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The interaction energy

o For a nonnegative density p € L% (R") N L>(R"), consider its
interaction energy, given by

el = [ [ olpl)Wix = y)asy = [ ol W,
where W € CH(R"\ {0}) N L} (R") is a radially decreasing
interaction potential.

o Examples of W:

. . Calx[>7" n>2,
Newtonian potential: A =
—slog|x| n=2,
iy

which belongs to the broader class of Riesz potentials:

—% for k # 0,
—log |x| for k =0.
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Riesz rearrangement inequality

@ Riesz's rearrangement inequality:

f7g,h20=>/f(g*h)dxg/f*(g**h*)dx,

here f* is the radially decreasing rearrangement of f.
e A direct consequence (using that W is radially decreasing):

Ewlp] < Ewlp”].

u__n

o If W is strictly radially decreasing, Lieb '77 showed that “=" is
achieved iff p = p* up to a translation.

Are there any stability estimate of the form

Ewlp™l = Ewlp] = d(p, p*) = 07

Here d(p, p*) measures the “asymmetry” of p, and should =0 iff
p = T,p* under some translation T,.
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Stability estimates for Riesz potentials: current results

@ One natural way to measure the asymmetry of p:

N Tap =" e
8(p) = inf 2L EE)
ek 2[|pl[r ()

e For Newtonian potential A/ in R3, Burchard—Chambers '15 obtained:
Enl1p] — Enllp] = c|DIP*5(1p)*.
@ For Riesz potential Wy, Fusco—Pratelli '19, Burchard—Chambers '20:
Ew15] — Ew.[1p] > c(n, k)|D[?*5 §(1p)?  for k € (—n+1,0).

Proofs based on delicate geometrical + mass transportation
arguments; works for p = 1p, cannot be easily extended to general
densities.
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Stability estimates for Riesz potentials: current results

@ For Riesz potential Wy, Frank-Lieb "19 proved the following for

25...
Ew1e]— Ewlpl = c(n K)pll;s " 8(p, 16-)2  for k € (—n, ),

where £ is a ball centered at origin with |E*| = [ pdx.

o Note that it does not imply a stability estimate for Ew, [p*] — Ew, [p]-

@ Proof is built on a deep result by Christ '17: if B is a ball centered
at the origin satisfying § < <1-49,

1/n —=
IIH/

Erplle-] = Exalol = c(n, 8) llpllF 8(p, Le-)?.
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Questions and a conjecture

1. Can we obtain sharp stability estimates for Ew[p*] — Ew|[p] for general
densities p that are not characteristic functions?

2. Other than &(p), are there any other natural ways to measure the
asymmetry of p?

Special case: For W = A/, Ex is positive definite: for all f € L1 N L™
(can be sign-changing),

Exlf] = / F(—) Y = ]2, > 0.

Perhaps we can use £ itself to measure the asymmetry of p?

Conjecture (Yan Guo)

Is it true that for all p € L1 (R™) N L>=(R"),
?
Enlp"] - Enlpl = cln)inf ExlTop — o1

Here no normalization is required, as both sides scale in the same way.
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Our result: Sharp stability estimate for general densities

Assumptions on potential. Assume W € C}(R"\ {0}) N L} (R") is
radially decreasing, and W/(x) = w(r) satisfies
e w/(r) <O forall r>0;

@ There is ¢ > 0 such that w/(r) < —cr for r € (0, 1).

Example. The Riesz potentials W} satisfies the assumptions for
k € (—n, 2], but not for k > 2.

Theorem (Yan-Y. '20)

Let p € LL(R") N L>°(R"), with supp p* C B(0, R.). Then for n > 2 we
have: rz 2
Ewlo™] — Ewle] = c(m W, Rl H ol 6(0)2

In particular, for W = Wi with k € (—n,2], c(n, W,R,) = c(n)RE2.

Note: For W = W, the power R“=2 in c is sharp. And when p = 1p, it
recovers the sharp estimates for characteristic functions.
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Idea of proof: “take out” a small quadratic potential

o We assumed supp p* C B(0, R,), but supp p can be unbounded.

@ A rather standard step: reduce the proof to the case when
supp p C B(0, R) with R = 20R,.

o Key idea: “take out” a small quadratic potential from W, and
decompose it as
W(X) = 7CR$V\/‘X|2 + ,

where cg > 0, and W is radially decreasing in B(0,2R).

@ This leads to

Ewlp*] — Ewlpl = —crw (Explp*] — Explp]) + ( ).
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Idea of proof: magic of quadratic potentials

e Magic of interaction potential |x[?: &2 is closely related to the
second moment Ms[p] := [ p|x[*dx:

Explol = 2/l M2[ T p),

where xg is the center of mass of p (so T,,p has center of mass 0).

@ This directly yields

Ewlp*] = Ewlpl > crow (Ex2lp] — Ex2lp?])
= 2crw | pll1(M2[ T p] = M2[p])

@ Compared to £y, it is much easier to deal with M5 since it is linear
in p: e.g. Lemou '16 proved My[T,,p] — Ma[p*] = 6(p)>.
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Stability with respect to 2-Wasserstein distance

o Question: Other than the L! difference between T.p and p*, are
there any other natural ways to measure the asymmetry of p?

@ Our second result is a stability estimate w.r.t 2-Wasserstein distance,
which frequently arises in the study of interaction energy.

Theorem (Yan-Y. '20)

Let p € P(R") N L>=(R"), with supp p C B(0, R), and center of mass x.
Then

Ewlp’] — Ewlp] > c(W, R) W2(Toup, ).
In particular, if W = Wy with k € (—n, 2], c(Wk, R) = (2R)k—2.

@ Here the power 2 on W, is sharp, so does the power kK — 2 on
C( Wk, R)

@ ldea of proof: Due to the quadratic potential trick, only need to
prove

Malp] — Ma[p*] > W5 (p, p*),

which is done by carefully building certain interpolation curve
between p and p* and track the the evolution of M, along the curve.
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Guo's conjecture

@ Back to Guo's conjecture: is it always true that

? g
Exlp*] = Enlpl = e(n)inf Ex[Tap — p']?
@ A consequence of our Theorem 2:
Exlp™] = Exlpl = c(n, R) W3 (Tiop, p").

@ Remarkable result by Loeper '06 connecting W, distance with H~1:
For p1, p2 € P2(R™) N L>(R"),

1 = p2llfy gy < max{llpnllee, 2l } W5 (o1, p2)-

@ This directly leads to the following:

Theorem (Yan-Y. '20)

Let p € LT (R™) N L>=(R™), with supp p C B(0, R), and center of mass xg.
Then

extp') — el 2 cln) P EnlTup = o)
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Guo's conjecture

Question: Can we get rid of the fraction in the inequality

Enlr] - Exlil = o) At el T - 17

Answer: Impossible if n > 3!

For any n > 3, we can construct an example with |p|l; ~ 1, R ~ 1,
[pllse = €Y > 1, such that

0 < Enlp] —Enlpl < C(n) " HinfEn[Tap — p].

Therefore for n > 3, Guo's conjecture is correct if and only if we allow

llplly
c(n) to also depend on s
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Aggregation equation with (degenerate) diffusion

@ In the rest of this talk, we consider

pe = +V - (pV(Wxp)) inRY,
—_—

nonlocal interaction

where m > 1, W is radially symmetric, and W(r) is increasing.
(So W is an attractive interaction potential).

@ The nonlinear diffusion term with m > 1 models the
anti-overcrowding effect.

(Boi-Capasso-Morale '00, Topaz-Bertozzi-Lewis '06)

@ The global well-posedness v.s. blow-up criteria has been well
studied. (e.g. If W = N, then m > 2 — % leads to global existence,
whereas solution may blow-up if m <2 — 2.)
(Blanchet-Carrillo-Laurencot '09, Bedrossian-Rodriguez-Bertozzi '11)

@ In the cases that well-posedness is known, long time behavior of
solution remains unclear.
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Free energy functional

@ The associated free energy functional plays an important role:

Elo] = + 5 [ oloxwyax .
S

=:1[p] (interaction energy)

(When m = 1, the first term becomes [ plog pdx).

@ Formally taking time derivatives along a solution, we have

2
d m
—Elp] = — V(——pm ! W)| dx <0.
el = [ o[V e axs
e Formally, the solution is a gradient flow of E in the metric space
endowed by the 2-Wasserstein distance. (But rigorously justifying
this requires certain convexity of W).
(Villani’03, Ambrosio-Gigli-Savare '08, Craig '17)
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In order to understand the long-time dynamics, a key step is to identify
the stationary solutions.

@ For a given mass, does there exist a stationary solution?

@ Are they necessarily radially symmetric (up to a translation)?
@ If so, is it unique within the radial class?

o Existence of stationary solution can be done by a
concentration-compactness argument (Lions '84):
o For power-law kernels W = |x|¥/k, there exists a global minimizer
when m>1—k/d.
e For m > 2, there exists a global minimizer for any attractive kernel
(Bedrossian '11)
e For 1 < m < 2, criteria of existence v.s. non-existence are given in
Carrillo-Delgadino—Patacchini '18.
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Symmetric or not?

@ By Riesz rearrangement inequality, a of E must be
radially decreasing. But must all be radial too?

@ Using continuous Steiner symmetrization techniques, we gave a
positive answer:

Theorem (Carrillo-Hittmeir-Volzone-Y. '19)

Let W be an attractive potential that is no more singular than
Newtonian kernel. Any stationary solution ps € L% (RY) N L>(RY) must
be radially decreasing up to a translation.
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Now that all stationary solutions are known to be radially decreasing (up
to a translation), a natural question is whether there is uniqueness within

this class.

For attractive kernels, for a given mass, must stationary solutions be
unique?

Uniqueness results are only known in the following cases:
o W = A is the Newtonian potential in R?, and m is in the diffusion
dominated regime. (Lieb—Yau '87)
o W =N xh, where h > 0 is radially decreasing. (Kim-Yao '12)
@ W is an attractive Riesz potential, and m is in the diffusion
dominated regime. (Carrillo-Hoffmann—Mainini—Volzone '18,
Calvez—Carrillo-Hoffmann '19)

@ m=2and W is a C? attractive potential. (Burger-Di
Francesco—Franek '13 and Kaib '17)
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Uniqueness for m > 2

Theorem (Delgadino—Yan-Y., '19)

Let m > 2 and W € CY(R9\ {0}) be a locally integrable attractive
potential. Then for any given mass, there is at most one stationary
solution in L1 (R?) N L>°(R?) up to a translation.

Idea of proof (when the gradient flow structure is rigorous):

@ If po, p1 are two radial stationary solutions with the same mass, we
will construct a curve {p;}1_, connecting them, such that the
energy along this curve is strictly convex for m > 2.

@ Therefore pg and p; can't be both critical points!

But how to find such an interpolation curve, if it exists at all?
(Note: linear interpolation or W5 geodesic do not work!)

The main idea of our proof is the construction of a novel interpolation
curve between two radially decreasing pg, p1-
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Construction of the interpolation curve

@ Suppose pg, p1 are two radially decreasing step functions having N
horizontal layers with mass 1/N in each layer.

@ p; is constructed by deforming each layer so that its height changes
linearly, and meanwhile adjust the width so that the mass in each

layer remains constant.
Po Pt P1

ao — —
(1 —t)ao + tax Ial

|Ibo ] m, t)bo + thy | {61

o Note that p; is neither the linear interpolation between pg and p1,
nor the geodesic in 2-Wasserstein metric.

@ For two radially decreasing function, the interpolation can be seen as
a N — oo limit of the step-function case.
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Construction of the interpolation curve

@ For a radially decreasing function p with mass 1, define its “height
function with respect to mass” h(s) as the left figure:

plz)

@ h:[0,1] = [0, ||plleo] is increasing and convex in s. Also, p can be
uniquely recovered from h (see the right figure):

1
p(x) = /0 Lg(0,(cyr(s))-2/4) (X)h'(5)ds
o Let hg, hy be the height function for pg, p;. For t € (0,1), let
he(s) = (1 — t)ho(s) + thi(s),

and let p; be determined by the height function h;.
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Convexity of energy

@ For the entropy, an explicit computation gives

1
— = ,md
S[p] y — P ax

max p m
= ——hmt h}|dh
| S e >

1
m
" h m—ld
[ e s

th d? ! -
© o LaSld = mim - 2) [ (= hohu(s) s,
0

which is non-negative if and only if m > 2.

o Key step: the interaction energy /[p] = [ p(p * W)dx is strictly
convex along the curve for all attractive potential W. (proof quite
technical in multi-dimension)
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Non-uniqueness for 1 < m < 2

For all m < 2, our uniqueness proof fails. But is there really
non-uniqueness in this regime?

Theorem (Delgadino-Yan-Y., '19)

Let 1 < m < 2. There exists a smooth attractive kernel W which gives
an infinite sequence of radially decreasing stationary solutions with the
same mass.

@ It shows that the uniqueness result for m > 2 is indeed sharp.
slope =k < 1
W/'(T,) - -

Ps Ps -

new steady state

R r R 2R 3R r

o Idea: If we modify the tail of W and let the slope be 0 < k <« 1, it
leads to a new stationary solution different from p;.
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Thank you for your attention!
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