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Cauchy Problem for Einstein’s equations
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Ric,, — ERgW =T, =D,¢D,¢ — EgWng -Do,

@ Some results | will describe hold when ¢ =0

@ Data on ¥, = TP are tensors (&, k, ¢o, 1) verifying
the Gauss and Codazzi constraints

@ Our data will be Sobolev-close to Kasner data

@ Choquet-Bruhat and Geroch: data verifying
constraints launch a unique maximal globally
hyperbolic development (M. g, ¢)
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Goal: Understand the formation of stable spacelike
singularities in (M., g, ¢).

Math problem: For which open sets of data does

Riem,, ;s Riem“”"® blow up on a spacelike hypersurface?
“Dynamic stability of the Big Bang”
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Some sources of inspiration

Hawking—Penrose “singularity” theorems.
Explicit solutions, especially FLRW and Kasner.
Heuristics from the physics literature.

@ Numerical work on singularities.

@ Rigorous results in symmetry and analytic class.
Dafermos—Luk.
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“Generalized” Kasner solutions

D
Jkas = —dt @ df + Z 2dx! @ dx!,  ¢kxas = Blnt
=1

The g, € (—1,1] and B > 0 verify the Kasner constraints:

D

D
2 a=1, 2 (@)f=1-F8
=1

1=1

Riem,,;.;Riem*”"® = Ct~*

where C > 0 (unless one g, equals 1 and the rest vanish)
“Big Bang” singularity at t = 0
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Hawking’s incompleteness theorem

Theorem (Hawking)
Assume
@ (M.,4g,¢) is the maximal globally hyperbolic
development of data (g, k, do, ¢1) on Xy ~ TP
etrtk<-C<0
Then no past-directed timelike geodesic emanating from
Y 4 is longer than C' < oc.

e Hawking’s theorem applies to perturbations of Kasner:
tl’kKAs =—1.
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Glaring question:
@ Why are the timelike geodesics incomplete?

@ For Kasner, incompleteness <« Big Bang, but what
about perturbations?
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Potential sources of incompleteness

@ Curvature blowup/crushing singularities a la Kasner

@ Cauchy horizon formation a la Kerr black hole
interiors
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Near-Kasner incompleteness

New result with Rodnianski and Fournodavlos: Kasner
Big Bang is dynamically stable assuming a sub-criticality
condition:

,’Jﬂ?fﬂp{m +qu—Qqs} <1

I<J

e J sub-critical vacuum Kasner solutions <— D > 10
(Demaret—Henneaux—Spindel)

Dafermos—Luk: the Kerr Cauchy horizon formation is
dynamically stable

Key takeways:
@ In GR, distinct kinds of incompleteness occurs in
different solution regimes
@ In principle, other stable pathologies could
dynamically develop in other (not-yet-understood)
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Inspiration from physics

Belinskii—Khalatnikov—Lifshitz considered tensorfields:

D
O = —dt @ dt + Y P90 dx! @ dx', gar. = B(x)Int,
1=1
D

D
Yoak)=1, > (qx)?=1-(Bx)?

1=1 1=1

Note: (9sxe, ¢sx) are typically not solutions.

e 3D vacuum Kasner: Sub-criticality condition fails.

e Part of BKL saga: In 3D vacuum, near spacelike
singularities, “most solutions” “should” oscillate violently in
time;

e ggx. metrics are typically at best “short-time
approximations” (Kasner epochs)

@ Fournodavlos—Luk: 3 large family of non-oscillatory,
Sobolev-class 3D Einstein-vacuum solutions that are
asymptotic to ggx -type metrics; 3 functional degrees
of freedom (compared to 4 for the Cauchy problem)
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“Monotonic” regimes

Works by BK, Barrow, Demaret—Henneaux—Spindel,
Andersson—Rendall,
Damour—Henneaux—Rendall-Weaver suggest that a

D—dimensional Kasner Big Bang might be dynamically
stable under the sub-criticality condition:

— <1
L mnax D{q/ +q — g}
I<J

@ Significance: Heuristics suggest that time
derivative terms will dominate; “Asymptotically
Velocity Term Dominated”

@ With symmetry, stability might hold for “even more

q’s
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The singularity industry: A sampler

@ Numerical works: e.g. Berger, Garfinkle, Isenberg,
Lim, Moncrief, Weaver, - - -

@ Symmetry: e.g. Alexakis—Fournodavlos,
Chrusciel-Isenberg—Moncrief, Ellis,
Isenberg—Kichenassamy, Isenberg—Moncrief,
Liebscher, Ringstrom, Wainwright, - - -

@ Linear: e.g. Alho—Franzen—Fournodavlos, Ringstrom

@ Construction of singular solutions: e.g. Ames,
Andersson, Anguige, Beyer, Choquet-Bruhat,
Damour, Demaret, Fournodavlos, Henneaux,
Isenberg, LeFloch, Luk, Kichenassamy, Rendall,
Spindel, Stahl, Todd, Weaver, - - -

@ Oscillatory investigations: e.g. BKL, Damour, van
Elst, Heinzle, Hsu, Lecian, Liebscher, Misner, Nicolai,
Uggla, Reiterer, Ringstrom, Tchapnda, Trubowitz, - - -
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o Lapse n:= |g(Dt,Dt)|~"/? solves an elliptic PDE;
synchronizes the singularity. 0 shift.

Moreover, when D = 3 and B = 0, under polarized
U(1)-symmetric perturbations (i.e., g1z = g3 = 0 and no
x3-dependence), all Kasner Big Bangs are dynamically
stable.

@ Effectively covers the entire (asymmetric) regime
where BK-type heuristics suggest stable blowup.

@ Previously with Rodnianski, we had treated i) D = 3
with g1 = g> = g3 = 1/3. i.e. stability for FLRW; and
i) D > 39 with max;1.. p|qi| <1/6and ¢ =0
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Crushing singularities

The singularities in our main results are crushing:

/ |Christoffel|> dvol = |In(0)] = oo
Spacetime O?t\)a‘c/w’x

due to blowup of |k|> ~ t72, k := 2™ E.F. of {t = const}

This shows that in the chosen gauge, the solution cannot
be continued weakly.
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The Gauge
[ leJele]

1 + 3 splitting with CMC

@ 0 shift decomposition: g = —n?dt ® dt + g.pdx? ® dx®
@ & :=n"'9; = normal to ¥;
@ kj:=—g(Dyeo,d)) = —3e€g;
@ CMC slices: k& = —t~' = Elliptic PDE for n
Key new ingredient:

Fermi-Walker-propagated ¥ ;-tangent orthonormal spatial
frame {e/};—1 .. p; with &, = ef0,.:

€o e, Kic eC
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The Gauge
[e] Tele]

Proof philosophy

Recast Einstein’s equations as an elliptic-hyperbolic PDE
system for scalar frame-component functions

The unknowns are:
@ Thelapse n
@ Spatial connection coefficients vz := 9(Ve €y, €5)
@ ki = Kegefed
@ The coordinate components {€!}, ;1 ... p, where
e = €70
@ ey¢ and g¢ if scalar field is present



The Gauge
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Einstein-vacuum equations in our gauge

Evolution equations

) n
Orky = *?ku — /64N + necyuc — Nerycsc

+ Ywceéch — nypicYcsp — NYppCY e,
Oryus = negkiy — neykg,

— nkicyssc + NKicyssc + nkicy cus

— nkeyysic + nNkecYaic

+ (egn)ky — (eyn)kg

Elliptic lapse PDE

ecec(n—1) —t2(n—1) =yccpep(n — 1) + 2necyppc
— n{ycoeYepc + YeepYeen}

Constraint equations

kcokep — 2= 2ecYppc — YCDEYEDC — YCCDYEED,
eckecr = Yceokip + Ycinkep
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Three crucial features of the gauge

Elliptic PDE Ayn = -- - synchronizes singularity
Singularity strength via structure coefficients:

® Sus:=d([er €], €8) =YiB — YuB
@ Diagonal structure:
0:Sws + ¥ (q1 + qu — gs) Sus = PDE Error Terms
—_——

<1
< t9 - _
o — YFJ%(!S/JB\ St 9 =€+ TJ%((CI/ +qu — Qgs)-

@ Integrability: {9 is integrable in time near t = 0.

Regularity
@ PDE gyé| = k,C.e"C suggests e is as regular as ky
@ However: special structure of Einstein’s equations
= vus = 9(Ve ey, ep) is as regular as k.
— Gain of one derivative for g
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The hard part is showing that the solution exists all the way
to t = 0. The key is to prove: |tky(t, x)| is bounded.

@ 0>0small,q:= ranag(q/ +q,—Qqg)+o<1
@ Low-norm bootstra{h assumptions (slightly worse than

Kasner): |}l < 79, [[v|e(s,) < et
@ High-norm bootstrap assumptlons He,HHN(Z,) < A+,

||k||HN(z) et~ (A1) ||V||HN(Z) < et (A1)
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Analysis outline

The hard part is showing that the solution exists all the way
to t = 0. The key is to prove: |tky(t, x)| is bounded.

@ 0>0small,q:= I'I'I']Jaé((Q/‘f’QJ— gs)+ o<1

@ Low-norm bootstrap assumptions (slightly worse than
Kasner): ||| ez < 179, [[Y[|eo(zy < et™

@ High-norm bootstrap assumptions: ||€]| (s, < t**9,
||k||HN(z,) < et A, ||V||HN(Z,) < et

@ N and A are parameters, with A large and N chosen
large relative to A

@ ¢ chosen small relative to N and A

@ Interpolation: |ery||i=(,) < et~ where
5 =5(N,A) — 0as N — oo with A fixed

(*] 8t(tk/J) =tey+ty v+ SJ et —(29+29)

@ Thus, integrability of t'~(29+2%) (for large N) implies that
fort e (0, 1] ‘tli(t, X) - k[J(1,X)‘ S €
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Asymptotic limits

@ Similar argument — 3 K§j°)(x) such that

‘tk,J(t, X) — ngo)(x)‘ —~0ast/O.

@ Eigenvalues of the symmetric matrix (k(x))/—1...p
are functions {g{*(x)}/—1....p on TP.

® The {G{™)(x)}—1...p are the “asymptotic Kasner
exponents” of the perturbed solution.

@ The set of “limiting end states” is infinite-dimensional.

@ Our proof does not suggest that t-rescaled versions
of the component functions ej(t, x) should have finite,
non-trivial limits as t | 0.

@ i.e., tky = tk,g€9€9 converges, but tk; might not.
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Top-order energy estimates

We prove that for t € (0, 1], we have:

||tA+1k||HN(z ) + HtA+1Y||HN(Z )
< Data
+{C. - A}/ HSAHYHfZ'-/N(Zs) + ||sA+1k||HN(z )} ds
+ SN
where

@ C, can be large but is independent of N and A
- denotes time-integrable error terms
@ In my earlier work with Rodnianski, we had C, = O(e);
“approximate monotonicity”

For A > C,, the integral has a friction sign
@ Hence, can show [[t**k|Z,, ., + [t*"Y|3, ., < Data
@ Large A — very singular top-order energy estimates
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Problems to think about

@ What happens in the presence of “timelike” matter
(e.g. fluid)?

@ What can be proved outside of the “monotonic”
regime?



Thank You!
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