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Discrete	Fourier	Analysis	I

• Origin: Initiated by Kahn, Kalai, and Linial (1988). 

• Basic object of study: We study properties of functions on the 
discrete cube: , where   

, using analytic tools. 

• Basic observation: Each such function has a unique expansion of 

the form  , where . The 

 are called Fourier(-Walsh) coefficients and the level of 

 is defined as . 

𝑓:Ω → 𝑅
Ω = {−1, 1}𝑛

𝑓 = ∑𝑆⊂[𝑛]
𝑓̂(𝑆)𝑥𝑆 𝑥𝑆 = ∏𝑖∈𝑆

𝑥𝑖

𝑓̂(𝑆)

𝑓̂(𝑆) |𝑆 |
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Discrete	Fourier	Analysis	II
• Meta question: What can we say about a function on 

, given some information on its Fourier expansion? 

• Applications: Social choice, machine learning, metric 
embedding, percolation, extremal combinatorics, 
hardness of approximation, phase transitions, and 
many more…

Ω
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Discrete	Fourier	Analysis	III
• Basic tool: Noise and hypercontractivity 

• The noise operator transforms  into , defined as 

, where  is obtained by 

randomizing each  with prob.    

• Theorem [B70]: The noise operator is hypercontractive: 

• Relation to Fourier levels: For any ,  

• and thus, noise suppresses the high level coefficients.

𝑓 𝑇𝜌𝑓

𝑇𝜌𝑓(𝑥) = 𝐸[𝑓(𝑁𝜌𝑥)] 𝑁𝜌(𝑥)

𝑥𝑖 1 − 𝜌 .

𝑇𝜌𝑓
2

≤ 𝑓
1+𝜌2

𝑓

𝑇𝜌(∑ 𝑓̂(𝑆)𝑥𝑆) = ∑ 𝜌 𝑆 𝑓̂(𝑆)𝑥𝑆
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Influences
• Definition: For  the influence of the i‘th coordinate 

on  is .  

• The total influence of  is . 

• Natural interpretations:  

•  is the influence of a voter in an election.

•  is the edge boundary size of the set  in the discrete cube 
(viewed as a graph).

•  is the derivative of the function , where  is 
the -biased measure on the discrete cube.

• Relation to Fourier levels:     

𝑓:Ω → {−1, 1},
𝑓 𝐼𝑖[𝑓] = Pr[𝑓(𝑥) ≠ 𝑓(𝑥 ⋅ 𝑒𝑖)]

𝑓 𝐼[𝑓] = ∑𝑖∈[𝑛]
𝐼𝑖[𝑓 ]

𝐼𝑖[𝑓]
𝐼[𝑓] {𝑥:𝑓(𝑥) = 1}

𝐼[𝑓] 𝑝 ↦ 𝜇𝑝({𝑥:𝑓(𝑥) = 1}) 𝜇𝑝

𝑝

𝐼[𝑓] = ∑𝑆
𝑆 𝑓̂(𝑆)2
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Friedgut’s	Junta	Theorem
• Definition: A -junta is a function that depends on at most 

 coordinates.  

• Theorem [F98]: If  and , then  

can be -approximated by an -junta. 

• Meaning: Functions with a low total influence essentially 
depend on a few coordinates. 
• Tight for the `address’ function. 

• Relation to Fourier levels [B99]: If most of the Fourier 
weight of a Boolean  is on low levels, then  is 
approximately a junta.

𝑗
𝑗

𝑓:Ω → {−1, 1} 𝐼[𝑓] ≤ 𝑘 𝑓
𝜖 exp(𝑐𝑘/𝜖)

𝑓 𝑓
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Low	Degree	Functions
• Definition: A function  is of degree  if all its Fourier 

coefficients are at level .  

• Alternatively,  is a multilinear polynomial of degree . 

• For   can be viewed as a weighted sum 

of Rademacher random variables.    

• Meta questions: Assume  is low-degree. 

• What does this tell us on the structure of ? 

• What if, in addition,  is bounded? 

• What if, in addition,  is Boolean – i.e., assumes only two 
values?

𝑓 𝑑
≤ 𝑑

𝑓 𝑑

𝑑 = 1, 𝑓 = ∑ 𝑎𝑖𝑥𝑖

𝑓
𝑓

𝑓
𝑓
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First	Degree	Functions	I
• Definition: A Rademacher random variable assumes each of 

the values  with probability .  

• A Rademacher sum is , where  are 

independent Rademacher r.v.’s. Usually,  

• A first degree function is essentially a Rademacher sum.   

• Meta question: How do Rademacher sums look like? 

• Meta answer: In many aspects, like a Gaussian 

•
Motivating example:  

±1 ½

𝑋 = ∑ 𝑎𝑖𝑥𝑖 {𝑥𝑖}

∑ 𝑎2
𝑖 = 1 .

∑
1

𝑛
𝑥𝑖 → 𝑁(0, 1)
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First	Degree	Functions	II
• Small coefficients - Berry-Esseen theorem:  

• Let  be as above, and  Then: 

 

• where  is the CDF of a  random variable. 

• Consequently, if , then for any interval ,  

 

• Tail for general coefficients [BD15]: Let  be as above.  
 

• Tight, for  and  

• Question: What happens “near the middle”?

𝑋 = ∑ 𝑎𝑖𝑥𝑖 𝐹 = 𝐶𝐷𝐹(𝑋) .

∀𝑥: 𝐹(𝑥) − Φ(𝑥) ≤ 0 . 56∑ 𝑎3
𝑖

Φ(𝑥) 𝑁(0, 1)

∀𝑖: 𝑎𝑖 ≤ 𝑚 𝐼
|Pr[𝑋 ∈ 𝐼 ] − Pr[𝑁(0, 1) ∈ 𝐼 ] | ≤ 1 . 12𝑚

𝑋
∀𝑡:Pr[𝑋 > 𝑡] ≤ 3 . 17 ⋅ Pr[𝑁(0, 1) > 𝑡]

𝑋 = (𝑥1 + 𝑥2)/ 2 𝑡 = 2 . 11



How	to	Get	a	Free	Lunch?		I	
• Excerpt from “Probabilistic Methods in 

Combinatorics” course, Hebrew University, 2005:  

• In other words: Let  be a Rademacher sum. Can we 
prove that with prob. , it lies within a single 
standard deviation of its mean?

𝑋
   ≥ 1/2
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Basic	Observations		

• Chebyshev’s inequality:   

• Yields nothing for ! 

• Simple argument for a weaker bound:   

• Arrange the ’s in decreasing order and let  be minimal s.t. 

  

• With probability ½, the sign of  is opposite from that of 

.  

• Hence, by Chebyshev’s inequality, 

• Small further improvements possible, but ½ is far…

Pr[ 𝑋 − 𝐸[𝑋] ≥ 𝜆𝜎] ≤ 1/𝜆2

𝜆 = 1

𝑎𝑖 𝑘

|∑𝑖≤𝑘
𝑎𝑖𝑥𝑖 | ≥ 1/2 .

∑𝑖>𝑘
𝑎𝑖𝑥𝑖

∑𝑖≤𝑘
𝑎𝑖𝑥𝑖

Pr[ 𝑋 ≤ 1] ≥
1
2

− Pr[∑𝑖>𝑘
𝑎𝑖𝑥𝑖 ≥ 1 . 5] ≥

5
18

> 0 . 27
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Tomaszewski’s	Conjecture	I	

• Origin of the problem: Denote  The 

claim  is a well-known conjecture, raised as a 
question by Tomaszewski (1986) and conjectured by 
Holzman and Kleitman (1992). 

• Previous results: 

• Holzman and Kleitman (1992):  

• Boppana and Holzman (2017):  

• Boppana, Hendriks, and van Zuijlen (2020):  

• Dvorak, van Hintum, and Tiba (2020):  

• Various results for specific types of Rademacher sums

𝑐 = Pr[ 𝑋 ≤ 1] .

𝑐 ≥ 1/2

𝑐 ≥ 0 . 375
𝑐 ≥ 0 . 406

𝑐 ≥ 0 . 428
𝑐 ≥ 0 . 46
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Tomaszewski’s	Conjecture	II	
• Why ½?   A few examples (always assume the ’s are positive and in 

descending order): 

•   (e.g.,  )

• In this case, . 

•

• In this case,  and  

•

• In this case,  and 

𝑎𝑖

𝑎1 + min ∑𝑖>1
𝑎𝑖𝑥𝑖 > 1 (𝑥1 + 𝑥2)/ 2

Pr[ 𝑋 ≤ 1] = Pr[ 𝑋 < 1] = 1/2

𝑋 = (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4)/2
Pr[ 𝑋 ≤ 1] = 7/8 Pr[ 𝑋 < 1] = 3/8 .

𝑋 = (𝑥1 + 𝑥2 + … + 𝑥9)/3
Pr[ 𝑋 ≤ 1] ≈ 0 . 82 Pr[ 𝑋 < 1] ≈ 0 . 493 .
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How	to	Get	a	Free	Lunch	II
Ingredients 

• A simple lemma allowing removing variables 
• At some price, of course 

• Segment comparison theorem for Rademacher sums 
• A semi-inductive argument 
• Enhanced Berry-Esseen bound for Rademacher sums 
• A generalized Chebyshev inequality

16



Basic	Lemma	–	Eliminate	Variables	

• Lemma: Let  be a Rademacher sum. Denote 

, and   

• Tomaszewski’s conjecture is equivalent to:

• where  ranges over .  

• Special case: Substituting , one sees that Tomaszewski’s 
conjecture is equivalent to  

, for all .

𝑋 = ∑ 𝑎𝑖𝑥𝑖

𝜎 = 1 − ∑𝑖≤𝑚
𝑎2

𝑖 𝑋′ = ∑
𝑛

𝑖=𝑚+1

𝑎𝑖

𝜎
𝑥𝑖 .

∑𝑗
Pr[𝑋′ > 𝑇𝑗] ≤ 2𝑚−2

{𝑇𝑗} 1 ± 𝑎1 ± … ± 𝑎𝑚

𝑚 = 1

Pr[ 𝑋 < 𝑡] ≥ Pr[ 𝑋 > 1/𝑡] 𝑡 > 0
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Segment	Comparison	for	Rademacher	Sums	

• Motivation: We want to compare probabilities of the form 
, for intervals . 

• Theorem: Let X be a Rademacher sum, and write 
. For any  with  

•   and

• , 

• we have .  

• Proof: By a direct bijection, or via local tail inequalities for 
Rademacher sums by Devroye and Lugosi (2008).     

Pr[𝑋 ∈ 𝐼],  Pr[𝑋 ∈ 𝐽 ] 𝐼, 𝐽

𝑀 = max𝑎𝑖 𝐴, 𝐵, 𝐶, 𝐷 ∈ 𝑅
𝐴 ≤ min(𝐵, 𝐶),  2𝑀 ≤ 𝐶 − 𝐴,

𝐷 − 𝐶 + min(2𝑀, 𝐷 − 𝐵) ≤ 𝐵 − 𝐴

Pr[𝑋 ∈ [𝐶, 𝐷)] ≤ Pr[ 𝑋 ∈ [𝐴, 𝐵)]
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A	Semi-Inductive	Argument	

• Lemma: Tomaszewski’s statement for  

with  follows from the same statement for 

 for certain  and ’s. 

• However,  is not guaranteed. 

• Thus, (only) if we prove the conjecture in the case 
 directly, we can complete proof by induction. 

• Proof-of-Lemma: Elimination of variables and a “stopping 
time” argument

𝑋 = ∑𝑖≤𝑛
𝑎𝑖𝑥𝑖

𝑎1 + 𝑎2 ≥ 1
𝑋′ = ∑𝑗≤𝑚

𝑏𝑗𝑥𝑗 𝑚 < 𝑛 𝑏𝑗

𝑏1 + 𝑏2 ≥ 1

𝑎1 + 𝑎2 < 1
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Enhanced	Berry-Esseen	for	Rademacher	Sums	

• Reminder: Berry-Esseen allows deducing that if , 

then for any interval ,  
 

• As , this implies Tomaszewski’s 

statement in the case .  

• Can we push this bound further? 

• Result: Several improved Berry-Esseen type bounds for 
Rademacher sums, which allow deducing Tomaszewski’s statement 
in the range . 

• Almost best possible, in view of .  

• Proof uses a strategy of Prawitz (1972).

∀𝑖: 𝑎𝑖 ≤ 𝑚
𝐼

|Pr[𝑋 ∈ 𝐼] − Pr[𝑁(0, 1) ∈ 𝐼] | ≤ 1 . 12𝑚

Pr[𝑁(0, 1) ∈ [−1, 1]] ≈ 0 . 68

max𝑎𝑖 ≤ 0 . 16

max𝑎𝑖 ≤ 0 . 31
𝑋 = (𝑥1 + … + 𝑥9)/3

20



Generalized	Chebyshev	Inequality	
• Proposition: Let  be a symmetric r.v. with , and 

let  be such that 

• Then 

• Special case: For  as above, 

• compared to  

• of original Chebyshev’s inequality.

𝑋 𝑉𝑎𝑟[𝑋] = 1
𝑐0, …, 𝑐𝑛, 𝑑0, …, 𝑑𝑛

0 = 𝑐0 ≤ 𝑐1 ≤ … ≤ 𝑐𝑛 = 1 = 𝑑0 ≤ 𝑑1 ≤ … ≤ 𝑑𝑚

∑𝑖 (1 − 𝑐2
𝑖 )Pr[𝑋 ∈ [𝑐𝑖, 𝑐𝑖+1)] ≥ ∑𝑗 (𝑑2

𝑗 − 𝑑2
𝑗−1)Pr[𝑋 ≥ 𝑑𝑗]

𝑋
Pr[𝑋 ∈ [0, 1)] ≥ Pr[𝑋 ≥ 2] + Pr[𝑋 ≥ 3] + Pr[𝑋 ≥ 4] + …

Pr[𝑋 ∈ [0, 1)] ≥ (t2 − 1)Pr[𝑋 ≥ 𝑡] 21



How	to	Get	a	Free	Lunch	III
Recipe [KK20] 

• Mix all above ingredients: 

• Cover  with enhanced Berry-Esseen, 

• Cover  with the semi-inductive argument, 

• Divide cases in the middle to sub-cases and cover them 
with combinations of variable removal, segment 
comparison, and generalized Chebyshev   

• Blend for a year or so…  
   and the free lunch is yours!

max𝑎𝑖 ≤ 0 . 31
𝑎1 + 𝑎2 ≥ 1
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An	Anti-Concentration	Lower	Bound
• Motivation: Above results assert that  cannot be too 

small. What about ?  

• Conjecture (Hitczenko and Kwapien, 1994): For any Rademacher sum , 

we have  . 

• Tight, for  

• Best previously known bound (Oleszkiewicz, 1996):  

• New result (Dvorak and Klein, 2021) 

•  (tight, for )

•     

Pr[ 𝑋 ≤ 1]

Pr[ 𝑋 ≥ 1]

𝑋

Pr[ 𝑋 ≥ 1] ≥ 7/32

𝑋 = (𝑥1 + 𝑥2 + … + 𝑥6)/ 6

Pr[ 𝑋 > 1] ≥ 1/10

Pr[ 𝑋 > 1] ≥ 1/8 𝑋 = (𝑥1 + … + 𝑥4)/2

Pr[ 𝑋 ≥ 1] ≥ 6/32

24



The	General	Problem
• Definition:  Let  be the supremum 

on the tail probabilities of Rademacher sums. 
• Example: Tomaszewski asserts , and Hitczenko-

Kwapien assert . 

• Various previous results on  can be improved by our 
methods.  

• Goal: Understand how  looks. 

• Natural conjecture (Edelman, 1991): For any , the 
supremum  is attained for some Binomial 

• Complies with all previous results and conjectures 

• Unfortunately, false!  (Zhubr, 2012; Pinelis, 2015)

𝑀(𝑡) = supPr[𝑋 > 𝑡]

𝑀(1) = 1/4
𝑀(−1) = 57/64

𝑀(𝑡)

𝑀(𝑡)
𝑡

𝑀(𝑡)

𝑋 = (𝑥1 + 𝑥2 + … + 𝑥𝑛)/ 𝑛
25



More	Open	Questions
• Robust version: What can be said on Rademacher sums 

whose tail probability is close to the extremum? 
• Our methods give a strong robust version of Tomaszewski  

• Signed sums of vectors: Let , where  and 

. What can be said on ?  

• For , a lower bound of  can be derived from a result 
of Ivanisvili and Tkocz (2019) on comparison of norms of low-
degree functions on .  

• Improves over the bound  proved by Veraar (2008)

𝑋′ = ∑ 𝑣𝑖𝑥𝑖 𝑣𝑖 ∈ 𝑅𝑑

∑ 𝑣𝑖

2

2
= 1 Pr[ 𝑋′ 

2
≤ 𝑡]

𝑡 = 1 𝑒−2/4

Ω
0 . 03 26



d-Degree	Functions
• Definition:  A -degree Rademacher chaos is , 

where  are independent Rademacher r.v.’s, and   

Usually,  

• A homogeneous -degree function on  is essentially a -degree 
Rademacher chaos.   

• Meta question: Let  be the supremum on the 
tail probabilities of -degree Rademacher chaoses. What can be said 
on ? 

• Example: Ben Tal, Nemirovsky and Roos (2001) conjectured that 
. The best known result is , due to Veraar 

(2008).

𝑑 𝑋 = ∑ 𝑆 =𝑑
𝑎𝑆𝑥𝑆

{𝑥𝑖} 𝑥𝑆 = ∏𝑖∈S
𝑥𝑖 .

∑ 𝑎2
𝑖 = 1 .

𝑑 Ω 𝑑

𝑀𝑑(𝑡) = supPr[𝑋 > 𝑡]
𝑑

𝑀𝑑(𝑡)

𝑀2(0) ≥ 1/4 𝑀2(0) ≥ 0 . 03
27



Local	Tail	Inequalities	for	d-Degree	Functions
• Back to :  The key to our results on Rademacher sums was a local tail 

inequality: 

• Theorem (Devroye and Lugosi, 2008): Let  be a Rademacher 

sum. If , then 
 

• for some ,  a universal constant. 

• Conjecture: Let  be a -degree Rademacher chaos. If 

 and  , then 

 

• for some , .

𝑑 = 1

𝑋 = ∑ 𝑎𝑖𝑥𝑖

Pr[𝑋 > 𝑡] = 𝜖
Pr[𝑋 > 𝑡 + 𝛿] ≤ 𝜖/2

𝛿 ≤ 𝑐/ log(1/𝜖)  𝑐

𝑋 = ∑ 𝑆 =𝑑
𝑎𝑆𝑥𝑆 𝑑

𝑡 ≥ 0 Pr[𝑋 > 𝑡𝑑] = 𝜖

Pr[𝑋 > (𝑡 + 𝛿)𝑑] ≤ 𝜖/2

𝛿 ≤ 𝑐/ log(1/𝜖)  𝑐 = 𝑐(𝑑)

28



Target	Application	I
• Definition:  A linear threshold function (LTF) is . A 

-degree polynomial threshold function (PTF) is .  

• Observation: If  is an LTF, then the ’th 

coordinate is influential on  if and only if 

• Application of our method [KK19]: For  as above, with   

 

• Proves (in a strong form) a conjecture of [MORS10] 
• Applications to learning, noise sensitivity, correlation,…

1{∑ 𝑎𝑖𝑥𝑖 > 𝑡} 𝑑

1{∑ 𝑆 ≤𝑑
𝑎𝑆𝑥𝑆}

𝑓 = 1{∑ 𝑎𝑖𝑥𝑖 > 𝑡} 𝑖
𝑓

∑𝑗≠𝑖
𝑎𝑗𝑥𝑗 ∈ (𝑡 − 𝑎𝑖, 𝑡 + 𝑎𝑖]

𝑓 𝐸[𝑓] = 𝜖,

max
𝑖

𝐼𝑖(𝑓) = Θ(𝜖 ⋅ min(1, 𝑎1√log(
1
𝜖

)) .
29



Target	Application	II
• Our hope:  Use conjectured local tail inequality for 

-degree Rademacher chaos, to study influences of 
-degree PTFs.  
• Potential application to testing and learning of PTFs. 

• Conjecture (Gotsman and Linial, 1994): Let  be a 

-degree PTF. Then .   

  
• Potential complication: No simple relation between 

influences and the probability of a Rademacher chaos to 
lie in a segment.

𝑑
𝑑

𝑓 𝑑
𝐼(𝑓) = 𝑂(𝑑 𝑛)

30



Comparison	of	moments
• Question: Let  be a -degree Rademacher 

chaos. What is the smallest  s.t. 

•  Known results: 

• Khinchine-Kahane asserts  

• Hypercontractive inequality implies  

• Ivanisvili-Tkocz (2019):    

• Conjecture:  
• Tight  

• Will improve the aforementioned bound   to  1/16.

𝑋 = ∑ 𝑆 =𝑑
𝑎𝑆𝑥𝑆 𝑑

𝐶(𝑑)

𝑓
2

≤ 𝐶(𝑑) 𝑓
1
?

𝐶(1) = 2

𝐶(𝑑) ≤ 𝑒𝑑

𝐶(𝑑) ≤ 𝑒𝑑/2

𝐶(𝑑) ≤ 2𝑑/2

𝑒−2/4

31
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Bounded	Low	Degree	Functions	I
• Question: Does any -degree function essentially depend on 

(1) coordinates?  

•
Answer: Of course, no! Example: . 

• Question: What if, in addition, the function is bounded?  

• Proposition:  Any -degree function on  can be 
-approximated by a junta on  coordinates.  
• Tightness example: The address function 

𝑑
𝑂𝑑

𝑓 =
𝑥1 + 𝑥2 + … + 𝑥𝑛

𝑛

𝑑 Ω 𝜖
2𝑂(𝑑)/𝜖2

𝑓(𝑥0, …, 𝑥𝑑−1, 𝑦0, …, 𝑦2𝑑−1) = 𝑦𝐵𝑖𝑛(𝑥)

33



Bounded	Low	Degree	Functions	II
• Question: In the address function, only  coordinates have  non-

negligible influence. Moreover, it can be computed by a decision 
tree of depth . Does the same hold for any bounded low-
degree function?  

• Conjecture (Aaronson and Ambainis, 2008): Let  be a -degree 
bounded function. Then: 

• There exists , such that . 

•  can be -approximated by a decision tree of depth at most 
.

• Previous results: Conj. holds for Boolean functions. For bounded 
functions, best known bd. .

𝑑

𝑑 + 1 

𝑓 𝑑

𝑖 𝐼𝑖(𝑓) ≥ 𝑝𝑜𝑙𝑦(𝑉𝑎𝑟[𝑓 ]/𝑑)

𝑓 𝜖
𝑝𝑜𝑙𝑦(𝑑/𝑉𝑎𝑟[𝑓])

exp( − 𝑑/𝑉𝑎𝑟(𝑓 )) 34



Potential	Application	to	Quantum	Computing
• Consequence: If correct, conjecture would imply:  

• Conjecture (Folklore, 1999): Let  be a quantum 
algorithm that makes  queries to a Boolean input. 
There exists a deterministic classical algorithm that 
makes   queries and approximates 

’s acceptance probability to within an additive error 
 on a  fraction of inputs.  
• Meaning: Any quantum algorithm can be simulated on 

most inputs by a classical algorithm which is only 
polynomially slower, in terms of query complexity.

𝑄
𝑇

𝑝𝑜𝑙𝑦(𝑇, 1/𝜖, 1/𝛿)
𝑄
𝜖 1 − 𝛿
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Almost	Low-Degree	Boolean	Functions
• Theorem (Gotsman-Linial, 1994): Any -degree Boolean 

(i.e., two-valued) function on  depends on at most  
coordinates.  

• [CHS20] The exact bound is . 

• [KS03] Same (up to -approximation) holds for almost 
-degree Boolean functions. 

• Consequence: The Fourier weight of any such function is 

concentrated on  coefficients.   

• Question: For the address function, all weight is 
concentrated on  coefficients. Maybe the same holds 
for any almost -degree function?

𝑑
Ω 𝑑2𝑑−1

Θ(2𝑑)
𝜖 𝑑

2𝑂(2𝑑)

𝑂(2𝑑)
𝑑
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Fourier	Entropy/Influence	Conjecture		I
• Definition: The Fourier entropy of a function  on   is 

.   

• Conjecture (Friedgut and Kalai, 1996): For any ,  

• Meaning: The Fourier weight is essentially concentrated on 
 coefficients. 

• Remarks: 
• Conjecture fails for bounded functions. Example: 

 

• Conjecture has far-reaching consequences in learning. 

𝑓 Ω

𝐸(𝑓) = − ∑ 𝑓̂(𝑆)2log𝑓̂(𝑆)2

𝑓
𝐸(𝑓) ≤ 𝑐𝐼(𝑓)

2𝑐𝐼(𝑓) ≤ 2𝑂(deg𝑓)

𝑓(𝑥) = min( | (𝑥1 + … + 𝑥𝑛)/ 𝑛 , 1) ⋅ 𝑠𝑖𝑔𝑛(𝑥1 + … + 𝑥𝑛) 
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Fourier	Entropy/Influence	Conjecture		II
• Conjecture: For any ,  

• Fourier concentrated on  coefficients 

• A few selected results: 

• [Easy]   for any -degree function. 

• [BK00] Same holds for almost -degree functions. 

• [KMS12] If conj. true, it can be generalized to a biased 
measure on ; result tight for graph properties.  

• Recent breakthrough [KKLMS20]: Fourier weight is 

concentrated on  coefficients! 
• Are we close to a solution?

𝑓  𝐸(𝑓) ≤ 𝑐𝐼(𝑓)
2𝑐𝐼(𝑓) ≤ 2𝑂(deg𝑓)

𝐸(𝑓) = 𝑂(𝑑) 𝑑

𝑑

Ω

2𝑐𝐼(𝑓)log𝐼(𝑓)
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Thanks	for	listening!
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