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pn will be a polynomial of degree n having n distinct roots.

The Gauss-Lucas theorem (1830s). The roots of p′n are
contained in the convex hull of the roots of pn.

Proof. The ‘electrostatic interpretation’:

p′n(z)

pn(z)
=

n∑
k=1

1

z − zk
.

If you are outside the convex hull, the charges ‘push you away’.



pn will be a polynomial of degree n having n distinct roots.

The Gauss-Lucas theorem (1830s). The roots of p′n are
contained in the convex hull of the roots of pn.

Proof. The ‘electrostatic interpretation’:

p′n(z)

pn(z)
=

n∑
k=1

1

z − zk
.

If you are outside the convex hull, the charges ‘push you away’.



pn will be a polynomial of degree n having n distinct roots.

The Gauss-Lucas theorem (1830s). The roots of p′n are
contained in the convex hull of the roots of pn.

Proof. The ‘electrostatic interpretation’:

p′n(z)

pn(z)
=

n∑
k=1

1

z − zk
.

If you are outside the convex hull, the charges ‘push you away’.



pn will be a polynomial of degree n having n distinct roots.

The Gauss-Lucas theorem (1830s). The roots of p′n are
contained in the convex hull of the roots of pn.

Proof. The ‘electrostatic interpretation’:

p′n(z)

pn(z)
=

n∑
k=1

1

z − zk
.

If you are outside the convex hull, the charges ‘push you away’.



p′n(z)

pn(z)
=

n∑
k=1

1

z − zk
.



p′n(z)

pn(z)
=

n∑
k=1

1

z − zk
.



Suppose µ is a probability measure on C and suppose

pn(z) =
n∏

k=1

(z − zk),

where z1, . . . , zn ∼ µ are i.i.d. random variables distributed
according to µ.

What is the distribution of the critical points of pn
(the roots of p′n)?

Conjecture (Rivin-Pemantle), Theorem (Kabluchko, 2015)

The critical points are also distributed according to µ.

Note: The critical points are w1, . . . ,wn−1 ∈ C. The statement
really says that

1

n − 1

n−1∑
k=1

δwk
⇀ µ.
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Every root of the derivative satisfies p′n(z) = 0 which means

1

z − z`
= −
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k 6=`
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The right-hand side is typically size ∼ n. So the root of the
derivative has to be distance ∼ n−1 from one of the existing roots
and the existing roots are ∼ n−1/2 separated, so no two of them
are very close.
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What this argument tells us is roughly the following:

if µ is a
sufficiently nice measure, then for each (random) root pn(zk) = 0,
we would expect that there is a critical point p′n(z) = 0 that is at
most distance ∼ n−1 nearby. This is roughly correct and there are
recent papers by Sean O’Rourke and Noah Williams in this
direction.
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Theorem (O’Rourke and Williams)

Under reasonable assumptions on the measure

W1(µn, µ
′
n) .

(log n)10

n
.
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∑n
k=1
k 6=`

1
z−zk vanishes



In fact, the bijective relationship has to fail somewhere: there are n
roots and n − 1 critical points.

The unpaired root is frequently
close to the root of

V (z) =
n∑

k=1

1

z − zk
.
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This looks almost like a flow of particles captured at nearby times.



Let’s now return to the one-dimensional setting.

Things are
slightly different here

pn(x) =
n∏

k=1

(x − xk).

Between any two roots there is a maximum or a minimum, thus a
root of p′n. Moreover, there are n − 1 intervals between the n
roots, so each interval has exactly one root. Thus the roots of pn
and the roots of p′n interlace.
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Fact for real-rooted polynomials

The roots of

p
( n
log n
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also distributed according to µ as n→∞.

Sketch. Each root moves roughly ±n−1 under one step of
differentiation.

Main Question
What about the roots of

p
(t·n)
n where 0 < t < 1?
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Some History.

1. The question hasn’t been studied very much.

2. Polya asked a whole number of questions in the setting of real
entire functions.

3. The smallest gap grows under differentiation. Denoting the
smallest gap of a polynomial pn having n real roots
{x1, . . . , xn} by

G (pn) = min
i 6=j
|xi − xj |,

we have (Riesz, Sz-Nagy, Walker, 1920s)
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Main Question
What about the roots of

p
(t·n)
n where 0 < t < 1?

Let us denote the answer by u(t, x). Here, the idea is that u(t, x)
is the limiting behavior as n→∞.

In particular

µ = u(0, x)dx

and ∫
R
u(t, x)dx = 1− t.

What can one say about u(t, x)?
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An Equation (S. 2018)

There’s some good heuristic reasoning for

∂u

∂t
+

1

π

∂

∂x
arctan

(
Hu

u

)
= 0 on supp(u)

where

Hf (x) = p.v.
1

π

∫
R

f (y)

x − y
dy is the Hilbert transform.

The argument is actually fun and I can give it in full. But before,
let’s explore this strange equation.
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A nice way to understand a PDE is through explicit closed-form
solutions (if they exist).

So the relevant question is: are there nice special solutions that we
can construct? For this we need polynomials pn whose roots have

a nice distribution and whose derivatives p
(k)
n also have a nice

distribution?

1. Hermite polynomials

2. (associated) Laguerre polynomials

Presumably there are many others(?)
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Hermite Polynomials

Hermite polynomials Hn : R→ R satisfy a nice recurrence relation

dm

dxm
Hn(x) =

2nn!

(n −m)!
Hn−m(x).

Moreover, the roots of Hn converge, in a suitable sense, to

µ =
1

π

√
2n − x2dx .

This suggests that

u(t, x) =
2

π

√
1− t − x2 · χ|x |≤√1−t for t ≤ 1

should be a solution of the PDE (and it is).
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Laguerre Polynomials

(Associated) Laguerre polynomials Hn : R→ R satisfy the
recurrence relation

dk

dxk
L
(α)
n (x) = (−1)kL

(α+k)
n−k (x).

The roots converge in distribution to the Marchenko-Pastur
distribution

v(c, x) =

√
(x+ − x)(x − x−)

2πx
χ(x−,x+)dx

where
x± = (

√
c + 1± 1)2.

Indeed,

uc(t, x) = v

(
c + t

1− t
,

x

1− t

)
is a solution of the PDE.
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(
c + t
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,

x
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)
.

Figure: Marchenko-Pastur solutions uc(t, x): c = 1 (left) and c = 15
(right) shown for t ∈ {0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.95, 0.99}.



A Bonus Solution
There are several classical orthogonal polynomials on [−1, 1]
(Gegenbauer, Jacobi, ...).

For fairly general classes (Erdős-Freud
theorem) of such polynomials, the distribution of roots is
asymptotically given by

µ =
1

π

dx√
1− x2

.

As it turns out,

u(t, x) =
c√

1− x2

is indeed a stationary solution of the equation.

Theorem (Tricomi?)

Let f : (−1, 1)→ R≥0. If Hf ≡ 0 in (−1, 1), then

f =
c√

1− x2
.



A Bonus Solution
There are several classical orthogonal polynomials on [−1, 1]
(Gegenbauer, Jacobi, ...). For fairly general classes (Erdős-Freud
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theorem) of such polynomials, the distribution of roots is
asymptotically given by

µ =
1

π

dx√
1− x2

.

As it turns out,

u(t, x) =
c√

1− x2

is indeed a stationary solution of the equation.

Theorem (Tricomi?)

Let f : (−1, 1)→ R≥0. If Hf ≡ 0 in (−1, 1), then

f =
c√

1− x2
.



∂u

∂t
+

1

π

∂

∂x
arctan

(
Hu

u

)
= 0 on supp(u)

Sketch of the Derivation. Crystallization as key assumption.

u(t, x)



∂u

∂t
+

1

π

∂

∂x
arctan

(
Hu

u

)
= 0 on supp(u)

Sketch of the Derivation. Crystallization as key assumption.

u(t, x)



∂u

∂t
+

1

π

∂

∂x
arctan

(
Hu

u

)
= 0 on supp(u)

Sketch of the Derivation. Crystallization as key assumption.

u(t, x)



∂u

∂t
+

1

π

∂

∂x
arctan

(
Hu

u

)
= 0 on supp(u)

Sketch of the Derivation. Crystallization as key assumption.

u(t, x)



∂u

∂t
+

1

π

∂

∂x
arctan

(
Hu

u

)
= 0 on supp(u)

Sketch of the Derivation. Crystallization as key assumption.

u(t, x)



xk

∑n
k=1

1
x−xk

= 0

n∑
k=1

1

x − xk
=

∑
|xk−x | large

1

x − xk
+

∑
|xk−x | small

1

x − xk

∑
|xk−x | large

1

x − xk
∼ n

∫
R

1

x − y
· u(t, y)dy = n · [Hu](t, x).

It thus remains to understand the behavior of the local term.
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The local term is ∑
|xk−x | small

1

x − xk
.

Crystallization means that the roots form, locally, an arithmetic
progressions and thus∑

|xk−x | small

1

x − xk
∼
∑
`∈Z

1

x −
(
xk + `

u(t,x)n

) .
We are in luck: this sum has a closed-form expression due to Euler

π cotπx =
1

x
+
∞∑
n=1

(
1

x + n
+

1

x − n

)
for x ∈ R \ Z.
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We can then predict the behavior of the roots of the derivative:
they are in places where the local (near) field and the global (far)
field cancel out. This leads to the desired equation.



The Local Field

We can then predict the behavior of the roots of the derivative:
they are in places where the local (near) field and the global (far)
field cancel out. This leads to the desired equation.



A Fast Numerical Algorithm

Jeremy Hoskins (U Chicago) used the electrostatic interpretation
to produce an algorithm that can compute all derivatives of
polynomials up to degree ∼ 100.000.
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Theorem (J. Hoskins and S, 2020)

Let X be a random variable on R such that all moments are finite
and EX = 0 as well as VX = 1.

Let pn be a random polynomial
whose roots are i.i.d. copies of X and fix ` ∈ N. Then, as n→∞,

n`/2
`!

n!
· p(n−`)n

(
x√
n

)
∼ (1 + o(1)) · He`(x + γn),

where γn ∼ N (0, 1) and He` is the `−th Hermite polynomial.

Remarks.

1. The roots of the Hermite polynomial have a semicircle density.

2. If x1, x2, . . . , xn ∼ X , then

x1 + · · ·+ xn√
n

∼ N (0, 1)

and the mean of the roots is preserved under differentiation
(hence the random shift).
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Ideas behind the proof

pn(x) = xn + an−1x
n−1 + · · ·+ a0

Coefficients are preserved under differentiation, they are simply
multiplied with degrees.

n∏
i=1

(x − xi ) =
n∑

k=0

(−1)kek(x1, . . . , xn)xn−k .

We need elementary symmetric polynomials

e0(x1, . . . , xn) = 1

e1(x1, . . . , xn) = x1 + · · ·+ xn

e2(x1, . . . , xn) =
∑
i<j

xixj

e3(x1, . . . , xn) =
∑

i<j<k

xixjxk
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e3(x1, . . . , xn) =
∑

i<j<k

xixjxk

ek has ∼ nk terms which means we expect it to be size nk/2.

Lemma
Let m ∈ N and let x1, . . . , xn be i.i.d. random variables sampled
from a distribution on R with EX = 0, EX 2 = 1 and E|X |m <∞.
Then, as n→∞,

E

∣∣∣∣∣∣em −
bm/2c∑
k=0

(−1)k
1

k!(m − 2k)!2k
· em−2k1 nk

∣∣∣∣∣∣ .X n
m−1
2



Ideas behind the proof

e3(x1, . . . , xn) =
∑

i<j<k

xixjxk

ek has ∼ nk terms which means we expect it to be size nk/2.

Lemma
Let m ∈ N and let x1, . . . , xn be i.i.d. random variables sampled
from a distribution on R with EX = 0, EX 2 = 1 and E|X |m <∞.
Then, as n→∞,

E

∣∣∣∣∣∣em −
bm/2c∑
k=0

(−1)k
1

k!(m − 2k)!2k
· em−2k1 nk

∣∣∣∣∣∣ .X n
m−1
2



Sep 3, 2020

The same PDE in a supposedly different context is presumably not
a coincidence.



Sep 3, 2020

The same PDE in a supposedly different context is presumably not
a coincidence.



Sep 3, 2020

The same PDE in a supposedly different context is presumably not
a coincidence.



Sep 3, 2020

The same PDE in a supposedly different context is presumably not
a coincidence.



Sep 3, 2020

is concerned with free convolution of measures µ� ν as introduced
by Voiculescu in the 1980s.

It is an analogue of classical
convolution in the non-commutative setting. In particular, we
expect that u(t, x) is given by a fractional free convolution µ�k

with k ≥ 1. As t → 1, we have k →∞.

An Optimistic Conjecture

Under some reasonable assumptions

µ�k = u

(
1− 1

k
,
x
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)
dx .



Sep 3, 2020

is concerned with free convolution of measures µ� ν as introduced
by Voiculescu in the 1980s. It is an analogue of classical
convolution in the non-commutative setting.

In particular, we
expect that u(t, x) is given by a fractional free convolution µ�k

with k ≥ 1. As t → 1, we have k →∞.

An Optimistic Conjecture

Under some reasonable assumptions

µ�k = u

(
1− 1

k
,
x

k

)
dx .



Sep 3, 2020

is concerned with free convolution of measures µ� ν as introduced
by Voiculescu in the 1980s. It is an analogue of classical
convolution in the non-commutative setting. In particular, we
expect that u(t, x) is given by a fractional free convolution µ�k

with k ≥ 1.

As t → 1, we have k →∞.

An Optimistic Conjecture

Under some reasonable assumptions

µ�k = u

(
1− 1

k
,
x

k

)
dx .



Sep 3, 2020

is concerned with free convolution of measures µ� ν as introduced
by Voiculescu in the 1980s. It is an analogue of classical
convolution in the non-commutative setting. In particular, we
expect that u(t, x) is given by a fractional free convolution µ�k

with k ≥ 1. As t → 1, we have k →∞.

An Optimistic Conjecture

Under some reasonable assumptions

µ�k = u

(
1− 1

k
,
x

k

)
dx .



Sep 3, 2020

is concerned with free convolution of measures µ� ν as introduced
by Voiculescu in the 1980s. It is an analogue of classical
convolution in the non-commutative setting. In particular, we
expect that u(t, x) is given by a fractional free convolution µ�k

with k ≥ 1. As t → 1, we have k →∞.

An Optimistic Conjecture

Under some reasonable assumptions

µ�k = u

(
1− 1

k
,
x

k

)
dx .



An Optimistic Conjecture

Under some reasonable assumptions

µ�k = u

(
1− 1

k
,
x

k

)
dx .

This would have a large number of implications.
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κ1(µ) =
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since
κn(µ�k) = k · κn(µ).

Infinitely many conserved quantities.
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The Complex Case

One can derive the same sort of PDE in the complex case. The
derivation is actually simpler

typically ∼ n−1/2

1

z − z`
= −

n∑
k=1
k 6=`

1

z − zk
.
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A Nonlocal Transport Equation

Sean O’Rourke and I tried to see whether the equation simplifies if
we assume that the initial distribution is radial around the origin.

If the density is ψ(t, x), then

∂ψ

∂t
=

∂

∂x

((
1

x

∫ x

0
ψ(s)ds

)−1
ψ(x)

)
.

r0



A Nonlocal Transport Equation

Sean O’Rourke and I tried to see whether the equation simplifies if
we assume that the initial distribution is radial around the origin.
If the density is ψ(t, x), then

∂ψ

∂t
=

∂

∂x

((
1

x

∫ x

0
ψ(s)ds

)−1
ψ(x)

)
.

r0



A Nonlocal Transport Equation

Sean O’Rourke and I tried to see whether the equation simplifies if
we assume that the initial distribution is radial around the origin.
If the density is ψ(t, x), then

∂ψ

∂t
=

∂

∂x

((
1

x

∫ x

0
ψ(s)ds

)−1
ψ(x)

)
.

r0



∂ψ

∂t
=

∂

∂x

((
1

x

∫ x

0
ψ(s)ds

)−1
ψ(x)

)
has a nice closed form solution

u(t, x) = χ0≤x≤1−t .

This corresponds to Random Taylor Polynomials.

-1000 -500 500 1000

-1000

-500

500

1000



∂ψ

∂t
=

∂

∂x

((
1

x

∫ x

0
ψ(s)ds

)−1
ψ(x)

)
has a nice closed form solution

u(t, x) = χ0≤x≤1−t .

This corresponds to Random Taylor Polynomials.

-1000 -500 500 1000

-1000

-500

500

1000



-1000 -500 500 1000

-1000

-500

500

1000

Random Taylor polynomials are defined by

pn =
n∑

k=0

γk
zk

k!
,

where γk ∼ N (0, 1).

They are preserved under differentiation.

Theorem ( Kabluchko & Zaporozhets)

1

n

n∑
k=1

δzkn−1 →
χ|z|≤1

2π|z |
as n→∞.
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A final pretty fact: when trying to study L2−stability of the
solution, one runs into the following beautiful inequality.

Lemma
For f : (0,∞)→ R≥0∫ ∞

0

f (x)

x2

(∫ x

0
f (y)dy

)
dx ≤

∫ ∞
0

f (x)2

x
dx ,

Proof. follows easily from a general Hardy inequality.
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Thank you!


