Roots of Polynomials Under Repeated Differentiation

Stefan Steinerberger
UCLA/Caltech, October 2020

W
UNIVERSITY of
WASHINGTON

Outline of the Talk

1. Roots of Polynomials

Outline of the Talk

1. Roots of Polynomials
2. A Nonlinear PDE

Outline of the Talk

1. Roots of Polynomials
2. A Nonlinear PDE
3. Hermite Polynomials out of thin air (with Jeremy Hoskins)

Outline of the Talk

1. Roots of Polynomials
2. A Nonlinear PDE
3. Hermite Polynomials out of thin air (with Jeremy Hoskins)
4. Free Probability, Random Matrices, ...

Outline of the Talk

1. Roots of Polynomials
2. A Nonlinear PDE
3. Hermite Polynomials out of thin air (with Jeremy Hoskins)
4. Free Probability, Random Matrices, ...
5. A Nonlinear PDE in the Complex Plane (with Sean O'Rourke)
p_{n} will be a polynomial of degree n having n distinct roots.
p_{n} will be a polynomial of degree n having n distinct roots.

The Gauss-Lucas theorem (1830s). The roots of p_{n}^{\prime} are contained in the convex hull of the roots of p_{n}.
p_{n} will be a polynomial of degree n having n distinct roots.

The Gauss-Lucas theorem (1830s). The roots of p_{n}^{\prime} are contained in the convex hull of the roots of p_{n}.

Proof. The 'electrostatic interpretation':

$$
\frac{p_{n}^{\prime}(z)}{p_{n}(z)}=\sum_{k=1}^{n} \frac{1}{z-z_{k}}
$$

p_{n} will be a polynomial of degree n having n distinct roots.

The Gauss-Lucas theorem (1830s). The roots of p_{n}^{\prime} are contained in the convex hull of the roots of p_{n}.

Proof. The 'electrostatic interpretation':

$$
\frac{p_{n}^{\prime}(z)}{p_{n}(z)}=\sum_{k=1}^{n} \frac{1}{z-z_{k}}
$$

If you are outside the convex hull, the charges 'push you away'.

$$
\frac{p_{n}^{\prime}(z)}{p_{n}(z)}=\sum_{k=1}^{n} \frac{1}{z-z_{k}}
$$

$$
\frac{p_{n}^{\prime}(z)}{p_{n}(z)}=\sum_{k=1}^{n} \frac{1}{z-z_{k}}
$$

Suppose μ is a probability measure on \mathbb{C} and suppose

$$
p_{n}(z)=\prod_{k=1}^{n}\left(z-z_{k}\right)
$$

where $z_{1}, \ldots, z_{n} \sim \mu$ are i.i.d. random variables distributed according to μ.

Suppose μ is a probability measure on \mathbb{C} and suppose

$$
p_{n}(z)=\prod_{k=1}^{n}\left(z-z_{k}\right)
$$

where $z_{1}, \ldots, z_{n} \sim \mu$ are i.i.d. random variables distributed according to μ. What is the distribution of the critical points of p_{n} (the roots of p_{n}^{\prime})?

Suppose μ is a probability measure on \mathbb{C} and suppose

$$
p_{n}(z)=\prod_{k=1}^{n}\left(z-z_{k}\right)
$$

where $z_{1}, \ldots, z_{n} \sim \mu$ are i.i.d. random variables distributed according to μ. What is the distribution of the critical points of p_{n} (the roots of p_{n}^{\prime})?
Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015)
The critical points are also distributed according to μ.

Suppose μ is a probability measure on \mathbb{C} and suppose

$$
p_{n}(z)=\prod_{k=1}^{n}\left(z-z_{k}\right)
$$

where $z_{1}, \ldots, z_{n} \sim \mu$ are i.i.d. random variables distributed according to μ. What is the distribution of the critical points of p_{n} (the roots of p_{n}^{\prime})?
Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015)
The critical points are also distributed according to μ.
Note: The critical points are $w_{1}, \ldots, w_{n-1} \in \mathbb{C}$. The statement really says that

$$
\frac{1}{n-1} \sum_{k=1}^{n-1} \delta_{w_{k}} \rightharpoonup \mu
$$

Here's a heuristic why this is not too surprising.

Here's a heuristic why this is not too surprising. Suppose μ is absolutely continuous and compactly supported. Then the roots look a bit like this

Here's a heuristic why this is not too surprising. Suppose μ is absolutely continuous and compactly supported. Then the roots look a bit like this

Here's a heuristic why this is not too surprising. Suppose μ is absolutely continuous and compactly supported

$$
\text { typically } \sim n^{-1 / 2}
$$

$$
\text { typically } \sim n^{-1 / 2}
$$

Every root of the derivative satisfies $p_{n}^{\prime}(z)=0$ which means

$$
\frac{1}{z-z_{\ell}}=-\sum_{\substack{k=1 \\ k \neq \ell}}^{n} \frac{1}{z-z_{k}}
$$

$$
\text { typically } \sim n^{-1 / 2}
$$

Every root of the derivative satisfies $p_{n}^{\prime}(z)=0$ which means

$$
\frac{1}{z-z_{\ell}}=-\sum_{\substack{k=1 \\ k \neq \ell}}^{n} \frac{1}{z-z_{k}}
$$

The right-hand side is typically size $\sim n$.

$$
\text { typically } \sim n^{-1 / 2}
$$

Every root of the derivative satisfies $p_{n}^{\prime}(z)=0$ which means

$$
\frac{1}{z-z_{\ell}}=-\sum_{\substack{k=1 \\ k \neq \ell}}^{n} \frac{1}{z-z_{k}}
$$

The right-hand side is typically size $\sim n$. So the root of the derivative has to be distance $\sim n^{-1}$ from one of the existing roots

$$
\text { typically } \sim n^{-1 / 2}
$$

Every root of the derivative satisfies $p_{n}^{\prime}(z)=0$ which means

$$
\frac{1}{z-z_{\ell}}=-\sum_{\substack{k=1 \\ k \neq \ell}}^{n} \frac{1}{z-z_{k}}
$$

The right-hand side is typically size $\sim n$. So the root of the derivative has to be distance $\sim n^{-1}$ from one of the existing roots and the existing roots are $\sim n^{-1 / 2}$ separated, so no two of them are very close.

$$
\text { typically } \sim n^{-1 / 2}
$$

What this argument tells us is roughly the following:

What this argument tells us is roughly the following: if μ is a sufficiently nice measure, then for each (random) root $p_{n}\left(z_{k}\right)=0$, we would expect that there is a critical point $p_{n}^{\prime}(z)=0$ that is at most distance $\sim n^{-1}$ nearby.

$$
\text { typically } \sim n^{-1 / 2}
$$

What this argument tells us is roughly the following: if μ is a sufficiently nice measure, then for each (random) root $p_{n}\left(z_{k}\right)=0$, we would expect that there is a critical point $p_{n}^{\prime}(z)=0$ that is at most distance $\sim n^{-1}$ nearby. This is roughly correct and there are recent papers by Sean O'Rourke and Noah Williams in this direction.

Theorem (O'Rourke and Williams)
Under reasonable assumptions on the measure

$$
W_{1}\left(\mu_{n}, \mu_{n}^{\prime}\right) \lesssim \frac{(\log n)^{10}}{n}
$$

In fact, the bijective relationship has to fail somewhere: there are n roots and $n-1$ critical points.

In fact, the bijective relationship has to fail somewhere: there are n roots and $n-1$ critical points. The unpaired root is frequently close to the root of

$$
V(z)=\sum_{k=1}^{n} \frac{1}{z-z_{k}} .
$$

picture from O'Rourke and Williams (2018)

This looks almost like a flow of particles captured at nearby times.

Let's now return to the one-dimensional setting.

Let's now return to the one-dimensional setting. Things are slightly different here

$$
p_{n}(x)=\prod_{k=1}^{n}\left(x-x_{k}\right)
$$

Let's now return to the one-dimensional setting. Things are slightly different here

$$
p_{n}(x)=\prod_{k=1}^{n}\left(x-x_{k}\right)
$$

Between any two roots there is a maximum or a minimum, thus a root of p_{n}^{\prime}.

Let's now return to the one-dimensional setting. Things are slightly different here

$$
p_{n}(x)=\prod_{k=1}^{n}\left(x-x_{k}\right)
$$

Between any two roots there is a maximum or a minimum, thus a root of p_{n}^{\prime}. Moreover, there are $n-1$ intervals between the n roots, so each interval has exactly one root. Thus the roots of p_{n} and the roots of p_{n}^{\prime} INTERLACE.

Let's now return to the one-dimensional setting. Things are slightly different here

$$
p_{n}(x)=\prod_{k=1}^{n}\left(x-x_{k}\right)
$$

Between any two roots there is a maximum or a minimum, thus a root of p_{n}^{\prime}. Moreover, there are $n-1$ intervals between the n roots, so each interval has exactly one root. Thus the roots of p_{n} and the roots of p_{n}^{\prime} INTERLACE.

Let's now return to the one-dimensional setting. Things are slightly different here

$$
p_{n}(x)=\prod_{k=1}^{n}\left(x-x_{k}\right)
$$

Between any two roots there is a maximum or a minimum, thus a root of p_{n}^{\prime}. Moreover, there are $n-1$ intervals between the n roots, so each interval has exactly one root. Thus the roots of p_{n} and the roots of p_{n}^{\prime} INTERLACE.

Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015)
The critical points are also distributed according to μ.

Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015)
The critical points are also distributed according to μ.
Fact for real-rooted polynomials
The roots of

$$
p_{n}^{\left(\frac{n}{\log n}\right)}
$$

also distributed according to μ as $n \rightarrow \infty$.

Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015)
The critical points are also distributed according to μ.
Fact for real-rooted polynomials
The roots of

$$
p_{n}^{\left(\frac{n}{\log n}\right)}
$$

also distributed according to μ as $n \rightarrow \infty$.
Sketch. Each root moves roughly $\pm n^{-1}$ under one step of differentiation.

Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015)
The critical points are also distributed according to μ.
Fact for real-rooted polynomials
The roots of

$$
p_{n}^{\left(\frac{n}{\log n}\right)}
$$

also distributed according to μ as $n \rightarrow \infty$.
Sketch. Each root moves roughly $\pm n^{-1}$ under one step of differentiation.

Main Question
What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Main Question
What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Main Question
What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Main Question
What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Some History.

1. The question hasn't been studied very much.

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Some History.

1. The question hasn't been studied very much.
2. Polya asked a whole number of questions in the setting of real entire functions.

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Some History.

1. The question hasn't been studied very much.
2. Polya asked a whole number of questions in the setting of real entire functions.
3. The smallest gap grows under differentiation.

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Some History.

1. The question hasn't been studied very much.
2. Polya asked a whole number of questions in the setting of real entire functions.
3. The smallest gap grows under differentiation. Denoting the smallest gap of a polynomial p_{n} having n real roots $\left\{x_{1}, \ldots, x_{n}\right\}$ by

$$
G\left(p_{n}\right)=\min _{i \neq j}\left|x_{i}-x_{j}\right|
$$

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Some History.

1. The question hasn't been studied very much.
2. Polya asked a whole number of questions in the setting of real entire functions.
3. The smallest gap grows under differentiation. Denoting the smallest gap of a polynomial p_{n} having n real roots $\left\{x_{1}, \ldots, x_{n}\right\}$ by

$$
G\left(p_{n}\right)=\min _{i \neq j}\left|x_{i}-x_{j}\right|
$$

we have (Riesz, Sz-Nagy, Walker, 1920s)

$$
G\left(p_{n}^{\prime}\right) \geq G\left(p_{n}\right)
$$

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Let us denote the answer by $u(t, x)$. Here, the idea is that $u(t, x)$ is the limiting behavior as $n \rightarrow \infty$.

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Let us denote the answer by $u(t, x)$. Here, the idea is that $u(t, x)$ is the limiting behavior as $n \rightarrow \infty$. In particular

$$
\mu=u(0, x) d x
$$

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Let us denote the answer by $u(t, x)$. Here, the idea is that $u(t, x)$ is the limiting behavior as $n \rightarrow \infty$. In particular

$$
\mu=u(0, x) d x
$$

and

$$
\int_{\mathbb{R}} u(t, x) d x=1-t
$$

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Let us denote the answer by $u(t, x)$. Here, the idea is that $u(t, x)$ is the limiting behavior as $n \rightarrow \infty$. In particular

$$
\mu=u(0, x) d x
$$

and

$$
\int_{\mathbb{R}} u(t, x) d x=1-t
$$

What can one say about $u(t, x)$?

Main Question
What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Let us denote the answer by $u(t, x)$.

1. $\int_{\mathbb{R}} u(t, x) d x=1-t$.

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Let us denote the answer by $u(t, x)$.

1. $\int_{\mathbb{R}} u(t, x) d x=1-t$.
2. $\int_{\mathbb{R}} u(t, x) x d x=(1-t) \int_{\mathbb{R}} u(0, x) x d x$

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Let us denote the answer by $u(t, x)$.

1. $\int_{\mathbb{R}} u(t, x) d x=1-t$.
2. $\int_{\mathbb{R}} u(t, x) x d x=(1-t) \int_{\mathbb{R}} u(0, x) x d x$
3. $\int_{\mathbb{R}} \int_{\mathbb{R}} u(t, x)(x-y)^{2} u(t, y) d x d y=$

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Let us denote the answer by $u(t, x)$.

1. $\int_{\mathbb{R}} u(t, x) d x=1-t$.
2. $\int_{\mathbb{R}} u(t, x) x d x=(1-t) \int_{\mathbb{R}} u(0, x) x d x$
3. $\int_{\mathbb{R}} \int_{\mathbb{R}} u(t, x)(x-y)^{2} u(t, y) d x d y=$
$(1-t)^{3} \int_{\mathbb{R}} \int_{\mathbb{R}} u(0, x)(x-y)^{2} u(0, y) d x d y$

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Let us denote the answer by $u(t, x)$.

1. $\int_{\mathbb{R}} u(t, x) d x=1-t$.
2. $\int_{\mathbb{R}} u(t, x) x d x=(1-t) \int_{\mathbb{R}} u(0, x) x d x$
3. $\int_{\mathbb{R}} \int_{\mathbb{R}} u(t, x)(x-y)^{2} u(t, y) d x d y=$
$(1-t)^{3} \int_{\mathbb{R}} \int_{\mathbb{R}} u(0, x)(x-y)^{2} u(0, y) d x d y$
This means: the distribution shrinks linearly in mass,

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Let us denote the answer by $u(t, x)$.

1. $\int_{\mathbb{R}} u(t, x) d x=1-t$.
2. $\int_{\mathbb{R}} u(t, x) x d x=(1-t) \int_{\mathbb{R}} u(0, x) x d x$
3. $\int_{\mathbb{R}} \int_{\mathbb{R}} u(t, x)(x-y)^{2} u(t, y) d x d y=$
$(1-t)^{3} \int_{\mathbb{R}} \int_{\mathbb{R}} u(0, x)(x-y)^{2} u(0, y) d x d y$
This means: the distribution shrinks linearly in mass, its mean is preserved and

Main Question

What about the roots of

$$
p_{n}^{(t \cdot n)} \quad \text { where } 0<t<1 ?
$$

Let us denote the answer by $u(t, x)$.

1. $\int_{\mathbb{R}} u(t, x) d x=1-t$.
2. $\int_{\mathbb{R}} u(t, x) x d x=(1-t) \int_{\mathbb{R}} u(0, x) x d x$
3. $\int_{\mathbb{R}} \int_{\mathbb{R}} u(t, x)(x-y)^{2} u(t, y) d x d y=$
$(1-t)^{3} \int_{\mathbb{R}} \int_{\mathbb{R}} u(0, x)(x-y)^{2} u(0, y) d x d y$
This means: the distribution shrinks linearly in mass, its mean is preserved and the mass is distributed over area $\sim \sqrt{1-t}$.

An Equation (S. 2018)
There's some good heuristic reasoning for

$$
\frac{\partial u}{\partial t}+\frac{1}{\pi} \frac{\partial}{\partial x} \arctan \left(\frac{H u}{u}\right)=0 \quad \text { on } \operatorname{supp}(u)
$$

An Equation (S. 2018)
There's some good heuristic reasoning for

$$
\frac{\partial u}{\partial t}+\frac{1}{\pi} \frac{\partial}{\partial x} \arctan \left(\frac{H u}{u}\right)=0 \quad \text { on } \operatorname{supp}(u)
$$

where

$$
H f(x)=\text { p.v. } \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x-y} d y \quad \text { is the Hilbert transform. }
$$

An Equation (S. 2018)

There's some good heuristic reasoning for

$$
\frac{\partial u}{\partial t}+\frac{1}{\pi} \frac{\partial}{\partial x} \arctan \left(\frac{H u}{u}\right)=0 \quad \text { on } \operatorname{supp}(u)
$$

where

$$
H f(x)=\text { p.v. } \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x-y} d y \quad \text { is the Hilbert transform. }
$$

The argument is actually fun and I can give it in full. But before, let's explore this strange equation.

A nice way to understand a PDE is through explicit closed-form solutions (if they exist).

A nice way to understand a PDE is through explicit closed-form solutions (if they exist).

So the relevant question is: are there nice special solutions that we can construct? For this we need polynomials p_{n} whose roots have a nice distribution

A nice way to understand a PDE is through explicit closed-form solutions (if they exist).

So the relevant question is: are there nice special solutions that we can construct? For this we need polynomials p_{n} whose roots have a nice distribution and whose derivatives $p_{n}^{(k)}$ also have a nice distribution?

1. Hermite polynomials

A nice way to understand a PDE is through explicit closed-form solutions (if they exist).

So the relevant question is: are there nice special solutions that we can construct? For this we need polynomials p_{n} whose roots have a nice distribution and whose derivatives $p_{n}^{(k)}$ also have a nice distribution?

1. Hermite polynomials
2. (associated) Laguerre polynomials

A nice way to understand a PDE is through explicit closed-form solutions (if they exist).

So the relevant question is: are there nice special solutions that we can construct? For this we need polynomials p_{n} whose roots have a nice distribution and whose derivatives $p_{n}^{(k)}$ also have a nice distribution?

1. Hermite polynomials
2. (associated) Laguerre polynomials

Presumably there are many others(?)

Hermite Polynomials

Hermite polynomials $H_{n}: \mathbb{R} \rightarrow \mathbb{R}$ satisfy a nice recurrence relation

$$
\frac{d^{m}}{d x^{m}} H_{n}(x)=\frac{2^{n} n!}{(n-m)!} H_{n-m}(x)
$$

Hermite Polynomials

Hermite polynomials $H_{n}: \mathbb{R} \rightarrow \mathbb{R}$ satisfy a nice recurrence relation

$$
\frac{d^{m}}{d x^{m}} H_{n}(x)=\frac{2^{n} n!}{(n-m)!} H_{n-m}(x)
$$

Moreover, the roots of H_{n} converge, in a suitable sense, to

$$
\mu=\frac{1}{\pi} \sqrt{2 n-x^{2}} d x
$$

Hermite Polynomials

Hermite polynomials $H_{n}: \mathbb{R} \rightarrow \mathbb{R}$ satisfy a nice recurrence relation

$$
\frac{d^{m}}{d x^{m}} H_{n}(x)=\frac{2^{n} n!}{(n-m)!} H_{n-m}(x)
$$

Moreover, the roots of H_{n} converge, in a suitable sense, to

$$
\mu=\frac{1}{\pi} \sqrt{2 n-x^{2}} d x
$$

This suggests that

$$
u(t, x)=\frac{2}{\pi} \sqrt{1-t-x^{2}} \cdot \chi_{|x| \leq \sqrt{1-t}} \quad \text { for } t \leq 1
$$

should be a solution of the PDE (and it is).

Hermite Polynomials

Laguerre Polynomials

(Associated) Laguerre polynomials $H_{n}: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the recurrence relation

$$
\frac{d^{k}}{d x^{k}} L_{n}^{(\alpha)}(x)=(-1)^{k} L_{n-k}^{(\alpha+k)}(x)
$$

Laguerre Polynomials

(Associated) Laguerre polynomials $H_{n}: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the recurrence relation

$$
\frac{d^{k}}{d x^{k}} L_{n}^{(\alpha)}(x)=(-1)^{k} L_{n-k}^{(\alpha+k)}(x)
$$

The roots converge in distribution to the Marchenko-Pastur distribution

$$
v(c, x)=\frac{\sqrt{\left(x_{+}-x\right)\left(x-x_{-}\right)}}{2 \pi x} \chi_{\left(x_{-}, x_{+}\right)} d x
$$

where

$$
x_{ \pm}=(\sqrt{c+1} \pm 1)^{2}
$$

Laguerre Polynomials

(Associated) Laguerre polynomials $H_{n}: \mathbb{R} \rightarrow \mathbb{R}$ satisfy the recurrence relation

$$
\frac{d^{k}}{d x^{k}} L_{n}^{(\alpha)}(x)=(-1)^{k} L_{n-k}^{(\alpha+k)}(x)
$$

The roots converge in distribution to the Marchenko-Pastur distribution

$$
v(c, x)=\frac{\sqrt{\left(x_{+}-x\right)\left(x-x_{-}\right)}}{2 \pi x} \chi_{\left(x_{-}, x_{+}\right)} d x
$$

where

$$
x_{ \pm}=(\sqrt{c+1} \pm 1)^{2}
$$

Indeed,

$$
u_{c}(t, x)=v\left(\frac{c+t}{1-t}, \frac{x}{1-t}\right)
$$

is a solution of the PDE.

Laguerre Polynomials

$$
u_{c}(t, x)=v\left(\frac{c+t}{1-t}, \frac{x}{1-t}\right)
$$

Figure: Marchenko-Pastur solutions $u_{c}(t, x): c=1$ (left) and $c=15$ (right) shown for $t \in\{0,0.2,0.4,0.6,0.8,0.9,0.95,0.99\}$.

A Bonus Solution

There are several classical orthogonal polynomials on $[-1,1]$ (Gegenbauer, Jacobi, ...).

A Bonus Solution

There are several classical orthogonal polynomials on $[-1,1]$ (Gegenbauer, Jacobi, ...). For fairly general classes (Erdős-Freud theorem) of such polynomials, the distribution of roots is asymptotically given by

$$
\mu=\frac{1}{\pi} \frac{d x}{\sqrt{1-x^{2}}} .
$$

A Bonus Solution

There are several classical orthogonal polynomials on $[-1,1]$ (Gegenbauer, Jacobi, ...). For fairly general classes (Erdős-Freud theorem) of such polynomials, the distribution of roots is asymptotically given by

$$
\mu=\frac{1}{\pi} \frac{d x}{\sqrt{1-x^{2}}} .
$$

As it turns out,

$$
u(t, x)=\frac{c}{\sqrt{1-x^{2}}}
$$

is indeed a stationary solution of the equation.

A Bonus Solution

There are several classical orthogonal polynomials on $[-1,1]$ (Gegenbauer, Jacobi, ...). For fairly general classes (Erdős-Freud theorem) of such polynomials, the distribution of roots is asymptotically given by

$$
\mu=\frac{1}{\pi} \frac{d x}{\sqrt{1-x^{2}}} .
$$

As it turns out,

$$
u(t, x)=\frac{c}{\sqrt{1-x^{2}}}
$$

is indeed a stationary solution of the equation.
Theorem (Tricomi?)
Let $f:(-1,1) \rightarrow \mathbb{R}_{\geq 0}$. If $H f \equiv 0$ in $(-1,1)$, then

$$
f=\frac{c}{\sqrt{1-x^{2}}}
$$

$$
\frac{\partial u}{\partial t}+\frac{1}{\pi} \frac{\partial}{\partial x} \arctan \left(\frac{H u}{u}\right)=0 \quad \text { on } \operatorname{supp}(u)
$$

$$
\frac{\partial u}{\partial t}+\frac{1}{\pi} \frac{\partial}{\partial x} \arctan \left(\frac{H u}{u}\right)=0 \quad \text { on } \operatorname{supp}(u)
$$

Sketch of the Derivation. Crystallization as key assumption.

$$
\frac{\partial u}{\partial t}+\frac{1}{\pi} \frac{\partial}{\partial x} \arctan \left(\frac{H u}{u}\right)=0 \quad \text { on } \operatorname{supp}(u)
$$

Sketch of the Derivation. Crystallization as key assumption.

$$
\frac{\partial u}{\partial t}+\frac{1}{\pi} \frac{\partial}{\partial x} \arctan \left(\frac{H u}{u}\right)=0 \quad \text { on } \operatorname{supp}(u)
$$

Sketch of the Derivation. Crystallization as key assumption.

$$
\frac{\partial u}{\partial t}+\frac{1}{\pi} \frac{\partial}{\partial x} \arctan \left(\frac{H u}{u}\right)=0 \quad \text { on } \operatorname{supp}(u)
$$

Sketch of the Derivation. Crystallization as key assumption.

$\sum_{k=1}^{n} \frac{1}{x-x_{k}}=0$ $\cdots \bullet \bullet{ }_{x_{k}}^{\bullet} \bullet \bullet \bullet-$

$$
\sum_{k=1}^{n} \frac{1}{x-x_{k}}=\sum_{\left|x_{k}-x\right| \mid \operatorname{lage} e} \frac{1}{x-x_{k}}+\sum_{\left|x_{k}-x\right| \text { sman }} \frac{1}{x-x_{k}}
$$

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{x-x_{k}}=\sum_{\left|x_{k}-x\right| \text { large }}^{n-x_{k}} \frac{1}{x-x_{k}}=0 \\
& \sum_{\left|x_{k}-x\right| \text { large }}^{n-x_{k}} \frac{1}{x-x \mid \text { small }} \frac{1}{x-x_{k}} \\
& \sim n \int_{\mathbb{R}} \frac{1}{x-y} \cdot u(t, y) d y=n \cdot[H u](t, x) .
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{x-x_{k}}=\sum_{\left|x_{k}-x\right| \text { large }} \frac{1}{x-x_{k}}+\sum_{\left|x_{k}-x\right| \text { small }}^{n-x_{k}} \frac{1}{x-x_{k}}=0 \\
& \sum_{\left|x_{k}-x\right| \text { large }}^{n-x_{k}} \sim n \int_{\mathbb{R}} \frac{1}{x-y} \cdot u(t, y) d y=n \cdot[H u](t, x) .
\end{aligned}
$$

It thus remains to understand the behavior of the local term.

The local term is

$$
\sum_{\left|x_{k}-x\right|_{\text {small }}} \frac{1}{x-x_{k}}
$$

The local term is

$$
\sum_{\left|x_{k}-x\right| \text { small }} \frac{1}{x-x_{k}}
$$

Crystallization means that the roots form, locally, an arithmetic progressions

The local term is

$$
\sum_{\left|x_{k}-x\right| \text { small }} \frac{1}{x-x_{k}}
$$

Crystallization means that the roots form, locally, an arithmetic progressions and thus

$$
\sum_{\left|x_{k}-x\right| \text { small }} \frac{1}{x-x_{k}} \sim \sum_{\ell \in \mathbb{Z}} \frac{1}{x-\left(x_{k}+\frac{\ell}{u(t, x) n}\right)}
$$

The local term is

$$
\sum_{\left|x_{k}-x\right| \text { small }} \frac{1}{x-x_{k}}
$$

Crystallization means that the roots form, locally, an arithmetic progressions and thus

$$
\sum_{\left|x_{k}-x\right| \text { small }} \frac{1}{x-x_{k}} \sim \sum_{\ell \in \mathbb{Z}} \frac{1}{x-\left(x_{k}+\frac{\ell}{u(t, x) n}\right)}
$$

We are in luck: this sum has a closed-form expression due to Euler

$$
\pi \cot \pi x=\frac{1}{x}+\sum_{n=1}^{\infty}\left(\frac{1}{x+n}+\frac{1}{x-n}\right) \quad \text { for } x \in \mathbb{R} \backslash \mathbb{Z}
$$

The Local Field

The Local Field

We can then predict the behavior of the roots of the derivative: they are in places where the local (near) field and the global (far) field cancel out. This leads to the desired equation.

A Fast Numerical Algorithm

Jeremy Hoskins (U Chicago) used the electrostatic interpretation to produce an algorithm that can compute all derivatives of polynomials up to degree ~ 100.000.

A Fast Numerical Algorithm

Jeremy Hoskins (U Chicago) used the electrostatic interpretation to produce an algorithm that can compute all derivatives of polynomials up to degree ~ 100.000. Semicircles.

Theorem (J. Hoskins and S, 2020)
Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E} X=0$ as well as $\mathbb{V} X=1$.

Theorem (J. Hoskins and S, 2020)
Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E} X=0$ as well as $\mathbb{V} X=1$. Let p_{n} be a random polynomial whose roots are i.i.d. copies of X and fix $\ell \in \mathbb{N}$.

Theorem (J. Hoskins and S, 2020)
Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E} X=0$ as well as $\mathbb{V} X=1$. Let p_{n} be a random polynomial whose roots are i.i.d. copies of X and fix $\ell \in \mathbb{N}$. Then, as $n \rightarrow \infty$,

$$
n^{\ell / 2} \frac{\ell!}{n!} \cdot p_{n}^{(n-\ell)}\left(\frac{x}{\sqrt{n}}\right) \sim(1+o(1)) \cdot H e_{\ell}\left(x+\gamma_{n}\right)
$$

Theorem (J. Hoskins and S, 2020)
Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E} X=0$ as well as $\mathbb{V} X=1$. Let p_{n} be a random polynomial whose roots are i.i.d. copies of X and fix $\ell \in \mathbb{N}$. Then, as $n \rightarrow \infty$,

$$
n^{\ell / 2} \frac{\ell!}{n!} \cdot p_{n}^{(n-\ell)}\left(\frac{x}{\sqrt{n}}\right) \sim(1+o(1)) \cdot H e_{\ell}\left(x+\gamma_{n}\right)
$$

where $\gamma_{n} \sim \mathcal{N}(0,1)$ and $H e_{\ell}$ is the ℓ-th Hermite polynomial.

Theorem (J. Hoskins and S, 2020)
Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E} X=0$ as well as $\mathbb{V} X=1$. Let p_{n} be a random polynomial whose roots are i.i.d. copies of X and fix $\ell \in \mathbb{N}$. Then, as $n \rightarrow \infty$,

$$
n^{\ell / 2} \frac{\ell!}{n!} \cdot p_{n}^{(n-\ell)}\left(\frac{x}{\sqrt{n}}\right) \sim(1+o(1)) \cdot H e_{\ell}\left(x+\gamma_{n}\right)
$$

where $\gamma_{n} \sim \mathcal{N}(0,1)$ and $H e_{\ell}$ is the ℓ-th Hermite polynomial.

Remarks.

1. The roots of the Hermite polynomial have a semicircle density.

Theorem (J. Hoskins and S, 2020)

Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E} X=0$ as well as $\mathbb{V} X=1$. Let p_{n} be a random polynomial whose roots are i.i.d. copies of X and fix $\ell \in \mathbb{N}$. Then, as $n \rightarrow \infty$,

$$
n^{\ell / 2} \frac{\ell!}{n!} \cdot p_{n}^{(n-\ell)}\left(\frac{x}{\sqrt{n}}\right) \sim(1+o(1)) \cdot H e_{\ell}\left(x+\gamma_{n}\right)
$$

where $\gamma_{n} \sim \mathcal{N}(0,1)$ and $H e_{\ell}$ is the ℓ-th Hermite polynomial.

Remarks.

1. The roots of the Hermite polynomial have a semicircle density.
2. If $x_{1}, x_{2}, \ldots, x_{n} \sim X$, then

$$
\frac{x_{1}+\cdots+x_{n}}{\sqrt{n}} \sim \mathcal{N}(0,1)
$$

and the mean of the roots is preserved under differentiation (hence the random shift).

Ideas behind the proof

$$
p_{n}(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

Ideas behind the proof

$$
p_{n}(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

Coefficients are preserved under differentiation, they are simply multiplied with degrees.

Ideas behind the proof

$$
p_{n}(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

Coefficients are preserved under differentiation, they are simply multiplied with degrees.

$$
\prod_{i=1}^{n}\left(x-x_{i}\right)=\sum_{k=0}^{n}(-1)^{k} e_{k}\left(x_{1}, \ldots, x_{n}\right) x^{n-k}
$$

Ideas behind the proof

$$
p_{n}(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

Coefficients are preserved under differentiation, they are simply multiplied with degrees.

$$
\prod_{i=1}^{n}\left(x-x_{i}\right)=\sum_{k=0}^{n}(-1)^{k} e_{k}\left(x_{1}, \ldots, x_{n}\right) x^{n-k}
$$

We need elementary symmetric polynomials

$$
\begin{aligned}
& e_{0}\left(x_{1}, \ldots, x_{n}\right)=1 \\
& e_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n} \\
& e_{2}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j} x_{i} x_{j} \\
& e_{3}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j<k} x_{i} x_{j} x_{k}
\end{aligned}
$$

Ideas behind the proof

Given $x_{1}, \ldots, x_{n} \sim X$, what do we know about

$$
\begin{aligned}
& e_{0}\left(x_{1}, \ldots, x_{n}\right)=1 \\
& e_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n} \\
& e_{2}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j} x_{i} x_{j} \\
& e_{3}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j<k} x_{i} x_{j} x_{k}
\end{aligned}
$$

Ideas behind the proof

Given $x_{1}, \ldots, x_{n} \sim X$, what do we know about

$$
\begin{aligned}
& e_{0}\left(x_{1}, \ldots, x_{n}\right)=1 \\
& e_{1}\left(x_{1}, \ldots, x_{n}\right)=x_{1}+\cdots+x_{n} \\
& e_{2}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j} x_{i} x_{j} \\
& e_{3}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j<k} x_{i} x_{j} x_{k}
\end{aligned}
$$

As it turns out: e_{1} determines everything else.

Ideas behind the proof

$$
e_{3}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j<k} x_{i} x_{j} x_{k}
$$

e_{k} has $\sim n^{k}$ terms which means we expect it to be size $n^{k / 2}$.

Ideas behind the proof

$$
e_{3}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i<j<k} x_{i} x_{j} x_{k}
$$

e_{k} has $\sim n^{k}$ terms which means we expect it to be size $n^{k / 2}$.

Lemma

Let $m \in \mathbb{N}$ and let x_{1}, \ldots, x_{n} be i.i.d. random variables sampled from a distribution on \mathbb{R} with $\mathbb{E} X=0, \mathbb{E} X^{2}=1$ and $\mathbb{E}|X|^{m}<\infty$. Then, as $n \rightarrow \infty$,

$$
\mathbb{E}\left|e_{m}-\sum_{k=0}^{\lfloor m / 2\rfloor}(-1)^{k} \frac{1}{k!(m-2 k)!2^{k}} \cdot e_{1}^{m-2 k} n^{k}\right| \lesssim x n^{\frac{m-1}{2}}
$$

Sep 3, 2020

Sep 3, 2020

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao
The extension $k \mapsto \mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer

Sep 3, 2020

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k \mapsto \mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer
(where we use the branch of arctan taking values in $[0, \pi]$) and thus by the change of variables $k=1 / s$ and abbreviating $f:=f_{1 / s}$,

$$
\begin{equation*}
\left(-s \partial_{s}+x \partial_{x}\right) H f=\frac{1}{\pi} \partial_{x} \log \left((H f)^{2}+f^{2}\right)^{1 / 2} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(-s \partial_{s}+x \partial_{x}\right) f=\frac{1}{\pi} \partial_{x} \arctan \frac{f}{H f} \tag{4.2}
\end{equation*}
$$

Sep 3, 2020

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k \mapsto \mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer
(where we use the branch of arctan taking values in $[0, \pi]$) and thus by the change of variables $k=1 / s$ and abbreviating $f:=f_{1 / s}$,

$$
\begin{equation*}
\left(-s \partial_{s}+x \partial_{x}\right) H f=\frac{1}{\pi} \partial_{x} \log \left((H f)^{2}+f^{2}\right)^{1 / 2} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(-s \partial_{s}+x \partial_{x}\right) f=\frac{1}{\pi} \partial_{x} \arctan \frac{f}{H f} \tag{4.2}
\end{equation*}
$$

The same PDE in a supposedly different context is presumably not a coincidence.

Sep 3, 2020

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao
The extension $k \mapsto \mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer
is concerned with free convolution of measures $\mu \boxplus \nu$ as introduced by Voiculescu in the 1980s.

Sep 3, 2020

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k \mapsto \mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer
is concerned with free convolution of measures $\mu \boxplus \nu$ as introduced by Voiculescu in the 1980s. It is an analogue of classical convolution in the non-commutative setting.

Sep 3, 2020

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k \mapsto \mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer
is concerned with free convolution of measures $\mu \boxplus \nu$ as introduced by Voiculescu in the 1980s. It is an analogue of classical convolution in the non-commutative setting. In particular, we expect that $u(t, x)$ is given by a fractional free convolution $\mu^{\boxplus k}$ with $k \geq 1$.

Sep 3, 2020

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k \mapsto \mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer
is concerned with free convolution of measures $\mu \boxplus \nu$ as introduced by Voiculescu in the 1980s. It is an analogue of classical convolution in the non-commutative setting. In particular, we expect that $u(t, x)$ is given by a fractional free convolution $\mu^{\boxplus k}$ with $k \geq 1$. As $t \rightarrow 1$, we have $k \rightarrow \infty$.

Sep 3, 2020

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k \mapsto \mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer
is concerned with free convolution of measures $\mu \boxplus \nu$ as introduced by Voiculescu in the 1980s. It is an analogue of classical convolution in the non-commutative setting. In particular, we expect that $u(t, x)$ is given by a fractional free convolution $\mu^{\boxplus k}$ with $k \geq 1$. As $t \rightarrow 1$, we have $k \rightarrow \infty$.

An Optimistic Conjecture

Under some reasonable assumptions

$$
\mu^{\boxplus k}=u\left(1-\frac{1}{k}, \frac{x}{k}\right) d x .
$$

An Optimistic Conjecture
Under some reasonable assumptions

$$
\mu^{\boxplus k}=u\left(1-\frac{1}{k}, \frac{x}{k}\right) d x .
$$

An Optimistic Conjecture

Under some reasonable assumptions

$$
\mu^{\boxplus k}=u\left(1-\frac{1}{k}, \frac{x}{k}\right) d x .
$$

This would have a large number of implications.

An Optimistic Conjecture

Under some reasonable assumptions

$$
\mu^{\boxplus k}=u\left(1-\frac{1}{k}, \frac{x}{k}\right) d x .
$$

This would have a large number of implications.

- Fractional Free Convolution preserves free cumulants

$$
\begin{aligned}
& \kappa_{1}(\mu)=\int_{\mathbb{R}} x d \mu \\
& \kappa_{2}(\mu)=\int_{\mathbb{R}} x^{2} d \mu-\left(\int_{\mathbb{R}} x d \mu\right)^{2}
\end{aligned}
$$

An Optimistic Conjecture

Under some reasonable assumptions

$$
\mu^{\boxplus k}=u\left(1-\frac{1}{k}, \frac{x}{k}\right) d x .
$$

This would have a large number of implications.

- Fractional Free Convolution preserves free cumulants

$$
\begin{aligned}
& \kappa_{1}(\mu)=\int_{\mathbb{R}} x d \mu \\
& \kappa_{2}(\mu)=\int_{\mathbb{R}} x^{2} d \mu-\left(\int_{\mathbb{R}} x d \mu\right)^{2}
\end{aligned}
$$

since

$$
\kappa_{n}\left(\mu^{\boxplus k}\right)=k \cdot \kappa_{n}(\mu) .
$$

An Optimistic Conjecture

Under some reasonable assumptions

$$
\mu^{\boxplus k}=u\left(1-\frac{1}{k}, \frac{x}{k}\right) d x .
$$

This would have a large number of implications.

- Fractional Free Convolution preserves free cumulants

$$
\begin{aligned}
& \kappa_{1}(\mu)=\int_{\mathbb{R}} x d \mu \\
& \kappa_{2}(\mu)=\int_{\mathbb{R}} x^{2} d \mu-\left(\int_{\mathbb{R}} x d \mu\right)^{2}
\end{aligned}
$$

since

$$
\kappa_{n}\left(\mu^{\boxplus k}\right)=k \cdot \kappa_{n}(\mu) .
$$

Infinitely many conserved quantities.

Conjecture

$$
\mu^{\boxplus k}=u\left(1-\frac{1}{k}, \frac{x}{k}\right) d x .
$$

would have a large number of implications.

Conjecture

$$
\mu^{\boxplus k}=u\left(1-\frac{1}{k}, \frac{x}{k}\right) d x .
$$

would have a large number of implications.
Voiculescu's Free Central Limit Theorem
$\mu \boxplus \mu \boxplus \cdots \boxplus \mu \rightarrow$ semicircle.

Conjecture

$$
\mu^{\boxplus k}=u\left(1-\frac{1}{k}, \frac{x}{k}\right) d x .
$$

would have a large number of implications.
Voiculescu's Free Central Limit Theorem

$$
\mu \boxplus \mu \boxplus \cdots \boxplus \mu \rightarrow \text { semicircle. }
$$

This would then imply that $u(t, x)$ should be a semicircle for t close to 1 .

Sep 3, 2020

Sep 4, 2020

Sep 4, 2020

[Submitted on 4 Sep 2020]

Universal objects of the infinite beta random matrix theory

Vadim Gorin, Victor Kleptsyn

Sep 4, 2020

[Submitted on 4 Sep 2020]

Universal objects of the infinite beta random matrix theory

Vadim Gorin, Victor Kleptsyn
which proves that, in a certain setting, the crystallization assumption for roots is justified in the bulk

Sep 4, 2020

[Submitted on 4 Sep 2020]

Universal objects of the infinite beta random matrix theory

Vadim Gorin, Victor Kleptsyn
which proves that, in a certain setting, the crystallization assumption for roots is justified in the bulk and a couple of weeks later

Sep 4, 2020

[Submitted on 4 Sep 2020]

Universal objects of the infinite beta random matrix theory

Vadim Gorin, Victor Kleptsyn

which proves that, in a certain setting, the crystallization assumption for roots is justified in the bulk and a couple of weeks later

Limit theorems for Bessel and Dunkl processes of large dimensions and free convolutions Michael Voit, Jeannette H.C. Woerner
which establishes a connection between Bessel processes and free convolution.

Sep 4, 2020

[Submitted on 4 Sep 2020]

Universal objects of the infinite beta random matrix theory

Vadim Gorin, Victor Kleptsyn

which proves that, in a certain setting, the crystallization assumption for roots is justified in the bulk and a couple of weeks later

Limit theorems for Bessel and Dunkl processes of large dimensions and free convolutions Michael Voit, Jeannette H.C. Woerner
which establishes a connection between Bessel processes and free convolution. So I think we are pretty close to having completely rigorous arguments for most things.

What's left to do?

What's left to do?

- Can the PDE be useful? Linearization seems really nice?

What's left to do?

- Can the PDE be useful? Linearization seems really nice?
- Is Jeremy Hoskins' algorithm a useful method to compute $\mu^{\boxplus k}$?

What's left to do?

- Can the PDE be useful? Linearization seems really nice?
- Is Jeremy Hoskins' algorithm a useful method to compute $\mu^{\boxplus k}$?
- What about the complex case?

What's left to do?

The Complex Case

One can derive the same sort of PDE in the complex case. The derivation is actually simpler

The Complex Case

One can derive the same sort of PDE in the complex case. The derivation is actually simpler

$$
\begin{gathered}
\text { typically } \sim n^{-1 / 2} \\
\frac{1}{z-z_{\ell}}=-\sum_{\substack{k=1 \\
k \neq \ell}}^{n} \frac{1}{z-z_{k}} .
\end{gathered}
$$

A Nonlocal Transport Equation

Sean O'Rourke and I tried to see whether the equation simplifies if we assume that the initial distribution is radial around the origin.

A Nonlocal Transport Equation

Sean O'Rourke and I tried to see whether the equation simplifies if we assume that the initial distribution is radial around the origin. If the density is $\psi(t, x)$, then

$$
\frac{\partial \psi}{\partial t}=\frac{\partial}{\partial x}\left(\left(\frac{1}{x} \int_{0}^{x} \psi(s) d s\right)^{-1} \psi(x)\right) .
$$

A Nonlocal Transport Equation

Sean O'Rourke and I tried to see whether the equation simplifies if we assume that the initial distribution is radial around the origin. If the density is $\psi(t, x)$, then

$$
\frac{\partial \psi}{\partial t}=\frac{\partial}{\partial x}\left(\left(\frac{1}{x} \int_{0}^{x} \psi(s) d s\right)^{-1} \psi(x)\right)
$$

$$
\frac{\partial \psi}{\partial t}=\frac{\partial}{\partial x}\left(\left(\frac{1}{x} \int_{0}^{x} \psi(s) d s\right)^{-1} \psi(x)\right)
$$

has a nice closed form solution

$$
u(t, x)=\chi_{0 \leq x \leq 1-t}
$$

$$
\frac{\partial \psi}{\partial t}=\frac{\partial}{\partial x}\left(\left(\frac{1}{x} \int_{0}^{x} \psi(s) d s\right)^{-1} \psi(x)\right)
$$

has a nice closed form solution

$$
u(t, x)=\chi_{0 \leq x \leq 1-t}
$$

This corresponds to Random Taylor Polynomials.

Random Taylor polynomials are defined by

$$
p_{n}=\sum_{k=0}^{n} \gamma_{k} \frac{z^{k}}{k!}
$$

where $\gamma_{k} \sim \mathcal{N}(0,1)$.

Random Taylor polynomials are defined by

$$
p_{n}=\sum_{k=0}^{n} \gamma_{k} \frac{z^{k}}{k!},
$$

where $\gamma_{k} \sim \mathcal{N}(0,1)$. They are preserved under differentiation.

Random Taylor polynomials are defined by

$$
p_{n}=\sum_{k=0}^{n} \gamma_{k} \frac{z^{k}}{k!},
$$

where $\gamma_{k} \sim \mathcal{N}(0,1)$. They are preserved under differentiation.
Theorem (Kabluchko \& Zaporozhets)

$$
\frac{1}{n} \sum_{k=1}^{n} \delta_{z_{k} n^{-1}} \rightarrow \frac{\chi_{|z| \leq 1}}{2 \pi|z|} \quad \text { as } n \rightarrow \infty
$$

A final pretty fact: when trying to study L^{2}-stability of the solution, one runs into the following beautiful inequality.

Lemma
For $f:(0, \infty) \rightarrow \mathbb{R}_{\geq 0}$

$$
\int_{0}^{\infty} \frac{f(x)}{x^{2}}\left(\int_{0}^{x} f(y) d y\right) d x \leq \int_{0}^{\infty} \frac{f(x)^{2}}{x} d x
$$

A final pretty fact: when trying to study L^{2}-stability of the solution, one runs into the following beautiful inequality.

Lemma
For $f:(0, \infty) \rightarrow \mathbb{R}_{\geq 0}$

$$
\int_{0}^{\infty} \frac{f(x)}{x^{2}}\left(\int_{0}^{x} f(y) d y\right) d x \leq \int_{0}^{\infty} \frac{f(x)^{2}}{x} d x
$$

Proof. follows easily from a general Hardy inequality.

Thank you!

