq(1+\varepsilon) N_{u}(B)+C(\varepsilon)
$$

for any $r \in(0,1)$ and any harmonic function u in \mathbb{R}^{n}. functions

$$
N_{u}(r B) \leq(1+\varepsilon) N_{u}(B)+C(\varepsilon)
$$

for any $r \in(0,1)$ and any harmonic function u in \mathbb{R}^{n}. Monotonicity of the frequency function.

$$
H_{u}(x, r)=\left|\partial B_{r}\right|^{-1} \int_{\partial B_{r}(x)}|u|^{2}, \quad F_{u}(x, r)=\frac{r H^{\prime}(r)}{H(r)}
$$

$F_{u}(x, r)$ is monotone in r.
For more general elliptic equations Garofalo and Lin showed that $F_{u}(x, r) e^{C r}$ is a non-decreasing function

Simplex lemma

Simplex Lemma (informal formulation): Let u be a harmonic function in \mathbb{R}^{3} such that for each blue ball $N\left(B_{i}\right) \geq A>1000, n=1,2,3,4$.

Then the doubling index of the giant red ball, which contains small blue balls, is larger than A :

$$
N(B)>A(1+c), c>0
$$

Toolbox: three balls theorem

Let u be a harmonic function. If $\max _{B}|u| \leq 1$ and $\max _{\frac{1}{4} B}|u| \leq \varepsilon$, then

$$
\max _{\frac{1}{2} B}|u| \leq C \varepsilon^{\alpha} .
$$

for some $\alpha \in(0,1)$ and C that do not depend on u.

Toolbox: quantitative Cauchy uniqueness.

$$
\begin{aligned}
& \operatorname{div}(A \nabla u)=0, \quad A \text { is elliptic } \\
& \text { and with Lipschitz coefficients. }
\end{aligned}
$$

If $\Gamma \subset \partial \Omega$ is relatively open and $K \subset \Omega$ is a compact set, then

$$
\max _{K}|\nabla u| \leq C \sup _{\Gamma}|\nabla u|^{\beta} \sup _{\Omega}|\nabla u|^{1-\beta}
$$

Second question from Nadirashvili's plan

Cauchy uniqueness problem.
Let u be a harmonic function in a unit ball $B \subset \mathbb{R}^{3}$. Assume that $u \in C^{\infty}(\bar{B})$ and $\nabla u=0$ on a set $S \subset \partial B$ with positive area. Does it imply that $\nabla u \equiv 0$?

Comment. If S is a relatively open subset the answer is yes. It is also true in dimension two for any set of positive length. In \mathbb{R}^{3} if C^{∞} class of functions is replaced by $C^{1, \varepsilon}$ the answer is no (Bourgain, Wolff). Attempts to construct C^{2} counterexamples were not successful.

Application of zero sets and quasiconformal mappings: Landis conjecture

Let u be a solution to $\Delta u+V u=0$ in \mathbb{R}^{2}, where V is a bounded potential: $|V|<1$.
Landis' conjecture: if $|u(x)| \leq \exp \left(-|x|^{1+\varepsilon}\right)$, then $u \equiv 0$.

Application of zero sets and quasiconformal mappings: Landis conjecture

Let u be a solution to $\Delta u+V u=0$ in \mathbb{R}^{2}, where V is a bounded potential: $|V|<1$. Landis' conjecture: if $|u(x)| \leq \exp \left(-|x|^{1+\varepsilon}\right)$, then $u \equiv 0$.
Example: The function $\exp (-|x|)$ decays exponentially and outside of the unit ball $|\Delta \exp (-|x|)| \leq C \exp (-|x|)$. One can construct a solution in the whole \mathbb{R}^{2}, which decays exponentially.

Application of zero sets and quasiconformal mappings: Landis conjecture

Let u be a solution to $\Delta u+V u=0$ in \mathbb{R}^{2}, where V is a bounded potential: $|V|<1$. Landis' conjecture: if $|u(x)| \leq \exp \left(-|x|^{1+\varepsilon}\right)$, then $u \equiv 0$.
Example: The function $\exp (-|x|)$ decays exponentially and outside of the unit ball $|\Delta \exp (-|x|)| \leq C \exp (-|x|)$. One can construct a solution in the whole \mathbb{R}^{2}, which decays exponentially.
Meshkov: Landis conjecture is false for complex-valued potentials.
There is a non-zero complex solution $u:|\Delta u| \leq|u|$ such that $|u(x)| \leq \exp \left(-c|x|^{4 / 3}\right)$.

Application of zero sets and quasiconformal mappings: Landis conjecture

Let u be a solution to $\Delta u+V u=0$ in \mathbb{R}^{2}, where V is a bounded potential: $|V|<1$. Landis' conjecture: if $|u(x)| \leq \exp \left(-|x|^{1+\varepsilon}\right)$, then $u \equiv 0$.

Application of zero sets and quasiconformal mappings: Landis conjecture

Let u be a solution to $\Delta u+V u=0$ in \mathbb{R}^{2}, where V is a bounded potential: $|V|<1$. Landis' conjecture: if $|u(x)| \leq \exp \left(-|x|^{1+\varepsilon}\right)$, then $u \equiv 0$.

Thm(AL, Malinnikova, Nadirashvili, Nazarov, work in progress) Landis' conjecture is true for real potentials.

Application of zero sets and quasiconformal mappings: Landis conjecture

Let u be a solution to $\Delta u+V u=0$ in \mathbb{R}^{2}, where V is a bounded potential: $|V|<1$. Landis' conjecture: if $|u(x)| \leq \exp \left(-|x|^{1+\varepsilon}\right)$, then $u \equiv 0$.

Thm(AL, Malinnikova, Nadirashvili, Nazarov, work in progress) Landis' conjecture is true for real potentials.

The proof is using zero sets and quasiconformal mappings.

Application of zero sets and quasiconformal mappings: Landis conjecture

Landis conjecture is a problem about solutions to $\Delta u+V u=0$ on the plane.
Quasiconformal mappings and nodal sets help to reduce the problem to a simpler one about a harmonic function $h: \Delta h=0$ on the plane with holes.

Toy problem. Let $\left\{z_{i}\right\}$ be a set of points in \mathbb{R}^{2} with $\left|z_{i}-z_{j}\right|>10$.

$$
\Omega=\mathbb{R}^{2} \backslash \cup B_{1}\left(z_{i}\right)
$$

Let h be a harmonic function in Ω with
unusual boundary conditions:
h does not change sign in each of the annuli $B_{2}\left(z_{i}\right) \backslash B_{1}\left(z_{i}\right)$.
Show that $|h(z)|$ cannot be too small near infinity:

$$
|h(z)| \leq \exp \left(-|x|^{1+\varepsilon}\right) \Longrightarrow h \equiv 0
$$

Toy problem. Let $\left\{z_{i}\right\}$ be a set of points in \mathbb{R}^{2} with $\left|z_{i}-z_{j}\right|>10$.

$$
\Omega=\mathbb{R}^{2} \backslash \cup B_{1}\left(z_{i}\right)
$$

Let h be a harmonic function in Ω with
unusual boundary conditions:
h does not change sign in each of the annuli $B_{2}\left(z_{i}\right) \backslash B_{1}\left(z_{i}\right)$.
Show that $|h(z)|$ cannot be too small near infinity:

$$
|h(z)| \leq \exp \left(-|x|^{1+\varepsilon}\right) \Longrightarrow h \equiv 0
$$

One can reduce the quantitative version of Landis conjecture to the quantitative version of the toy problem using quasiconformal mappings and nodal sets.

Question

Can one find a way in higher dimensions to simplify PDEs? Quasiconformal mappings allow to find a smart change of variables in 2D, which transforms the solution of

$$
\operatorname{div}(A \nabla u)=0
$$

to a solution of

$$
\Delta h=0
$$

The change of variables depends on the solution itself, but has good quantitative estimates that depend on A only.

Question

Can one find a way in higher dimensions to simplify PDEs? Quasiconformal mappings allow to find a smart change of variables in 2D, which transforms the solution of

$$
\operatorname{div}(A \nabla u)=0
$$

to a solution of

$$
\Delta h=0
$$

The change of variables depends on the solution itself, but has good quantitative estimates that depend on A only. In higher dimensions there is no hope to simplify the equation to the equation with constant coefficients.

Question. Can one find a change of variables for one fixed solution to $\operatorname{div}(A \nabla u)=0$ in \mathbb{R}^{3} such that the new equation has a symmetry (is not depending on one of the coordinates)?

Non-standard logic: There is one fixed function and we study all Riemannian metrics such that the function is harmonic with respect to the metric. So it is the equation for the metric. There are many metrics, which solve it and we want to find the one, which is simple.

The change of variables/metric should depend on the solution and cannot serve for all solutions at the same time.

Question

Thm(AL, Malinnikova, Nadirashvili, Nazarov, work in progress) If M is a closed Riemannian surface an u is a real-valued function on M with $|\Delta u| \leq \lambda|u|$, then the vanishing order of u at any point is smaller than $C \lambda^{1 / 2+\varepsilon}$
Question If M is a closed Riemannian surface an u is a real-valued function on M with $|\Delta u| \leq \lambda|u|$ is it true that

$$
H^{1}\left(Z_{u}\right) \leq C \lambda^{1 / 2+\varepsilon} ?
$$

