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» Main theme: “Law of small numbers”
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Zeros of polynomials: classical results

v

Zeros of Fekete polynomials: what we know
» Some new results and ideas of the proof

» Speculations and more results



Question
Given a polynomial Py(z) = Zgzo apz" with a, € C, what can we
say about the set
{z € C|Pn(z) = 0}7



Question
Given a polynomial Py(z) = ZnN:O apz" with a, € C, what can we
say about the set

{z € C|Pn(z) = 0}7

Figure: Roots of polynomials with +1 coefficients of degree < 24 ( by S.
Derbyshire)



Angular distribution of the roots

Given an arc l on the unit circle, let N(/; P) denote the number of
zeros o = rje' % of P such that e lies on the arc /.

Theorem (Erdés-Turan)

We have the estimate

D(P) := mlax’N(/; py_ M N) < ﬂ//vh(P)

27
h(P) = 1/ log™ |P(ef )|d9 log™ x = max(0, log x).
0

27T ‘/|30‘



Real zeros and Littlewood polynomials

Littlewood polynomials: coefficients are &=1. Then

Nr(P) < +/NlogN.
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Real zeros and Littlewood polynomials

Littlewood polynomials: coefficients are &=1. Then

Ngr(P) < v/Nlog N.

» Borwein-Erdélyi-Kés: Ng(P) < v/N (sharp)

> Littlewood-Offord: except for o(2V*+1) choices of Littlewood
polynomials, expected Ng(P) < log? N

» Kac-Rice: random polynomials with Gaussian coefficients,
expected Ng(P) ~ %Iog N

» Erdgs-Offord: generalization to random Littlewood
polynomials, Ng(P) ~ %Iog N



Fekete polynomials and L- functions
>

sl = pz_:l (g) t".

n=0

» For D a positive fundamental discriminant, set

D—1
D
Fp(t) := — )"
o0=3 (7)
L(s, xp)l(s) = /O+°° Fo(e™)(1—e 1Py "1xs=1dx,  R(s) >0

where L(s,xp) = 2,51 XE;(S").




Fekete polynomials and L- functions
>

sl = pz_:l (;) t".

n=0
» For D a positive fundamental discriminant, set

o= 3 (2)

n=0

L(S,XD)F(S) = /O+Oo FD(e_X)(]_*e_‘D|X)—1XS—1dX’ 3%(5) >0

where L(s,xp) = 2,51 XE;(S").

Fekete: If Fp(t) has no real zeros t with 0 < t < 1, then
L(s, (2)) has no real zeros s > 0 (Siegel zero).
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Pélya, 1919: there are infinitely many discriminants D, such
that Fp has zero in (0, 1).

Chowla, 1936: Fp(s) has no real zeros for sufficiently large
D.



» Polya, 1919: there are infinitely many discriminants D, such
that Fp has zero in (0, 1).

» Chowla, 1936: Fp(s) has no real zeros for sufficiently large
D.

» Heilbronn, 1937: there are infinitely many discriminants D,
such that Fp has zero in (0, 1).



Roots of the Fekete polynomial Fy3.

«O> «F»r «E»

« E>»
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Complex zeros of Fekete polynomials

Let &, = €2™/P and Hy(z) = z7P/2F,(z), thenfor L < k < p—1:
>

(p—1)/2
Hp(&p) =2 Z < )cos (2a — p)rt)



Complex zeros of Fekete polynomials

Let &, = €2™/P and Hy(z) = z7P/2F,(z), thenfor L < k < p—1:

>
(p—1)/2
Hp(ép) =2 Z < )cos (2a — p)rt)
g k
Ha(Ek) = (~1)* (p) Hol&)
>
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> Up to p < 500, those are all zeros! One finds more for
p = 661.

Theorem (Conrey-Granville-Poonen-Soundararajan, 1999)
There exists a constant 1/2 < kg < 1 such that, as p — +00

#{z:|z| =1 and Fy(z) = 0} ~ Kop.

> 0.500667 < ko < 0.500883



Problem [Littlewood]: Given finite A € Z, let

fa(z) = cos(kz).

keA

What is min|A|:,, NR(fA)?

Littlewood: “Perhaps n — 1 or not much less.”



Problem [Littlewood]: Given finite A € Z, let

fa(z) = cos(kz).

keA

What is min|A|:,, NR(fA)?
Littlewood: “Perhaps n — 1 or not much less.”

Borwein-Erdélyi-Fergusson-Lockhart,
Juckevicius-Sahasrabudhe:

(log loglog n)!~¢ <« ‘min Nr(fa) < n*3(log n)'/3
=n



Real zeros of Fekete polynomials

Conjecture (Baker-Montgomery,
Conrey-Granville-Poonen-Soundararajan)
“It seems likely that for almost all D € N, the corresponding Fp(t)
has

= loglog D

iz

zeros in (0,1)



Real zeros of Fekete polynomials

Conjecture (Baker-Montgomery,
Conrey-Granville-Poonen-Soundararajan)
“It seems likely that for almost all D € N, the corresponding Fp(t)
has

= loglog D

iz

zeros in (0,1)

Theorem (Baker-Montgomery, 92)

For almost all discriminants, the number of zeros of Fp(t) in (0,1)
goes to +oo with D.



Lower bound

Let F(x) be the set of fundamental discriminants |D| < x
Theorem (K-L-M, 20+)

For almost all fundamental discriminants D € F(x), Fp(x) has

log log D
log log log log D

zeros in (0,1).
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What about upper bounds?

Reminder (Erdélyi, survey): the number of real zeros of Fp is

< /D.

Theorem (K-L-M, 20+)

» Under GRH, for > N'~¢ fundamental discriminants D < N,
Fp(z) has O(DY/3) real zeros.



What about upper bounds?

Reminder (Erdélyi, survey): the number of real zeros of Fp is

< /D.

Theorem (K-L-M, 20+)
» Under GRH, for > N'~¢ fundamental discriminants D < N,
Fp(z) has O(DY3) real zeros.

> For > N?/3 fundamental discriminants D < N, Fp(z) has
O(DY*) real zeros.
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Lower bound: ideas of the proof
Lp(s)I(s) (t/g(s) + II__/(S)> = /000 Fp(e™)(1—e ) 1x*"1(log x)dx.

Karlin: S(f, —o0,+00) > S(L,0,+00), where L(s) is the Laplace
transform of f.



Plan of the proof
> Statistical study of the functions (Lj,/Lp)(s) for s close to
1/2.

> Approximation by a short sum over primes for almost all
discriminants.

» Define a random model for this sum using random variables
indexed by primes.

» Convergence to a suitable normal variable.

» Good choice of points s; making random variables at these
points “independent” and creating change of signs.

» Discrepancy between random model and the approximation.



Approximation of —L'/L(s, xp): First part

Let 1/2 + (loglog x)?/logx < o <1, and put A= 12/(c — 1/2)
and y = (log|D|)*. Then for all fundamental discriminants |D| < x
except for a set £(x) with cardinality

1E(x)| < x2=1/2/5(log x)7?,

we have

~exo) =3 M

)

1
—n/y -
xp(nje™"+ 0 (|og|o|> ’

where A(D) = log p is D = p* and 0 otherwise.
Proof uses standard zero density estimate, contour shifting.

n=1



Approximation of —L'/L(s, xp): Short sum over primes

Proposition (K-L-M, 20+)
Let s =1/2+1/g(x) where
(loglog x)? < g(x) < v/log x/(log log x)?. Put
u(s) = exp <Iogi§2(x)> , and v(s) = exp (g(x) loglog g(x)).

Then for almost all fundamental discriminants |D| < x we have

/

5(5’X0)+ 3 xp(p)logp

< 2g(x).
L S
u(s)<p<v(s) P

High moments estimates via the large sieve inequality.



Random model for the short sum over primes

Consider a sequence of independent random variables {X(p)},.
indexed by the primes, and taking values in {0, —1, 1} such that

p S|

P(X(p) = -1) =P(X(p) =1) =



Random model for the short sum over primes

Consider a sequence of independent random variables {X(p)},.
indexed by the primes, and taking values in {0, —1, 1} such that

JP(X(p) = 0) = ——.

P(X(p) = ~1) = B(X(p) = 1) = =]

p
2(p+1)
The random variable

X(S) — Z X(p) |ng

s
u(s)<p<v(s)

converges to a centered normal distribution with variance

PPp+1)  (25—12

3 (logp)’p  (140(1))

u(s)<p<v(s)



Choice of the points

Take R := B:ggjﬂ for R/5 <r <R and let

1

TR

(logx)™0 <'s, —1/2 < (log x)~%/® for all R/5 < r < R.



Choice of the points

Take R := B:ggﬂ for R/5 <r <R and let

1
T2 Tlog

(logx)™0 <'s, —1/2 < (log x)~%/® for all R/5 < r < R.

We also define u, and v, as before. This gives a sequence of points
srsuchthat 2 < u, < v, < upp1 < vey1p < xforall R/5<r <R.



Choice of the points

Take R := B:ggiﬂ for R/5 <r <R and let

1
T2 Tlog

(logx)™0 <'s, —1/2 < (log x)~%/® for all R/5 < r < R.

We also define u, and v, as before. This gives a sequence of points
srsuchthat 2 < u, < v, < upp1 < vey1p < xforall R/5<r <R.

Goal: Show that there are many sign changes at these points.



“Large values” in both sides

We consider for s = (sg/s, - - -, Sr) the probabilistic random vector

LR(S,X):< 3 X(pgs'f’gp> :
R/5<r<R

P (X(s,) > 4(log r)*) =P (X(s;) < —4(log r)*")

1 (e o]
=(1+ 0(1))\/5/3 e dx > 0.

Moreover, distinct points s, produce non overlapping intervals of
primes that do not see each other ="Independence’.



Discrepancy estimate
Define the vector of Dirichlet polynomials:

xp(p Iogp
L S XD < Z ) .
ur<p<vr R/5<r<R

We want to compare the distribution of Lg(s,xp) and Lg(s, X).



Discrepancy estimate
Define the vector of Dirichlet polynomials:

xp(p Iogp
L S XD < Z ) .
ur<p<vr R/5<r<R

We want to compare the distribution of Lg(s,xp) and Lg(s, X).
Define the discrepancy:

D(s) = sup |}_ T [{D € F(x): Lr(s,xp) € R}| — P(Lr(s,X) € R)
where the supremum is taken over all rectangular boxes (possibly

unbounded) R c RR with sides parallel to coordinates axes.
p



Discrepancy estimate

Define the vector of Dirichlet polynomials:

xp(p Iogp
L S XD < Z ) .
ur<p<vr R/5<r<R

We want to compare the distribution of Lg(s,xp) and Lg(s, X).
Define the discrepancy:

D(s) = sup |}_ T [{D € F(x): Lr(s,xp) € R}| — P(Lr(s,X) € R)

where the supremum is taken over all rectangular boxes (possibly
unbounded) R C RR with sides parallel to coordinates axes.
Using techniques (Fourier analytic) of Lamzouri-Lester-Radziwitt :
Proposition

We have
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Summary

Sequence of points s, such that X(s,) changes sign with “size” with
high probability

4

I
For almost all D this is true for Z M

Sr
ur<p<vy P

4



Summary

Sequence of points s, such that X(s,) changes sign with “size” with
high probability

4

I
For almost all D this is true for Z M

Sr
ur<p<vy P

4

There are a lot of sign changes for L)y(s:)/Lp(s:).



Jensen's formula and concentric circles

max|,_»=r |P(2)]
|P(20)|

# {zeros of P inside C,} < <Iog ) /log(R/r).

Cr

/)



Jensen's formula and concentric circles

max|,_»=r |P(2)]
|P(20)]

) C NN

# {zeros of P inside C,} < <Iog ) /log(R/r).

A,

Figure: Covering the line



Covering with two circles

Let: x, = exp(—1/x?) and x5 = exp(—1/x7) for
O<a<l/2<pg<l.

Idea: For many discriminants D, Fp is not too small simultaneously
at x, and xg.
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Covering with two circles

Let: x, = exp(—1/x?) and x5 = exp(—1/x7) for
O<a<l/2<pg<l.

Idea: For many discriminants D, Fp is not too small simultaneously
at x, and xg.

Cr

a
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Simultaneous “size” and mixed moments
Consider £(x) the set of discrimants such that

Fp(xa), Fo(xg) > 1/x%.

We show that £(x) is relatively “large” by bounding the mixed
moments:

Si(an, 02, ) = Y Fp(%ay)Fp(Xas) - - FD(Xay);
DeF(x)
and

So(on, 0,y aw) = Y (Fp(Xa:)FD(Xaz) - - - Fo (X))
DeF(x)



Simultaneous “size” and mixed moments
Consider £(x) the set of discrimants such that

Fp(xa), Fo(xg) > 1/x%.

We show that £(x) is relatively “large” by bounding the mixed
moments:

Si(an, 02, ) = Y Fp(%ay)Fp(Xas) - - FD(Xay);

DeF(x)
and
So(on, 0,y aw) = Y (Fp(Xa:)FD(Xaz) - - - Fo (X))
DeF(x)
Proposition

Under the conditions 1/2 < oo+ 3 < 1 the following inequality
holds Sy (a, B) > x1+/2+8/2|og x and Sy(a, B) < x1/?H2a+2B+e,

In practice we use more circles and higher mixed moments.



Fekete polynomials with no real zeros

More general Heuristic [Sarnak]: there exist infinitely many D
such that Fp does not vanish on (0, 1).

Sarnak in his letter to Bachmat: GL, analogues of Fekete
polynomials and asks about the existence of such polynomials
without zeros on subintervals of (0, 1).



Fekete polynomials with no real zeros

More general Heuristic [Sarnak]: there exist infinitely many D
such that Fp does not vanish on (0, 1).

Sarnak in his letter to Bachmat: GL, analogues of Fekete
polynomials and asks about the existence of such polynomials
without zeros on subintervals of (0, 1).

:sz_: <‘3> —(1-t) 3 Su(D)tk,

k<D-1

where Si(D) =>4 (%) c



Polynomials with no real zeros in some interval

Proposition (K-L-M, 20+)
There exists at least x1=°(Y) fundamental discriminants 0 < D < x
such that Fp(z) has no zeros in the interval

1

01— —X—
(log x)Vete

Borwein-Erdélyi-Kés: Any Littlewood polynomial has at most
O(log x) zeros in (0,1 — 1/ log x).




