Two results on the interaction energy

Yao Yao Georgia Institute of Technology

Joint works with Matias Delgadino and Xukai Yan

Caltech & UCLA Joint Analysis Seminar Nov 17, 2020

∃ ► < ∃ ►</p>

The interaction energy

For a nonnegative density ρ ∈ L¹₊(ℝⁿ) ∩ L[∞](ℝⁿ), consider its interaction energy, given by

$$\mathcal{E}_W[\rho] := \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \rho(x) \rho(y) W(x-y) dx dy = \int_{\mathbb{R}^n} \rho(\rho * W) dx,$$

where $W \in C^1(\mathbb{R}^n \setminus \{0\}) \cap L^1_{loc}(\mathbb{R}^n)$ is a radially decreasing interaction potential.

• Examples of *W*:

Newtonian potential:
$$\mathcal{N} = \begin{cases} c_n |x|^{2-n} & n > 2, \\ -\frac{1}{2\pi} \log |x| & n = 2, \end{cases}$$

which belongs to the broader class of Riesz potentials:

$$W_k = egin{cases} -rac{|x|^k}{k} & ext{for } k
eq 0, \ -\log |x| & ext{for } k = 0. \end{cases}$$

• Riesz's rearrangement inequality:

$$f,g,h\geq 0 \Longrightarrow \int f(g*h)dx \leq \int f^*(g^**h^*)dx,$$

here f^* is the radially decreasing rearrangement of f.

• A direct consequence (using that W is radially decreasing):

 $\mathcal{E}_{W}[\rho] \leq \mathcal{E}_{W}[\rho^*].$

• If W is strictly radially decreasing, Lieb '77 showed that "=" is achieved iff $\rho = \rho^*$ up to a translation.

Questions

Are there any stability estimate of the form

$$\mathcal{E}_W[
ho^*] - \mathcal{E}_W[
ho] \ge d(
ho,
ho^*) \ge 0?$$

Here $d(\rho, \rho^*)$ measures the "asymmetry" of ρ , and should = 0 iff $\rho = T_a \rho^*$ under some translation T_a .

Stability estimates for Riesz potentials: current results

 \bullet One natural way to measure the asymmetry of $\rho {:}$

$$\delta(\rho) := \inf_{\boldsymbol{a} \in \mathbb{R}^n} \frac{\|\mathcal{T}_{\boldsymbol{a}} \rho - \rho^*\|_{L^1(\mathbb{R}^n)}}{2\|\rho\|_{L^1(\mathbb{R}^n)}}$$

• For Newtonian potential \mathcal{N} in \mathbb{R}^3 , Burchard–Chambers '15 obtained:

$$\mathcal{E}_{\mathcal{N}}[1_D^*] - \mathcal{E}_{\mathcal{N}}[1_D] \ge c |D|^{5/3} \, \delta(1_D)^2.$$

• For Riesz potential W_k , Fusco-Pratelli '19, Burchard-Chambers '20:

$$\mathcal{E}_{W_k}[1_D^*] - \mathcal{E}_{W_k}[1_D] \geq c(n,k) |D|^{2+rac{k}{n}} \, \delta(1_D)^2 \quad ext{ for } k \in (-n+1,0).$$

Proofs based on delicate geometrical + mass transportation arguments; works for $\rho = 1_D$, cannot be easily extended to general densities.

Stability estimates for Riesz potentials: current results

• For Riesz potential W_k , Frank–Lieb '19 proved the following for $0 \le \rho \le 1$:

$$\mathcal{E}_{W_k}[\mathbf{1}_{E^*}] - \mathcal{E}_{W_k}[\rho] \ge c(n,k) \|\rho\|_{L^1}^{2+\frac{k}{n}} \tilde{\delta}(\rho,\mathbf{1}_{E^*})^2 \quad \text{for } k \in (-n,\infty),$$

where E^* is a ball centered at origin with $|E^*| = \int \rho dx$.

- Note that it does **not** imply a stability estimate for *E_{W_k}[ρ^{*}]* − *E_{W_k}[ρ]*.
- Proof is built on a deep result by Christ '17: if *B* is a ball centered at the origin satisfying $\delta \leq \frac{|B|^{1/n}}{2\|\rho\|_1^{1/n}} \leq 1 \delta$,

$$\mathcal{E}_{\mathbf{1}_{B}}[\mathbf{1}_{E^*}] - \mathcal{E}_{\mathbf{1}_{B}}[\rho] \geq c(n,\delta) \|\rho\|_{1}^{2} \widetilde{\delta}(\rho,\mathbf{1}_{E^*})^{2}.$$

Questions

1. Can we obtain sharp stability estimates for $\mathcal{E}_W[\rho^*] - \mathcal{E}_W[\rho]$ for general densities ρ that are **not** characteristic functions?

2. Other than $\delta(\rho)$, are there any other natural ways to measure the asymmetry of ρ ?

Special case: For W = N, \mathcal{E}_N is *positive definite*: for all $f \in L^1 \cap L^\infty$ (can be sign-changing),

$$\mathcal{E}_{\mathcal{N}}[f] = \int f(-\Delta)^{-1} f dx = \|f\|_{\dot{H}^{-1}}^2 \ge 0.$$

Perhaps we can use $\mathcal{E}_{\mathcal{N}}$ itself to measure the asymmetry of ρ ?

Conjecture (Yan Guo)

Is it true that for all
$$\rho \in L^1_+(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$$
,
$$\mathcal{E}_{\mathcal{N}}[\rho^*] - \mathcal{E}_{\mathcal{N}}[\rho] \stackrel{?}{\geq} c(n) \inf_{a} \mathcal{E}_{\mathcal{N}}[T_a \rho - \rho^*]?$$

Here no normalization is required, as both sides scale in the same way.

A B > A B >

Our result: Sharp stability estimate for general densities

Assumptions on potential. Assume $W \in C^1(\mathbb{R}^n \setminus \{0\}) \cap L^1_{loc}(\mathbb{R}^n)$ is radially decreasing, and W(x) = w(r) satisfies

- w'(r) < 0 for all r > 0;
- There is c > 0 such that $w'(r) \leq -cr$ for $r \in (0, 1)$.

Example. The Riesz potentials W_k satisfies the assumptions for $k \in (-n, 2]$, but not for k > 2.

Theorem (Yan–Y. '20)

Let $\rho \in L^1_+(\mathbb{R}^n) \cap L^\infty(\mathbb{R}^n)$, with supp $\rho^* \subset B(0, \mathbb{R}_*)$. Then for $n \ge 2$ we have:

$$\mathcal{E}_{W}[\rho^{*}] - \mathcal{E}_{W}[\rho] \geq c(n, W, R_{*}) \|\rho\|_{L^{1}}^{2+\frac{2}{n}} \|\rho\|_{L^{\infty}}^{-\frac{2}{n}} \delta(\rho)^{2}.$$

In particular, for $W = W_k$ with $k \in (-n, 2]$, $c(n, W, R_*) = c(n)R_*^{k-2}$.

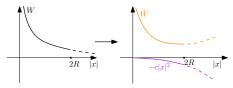
Note: For $W = W_k$, the power R_*^{k-2} in *c* is sharp. And when $\rho = 1_D$, it recovers the sharp estimates for characteristic functions.

Idea of proof: "take out" a small quadratic potential

- We assumed supp $\rho^* \subset B(0, R_*)$, but supp ρ can be unbounded.
- A rather standard step: reduce the proof to the case when $\operatorname{supp} \rho \subset B(0, R)$ with $R = 20R_*$.
- Key idea: "take out" a small quadratic potential from *W*, and decompose it as

$$W(x) = -c_{R,W}|x|^2 + \tilde{W}(x),$$

where $c_{R,W} > 0$, and \tilde{W} is radially decreasing in B(0, 2R).



• This leads to

 $\mathcal{E}_{W}[\rho^*] - \mathcal{E}_{W}[\rho] = -c_{R,W} \left(\mathcal{E}_{|x|^2}[\rho^*] - \mathcal{E}_{|x|^2}[\rho] \right) + \left(\mathcal{E}_{\tilde{W}}[\rho^*] - \mathcal{E}_{\tilde{W}}[\rho] \right).$

Idea of proof: magic of quadratic potentials

• Magic of interaction potential $|x|^2$: $\mathcal{E}_{|x|^2}$ is closely related to the second moment $M_2[\rho] := \int \rho |x|^2 dx$:

 $\mathcal{E}_{|x|^2}[\rho] = 2 \|\rho\|_{L^1} M_2[T_{x_0}\rho],$

where x_0 is the center of mass of ρ (so $T_{x_0}\rho$ has center of mass 0). • This directly yields

$$\begin{split} \mathcal{E}_{W}[\rho^*] - \mathcal{E}_{W}[\rho] &\geq c_{R,W} \left(\mathcal{E}_{|\times|^2}[\rho] - \mathcal{E}_{|\times|^2}[\rho^*] \right) \\ &\geq 2 c_{R,W} \|\rho\|_1 (M_2[\mathcal{T}_{x_0}\rho] - M_2[\rho^*]) \end{split}$$

Compared to *E_W*, it is much easier to deal with *M*₂ since it is linear in *ρ*: e.g. Lemou '16 proved *M*₂[*T*_{x0}*ρ*] − *M*₂[*ρ**] ≥ δ(*ρ*)².

■ ▶ ▲ ∃ ▶ ▲ ∃ ▶ ∃ ■ ∽ Q ∩

Stability with respect to 2-Wasserstein distance

- Question: Other than the L^1 difference between $T_a\rho$ and ρ^* , are there any other natural ways to measure the asymmetry of ρ ?
- Our second result is a stability estimate w.r.t 2-Wasserstein distance, which frequently arises in the study of interaction energy.

Theorem (Yan-Y. '20)

Let $\rho \in \mathcal{P}(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$, with supp $\rho \subset B(0, R)$, and center of mass x_0 . Then

$$\mathcal{E}_{W}[\rho^*] - \mathcal{E}_{W}[\rho] \geq c(W, R) W_2^2(T_{x_0}\rho, \rho^*).$$

In particular, if $W = W_k$ with $k \in (-n, 2]$, $c(W_k, R) = (2R)^{k-2}$.

- Here the power 2 on W_2 is sharp, so does the power k 2 on $c(W_k, R)$.
- Idea of proof: Due to the quadratic potential trick, only need to prove

$$M_2[\rho] - M_2[\rho^*] \ge W_2^2(\rho, \rho^*),$$

which is done by carefully building certain interpolation curve between ρ and ρ^* and track the the evolution of M_2 along the curve.

Guo's conjecture

• Back to Guo's conjecture: is it always true that

$$\mathcal{E}_{\mathcal{N}}[\rho^*] - \mathcal{E}_{\mathcal{N}}[\rho] \stackrel{?}{\geq} c(n) \inf_{a} \mathcal{E}_{\mathcal{N}}[T_a \rho - \rho^*]?$$

• A consequence of our Theorem 2:

$$\mathcal{E}_{\mathcal{N}}[\rho^*] - \mathcal{E}_{\mathcal{N}}[\rho] \geq c(n, R) W_2^2(T_{x_0}\rho, \rho^*).$$

• Remarkable result by Loeper '06 connecting W_2 distance with H^{-1} : For $\rho_1, \rho_2 \in \mathcal{P}_2(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$,

$$\|\rho_1 - \rho_2\|_{\dot{H}^{-1}(\mathbb{R}^n)}^2 \le \max\{\|\rho_1\|_{L^{\infty}}, \|\rho_2\|_{L^{\infty}}\}W_2^2(\rho_1, \rho_2).$$

• This directly leads to the following:

Theorem (Yan-Y. '20)

Let $\rho \in L_1^+(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$, with supp $\rho \subset B(0, R)$, and center of mass x_0 . Then

$$\mathcal{E}_{\mathcal{N}}[\rho^*] - \mathcal{E}_{\mathcal{N}}[\rho] \geq c(n) \frac{\|\rho\|_{L^1}}{\|\rho\|_{L^{\infty}} R^n} \mathcal{E}_{\mathcal{N}}[T_{x_0}\rho - \rho^*].$$

Question: Can we get rid of the fraction in the inequality

$$\mathcal{E}_{\mathcal{N}}[\rho^*] - \mathcal{E}_{\mathcal{N}}[\rho] \ge c(n) \frac{\|\rho\|_1}{\|\rho\|_{\infty} R^n} \inf_{a} \mathcal{E}_{\mathcal{N}}[T_a \rho - \rho^*]?$$

Answer: Impossible if $n \ge 3!$

For any $n \ge 3$, we can construct an example with $\|\rho\|_1 \sim 1$, $R \sim 1$, $\|\rho\|_{\infty} = \epsilon^{-(\frac{n}{2}+1)} \gg 1$, such that

$$0 < \mathcal{E}_{\mathcal{N}}[\rho^*] - \mathcal{E}_{\mathcal{N}}[\rho] < C(n) \epsilon^{\frac{n}{2}-1} \inf_{a} \mathcal{E}_{\mathcal{N}}[T_a \rho - \rho^*].$$

Therefore for $n \ge 3$, Guo's conjecture is correct if and only if we allow c(n) to also depend on $\frac{\|\rho\|_1}{\|\rho\|_{\infty} R^n}$.

Aggregation equation with (degenerate) diffusion

• In the rest of this talk, we consider

$$\rho_t = \underbrace{\Delta \rho^m}_{\text{local repulsion}} + \underbrace{\nabla \cdot (\rho \nabla (W * \rho))}_{\text{nonlocal interaction}} \quad \text{in } \mathbb{R}^d,$$

where $m \ge 1$, W is radially symmetric, and W(r) is increasing. (So W is an attractive interaction potential).

• The nonlinear diffusion term with m > 1 models the anti-overcrowding effect.

(Boi-Capasso-Morale '00, Topaz-Bertozzi-Lewis '06)

• The global well-posedness v.s. blow-up criteria has been well studied. (e.g. If W = N, then $m > 2 - \frac{2}{d}$ leads to global existence, whereas solution may blow-up if $m < 2 - \frac{2}{d}$.) (Blanchet-Carrillo-Laurencot '09, Bedrossian-Rodriguez-Bertozzi '11)

 In the cases that well-posedness is known, long time behavior of solution remains unclear.

• • = • • = •

Free energy functional

• The associated free energy functional plays an important role:

$$E[\rho] = \underbrace{\frac{1}{m-1} \int \rho^m dx}_{=:S[\rho] \text{ (entropy)}} + \underbrace{\frac{1}{2} \int \rho(\rho * W) dx}_{=:I[\rho] \text{ (interaction energy)}}$$

(When m = 1, the first term becomes $\int \rho \log \rho dx$).

• Formally taking time derivatives along a solution, we have

$$\frac{d}{dt}E[\rho] = -\int \rho \left|\nabla(\frac{m}{m-1}\rho^{m-1} + \rho * W)\right|^2 dx \le 0.$$

• Formally, the solution is a gradient flow of *E* in the metric space endowed by the 2-Wasserstein distance. (But rigorously justifying this requires certain convexity of *W*).

(Villani'03, Ambrosio-Gigli-Savare '08, Craig '17)

In order to understand the long-time dynamics, a key step is to identify the stationary solutions.

Questions

- For a given mass, does there exist a stationary solution?
- Are they necessarily radially symmetric (up to a translation)?
- If so, is it unique within the radial class?
 - Existence of stationary solution can be done by a concentration-compactness argument (Lions '84):
 - For power-law kernels $W = |x|^k/k$, there exists a global minimizer when m > 1 k/d.
 - For *m* > 2, there exists a global minimizer for any attractive kernel (Bedrossian '11)
 - For 1 ≤ m < 2, criteria of existence v.s. non-existence are given in Carrillo–Delgadino–Patacchini '18.

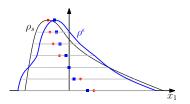
▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ● ● ●

Symmetric or not?

- By Riesz rearrangement inequality, a global minimizer of *E* must be radially decreasing. But must all stationary solutions be radial too?
- Using continuous Steiner symmetrization techniques, we gave a positive answer:

Theorem (Carrillo-Hittmeir-Volzone-Y. '19)

Let W be an attractive potential that is no more singular than Newtonian kernel. Any stationary solution $\rho_s \in L^1_+(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$ must be radially decreasing up to a translation.



Now that all stationary solutions are known to be radially decreasing (up to a translation), a natural question is whether there is uniqueness within this class.

Questions

For attractive kernels, for a given mass, must stationary solutions be unique?

Uniqueness results are only known in the following cases:

- W = N is the Newtonian potential in ℝ^d, and m is in the diffusion dominated regime. (Lieb-Yau '87)
- $W = \mathcal{N} * h$, where $h \ge 0$ is radially decreasing. (Kim–Yao '12)
- *W* is an attractive Riesz potential, and *m* is in the diffusion dominated regime. (Carrillo–Hoffmann–Mainini–Volzone '18, Calvez–Carrillo–Hoffmann '19)
- m = 2 and W is a C^2 attractive potential. (Burger–Di Francesco–Franek '13 and Kaib '17)

同下 イヨト イヨト ニヨ

Theorem (Delgadino–Yan–Y., '19)

Let $m \geq 2$ and $W \in C^1(\mathbb{R}^d \setminus \{0\})$ be a locally integrable attractive potential. Then for any given mass, there is at most one stationary solution in $L^1_+(\mathbb{R}^d) \cap L^\infty(\mathbb{R}^d)$ up to a translation.

Idea of proof (when the gradient flow structure is rigorous):

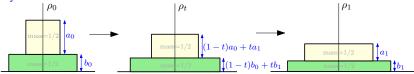
- If ρ_0 , ρ_1 are two radial stationary solutions with the same mass, we will construct a curve $\{\rho_t\}_{t=0}^1$ connecting them, such that the energy along this curve is strictly convex for $m \ge 2$.
- Therefore ρ_0 and ρ_1 can't be both critical points!

But how to find such an interpolation curve, if it exists at all? (Note: linear interpolation or W_2 geodesic do not work!)

The main idea of our proof is the construction of a novel interpolation curve between two radially decreasing ρ_0 , ρ_1 .

Construction of the interpolation curve

- Suppose ρ_0 , ρ_1 are two radially decreasing step functions having N horizontal layers with mass 1/N in each layer.
- ρ_t is constructed by deforming each layer so that its height changes linearly, and meanwhile adjust the width so that the mass in each layer remains constant.

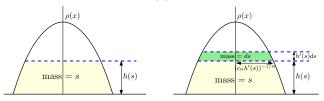


- Note that ρ_t is neither the linear interpolation between ρ_0 and ρ_1 , nor the geodesic in 2-Wasserstein metric.
- For two radially decreasing function, the interpolation can be seen as a $N \to \infty$ limit of the step-function case.

() <) <)
 () <)
 () <)
</p>

Construction of the interpolation curve

• For a radially decreasing function ρ with mass 1, define its "height function with respect to mass" h(s) as the left figure:



• $h: [0,1] \rightarrow [0, \|\rho\|_{\infty}]$ is increasing and convex in *s*. Also, ρ can be uniquely recovered from *h* (see the right figure):

$$\rho(x) = \int_0^1 \mathbb{1}_{B(0,(c_d h'(s))^{-1/d})}(x)h'(s)ds$$

• Let h_0, h_1 be the height function for ρ_0, ρ_1 . For $t \in (0, 1)$, let

$$h_t(s) = (1-t)h_0(s) + th_1(s),$$

and let ρ_t be determined by the height function h_t .

Convexity of energy

• For the entropy, an explicit computation gives

$$\begin{split} S[\rho] &= \int_{\mathbb{R}^d} \frac{1}{m-1} \rho^m dx \\ &= \int_0^{\max \rho} \frac{m}{m-1} h^{m-1} |\{\rho > h\}| dh \\ &= \int_0^1 \frac{m}{m-1} h(s)^{m-1} ds, \end{split}$$

thus

$$\frac{d^2}{dt^2}S[\rho_t] = m(m-2)\int_0^1 (h_1 - h_0)^2 h_t(s)^{m-3} ds,$$

which is non-negative if and only if $m \ge 2$.

• Key step: the interaction energy $I[\rho] = \int \rho(\rho * W) dx$ is strictly convex along the curve for all attractive potential W. (proof quite technical in multi-dimension)

ゆう くほう くほう 二日

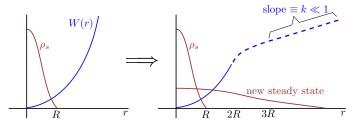
Non-uniqueness for 1 < m < 2

For all m < 2, our uniqueness proof fails. But is there really non-uniqueness in this regime?

Theorem (Delgadino–Yan–Y., '19)

Let 1 < m < 2. There exists a smooth attractive kernel W which gives an infinite sequence of radially decreasing stationary solutions with the same mass.

• It shows that the uniqueness result for $m \ge 2$ is indeed sharp.



• Idea: If we modify the tail of W and let the slope be $0 < k \ll 1$, it leads to a new stationary solution different from ρ_s .

Thank you for your attention!

白 と く ヨ と く ヨ と

э.