The Mysteries of Low-Degree Boolean Functions

Nathan Keller
Bar Ilan University

Based on joint work with Ohad Klein

UCLA-Caltech Analysis Seminar - April 2021

Contents

- Discrete Fourier analysis
- Motivation, basic ideas and theorems
- General low degree functions
- First degree functions: Proof of Tomaszewski's conjecture
- Open problems and d-degree functions
- Bounded low degree functions
- The Aaronson-Ambainis conjecture
- [Time pemitting]: (Almost) low degree Boolean functions
- The Fourier entropy/influence conjecture

Discrete Fourier Analysis I

- Origin: Initiated by Kahn, Kalai, and Linial (1988).
- Basic object of study: We study properties of functions on the discrete cube: $f: \Omega \rightarrow R$, where
$\Omega=\{-1,1\}^{n}$, using analytic tools.
- Basic observation: Each such function has a unique expansion of the form $f=\sum_{S \subset[n]} \hat{f}(S) x_{S}$, where $x_{S}=\prod_{i \in S} x_{i}$. The $\hat{f}(S)$ are called Fourier(-Walsh) coefficients and the level of $\hat{f}(S)$ is defined as $|S|$.

Discrete Fourier Analysis II

- Meta question: What can we say about a function on Ω, given some information on its Fourier expansion?
- Applications: Social choice, machine learning, metric embedding, percolation, extremal combinatorics, hardness of approximation, phase transitions, and many more...

Discrete Fourier Analysis III

- Basic tool: Noise and hypercontractivity
- The noise operator transforms f into $T_{\rho} f$, defined as

$$
T_{\rho} f(x)=E\left[f\left(N_{\rho} x\right)\right], \text { where } N_{\rho}(x) \text { is obtained by }
$$ randomizing each x_{i} with prob. $1-\rho$.

- Theorem [B70]: The noise operator is hypercontractive:

$$
\left\|T_{\rho} f\right\|_{2} \leq\|f\|_{1+\rho^{2}}
$$

- Relation to Fourier levels: For any f,
$T_{\rho}\left(\sum \hat{f}(S) x_{S}\right)=\sum \rho^{|s|} \hat{f}(S) x_{S}$
- and thus, noise suppresses the high level coefficients.

Influences

- Definition: For $f: \Omega \rightarrow\{-1,1\}$, the influence of the i 'th coordinate on f is $I_{i}[f]=\operatorname{Pr}\left[f(x) \neq f\left(x \cdot e_{i}\right)\right]$.
The total influence of f is $I[f]=\sum_{i \in[n]} I_{i}[f]$.
- Natural interpretations:
- $I_{i}[f]$ is the influence of a voter in an election.
- I $[f]$ is the edge boundary size of the set $\{x: f(x)=1\}$ in the discrete cube (viewed as a graph).
- I $[f]$ is the derivative of the function $p \mapsto \mu_{p}(\{x: f(x)=1\})$, where μ_{p} is the p-biased measure on the discrete cube.
-Relation to Fourier levels: $I[f]=\sum_{S}|S| \hat{f}(S)^{2}$

Friedgut's Junta Theorem

- Definition: A j-junta is a function that depends on at most j coordinates.
- Theorem [F98]: If $f: \Omega \rightarrow\{-1,1\}$ and $I[f] \leq k$, then f can be ϵ-approximated by an $\exp (c k / \epsilon)$-junta.
- Meaning: Functions with a low total influence essentially depend on a few coordinates.
Tight for the 'address' function.
- Relation to Fourier levels [B99]: If most of the Fourier weight of a Boolean f is on low levels, then f is approximately a junta.

Low Degree Functions

- Definition: A function f is of degree d if all its Fourier coefficients are at level $\leq d$.
- Alternatively, f is a multilinear polynomial of degree d.
- For $d=1, f=\sum a_{i} x_{i}$ can be viewed as a weighted sum of Rademacher random variables.
- Meta questions: Assume f is low-degree.
- What does this tell us on the structure of f ?
- What if, in addition, f is bounded?
- What if, in addition, f is Boolean - i.e., assumes only two values?

Contents

- Discrete Fourier analysis
- Motivation, basic ideas and theorems
- General low degree functions
- First degree functions: Proof of Tomaszewski's conjecture
- Open problems and d-degree functions
- Bounded low degree functions
- The Aaronson-Ambainis conjecture
- (Almost) low degree Boolean functions
- The Fourier entropy/influence conjecture

First Degree Functions I

- Definition: A Rademacher random variable assumes each of the values ± 1 with probability $1 / 2$.
- A Rademacher sum is $X=\sum a_{i} x_{i}$, where $\left\{x_{i}\right\}$ are independent Rademacher r.v.'s. Usually, $\sum a_{i}^{2}=1$.
- A first degree function is essentially a Rademacher sum.
- Meta question: How do Rademacher sums look like?
- Meta answer: In many aspects, like a Gaussian

Motivating example: $\sum \frac{1}{\sqrt{n}} x_{i} \rightarrow N(0,1)$

First Degree Functions II

- Small coefficients - Berry-Esseen theorem:
- Let $X=\sum a_{i} x_{i}$ be as above, and $F=C D F(X)$. Then:
$\forall x:|F(x)-\Phi(x)| \leq 0.56 \sum a_{i}^{3}$
- where $\Phi(x)$ is the CDF of a $N(0,1)$ random variable.

Consequently, if $\forall i:\left|a_{i}\right| \leq m$, then for any interval I,

$$
|\operatorname{Pr}[X \in I]-\operatorname{Pr}[N(0,1) \in I]| \leq 1.12 m
$$

- Tail for general coefficients [BD15]: Let X be as above. $\forall t: \operatorname{Pr}[X>t] \leq 3.17 \cdot \operatorname{Pr}[N(0,1)>t]$

Tight, for $X=\left(x_{1}+x_{2}\right) / \sqrt{2}$ and $t=\sqrt{2}$.

- Question: What happens "near the middle"?

How to Get a Free Lunch? I

- Excerpt from "Probabilistic Methods in Combinatorics" course, Hebrew University, 2005:

3. $\left({ }^{*}\right)$ Show that there is a positive constant c such that the following holds. For any n reals a_{1}, \ldots, a_{n} satisfying $\sum a_{i}^{2}=1$, if $\left(\epsilon_{1} \ldots, \epsilon_{n}\right)$ is chosen uniformly at random from $\{-1,1\}^{n}$ then

$$
\operatorname{Pr}\left(\left|\sum \epsilon_{i} a_{i}\right| \leq 1\right) \geq c .
$$

${ }^{(*)}$) If you can prove the above for $c=1 / 2$ your grade in this course will be 100 . (And I will buy you lunch.)

- In other words: Let X be a Rademacher sum. Can we prove that with prob. $\geq 1 / 2$, it lies within a single standard deviation of its mean?

Basic Observations

-Chebyshev's inequality: $\operatorname{Pr}[|X-E[X]| \geq \lambda \sigma] \leq 1 / \lambda^{2}$

- Yields nothing for $\lambda=1$!
- Simple argument for a weaker bound:
- Arrange the a_{i} 's in decreasing order and let k be minimal s.t.
$\left|\sum_{i \leq k} a_{i} x_{i}\right| \geq 1 / 2$.
- With probability $\frac{1 / 2}{2}$, the sign of $\sum_{i>k} a_{i} x_{i}$ is opposite from that of

$$
\sum_{i \leq k} a_{i} x_{i}
$$

- Hence, by Chebyshev's inequality,
$\operatorname{Pr}[|X| \leq 1] \geq \frac{1}{2}-\operatorname{Pr}\left[\sum_{i>k} a_{i} x_{i} \geq 1.5\right] \geq \frac{5}{18}>0.27$
- Small further improvements possible, but $1 / 2$ is far...

Tomaszewski's Conjecture I

- Origin of the problem: Denote $c=\operatorname{Pr}[|X| \leq 1]$. The claim $c \geq 1 / 2$ is a well-known conjecture, raised as a question by Tomaszewski (1986) and conjectured by Holzman and Kleitman (1992).
- Previous results:
-Holzman and Kleitman (1992): $c \geq 0.375$
- Boppana and Holzman (2017): $c \geq 0.406$
- Boppana, Hendriks, and van Zuijlen (2020): $c \geq 0.428$
- Dvorak, van Hintum, and Tiba (2020): $c \geq 0.46$
- Various results for specific types of Rademacher sums

Tomaszewski's Conjecture II

-Why $1 / 2$? A few examples (always assume the a_{i} 's are positive and in descending order):
. $a_{1}+\min \left|\sum_{i>1} a_{i} x_{i}\right|>1$ (e.g., $\left(x_{1}+x_{2}\right) / \sqrt{2}$)
In this case, $\operatorname{Pr}[|X| \leq 1]=\operatorname{Pr}[|X|<1]=1 / 2$.

- $X=\left(x_{1}+x_{2}+x_{3}+x_{4}\right) / 2$
. In this case, $\operatorname{Pr}[|X| \leq 1]=7 / 8$ and $\operatorname{Pr}[|X|<1]=3 / 8$.
- $X=\left(x_{1}+x_{2}+\ldots+x_{9}\right) / 3$

In this case, $\operatorname{Pr}[|X| \leq 1] \approx 0.82$ and $\operatorname{Pr}[|X|<1] \approx 0.493$.

How to Get a Free Lunch II

Ingredients

- A simple lemma allowing removing variables
- At some price, of course
- Segment comparison theorem for Rademacher sums
- A semi-inductive argument
- Enhanced Berry-Esseen bound for Rademacher sums
- A generalized Chebyshev inequality

Basic Lemma - Eliminate Variables

- Lemma: Let $X=\sum a_{i} x_{i}$ be a Rademacher sum. Denote

$$
\sigma=\sqrt{1-\sum_{i \leq m} a_{i}^{2}} \text {, and } X^{\prime}=\sum_{i=m+1}^{n} \frac{a_{i}}{\sigma} x_{i}
$$

- Tomaszewski's conjecture is equivalent to:
$\sum_{j} \operatorname{Pr}\left[X^{\prime}>T_{j}\right] \leq 2^{m-2}$
- where $\left\{T_{j}\right\}$ ranges over $1 \pm a_{1} \pm \ldots \pm a_{m}$.
- Special case: Substituting $m=1$, one sees that Tomaszewski's conjecture is equivalent to

$$
\operatorname{Pr}[|X|<t] \geq \operatorname{Pr}[|X|>1 / t], \text { for all } t>0
$$

Segment Comparison for Rademacher Sums

- Motivation: We want to compare probabilities of the form $\operatorname{Pr}[X \in I], \operatorname{Pr}[X \in J]$, for intervals I, J.
- Theorem: Let X be a Rademacher sum, and write $M=\max a_{i}$. For any $A, B, C, D \in R$ with
- $|A| \leq \min (B, C), 2 M \leq C-A$, and
- $D-C+\min (2 M, D-B) \leq B-A$,
- we have $\operatorname{Pr}[X \in[C, D)] \leq \operatorname{Pr}[X \in[A, B)]$.
- Proof: By a direct bijection, or via local tail inequalities for Rademacher sums by Devroye and Lugosi (2008).

A Semi-Inductive Argument

- Lemma: Tomaszewski's statement for $X=\sum_{i \leq n} a_{i} x_{i}$
with $a_{1}+a_{2} \geq 1$ follows from the same statement for $X^{\prime}=\sum_{j \leq m} b_{j} x_{j}$ for certain $m<n$ and b_{j} 's.
- However, $b_{1}+b_{2} \geq 1$ is not guaranteed.
- Thus, (only) if we prove the conjecture in the case $a_{1}+a_{2}<1$ directly, we can complete proof by induction.
- Proof-of-Lemma: Elimination of variables and a "stopping time" argument

Enhanced Berry-Esseen for Rademacher Sums

- Reminder: Berry-Esseen allows deducing that if $\forall i:\left|a_{i}\right| \leq m$, then for any interval I,
$|\operatorname{Pr}[X \in I]-\operatorname{Pr}[N(0,1) \in I]| \leq 1.12 m$
As $\operatorname{Pr}[N(0,1) \in[-1,1]] \approx 0.68$, this implies Tomaszewski's statement in the case max $a_{i} \leq 0.16$.
-Can we push this bound further?
- Result: Several improved Berry-Esseen type bounds for Rademacher sums, which allow deducing Tomaszewski's statement in the range $\max a_{i} \leq 0.31$.
- Almost best possible, in view of $X=\left(x_{1}+\ldots+x_{9}\right) / 3$.
- Proof uses a strategy of Prawitz (1972).

Generalized Chebyshev Inequality

- Proposition: Let X be a symmetric r.v. with $\operatorname{Var}[X]=1$, and let $c_{0}, \ldots, c_{n}, d_{0}, \ldots, d_{n}$ be such that
$0=c_{0} \leq c_{1} \leq \ldots \leq c_{n}=1=d_{0} \leq d_{1} \leq \ldots \leq d_{m}$
- Then
$\sum_{i}\left(1-c_{i}^{2}\right) \operatorname{Pr}\left[X \in\left[c_{i}, c_{i+1}\right)\right] \geq \sum_{j}\left(d_{j}^{2}-d_{j-1}^{2}\right) \operatorname{Pr}\left[X \geq d_{j}\right]$
- Special case: For X as above,
$\operatorname{Pr}[X \in[0,1)] \geq \operatorname{Pr}[x \geq \sqrt{2}]+\operatorname{Pr}[x \geq \sqrt{3}]+\operatorname{Pr}[x \geq \sqrt{4}]+\ldots$
- compared to
$\operatorname{Pr}[X \in[0,1)] \geq\left(t^{2}-1\right) \operatorname{Pr}[X \geq t]$
- of original Chebyshev's inequality.

How to Get a Free Lunch III

Recipe [KK20]

- Mix all above ingredients:
- Cover $\max a_{i} \leq 0.31$ with enhanced Berry-Esseen,
- Cover $a_{1}+a_{2} \geq 1$ with the semi-inductive argument,
- Divide cases in the middle to sub-cases and cover them with combinations of variable removal, segment comparison, and generalized Chebyshev
- Blend for a year or so... and the free lunch is yours!

Contents

- Discrete Fourier analysis
- Motivation, basic ideas and theorems
- General low degree functions
- First degree functions: Proof of Tomaszewski's conjecture
- Open problems and d-degree functions
- Bounded low degree functions
- The Aaronson-Ambainis conjecture
- (Almost) low degree Boolean functions
- The Fourier entropy/influence conjecture

An Anti-Concentration Lower Bound

- Motivation: Above results assert that $\operatorname{Pr}[|X| \leq 1]$ cannot be too small. What about $\operatorname{Pr}[|X| \geq 1]$?
- Conjecture (Hitczenko and Kwapien, 1994): For any Rademacher sum X, we have $\operatorname{Pr}[|X| \geq 1] \geq 7 / 32$.
- Tight, for $X=\left(x_{1}+x_{2}+\ldots+x_{6}\right) / \sqrt{6}$
. Best previously known bound (Oleszkiewicz, 1996): $\operatorname{Pr}[|X|>1] \geq 1 / 10$
- New result (Dvorak and Klein, 2021)

$$
\begin{aligned}
& \left.\operatorname{Pr}[|X|>1] \geq 1 / 8 \text { (tight, for } X=\left(x_{1}+\ldots+x_{4}\right) / 2\right) \\
& \operatorname{Pr}[|X| \geq 1] \geq 6 / 32
\end{aligned}
$$

The General Problem

- Definition: Let $M(t)=\sup \operatorname{Pr}[X>t]$ be the supremum on the tail probabilities of Rademacher sums.
- Example: Tomaszewski asserts $M(1)=1 / 4$, and HitczenkoKwapien assert $M(-1)=57 / 64$.
- Various previous results on $M(t)$ can be improved by our methods.
- Goal: Understand how $M(t)$ looks.
- Natural conjecture (Edelman, 1991): For any t, the supremum $M(t)$ is attained for some Binomial
$X=\left(x_{1}+x_{2}+\ldots+x_{n}\right) / \sqrt{n}$
- Complies with all previous results and conjectures
- Unfortunately, false! (Zhubr, 2012; Pinelis, 2015)

More Open Questions

- Robust version: What can be said on Rademacher sums whose tail probability is close to the extremum?
- Our methods give a strong robust version of Tomaszewski
- Signed sums of vectors: Let $X^{\prime}=\sum v_{i} x_{i}$, where $v_{i} \in R^{d}$ and $\sum\left|\left|v_{i}\right|\right|_{2}^{2}=1$. What can be said on $\operatorname{Pr}\left[\left|\left|X^{\prime}\right|\right|_{2} \leq t\right] ?$
- For $t=1$, a lower bound of $e^{-2} / 4$ can be derived from a result of Ivanisvili and Tkocz (2019) on comparison of norms of lowdegree functions on Ω.
- Improves over the bound 0.03 proved by Veraar (2008)

d-Degree Functions

Definition: A d-degree Rademacher chaos is $X=\sum_{|S|=d} a_{S} x_{S}$,
where $\left\{x_{i}\right\}$ are independent Rademacher r.v.'s, and $x_{S}=\prod_{i \in S} x_{i}$. Usually, $\sum a_{i}^{2}=1$.

- A homogeneous d-degree function on Ω is essentially a d-degree Rademacher chaos.
- Meta question: Let $M_{d}(t)=\sup \operatorname{Pr}[X>t]$ be the supremum on the tail probabilities of d-degree Rademacher chaoses. What can be said on $M_{d}(t)$?
- Example: Ben Tal, Nemirovsky and Roos (2001) conjectured that $M_{2}(0) \geq 1 / 4$. The best known result is $M_{2}(0) \geq 0.03$, due to Veraar (2008).

Local Tail Inequalities for d-Degree Functions

- Back to $d=1$: The key to our results on Rademacher sums was a local tail inequality:
Theorem (Devroye and Lugosi, 2008): Let $X=\sum a_{i} x_{i}$ be a Rademacher sum. If $\operatorname{Pr}[X>t]=\epsilon$, then
$\operatorname{Pr}[X>t+\delta] \leq \epsilon / 2$
- for some $\delta \leq c / \sqrt{\log (1 / \epsilon)}, c$ a universal constant.

Conjecture: Let $X=\sum_{|S|=d} a_{S} x_{S}$ be a d-degree Rademacher chaos. If $t \geq 0$ and $\operatorname{Pr}\left[X>t^{d}\right]=\epsilon$, then
$\operatorname{Pr}\left[X>(t+\delta)^{d}\right] \leq \epsilon / 2$
for some $\delta \leq c / \sqrt{\log (1 / \epsilon)}, c=c(d)$.

Target Application I

- Definition: A linear threshold function (LTF) is $1\left\{\sum a_{i} x_{i}>t\right\}$. A d -degree polynomial threshold function (PTF) is $1\left\{\sum_{|S| \leq d} a_{S} x_{S}\right\}$.
- Observation: If $f=1\left\{\sum a_{i} x_{i}>t\right\}$ is an LTF, then the i^{\prime} th coordinate is influential on f if and only if
$\sum_{j \neq i} a_{j} x_{j} \in\left(t-a_{i}, t+a_{i}\right]$
- Application of our method [KK19]: For f as above, with $E[f]=\epsilon$, $\max _{i} I_{i}(f)=\Theta\left(\epsilon \cdot \min \left(1, a_{1} \sqrt{\left.\log \left(\frac{1}{\epsilon}\right)\right) .}\right.\right.$
- Proves (in a strong form) a conjecture of [MORS10]
- Applications to learning, noise sensitivity, correlation,...

Target Application II

- Our hope: Use conjectured local tail inequality for d -degree Rademacher chaos, to study influences of d -degree PTFs.
- Potential application to testing and learning of PTFs.
- Conjecture (Gotsman and Linial, 1994): Let f be a d -degree PTF. Then $I(f)=O(d \sqrt{n})$.
- Potential complication: No simple relation between influences and the probability of a Rademacher chaos to lie in a segment.

Comparison of moments

.Question: Let $X=\sum_{|S|=d} a_{S} x_{S}$ be a d-degree Rademacher chaos. What is the smallest $C(d)$ s.t.
$\left.\left||f|_{2} \leq C(d)\right||f|\right|_{1}$?

- Known results:
- Khinchine-Kahane asserts $C(1)=\sqrt{2}$
- Hypercontractive inequality implies $C(d) \leq e^{d}$
- Ivanisvili-Tkocz (2019): $C(d) \leq e^{d / 2}$
- Conjecture: $C(d) \leq 2^{d / 2}$
- Tight
- Will improve the aforementioned bound $e^{-2} / 4$ to $1 / 16$.

Contents

- Discrete Fourier analysis
- Motivation, basic ideas and theorems
- General low degree functions
- First degree functions: Proof of Tomaszewski's conjecture
- Open problems and d-degree functions
- Bounded low degree functions
- The Aaronson-Ambainis conjecture
- (Almost) low degree Boolean functions
- The Fourier entropy/influence conjecture

Bounded Low Degree Functions I

- Question: Does any d-degree function essentially depend on $O_{d}(1)$ coordinates?
Answer: Of course, no! Example: $f=\frac{x_{1}+x_{2}+\ldots+x_{n}}{\sqrt{n}}$.
- Question: What if, in addition, the function is bounded?
- Proposition: Any d-degree function on Ω can be ϵ -approximated by a junta on $2^{O(d)} / \epsilon^{2}$ coordinates.
- Tightness example: The address function
$f\left(x_{0}, \ldots, x_{d-1}, y_{0}, \ldots, y_{2_{d-1}}\right)=y_{B i n(x)}$

Bounded Low Degree Functions II

- Question: In the address function, only d coordinates have nonnegligible influence. Moreover, it can be computed by a decision tree of depth $d+1$. Does the same hold for any bounded lowdegree function?
- Conjecture (Aaronson and Ambainis, 2008): Let f be a d-degree bounded function. Then:
- There exists i, such that $I_{i}(f) \geq \operatorname{poly}(\operatorname{Var}[f] / d)$.
- f can be ϵ-approximated by a decision tree of depth at most $\operatorname{poly}(d / \operatorname{Var}[f])$.
- Previous results: Conj. holds for Boolean functions. For bounded functions, best known bd. $\exp (-d / \operatorname{Var}(f))$.

Potential Application to Quantum Computing

- Consequence: If correct, conjecture would imply:
- Conjecture (Folklore, 1999): Let Q be a quantum algorithm that makes T queries to a Boolean input. There exists a deterministic classical algorithm that makes poly $(T, 1 / \epsilon, 1 / \delta)$ queries and approximates Q's acceptance probability to within an additive error ϵ on a $1-\delta$ fraction of inputs.
- Meaning: Any quantum algorithm can be simulated on most inputs by a classical algorithm which is only polynomially slower, in terms of query complexity.

Contents

- Discrete Fourier analysis
- Motivation, basic ideas and theorems
- General low degree functions
- First degree functions: Proof of Tomaszewski's conjecture
- Open problems and d-degree functions
- Bounded low degree functions
- The Aaronson-Ambainis conjecture
- (Almost) low degree Boolean functions

Almost Low-Degree Boolean Functions

- Theorem (Gotsman-Linial, 1994): Any d-degree Boolean (i.e., two-valued) function on Ω depends on at most $d 2^{d-1}$ coordinates.
- [CHS20] The exact bound is $\Theta\left(2^{d}\right)$.
- [KS03] Same (up to ϵ-approximation) holds for almost d -degree Boolean functions.
- Consequence: The Fourier weight of any such function is concentrated on $2^{O\left(2^{d}\right)}$ coefficients.
- Question: For the address function, all weight is concentrated on $O\left(2^{d}\right)$ coefficients. Maybe the same holds for any almost d-degree function?

Fourier Entropy/Influence Conjecture I

- Definition: The Fourier entropy of a function f on Ω is

$$
E(f)=-\sum \hat{f}(S)^{2} \log \hat{f}(S)^{2}
$$

- Conjecture (Friedgut and Kalai, 1996): For any f,
$E(f) \leq c I(f)$
- Meaning: The Fourier weight is essentially concentrated on $2^{c I(f)} \leq 2^{O(\operatorname{deg} f)}$ coefficients.
- Remarks:
- Conjecture fails for bounded functions. Example:

$$
f(x)=\min \left(\left|\left(x_{1}+\ldots+x_{n}\right) / \sqrt{n}\right|, 1\right) \cdot \operatorname{sign}\left(x_{1}+\ldots+x_{n}\right)
$$

- Conjecture has far-reaching consequences in learning.

Fourier Entropy/Influence Conjecture II

- Conjecture: For any $f, E(f) \leq c I(f)$
- Fourier concentrated on $2^{c I(f)} \leq 2^{O(\operatorname{deg} f)}$ coefficients
- A few selected results:
- [Easy] $E(f)=O(d)$ for any d-degree function.
- [BKOO] Same holds for almost d-degree functions.
- [KMS12] If conj. true, it can be generalized to a biased measure on Ω; result tight for graph properties.
- Recent breakthrough [KKLMS20]: Fourier weight is concentrated on $2^{c I(f)} \log I(f)$ coefficients!
-Are we close to a solution?

Thanks for listening!

