Roots of Polynomials Under Repeated Differentiation

Stefan Steinerberger

UCLA/Caltech, October 2020

UNIVERSITY of WASHINGTON

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1. Roots of Polynomials

1. Roots of Polynomials

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

2. A Nonlinear PDE

- 1. Roots of Polynomials
- 2. A Nonlinear PDE
- 3. Hermite Polynomials out of thin air (with Jeremy Hoskins)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- 1. Roots of Polynomials
- 2. A Nonlinear PDE
- 3. Hermite Polynomials out of thin air (with Jeremy Hoskins)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

4. Free Probability, Random Matrices, ...

- 1. Roots of Polynomials
- 2. A Nonlinear PDE
- 3. Hermite Polynomials out of thin air (with Jeremy Hoskins)
- 4. Free Probability, Random Matrices, ...
- 5. A Nonlinear PDE in the Complex Plane (with Sean O'Rourke)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Gauss-Lucas theorem (1830s). The roots of p'_n are contained in the convex hull of the roots of p_n .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Gauss-Lucas theorem (1830s). The roots of p'_n are contained in the convex hull of the roots of p_n .

Proof. The 'electrostatic interpretation':

$$\frac{p'_n(z)}{p_n(z)} = \sum_{k=1}^n \frac{1}{z - z_k}$$

The Gauss-Lucas theorem (1830s). The roots of p'_n are contained in the convex hull of the roots of p_n .

Proof. The 'electrostatic interpretation':

$$\frac{p_n'(z)}{p_n(z)} = \sum_{k=1}^n \frac{1}{z-z_k}.$$

If you are outside the convex hull, the charges 'push you away'.

$$\frac{p'_n(z)}{p_n(z)} = \sum_{k=1}^n \frac{1}{z - z_k}.$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへの

$$\frac{p'_n(z)}{p_n(z)} = \sum_{k=1}^n \frac{1}{z - z_k}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶

$$p_n(z) = \prod_{k=1}^n (z-z_k),$$

where $z_1, \ldots, z_n \sim \mu$ are i.i.d. random variables distributed according to μ .

$$p_n(z) = \prod_{k=1}^n (z-z_k),$$

where $z_1, \ldots, z_n \sim \mu$ are i.i.d. random variables distributed according to μ . What is the distribution of the critical points of p_n (the roots of p'_n)?

$$p_n(z)=\prod_{k=1}^n(z-z_k),$$

where $z_1, \ldots, z_n \sim \mu$ are i.i.d. random variables distributed according to μ . What is the distribution of the critical points of p_n (the roots of p'_n)?

Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015) The critical points are also distributed according to μ .

$$p_n(z)=\prod_{k=1}^n(z-z_k),$$

where $z_1, \ldots, z_n \sim \mu$ are i.i.d. random variables distributed according to μ . What is the distribution of the critical points of p_n (the roots of p'_n)?

Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015) The critical points are also distributed according to μ . **Note:** The critical points are $w_1, \ldots, w_{n-1} \in \mathbb{C}$. The statement really says that

$$\frac{1}{n-1}\sum_{k=1}^{n-1}\delta_{w_k}\rightharpoonup \mu.$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 → のへぐ

Here's a heuristic why this is not too surprising.

Here's a heuristic why this is not too surprising. Suppose μ is absolutely continuous and compactly supported. Then the roots look a bit like this

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Here's a heuristic why this is not too surprising. Suppose μ is absolutely continuous and compactly supported. Then the roots look a bit like this

roots of p_n

Here's a heuristic why this is not too surprising. Suppose μ is absolutely continuous and compactly supported

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

typically $\sim n^{-1/2}$

typically $\sim n^{-1/2}$

Every root of the derivative satisfies $p'_n(z) = 0$ which means

$$\frac{1}{z-z_\ell}=-\sum_{k=1\atop k\neq\ell}^n\frac{1}{z-z_k}.$$

typically $\sim n^{-1/2}$

Every root of the derivative satisfies $p'_n(z) = 0$ which means

$$\frac{1}{z-z_\ell} = -\sum_{k=1\atop k\neq \ell}^n \frac{1}{z-z_k}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

The right-hand side is typically size $\sim n$.

typically $\sim n^{-1/2}$

Every root of the derivative satisfies $p'_n(z) = 0$ which means

$$\frac{1}{z-z_{\ell}} = -\sum_{k=1\atop k\neq \ell}^{n} \frac{1}{z-z_{k}}$$

The right-hand side is typically size $\sim n$. So the root of the derivative has to be distance $\sim n^{-1}$ from one of the existing roots

typically $\sim n^{-1/2}$

Every root of the derivative satisfies $p'_n(z) = 0$ which means

$$\frac{1}{z-z_\ell} = -\sum_{k=1\atop k\neq \ell}^n \frac{1}{z-z_k}$$

The right-hand side is typically size $\sim n$. So the root of the derivative has to be distance $\sim n^{-1}$ from one of the existing roots and the existing roots are $\sim n^{-1/2}$ separated, so no two of them are very close.

typically $\sim n^{-1/2}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What this argument tells us is roughly the following:

typically $\sim n^{-1/2}$

What this argument tells us is roughly the following: if μ is a sufficiently nice measure, then for each (random) root $p_n(z_k) = 0$, we would expect that there is a critical point $p'_n(z) = 0$ that is at most distance $\sim n^{-1}$ nearby.

typically $\sim n^{-1/2}$

What this argument tells us is roughly the following: if μ is a sufficiently nice measure, then for each (random) root $p_n(z_k) = 0$, we would expect that there is a critical point $p'_n(z) = 0$ that is at most distance $\sim n^{-1}$ nearby. This is roughly correct and there are recent papers by Sean O'Rourke and Noah Williams in this direction.

picture from O'Rourke and Williams (2018)

Theorem (O'Rourke and Williams)

Under reasonable assumptions on the measure

$$W_1(\mu_n,\mu_n')\lesssim rac{(\log n)^{10}}{n}$$

<ロト <回ト < 注ト < 注ト

æ

picture from O'Rourke and Williams (2018)

In fact, the bijective relationship has to fail somewhere: there are n roots and n-1 critical points.

イロト イヨト イヨト

э

In fact, the bijective relationship has to fail somewhere: there are n roots and n-1 critical points. The unpaired root is frequently close to the root of

$$V(z)=\sum_{k=1}^n\frac{1}{z-z_k}.$$

イロト イ押ト イヨト イヨト

picture from O'Rourke and Williams (2018)

This looks almost like a flow of particles captured at nearby times.

(日)

э

Let's now return to the one-dimensional setting.

・ロト・日本・ヨト・ヨー うへの

Let's now return to the one-dimensional setting. Things are slightly different here

$$p_n(x) = \prod_{k=1}^n (x - x_k).$$
$$p_n(x) = \prod_{k=1}^n (x - x_k).$$

Between any two roots there is a maximum or a minimum, thus a root of p'_n .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$$p_n(x) = \prod_{k=1}^n (x - x_k).$$

Between any two roots there is a maximum or a minimum, thus a root of p'_n . Moreover, there are n-1 intervals between the n roots, so each interval has exactly one root. Thus the roots of p_n and the roots of p'_n INTERLACE.

$$p_n(x) = \prod_{k=1}^n (x - x_k).$$

Between any two roots there is a maximum or a minimum, thus a root of p'_n . Moreover, there are n-1 intervals between the n roots, so each interval has exactly one root. Thus the roots of p_n and the roots of p'_n INTERLACE.

$$p_n(x) = \prod_{k=1}^n (x - x_k).$$

Between any two roots there is a maximum or a minimum, thus a root of p'_n . Moreover, there are n-1 intervals between the n roots, so each interval has exactly one root. Thus the roots of p_n and the roots of p'_n INTERLACE.

Fact for real-rooted polynomials The roots of

$$p_n^{(\frac{n}{\log n})}$$

also distributed according to μ as $n \to \infty$.

Fact for real-rooted polynomials The roots of

$$p_n^{(\frac{n}{\log n})}$$

also distributed according to μ as $n \to \infty$.

Sketch. Each root moves roughly $\pm n^{-1}$ under one step of differentiation.

Fact for real-rooted polynomials The roots of

$$p_n^{(\frac{n}{\log n})}$$

also distributed according to μ as $n \to \infty$.

Sketch. Each root moves roughly $\pm n^{-1}$ under one step of differentiation.

Main Question

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

Main Question What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Some History.

1. The question hasn't been studied very much.

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

Some History.

- 1. The question hasn't been studied very much.
- 2. Polya asked a whole number of questions in the setting of real entire functions.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

Some History.

- 1. The question hasn't been studied very much.
- 2. Polya asked a whole number of questions in the setting of real entire functions.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

3. The smallest gap grows under differentiation.

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

Some History.

- 1. The question hasn't been studied very much.
- 2. Polya asked a whole number of questions in the setting of real entire functions.
- The smallest gap grows under differentiation. Denoting the smallest gap of a polynomial p_n having n real roots {x₁,..., x_n} by

$$G(p_n) = \min_{i \neq j} |x_i - x_j|,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

Some History.

- 1. The question hasn't been studied very much.
- 2. Polya asked a whole number of questions in the setting of real entire functions.
- 3. The smallest gap grows under differentiation. Denoting the smallest gap of a polynomial p_n having n real roots {x₁,..., x_n} by

$$G(p_n) = \min_{i\neq j} |x_i - x_j|,$$

we have (Riesz, Sz-Nagy, Walker, 1920s)

$$G(p'_n) \geq G(p_n).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

What about the roots of

 $p_n^{(t \cdot n)}$ where 0 < t < 1?

Let us denote the answer by u(t,x). Here, the idea is that u(t,x) is the limiting behavior as $n \to \infty$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

Let us denote the answer by u(t,x). Here, the idea is that u(t,x) is the limiting behavior as $n \to \infty$. In particular

$$\mu = u(0, x) dx$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

Let us denote the answer by u(t,x). Here, the idea is that u(t,x) is the limiting behavior as $n \to \infty$. In particular

$$\mu = u(0, x) dx$$

and

$$\int_{\mathbb{R}} u(t,x) dx = 1-t.$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

Let us denote the answer by u(t,x). Here, the idea is that u(t,x) is the limiting behavior as $n \to \infty$. In particular

$$\mu = u(0, x) dx$$

and

$$\int_{\mathbb{R}} u(t,x) dx = 1-t.$$

What can one say about u(t, x)?

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us denote the answer by u(t, x).

1.
$$\int_{\mathbb{R}} u(t,x) dx = 1-t.$$

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us denote the answer by u(t,x).

1.
$$\int_{\mathbb{R}} u(t,x) dx = 1-t.$$

2.
$$\int_{\mathbb{R}} u(t,x)x \, dx = (1-t) \int_{\mathbb{R}} u(0,x)x \, dx$$

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us denote the answer by u(t,x).

1.
$$\int_{\mathbb{R}} u(t, x) dx = 1 - t$$
.
2. $\int_{\mathbb{R}} u(t, x) x dx = (1 - t) \int_{\mathbb{R}} u(0, x) x dx$
3. $\int_{\mathbb{R}} \int_{\mathbb{R}} u(t, x) (x - y)^2 u(t, y) dx dy =$

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Let us denote the answer by u(t, x).

1.
$$\int_{\mathbb{R}} u(t, x) dx = 1 - t$$
.
2. $\int_{\mathbb{R}} u(t, x) x dx = (1 - t) \int_{\mathbb{R}} u(0, x) x dx$
3. $\int_{\mathbb{R}} \int_{\mathbb{R}} u(t, x) (x - y)^2 u(t, y) dx dy = (1 - t)^3 \int_{\mathbb{R}} \int_{\mathbb{R}} u(0, x) (x - y)^2 u(0, y) dx dy$

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let us denote the answer by u(t, x).

1.
$$\int_{\mathbb{R}} u(t,x) dx = 1 - t$$
.
2. $\int_{\mathbb{R}} u(t,x) x \, dx = (1-t) \int_{\mathbb{R}} u(0,x) x \, dx$
3. $\int_{\mathbb{R}} \int_{\mathbb{R}} u(t,x) (x-y)^2 u(t,y) \, dx dy = (1-t)^3 \int_{\mathbb{R}} \int_{\mathbb{R}} u(0,x) (x-y)^2 u(0,y) \, dx dy$

This means: the distribution shrinks linearly in mass,

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

Let us denote the answer by u(t, x).

1.
$$\int_{\mathbb{R}} u(t, x) dx = 1 - t$$
.
2. $\int_{\mathbb{R}} u(t, x) x \, dx = (1 - t) \int_{\mathbb{R}} u(0, x) x \, dx$
3. $\int_{\mathbb{R}} \int_{\mathbb{R}} u(t, x) (x - y)^2 u(t, y) \, dx dy = (1 - t)^3 \int_{\mathbb{R}} \int_{\mathbb{R}} u(0, x) (x - y)^2 u(0, y) \, dx dy$

This means: the distribution shrinks linearly in mass, its mean is preserved and

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What about the roots of

$$p_n^{(t \cdot n)}$$
 where $0 < t < 1$?

Let us denote the answer by u(t, x).

1.
$$\int_{\mathbb{R}} u(t, x) dx = 1 - t$$
.
2. $\int_{\mathbb{R}} u(t, x) x dx = (1 - t) \int_{\mathbb{R}} u(0, x) x dx$
3. $\int_{\mathbb{R}} \int_{\mathbb{R}} u(t, x) (x - y)^2 u(t, y) dx dy = (1 - t)^3 \int_{\mathbb{R}} \int_{\mathbb{R}} u(0, x) (x - y)^2 u(0, y) dx dy$

This means: the distribution shrinks linearly in mass, its mean is preserved and the mass is distributed over area $\sim \sqrt{1-t}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

An Equation (S. 2018)

There's some good heuristic reasoning for

$$\frac{\partial u}{\partial t} + \frac{1}{\pi} \frac{\partial}{\partial x} \arctan\left(\frac{Hu}{u}\right) = 0$$
 on $\operatorname{supp}(u)$

An Equation (S. 2018)

There's some good heuristic reasoning for

$$\frac{\partial u}{\partial t} + \frac{1}{\pi} \frac{\partial}{\partial x} \arctan\left(\frac{Hu}{u}\right) = 0 \quad \text{on supp}(u)$$

where

$$Hf(x) = p.v.\frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x - y} dy$$

is the Hilbert transform.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

An Equation (S. 2018)

There's some good heuristic reasoning for

$$\frac{\partial u}{\partial t} + \frac{1}{\pi} \frac{\partial}{\partial x} \arctan\left(\frac{Hu}{u}\right) = 0 \quad \text{on supp}(u)$$

where

$$Hf(x) = p.v. \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x - y} dy$$
 is the Hilbert transform

The argument is actually fun and I can give it in full. But before, let's explore this strange equation.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

So the relevant question is: are there nice special solutions that we can construct? For this we need polynomials p_n whose roots have a nice distribution

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

So the relevant question is: are there nice special solutions that we can construct? For this we need polynomials p_n whose roots have a nice distribution and whose derivatives $p_n^{(k)}$ also have a nice distribution?

1. Hermite polynomials

So the relevant question is: are there nice special solutions that we can construct? For this we need polynomials p_n whose roots have a nice distribution and whose derivatives $p_n^{(k)}$ also have a nice distribution?

- 1. Hermite polynomials
- 2. (associated) Laguerre polynomials

So the relevant question is: are there nice special solutions that we can construct? For this we need polynomials p_n whose roots have a nice distribution and whose derivatives $p_n^{(k)}$ also have a nice distribution?

- 1. Hermite polynomials
- 2. (associated) Laguerre polynomials

Presumably there are many others(?)
Hermite polynomials $H_n : \mathbb{R} \to \mathbb{R}$ satisfy a nice recurrence relation

$$\frac{d^m}{dx^m}H_n(x)=\frac{2^nn!}{(n-m)!}H_{n-m}(x).$$

Hermite polynomials $H_n : \mathbb{R} \to \mathbb{R}$ satisfy a nice recurrence relation

$$\frac{d^m}{dx^m}H_n(x)=\frac{2^nn!}{(n-m)!}H_{n-m}(x).$$

Moreover, the roots of H_n converge, in a suitable sense, to

$$\mu = \frac{1}{\pi} \sqrt{2n - x^2} dx.$$

Hermite polynomials $H_n : \mathbb{R} \to \mathbb{R}$ satisfy a nice recurrence relation

$$\frac{d^m}{dx^m}H_n(x)=\frac{2^nn!}{(n-m)!}H_{n-m}(x).$$

Moreover, the roots of H_n converge, in a suitable sense, to

$$\mu = \frac{1}{\pi} \sqrt{2n - x^2} dx.$$

This suggests that

$$u(t,x) = \frac{2}{\pi} \sqrt{1 - t - x^2} \cdot \chi_{|x| \le \sqrt{1 - t}}$$
 for $t \le 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

should be a solution of the PDE (and it is).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

(Associated) Laguerre polynomials $H_n : \mathbb{R} \to \mathbb{R}$ satisfy the recurrence relation

$$\frac{d^{k}}{dx^{k}}L_{n}^{(\alpha)}(x) = (-1)^{k}L_{n-k}^{(\alpha+k)}(x).$$

(Associated) Laguerre polynomials $H_n : \mathbb{R} \to \mathbb{R}$ satisfy the recurrence relation

$$\frac{d^k}{dx^k} L_n^{(\alpha)}(x) = (-1)^k L_{n-k}^{(\alpha+k)}(x).$$

The roots converge in distribution to the Marchenko-Pastur distribution

$$v(c,x) = \frac{\sqrt{(x_+ - x)(x - x_-)}}{2\pi x} \chi_{(x_-, x_+)} dx$$

where

$$x_{\pm} = (\sqrt{c+1} \pm 1)^2.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

(Associated) Laguerre polynomials $H_n : \mathbb{R} \to \mathbb{R}$ satisfy the recurrence relation

$$\frac{d^k}{dx^k} L_n^{(\alpha)}(x) = (-1)^k L_{n-k}^{(\alpha+k)}(x).$$

The roots converge in distribution to the Marchenko-Pastur distribution

$$v(c,x) = \frac{\sqrt{(x_+ - x)(x - x_-)}}{2\pi x} \chi_{(x_-, x_+)} dx$$

where

$$x_{\pm}=(\sqrt{c+1}\pm 1)^2.$$

Indeed,

$$u_c(t,x) = v\left(\frac{c+t}{1-t},\frac{x}{1-t}\right)$$

is a solution of the PDE.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Figure: Marchenko-Pastur solutions $u_c(t,x)$: c = 1 (left) and c = 15 (right) shown for $t \in \{0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99\}$.

There are several classical orthogonal polynomials on [-1,1] (Gegenbauer, Jacobi, ...).

There are several classical orthogonal polynomials on [-1,1] (Gegenbauer, Jacobi, ...). For fairly general classes (Erdős-Freud theorem) of such polynomials, the distribution of roots is asymptotically given by

$$\mu = \frac{1}{\pi} \frac{dx}{\sqrt{1 - x^2}}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

There are several classical orthogonal polynomials on [-1,1] (Gegenbauer, Jacobi, ...). For fairly general classes (Erdős-Freud theorem) of such polynomials, the distribution of roots is asymptotically given by

$$u = \frac{1}{\pi} \frac{dx}{\sqrt{1 - x^2}}.$$

As it turns out,

$$u(t,x)=\frac{c}{\sqrt{1-x^2}}$$

is indeed a stationary solution of the equation.

There are several classical orthogonal polynomials on [-1,1] (Gegenbauer, Jacobi, ...). For fairly general classes (Erdős-Freud theorem) of such polynomials, the distribution of roots is asymptotically given by

$$u = \frac{1}{\pi} \frac{dx}{\sqrt{1 - x^2}}.$$

As it turns out,

$$u(t,x)=\frac{c}{\sqrt{1-x^2}}$$

is indeed a stationary solution of the equation.

Theorem (Tricomi?) Let $f: (-1,1) \rightarrow \mathbb{R}_{\geq 0}$. If $Hf \equiv 0$ in (-1,1), then

$$f=\frac{c}{\sqrt{1-x^2}}.$$

A D N A 目 N A E N A E N A B N A C N

$$\frac{\partial u}{\partial t} + \frac{1}{\pi} \frac{\partial}{\partial x} \arctan\left(\frac{Hu}{u}\right) = 0 \quad \text{on supp}(u)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$\frac{\partial u}{\partial t} + \frac{1}{\pi} \frac{\partial}{\partial x} \arctan\left(\frac{Hu}{u}\right) = 0 \quad \text{on supp}(u)$$

Sketch of the Derivation. Crystallization as key assumption.

$$\frac{\partial u}{\partial t} + \frac{1}{\pi} \frac{\partial}{\partial x} \arctan\left(\frac{Hu}{u}\right) = 0$$
 on $\operatorname{supp}(u)$

Sketch of the Derivation. Crystallization as key assumption.

$$\frac{\partial u}{\partial t} + \frac{1}{\pi} \frac{\partial}{\partial x} \arctan\left(\frac{Hu}{u}\right) = 0$$
 on $\operatorname{supp}(u)$

Sketch of the Derivation. Crystallization as key assumption.

$$\frac{\partial u}{\partial t} + \frac{1}{\pi} \frac{\partial}{\partial x} \arctan\left(\frac{Hu}{u}\right) = 0$$
 on $\operatorname{supp}(u)$

Sketch of the Derivation. Crystallization as key assumption.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A D N A 目 N A E N A E N A B N A C N

It thus remains to understand the behavior of the local term.

$$\sum_{|x_k-x| \text{ small}} \frac{1}{x-x_k}.$$

$$\sum_{|x_k-x| \text{ small}} \frac{1}{x-x_k}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Crystallization means that the roots form, locally, an arithmetic progressions

$$\sum_{|x_k-x| \text{ small}} \frac{1}{x-x_k}.$$

Crystallization means that the roots form, locally, an arithmetic progressions and thus

$$\sum_{|x_k-x| \text{ small}} \frac{1}{x-x_k} \sim \sum_{\ell \in \mathbb{Z}} \frac{1}{x - \left(x_k + \frac{\ell}{u(t,x)n}\right)}.$$

$$\sum_{|x_k-x| \text{ small}} \frac{1}{x-x_k}.$$

Crystallization means that the roots form, locally, an arithmetic progressions and thus

$$\sum_{|x_k-x| \text{ small}} \frac{1}{x-x_k} \sim \sum_{\ell \in \mathbb{Z}} \frac{1}{x - \left(x_k + \frac{\ell}{u(t,x)n}\right)}.$$

We are in luck: this sum has a closed-form expression due to Euler

$$\pi \cot \pi x = \frac{1}{x} + \sum_{n=1}^{\infty} \left(\frac{1}{x+n} + \frac{1}{x-n} \right) \quad \text{for } x \in \mathbb{R} \setminus \mathbb{Z}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The Local Field

The Local Field

We can then predict the behavior of the roots of the derivative: they are in places where the local (near) field and the global (far) field cancel out. This leads to the desired equation.

A Fast Numerical Algorithm

Jeremy Hoskins (U Chicago) used the electrostatic interpretation to produce an algorithm that can compute all derivatives of polynomials up to degree ~ 100.000 .

・ロト ・四ト ・ヨト ・ヨト ・ヨ

A Fast Numerical Algorithm

Jeremy Hoskins (U Chicago) used the electrostatic interpretation to produce an algorithm that can compute all derivatives of polynomials up to degree ~ 100.000 . Semicircles.

Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E}X = 0$ as well as $\mathbb{V}X = 1$.

Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E}X = 0$ as well as $\mathbb{V}X = 1$. Let p_n be a random polynomial whose roots are i.i.d. copies of X and fix $\ell \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E}X = 0$ as well as $\mathbb{V}X = 1$. Let p_n be a random polynomial whose roots are i.i.d. copies of X and fix $\ell \in \mathbb{N}$. Then, as $n \to \infty$,

$$n^{\ell/2} rac{\ell!}{n!} \cdot p_n^{(n-\ell)}\left(rac{x}{\sqrt{n}}
ight) \sim (1+o(1)) \cdot He_\ell(x+\gamma_n),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E}X = 0$ as well as $\mathbb{V}X = 1$. Let p_n be a random polynomial whose roots are i.i.d. copies of X and fix $\ell \in \mathbb{N}$. Then, as $n \to \infty$,

$$n^{\ell/2} rac{\ell!}{n!} \cdot p_n^{(n-\ell)}\left(rac{x}{\sqrt{n}}
ight) \sim (1+o(1)) \cdot He_\ell(x+\gamma_n),$$

where $\gamma_n \sim \mathcal{N}(0,1)$ and He_ℓ is the ℓ -th Hermite polynomial.

Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E}X = 0$ as well as $\mathbb{V}X = 1$. Let p_n be a random polynomial whose roots are i.i.d. copies of X and fix $\ell \in \mathbb{N}$. Then, as $n \to \infty$,

$$n^{\ell/2} rac{\ell!}{n!} \cdot p_n^{(n-\ell)}\left(rac{x}{\sqrt{n}}
ight) \sim (1+o(1)) \cdot He_\ell(x+\gamma_n),$$

where $\gamma_n \sim \mathcal{N}(0,1)$ and He_ℓ is the $\ell-$ th Hermite polynomial. **Remarks.**

1. The roots of the Hermite polynomial have a semicircle density.

Let X be a random variable on \mathbb{R} such that all moments are finite and $\mathbb{E}X = 0$ as well as $\mathbb{V}X = 1$. Let p_n be a random polynomial whose roots are i.i.d. copies of X and fix $\ell \in \mathbb{N}$. Then, as $n \to \infty$,

$$n^{\ell/2} rac{\ell!}{n!} \cdot p_n^{(n-\ell)}\left(rac{x}{\sqrt{n}}
ight) \sim (1+o(1)) \cdot He_\ell(x+\gamma_n),$$

where $\gamma_n \sim \mathcal{N}(0,1)$ and He_ℓ is the $\ell-$ th Hermite polynomial. **Remarks.**

The roots of the Hermite polynomial have a semicircle density.
 If x₁, x₂,..., x_n ~ X, then

$$\frac{x_1+\cdots+x_n}{\sqrt{n}}\sim\mathcal{N}(0,1)$$

and the mean of the roots is preserved under differentiation (hence the random shift).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Ideas behind the proof

$$p_n(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで
$$p_n(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$$

Coefficients are preserved under differentiation, they are simply multiplied with degrees.

$$p_n(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0$$

Coefficients are preserved under differentiation, they are simply multiplied with degrees.

$$\prod_{i=1}^{n} (x - x_i) = \sum_{k=0}^{n} (-1)^k e_k(x_1, \dots, x_n) x^{n-k}.$$

$$p_n(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$$

Coefficients are preserved under differentiation, they are simply multiplied with degrees.

$$\prod_{i=1}^{n} (x - x_i) = \sum_{k=0}^{n} (-1)^k e_k(x_1, \dots, x_n) x^{n-k}.$$

We need elementary symmetric polynomials

$$e_0(x_1,...,x_n) = 1$$

 $e_1(x_1,...,x_n) = x_1 + \dots + x_n$
 $e_2(x_1,...,x_n) = \sum_{i < j} x_i x_j$
 $e_3(x_1,...,x_n) = \sum_{i < j < k} x_i x_j x_k$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Given $x_1, \ldots, x_n \sim X$, what do we know about

$$e_0(x_1,\ldots,x_n) = 1$$

$$e_1(x_1,\ldots,x_n) = x_1 + \cdots + x_n$$

$$e_2(x_1,\ldots,x_n) = \sum_{i < j} x_i x_j$$

$$e_3(x_1,\ldots,x_n) = \sum_{i < j < k} x_i x_j x_k$$

(ロ)、(型)、(E)、(E)、 E) の(()

Given $x_1, \ldots, x_n \sim X$, what do we know about

$$e_0(x_1,\ldots,x_n) = 1$$

$$e_1(x_1,\ldots,x_n) = x_1 + \cdots + x_n$$

$$e_2(x_1,\ldots,x_n) = \sum_{i < j} x_i x_j$$

$$e_3(x_1,\ldots,x_n) = \sum_{i < j < k} x_i x_j x_k$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

As it turns out: e_1 determines everything else.

$$e_3(x_1,\ldots,x_n) = \sum_{i < j < k} x_i x_j x_k$$

 e_k has $\sim n^k$ terms which means we expect it to be size $n^{k/2}$.

$$e_3(x_1,\ldots,x_n) = \sum_{i < j < k} x_i x_j x_k$$

 e_k has $\sim n^k$ terms which means we expect it to be size $n^{k/2}$.

Lemma

Let $m \in \mathbb{N}$ and let x_1, \ldots, x_n be i.i.d. random variables sampled from a distribution on \mathbb{R} with $\mathbb{E}X = 0$, $\mathbb{E}X^2 = 1$ and $\mathbb{E}|X|^m < \infty$. Then, as $n \to \infty$,

$$\mathbb{E} \left| e_m - \sum_{k=0}^{\lfloor m/2 \rfloor} (-1)^k \frac{1}{k!(m-2k)! 2^k} \cdot e_1^{m-2k} n^k \right| \lesssim_X n^{\frac{m-1}{2}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k\mapsto\mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k\mapsto \mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer

(where we use the branch of arctan taking values in $[0, \pi]$) and thus by the change of variables k = 1/s and abbreviating $f \coloneqq f_{1/s}$,

$$(-s\partial_s + x\partial_x)Hf = \frac{1}{\pi}\partial_x \log((Hf)^2 + f^2)^{1/2}$$
(4.1)

and

$$(-s\partial_s + x\partial_x)f = \frac{1}{\pi}\partial_x \arctan\frac{f}{Hf}$$
(4.2)

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k\mapsto\mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer

(where we use the branch of arctan taking values in $[0, \pi]$) and thus by the change of variables k = 1/s and abbreviating $f \coloneqq f_{1/s}$,

$$(-s\partial_s + x\partial_x)Hf = \frac{1}{\pi}\partial_x \log((Hf)^2 + f^2)^{1/2}$$
(4.1)

and

$$(-s\partial_s + x\partial_x)f = \frac{1}{\pi}\partial_x \arctan\frac{f}{Hf}$$
(4.2)

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

The same PDE in a supposedly different context is presumably not a coincidence.

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k\mapsto\mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is concerned with free convolution of measures $\mu\boxplus\nu$ as introduced by Voiculescu in the 1980s.

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k\mapsto\mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is concerned with free convolution of measures $\mu \boxplus \nu$ as introduced by Voiculescu in the 1980s. It is an analogue of classical convolution in the non-commutative setting.

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k\mapsto\mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

is concerned with free convolution of measures $\mu \boxplus \nu$ as introduced by Voiculescu in the 1980s. It is an analogue of classical convolution in the non-commutative setting. In particular, we expect that u(t,x) is given by a fractional free convolution $\mu^{\boxplus k}$ with $k \ge 1$.

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k\mapsto\mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer

is concerned with free convolution of measures $\mu \boxplus \nu$ as introduced by Voiculescu in the 1980s. It is an analogue of classical convolution in the non-commutative setting. In particular, we expect that u(t,x) is given by a fractional free convolution $\mu^{\boxplus k}$ with $k \ge 1$. As $t \to 1$, we have $k \to \infty$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Fractional free convolution powers

Dimitri Shlyakhtenko, Terence Tao

The extension $k\mapsto\mu^{\boxplus k}$ of the concept of a free convolution power to the case of non-integer

is concerned with free convolution of measures $\mu \boxplus \nu$ as introduced by Voiculescu in the 1980s. It is an analogue of classical convolution in the non-commutative setting. In particular, we expect that u(t,x) is given by a fractional free convolution $\mu^{\boxplus k}$ with $k \ge 1$. As $t \to 1$, we have $k \to \infty$.

An Optimistic Conjecture

Under some reasonable assumptions

$$\mu^{\boxplus k} = u\left(1 - \frac{1}{k}, \frac{x}{k}\right) dx.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Under some reasonable assumptions

$$\mu^{\boxplus k} = u\left(1 - \frac{1}{k}, \frac{x}{k}\right) dx.$$

(ロ)、(型)、(E)、(E)、 E) の(()

Under some reasonable assumptions

$$\mu^{\boxplus k} = u\left(1 - \frac{1}{k}, \frac{x}{k}\right) dx.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

This would have a large number of implications.

Under some reasonable assumptions

$$\mu^{\boxplus k} = u\left(1 - \frac{1}{k}, \frac{x}{k}\right) dx.$$

This would have a large number of implications.

. . .

Fractional Free Convolution preserves free cumulants

$$\kappa_1(\mu) = \int_{\mathbb{R}} x d\mu$$

 $\kappa_2(\mu) = \int_{\mathbb{R}} x^2 d\mu - \left(\int_{\mathbb{R}} x d\mu\right)^2$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Under some reasonable assumptions

$$\mu^{\boxplus k} = u\left(1 - \frac{1}{k}, \frac{x}{k}\right) dx.$$

This would have a large number of implications.

. . .

Fractional Free Convolution preserves free cumulants

$$\kappa_{1}(\mu) = \int_{\mathbb{R}} x d\mu$$

$$\kappa_{2}(\mu) = \int_{\mathbb{R}} x^{2} d\mu - \left(\int_{\mathbb{R}} x d\mu\right)^{2}$$

since

$$\kappa_n(\mu^{\boxplus k}) = k \cdot \kappa_n(\mu).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Under some reasonable assumptions

$$\mu^{\boxplus k} = u\left(1 - \frac{1}{k}, \frac{x}{k}\right) dx.$$

This would have a large number of implications.

. . .

Fractional Free Convolution preserves free cumulants

$$\kappa_{1}(\mu) = \int_{\mathbb{R}} x d\mu$$

$$\kappa_{2}(\mu) = \int_{\mathbb{R}} x^{2} d\mu - \left(\int_{\mathbb{R}} x d\mu\right)^{2}$$

since

$$\kappa_n(\mu^{\boxplus k}) = k \cdot \kappa_n(\mu).$$

Infinitely many conserved quantities.

Conjecture

$$\mu^{\boxplus k} = u\left(1-\frac{1}{k},\frac{x}{k}\right)dx.$$

would have a large number of implications.

Conjecture

$$\mu^{\boxplus k} = u\left(1 - \frac{1}{k}, \frac{x}{k}\right) dx.$$

would have a large number of implications. Voiculescu's Free Central Limit Theorem

 $\mu \boxplus \mu \boxplus \dots \boxplus \mu \to \text{semicircle.}$

Conjecture

$$\mu^{\boxplus k} = u\left(1 - \frac{1}{k}, \frac{x}{k}\right) dx.$$

would have a large number of implications.

Voiculescu's Free Central Limit Theorem

 $\mu \boxplus \mu \boxplus \dots \boxplus \mu \to \text{semicircle.}$

This would then imply that u(t, x) should be a semicircle for t close to 1.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

[Submitted on 4 Sep 2020]

Universal objects of the infinite beta random matrix theory

Vadim Gorin, Victor Kleptsyn

[Submitted on 4 Sep 2020] Universal objects of the infinite beta random matrix theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Vadim Gorin, Victor Kleptsyn

which proves that, in a certain setting, the crystallization assumption for roots is justified in the bulk

[Submitted on 4 Sep 2020] Universal objects of the infinite beta random matrix theory

Vadim Gorin, Victor Kleptsyn

which proves that, in a certain setting, the crystallization assumption for roots is justified in the bulk and a couple of weeks later

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

[Submitted on 4 Sep 2020]

Universal objects of the infinite beta random matrix theory

Vadim Gorin, Victor Kleptsyn

which proves that, in a certain setting, the crystallization assumption for roots is justified in the bulk and a couple of weeks later

[Submitted on 29 Sep 2020] Limit theorems for Bessel and Dunkl processes of large dimensions and free convolutions Michael Voit, Jeannette H.C. Woerner

which establishes a connection between Bessel processes and free convolution.

[Submitted on 4 Sep 2020]

Universal objects of the infinite beta random matrix theory

Vadim Gorin, Victor Kleptsyn

which proves that, in a certain setting, the crystallization assumption for roots is justified in the bulk and a couple of weeks later

[Submitted on 29 Sep 2020]

Limit theorems for Bessel and Dunkl processes of large dimensions and free convolutions Michael Voit, Jeannette H.C. Woerner

which establishes a connection between Bessel processes and free convolution. So I think we are pretty close to having completely rigorous arguments for most things.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

- Can the PDE be useful? Linearization seems really nice?
- Is Jeremy Hoskins' algorithm a useful method to compute µ^{⊞k}?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Can the PDE be useful? Linearization seems really nice?
- Is Jeremy Hoskins' algorithm a useful method to compute µ^{⊞k}?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

What about the complex case?

▲□▶ ▲圖▶ ▲園▶ ▲園▶ 三国 - 釣A@
The Complex Case

One can derive the same sort of PDE in the complex case. The derivation is actually simpler

The Complex Case

One can derive the same sort of PDE in the complex case. The derivation is actually simpler

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A Nonlocal Transport Equation

Sean O'Rourke and I tried to see whether the equation simplifies if we assume that the initial distribution is radial around the origin.

A Nonlocal Transport Equation

Sean O'Rourke and I tried to see whether the equation simplifies if we assume that the initial distribution is radial around the origin. If the density is $\psi(t, x)$, then

$$\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x} \left(\left(\frac{1}{x} \int_0^x \psi(s) ds \right)^{-1} \psi(x) \right).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A Nonlocal Transport Equation

Sean O'Rourke and I tried to see whether the equation simplifies if we assume that the initial distribution is radial around the origin. If the density is $\psi(t, x)$, then

$$\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x} \left(\left(\frac{1}{x} \int_0^x \psi(s) ds \right)^{-1} \psi(x) \right).$$

$$\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x} \left(\left(\frac{1}{x} \int_0^x \psi(s) ds \right)^{-1} \psi(x) \right)$$

has a nice closed form solution

$$u(t,x)=\chi_{0\leq x\leq 1-t}.$$

$$\frac{\partial \psi}{\partial t} = \frac{\partial}{\partial x} \left(\left(\frac{1}{x} \int_0^x \psi(s) ds \right)^{-1} \psi(x) \right)$$

has a nice closed form solution

$$u(t,x) = \chi_{0 \le x \le 1-t}$$

This corresponds to Random Taylor Polynomials.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Random Taylor polynomials are defined by

$$p_n = \sum_{k=0}^n \gamma_k \frac{z^k}{k!},$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

where $\gamma_k \sim \mathcal{N}(0, 1)$.

Random Taylor polynomials are defined by

$$p_n = \sum_{k=0}^n \gamma_k \frac{z^k}{k!},$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where $\gamma_k \sim \mathcal{N}(0, 1)$. They are preserved under differentiation.

Random Taylor polynomials are defined by

$$p_n = \sum_{k=0}^n \gamma_k \frac{z^k}{k!},$$

where $\gamma_k \sim \mathcal{N}(0, 1)$. They are preserved under differentiation. Theorem (Kabluchko & Zaporozhets)

$$\frac{1}{n}\sum_{k=1}^n \delta_{z_kn^{-1}} \to \frac{\chi_{|z|\leq 1}}{2\pi|z|} \qquad \text{as } n\to\infty.$$

A final pretty fact: when trying to study L^2 -stability of the solution, one runs into the following beautiful inequality.

Lemma

For $f:(0,\infty) o \mathbb{R}_{\geq 0}$

$$\int_0^\infty \frac{f(x)}{x^2} \left(\int_0^x f(y) dy\right) dx \leq \int_0^\infty \frac{f(x)^2}{x} dx,$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A final pretty fact: when trying to study L^2 -stability of the solution, one runs into the following beautiful inequality.

Lemma For $f: (0, \infty) \to \mathbb{R}_{\geq 0}$ $\int_0^\infty \frac{f(x)}{x^2} \left(\int_0^x f(y) dy \right) dx \le \int_0^\infty \frac{f(x)^2}{x} dx,$

Proof. follows easily from a general Hardy inequality.

A D N A 目 N A E N A E N A B N A C N

THANK YOU!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ