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Discrete Fourier Analysis I
Origin: Initiated by Kahn, Kalai, and Linial (1988).

Basic object of study: We study properties of functions on the
discrete cube: f:€2 — R, where

Q = {—1, 1}", using analytic tools.

Basic observation: Each such function has a unique expansion of

the form [ = Z f(S)xS, where x¢ = H i The
IS

N\

f(.S') are called Fourier(-Walsh) coefficients and the level of
N\

f(.S) is defined as |.5'].

SC[n]




Discrete Fourier Analysis 11

Meta question: What can we say about a function on
(2, given some information on its Fourier expansion?

Applications: Social choice, machine learning, metric
embedding, percolation, extremal combinatorics,
hardness of approximation, phase transitions, and
many more...




Discrete Fourier Analysis III

Basic tool: Noise and hypercontractivity
The noise operator transforms f into Tpf, defined as
T, f(x) = E[f(pr>], where N (x) is obtained by

randomizing each x; with prob. 1 — p.

Theorem [B70]: The noise operator is hypercontractive:

I, = /1

1+4p?2

Relation to Fourier levels: For any f,

T,( X 7S)xs) = ¥, o151 f(S)xs

and thus, noise suppresses the high level coefficients.




Influences

Definition: For f: € — {—1, 1}, theinfluence of the i‘th coordinate

on fis I| f| = Pr{f(x) # f(x &)l
The total influence of fis I[f] = ZE[ ]I,-[f]-

Natural interpretations:

l

I[f] is the edge boundary size of the set { x: f(x) = 1} in the discrete cube
(viewed as a graph).
I[f] is the derivative of the function p — ,up({x: oot 1}), where s, is

the p-biased measure on the discrete cube.

I [f] is the influence of a voter in an election.

Relation to Fourier levels: I[f 2 ‘S‘f(S)



Friedgut's Junta Theorem

Definition: A j-junta is a function that depends on at most
J coordinates.

Theorem [F98]: If f: €2 — {—1,1} and I[f] < k, then f
can be e-approximated by an exp(ck/e)-junta.

Meaning: Functions with a low total influence essentially
depend on a few coordinates.

Tight for the "address’ function.

Relation to Fourier levels [B99]: If most of the Fourier
weight of a Boolean f is on low levels, then fis
approximately a junta.




Low Degree Functions

Definition: A function f is of degree d if all its Fourier
coefficients are at level < d.

Alternatively, f is a multilinear polynomial of degree d.

Forid =k e 2 a.x; can be viewed as a weighted sum

of Rademacher random variables.

Meta questions: Assume f is low-degree.
What does this tell us on the structure of /?

What if, in addition, [ is bounded?

What if, in addition, f is Boolean —i.e., assumes only two
values?
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First Degree Functions |

Definition: A Rademacher random variable assumes each of
the values =1 with probability 7%.

A Rademacher sum is X = 2 a.x;, where { x;} are

independent Rademacher r.v.’s. Usually, Z ai2 -~ o

A first degree function is essentially a Rademacher sum.

Meta question: How do Rademacher sums look like?

Meta answer: In many aspects, like a Gaussian

1
Motivating example: Z x; = N, 1)
n




First Degree Functions Il

» Small coefficients - Berry-Esseen theorem:

. let X = z a;x; be as above, and F'= CDF(X) . Then:
Vx: | F(x) - ®(x)| 0.56 ) af
- Where @(x) is the CDF of a N(0, 1) random variable.

Consequently, if Vi: ‘ai‘ < m, then for any interval I,

|IPt[X € I]—Pr[N©O, 1) e I]| <£1.12m

« Tail for general coefficients [BD15]: Let X be as above.
Vt:Pr[ X >t] <3.17-Pr[N(,1) > 1]

Tight, for X = (x; + xz)/\/z and 1 = \/5 .

» Question: What happens “near the middle”?



Free ?..unch
This Way

S

How to Get a Free Lunch? I

« Excerpt from “Probabilistic Methods in
Combinatorics” course, Hebrew University, 2005:

3. (*) Show that there is a positive constant ¢ such that the following
holds. For any n reals ay,...,a, satisfying > af = 1, if (e1...,€,) is
chosen uniformly at random from {—1, 1}" then

Pr (‘Z €;0;

(**) If you can prove the above for ¢ = 1/2 your grade in this course
will be 100. (And I will buy you lunch.)

< l) > C.

» In other words: Let X be a Rademacher sum. Can we

prove that with prob. > 1/2, it lies within a single
standard deviation of its mean?



Basic Observations

. Chebyshev’s inequality: Pr“X — E[X]‘ > /10] < 1/47
Yields nothing for A = 1!

» Simple argument for a weaker bound:

Arrange the a@s in decreasing order and let £ be minimal s.t.

| Z_<k i d el diZy.

With probability %, the sign of Z a,;x; is opposite from that of

i>k
E a.Xx..
i<k uey

Hence, by Chebyshev’s inequality,

L5ls

1 5
Pr[|X| < 1] ZE—Pr[Zi>ka-x-> 1.5] z§>0.27

Small further improvements possible, but % is far...




Tomaszewski's Conjecture I

Origin of the problem: Denote ¢ = Pr[ ‘ X‘ < 1] . The

claim ¢ > 1/2 is a well-known conjecture, raised as a

guestion by Tomaszewski (1986) and conjectured by
Holzman and Kleitman (1992).

Previous results:
Holzman and Kleitman (1992): ¢ > 0. 375
Boppana and Holzman (2017): ¢ > 0.406
Boppana, Hendriks, and van Zuijlen (2020): ¢ > 0.428

Dvorak, van Hintum, and Tiba (2020): ¢ > 0 .46
Various results for specific types of Rademacher sums




Tomaszewski’s Conjecture II

- Why %2? A few examples (always assume the a.’s are positive and in
descending order):

a.x.
Zi>1 L5t

Inthiscase,Pr[|X| < 1] =Pr[|X| < 1] =4/

., a; +min > 1 (e.g., (x| + xz)/\/z )

’X= (xl+xZ+X3+X4)/2
Inthiscase,Pr[|X| < 1] =7/8andPr[|X| < 1] = 3/8.

‘X: (x1+x2+ +X9)/3
Inthiscase,Pr[|X| < 1] z0.82andPr[|X| < 1] ~ ().493 .




TR Ty
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How to Get a Free Lunch Il

!' Free Lunch
This Way

. =T
Ingredients

A simple lemma allowing removing variables
At some price, of course

Segment comparison theorem for Rademacher sums

A semi-inductive argument

Enhanced Berry-Esseen bound for Rademacher sums

A generalized Chebyshev inequality




Basic Lemma - Eliminate Variables

Lemma: Let X = 2 a,x; be a Rademacher sum. Denote

o =uai L= E a,and X' = E .2, D
i<m i=m+1 o

Tomaszewski’s conjecture is equivalent to:

N POIN T o D
J

where {T} rangesover l £ g, x ...t a

J m:

Special case: Substituting m = 1, one sees that Tomaszewski’s
conjecture is equivalent to

Pr/| X| <] 2 Pri| x| > 11, forallr > 0.




Segment Comparison for Rademacher Sums

Motivation: We want to compare probabilities of the form
PrlX € 1], Pr| X € J]|, forintervals 1, J.

Theorem: Let X be a Rademacher sum, and write
M = maxaq,. Forany A, B,C, D € R with

| A| < min(B,C), 2M < C— A, and
D—-C+min2M,D - B) < B— A,
we have Pr[X € [C, D)| < Pr[ X € |4, B)].

Proof: By a direct bijection, or via local tail inequalities for
Rademacher sums by Devroye and Lugosi (2008).




A Semi-Inductive Argument

Lemma: Tomaszewski’s statement for X = Z a;X;
I<n
with a; 4+ a, > 1 follows from the same statement for

¥ = Z bjxj for certain m < n and bj’s.
J<m

However, b; 4+ b, > 1 is not guaranteed.

Thus, (only) if we prove the conjecture in the case
a, + a, < 1 directly, we can complete proof by induction.

Proof-of-Lemma: Elimination of variables and a “stopping
time” argument




Enhanced Berry-Esseen for Rademacher Sums

Reminder: Berry-Esseen allows deducing that if Vi: ‘ ai‘ < m,
then for any interval /,
|IPr[ X € I]| =Pr[N@©O,1) e I]| <1.12m

As Pr [N(O, 1) e [—1, 1]] ~ (.68, this implies Tomaszewski’s

statement in the case maxa;, < 0. 16.

Can we push this bound further?

Result: Several improved Berry-Esseen type bounds for
Rademacher sums, which allow deducing Tomaszewski’s statement

in the range maxa, < 0.31.

Almost best possible, in view of X = (x; + ... + Xx¢)/3.

Proof uses a strategy of Prawitz (1972).



Generalized Chebyshev Inequality

- Proposition: Let X be a symmetric r.v. with Var[| X ] = 1, and
let ¢y, ..., C,, dy, ..., d, be such that

O=CO§61§.Scn=1=doﬁd1§.§dm
» Then

Y. (1 =e)pixe [o,en )iz 3 (2= a2, )Pr|x > d]

- Special case: For X as above,

Pr[X e [o. 1)] > Pr[X > \/El +Pr[X > \/§] +Pr[X > \/Z] +

- compared to
Pr[X e |0, 1)] (¢ = 1)Pr[X > 1]

- of original Chebyshev’s inequality.




Free Lunch
This Way

S

How to Get a Free Lunch III

Recipe [KK20]

Mix all above ingredients:

Cover maxa; < 0.31 with enhanced Berry-Esseen,

Cover a, + a, > | with the semi-inductive argument,

Divide cases in the middle to sub-cases and cover them
with combinations of variable removal, segment
comparison, and generalized Chebyshev Fag &

z‘ 4

Blend for a year or so...

and the free lunch is yours!
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An Anti-Concentration Lower Bound

Motivation: Above results assert that Pr| | X| < 1] cannot be too

small. What about Pr[|X| >1]?

Conjecture (Hitczenko and Kwapien, 1994): For any Rademacher sum X,

we have Pr[|X| > 1] > 32

Tight, for X = (x; + x, + ... + x6)/\/6

Best previously known bound (Oleszkiewicz, 1996): Pr[ | X| > 1] > 1/10

New result (Dvorak and Klein, 2021)

Pr

Pr

_|X|>1—

|X| 5%

> 1/8 (tight, for X = (x; + ... + x,)/2)

> 6/32




The General Problem

Definition: Let M(7) = supPr[ X > 7] be the supremum
on the tail probabilities of Rademacher sumes.

Example: Tomaszewski asserts M (1) = 1/4, and Hitczenko-
Kwapien assert M(—1) = 57/64.

Various previous results on M(7) can be improved by our
methods.

Goal: Understand how M(?) looks.

Natural conjecture (Edelman, 1991): For any 7, the
supremum M(?) is attained for some Binomial

Complies with all previous results and conjectures
Unfortunately, false! (Zhubr, 2012; Pinelis, 2015)




More Open Questions

Robust version: What can be said on Rademacher sums
whose tail probability is close to the extremum?

Our methods give a strong robust version of Tomaszewski

Signed sums of vectors: Let X' = Z v.x;, where v. € R? an

| R 4

Fort = 1, a lower bound of ¢ 2/4 can be derived from a result
of Ivanisvili and Tkocz (2019) on comparison of norms of low-

degree functions on £2.

2

‘Ul-‘ — ]. What can be said onPr[‘ ‘X" ‘ <t]?
2

2

Improves over the bound () . O3 proved by Veraar (2008)




d-Degree Functions
Definition: A d-degree Rademacher chaos is X = 2 |S|=d A¢Xyg,

where {X;} are independent Rademacher r.vs, and x ¢ = H X

SN
Usually, Z R O

A homogeneous d-degree function on £2 is essentially a d-degree
Rademacher chaos.

Meta question: Let M (1) = supPr[X > 7] be the supremum on the
tail probabilities of d-degree Rademacher chaoses. What can be said
on M (7)?

Example: Ben Tal, Nemirovsky and Roos (2001) conjectured that
M5(0) > 1/4. The best known result is M,(0) > 0.03, due to Veraar

(2008).




Local Tail Inequalities for d-Degree Functions

Backtod = 1: The key to our results on Rademacher sums was a local tail
inequality:
Theorem (Devroye and Lugosi, 2008): Let X = 2 a;x; be a Rademacher

sum. If Pr[X > t] = ¢, then
Pr[X> t+5] < €l2

for some 0 < c/\/log(l/e), ¢ a universal constant.

Conjecture: Let X = d <X ¢ be a d-degree Rademacher chaos. If
|S|=d St

t > 0and Pr[X > td] = ¢, then

Pr [X S (1 + 5)‘1 < el2

for some & < c/y/log(1/e), ¢ = c(d).




Target Application I

Definition: A linear threshold function (LTF) is 11 2 ax; > t}. A

-degree polynomial threshold function (PTF) is 1 { Z i agXg}.

Observation: If f = 1{ a.x. >t} is an LTF, then the i’th
(A

coordinate is influential on f if and only if

Application of our method [KK19]: For f as above, with E[f] =€,

max;( f) = ©(e - min(1, a \/ log(l)) .
] €

l

Proves (in a strong form) a conjecture of [MORS10]

Applications to learning, noise sensitivity, correlation,...



Target Application II

Our hope: Use conjectured local tail inequality for d

-degree Rademacher chaos, to study influences of d
-degree PTFs.

Potential application to testing and learning of PTFs.

Conjecture (Gotsman and Linial, 1994): Let f be a d
-degree PTF. Then I(f) 2 O(d\/?fi).

Potential complication: No simple relation between
influences and the probability of a Rademacher chaos to
lie in a segment.




Comparison of moments

uestion: Let X = a<Xcbe a d-degree Rademacher
5 25 s be 1 ot
chaos. What is the smallest C(d ) s.t.

11]] < ca@l|r]] 2

Known results:

Khinchine-Kahane asserts C(1) = \/5
Hypercontractive inequality implies C(d) < e
Ivanisvili-Tkocz (2019): C(d) < 9

Conjecture: C(d) < 297
Tight

Will improve the aforementioned bound e ~>/4 to 1/16.
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Bounded Low Degree Functions I

Question: Does any d-degree function essentially depend on
O (1) coordinates?

E R S0 AN i

i

Question: What if, in addition, the function is bounded?

Answer: Of course, no! Example: f =

Proposition: Any d-degree function on €2 can be ¢

-approximated by a junta on 2°“)/¢? coordinates.

Tightness example: The address function

f(x()a --°axd_17 Y(), e iy y2d—1> e yBin(x)



Bounded Low Degree Functions Il

Question: In the address function, only d coordinates have non-
negligible influence. Moreover, it can be computed by a decision

tree of depth d + 1 . Does the same hold for any bounded low-
degree function?

Conjecture (Aaronson and Ambainis, 2008): Let f be a d-degree
bounded function. Then:

There exists i, such that Ii(f) > poly(Var| f1/d).

[ can be e-approximated by a decision tree of depth at most

poly(d/Var [f] ).

Previous results: Conj. holds for Boolean functions. For bounded
functions, best known bd. exp( — d/Var(f)).




Potential Application to Quantum Computing

Consequence: If correct, conjecture would imply:

Conjecture (Folklore, 1999): Let O be a quantum

algorithm that makes 7 queries to a Boolean input.
There exists a deterministic classical algorithm that

makes poly(T, 1/€, 1/0) queries and approximates
(’s acceptance probability to within an additive error
eona l — o fraction of inputs.

Meaning: Any quantum algorithm can be simulated on

most inputs by a classical algorithm which is only
polynomially slower, in terms of query complexity.
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Almost Low-Degree Boolean Functions
Theorem (Gotsman-Linial, 1994): Any d-degree Boolean

(i.e., two-valued) function on © depends on at most d2¢~!
coordinates.

[CHS20] The exact bound is ©(29).

[KSO3] Same (up to e-approximation) holds for almost d
-degree Boolean functions.

Consequence: The Fourier weight of any such function is

d
concentrated on 29" coefficients.

Question: For the address function, all weight is

concentrated on O(29) coefficients. Maybe the same holds
for any almost d-degree function?




Fourier Entropy/Influence Conjecture I

Definition: The Fourier entropy of a function fon €2 is

E(f) ==Y J(S)logf(S)*

Conjecture (Friedgut and Kalai, 1996): For any f,
E(f) < cI(f)

Meaning: The Fourier weight is essentially concentrated on
2¢l7) < 20Wee)) chefficients.

Remarks:

Conjecture fails for bounded functions. Example:
Fx) = min( (X, + oo+ X)/n

Conjecture has far-reaching consequences in learning.

,1> ISEEH( 0 o e




Fourier Entropy/Influence Conjecture II
Conjecture: For any f, E(f) < cI(f)

Fourier concentrated on 2¢/(/) < 20Wdee)) efficients

A few selected results:
[Easy] E(f) = (O(d) for any d-degree function.

[BKOO] Same holds for almost d-degree functions.

[KMS12] If conj. true, it can be generalized to a biased
measure on £2; result tight for graph properties.

Recent breakthrough [KKLMS20]: Fourier weight is

concentrated on 2¢1(/)1021(f) coefficients!

Are we close to a solution?




Thanks for listening!




