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Question
Given a polynomial PN(z) =

∑N
n=0 anz

n with an ∈ C, what can we
say about the set

{z ∈ C|PN(z) = 0}?

Figure: Roots of polynomials with ±1 coefficients of degree ≤ 24 ( by S.
Derbyshire)
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Angular distribution of the roots

Given an arc I on the unit circle, let N(I ;P) denote the number of
zeros αj = rje

iθj of P such that e iθj lies on the arc I .

Theorem (Erdős-Turan)
We have the estimate

D(P) := max
I

∣∣∣N(I ;P)− |I |
2π

N
∣∣∣ ≤ 8

π

√
Nh(P),

where

h(P) =
1
2π

∫ 2π

0
log+

|P(e iθ)|√
|a0|

dθ, log+ x = max(0, log x).



Real zeros and Littlewood polynomials

Littlewood polynomials: coefficients are ±1. Then

NR(P)�
√

N logN.

I Borwein-Erdélyi-Kós: NR(P)�
√
N (sharp)

I Littlewood-Offord: except for o(2N+1) choices of Littlewood
polynomials, expected NR(P)� log2 N

I Kac-Rice: random polynomials with Gaussian coefficients,
expected NR(P) ∼ 2

π logN

I Erdős-Offord: generalization to random Littlewood
polynomials, NR(P) ∼ 2

π logN
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Fekete polynomials and L- functions
I

Fp(t) :=

p−1∑
n=0

(
n

p

)
tn.

I For D a positive fundamental discriminant, set

FD(t) :=
D−1∑
n=0

(
D

n

)
tn.

I

L(s, χD)Γ(s) =

∫ +∞

0
FD(e−x)(1−e−|D|x)−1x s−1dx , <(s) > 0

where L(s, χD) =
∑

n≥1
χD(n)
ns .

Fekete: If FD(t) has no real zeros t with 0 < t < 1, then
L(s,

(
D
.

)
) has no real zeros s > 0 (Siegel zero).
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I Pólya, 1919: there are infinitely many discriminants D, such
that FD has zero in (0, 1).

I Chowla, 1936: FD(s) has no real zeros for sufficiently large
D.

I Heilbronn, 1937: there are infinitely many discriminants D,
such that FD has zero in (0, 1).
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Zeros of Fekete polynomials

Roots of the Fekete polynomial F43.



Complex zeros of Fekete polynomials

Let ξp = e2πi/p and Hp(z) = z−p/2Fp(z), then for 1 ≤ k ≤ p − 1 :

I

Hp(ξp) = 2
(p−1)/2∑
a=1

(
a

p

)
cos((2a− p)πt)

I

Hp(ξkp ) = (−1)k
(
k

p

)
Hp(ξp)

I

NR(Fp(e iθ)) ≥ |{k ≤ p − 2|
(
k

p

)
=

(
k + 1
p

)
}| =

p − 3
2
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I Up to p < 500, those are all zeros! One finds more for
p = 661.

Theorem (Conrey-Granville-Poonen-Soundararajan, 1999)
There exists a constant 1/2 < κ0 < 1 such that, as p → +∞

# {z : |z | = 1 and Fp(z) = 0} ∼ κ0p.

I 0.500667 < k0 < 0.500883
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Problem [Littlewood]: Given finite A ∈ Z, let

fA(z) =
∑
k∈A

cos(kz).

What is min|A|=n NR(fA)?

Littlewood: “Perhaps n − 1 or not much less.”

Borwein-Erdélyi-Fergusson-Lockhart,
Juckevicius-Sahasrabudhe:

(log log log n)1−ε � min
|A|=n

NR(fA)� n2/3(log n)1/3
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Real zeros of Fekete polynomials

Conjecture (Baker-Montgomery,
Conrey-Granville-Poonen-Soundararajan)
“It seems likely that for almost all D ∈ N, the corresponding FD(t)
has

� log logD

zeros in (0, 1).”

Theorem (Baker-Montgomery, 92)
For almost all discriminants, the number of zeros of FD(t) in (0, 1)
goes to +∞ with D.
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Lower bound

Let F(x) be the set of fundamental discriminants |D| ≤ x

Theorem (K-L-M, 20+)
For almost all fundamental discriminants D ∈ F(x), FD(x) has

� log logD

log log log logD

zeros in (0, 1).



What about upper bounds?

Reminder (Erdélyi, survey): the number of real zeros of FD is
�
√
D.

Theorem (K-L-M, 20+)
I Under GRH, for � N1−ε fundamental discriminants D ≤ N,

FD(z) has O(D1/3) real zeros.

I For � N2/3 fundamental discriminants D ≤ N, FD(z) has
O(D1/4) real zeros.
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Lower bound: ideas of the proof

LD(s)Γ(s)

(
L′D
LD

(s) +
Γ′

Γ
(s)

)
=

∫ ∞
0

FD(e−x)(1−e−Dx)−1x s−1(log x)dx .

Karlin: S(f ,−∞,+∞) ≥ S(L, 0,+∞), where L(s) is the Laplace
transform of f .
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Plan of the proof

I Statistical study of the functions (L
′
D/LD)(s) for s close to

1/2.

I Approximation by a short sum over primes for almost all
discriminants.

I Define a random model for this sum using random variables
indexed by primes.

I Convergence to a suitable normal variable.

I Good choice of points si making random variables at these
points “independent” and creating change of signs.

I Discrepancy between random model and the approximation.



Approximation of −L′/L(s, χD): First part

Let 1/2 + (log log x)2/ log x ≤ σ ≤ 1, and put A = 12/(σ − 1/2)
and y = (log |D|)A. Then for all fundamental discriminants |D| ≤ x
except for a set E(x) with cardinality

|E(x)| � x1−(σ−1/2)/5(log x)72,

we have

−L′

L
(s, χD) =

∞∑
n=1

Λ(n)

n
χD(n)e−n/y + O

(
1

log |D|

)
,

where Λ(D) = log p is D = pk and 0 otherwise.
Proof uses standard zero density estimate, contour shifting.



Approximation of −L′/L(s, χD): Short sum over primes

Proposition (K-L-M, 20+)
Let s = 1/2 + 1/g(x) where
(log log x)2 ≤ g(x) ≤

√
log x/(log log x)2. Put

u(s) = exp

(
g(x)

log log g(x)

)
, and v(s) = exp

(
g(x) log log g(x)

)
.

Then for almost all fundamental discriminants |D| ≤ x we have∣∣∣∣∣∣L
′

L
(s, χD) +

∑
u(s)≤p≤v(s)

χD(p) log p

ps

∣∣∣∣∣∣ ≤ 2g(x).

High moments estimates via the large sieve inequality.



Random model for the short sum over primes

Consider a sequence of independent random variables {X (p)}p, ,
indexed by the primes, and taking values in {0,−1, 1} such that

P(X(p) = −1) = P(X(p) = 1) =
p

2(p + 1)
,P(X(p) = 0) =

1
p + 1

.

The random variable

X(s) =
∑

u(s)<p<v(s)

X(p) log p

ps

converges to a centered normal distribution with variance

∑
u(s)<p<v(s)

(log p)2p

p2s(p + 1)
=

(1 + o(1))

(2s − 1)2 .
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Choice of the points

Take R :=
⌊
δ log2 x
3 log4 x

⌋
, for R/5 ≤ r ≤ R and let

sr :=
1
2

+
1

(log r)3r ,

(log x)−δ < sr − 1/2 < (log x)−δ/5 for all R/5 ≤ r ≤ R .

We also define ur and vr as before. This gives a sequence of points
sr such that 2 ≤ ur < vr < ur+1 < vr+1 ≤ x for all R/5 ≤ r ≤ R .

Goal: Show that there are many sign changes at these points.
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“Large values” in both sides

We consider for s = (sR/5, . . . , sR) the probabilistic random vector

LR(s,X) =

( ∑
ur<p<vr

X(p) log p

psr

)
R/5≤r≤R

.

P
(
X(sr ) > 4(log r)3r) = P

(
X(sr ) < −4(log r)3r)

= (1 + o(1))
1√
2π

∫ ∞
a

e−x
2/2dx > 0.

Moreover, distinct points sr produce non overlapping intervals of
primes that do not see each other =“Independence”.



Discrepancy estimate
Define the vector of Dirichlet polynomials:

LR(s, χD) =

( ∑
ur<p<vr

χD(p) log p

psr

)
R/5≤r≤R

.

We want to compare the distribution of LR(s, χD) and LR(s,X).

Define the discrepancy:

D(s) = sup
R

∣∣∣∣ 1
|F(x)|

∣∣{D ∈ F(x) : LR(s, χD) ∈ R
}∣∣− P

(
LR(s,X) ∈ R

)∣∣∣∣
where the supremum is taken over all rectangular boxes (possibly
unbounded) R ⊂ RR with sides parallel to coordinates axes.
Using techniques (Fourier analytic) of Lamzouri-Lester-Radziwiłł :

Proposition
We have

D(s)� 1
(log x)1/5 .
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Summary

Sequence of points sr such that X(sr ) changes sign with “size” with
high probability

⇓

For almost all D this is true for
∑

ur≤p≤vr

χD(p) log p

psr

⇓

There are a lot of sign changes for L′D(sr )/LD(sr ).
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Jensen’s formula and concentric circles

# {zeros of P inside Cr} ≤
(

log
max|z−z0|=R |P(z)|

|P(z0)|

)
/ log(R/r).

z0
Cr

CR
R

r

0 1

Figure: Covering the line
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Covering with two circles

Let: xα = exp(−1/xα) and xβ = exp(−1/xβ) for
0 < α < 1/2 < β < 1.
Idea: For many discriminants D, FD is not too small simultaneously
at xα and xβ .

xα

Crα Crβ
xβ 1

CRα

CRβ
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Simultaneous “size” and mixed moments
Consider L(x) the set of discrimants such that

FD(xα),FD(xβ)� 1/x100.

We show that L(x) is relatively “large” by bounding the mixed
moments:

S1(α1, α2, . . . , αk) =
∑

D∈F(x)

FD(xα1)FD(xα2) . . .FD(xαk
),

and

S2(α1, α2, . . . , αk) =
∑

D∈F(x)

(FD(xα1)FD(xα2) . . .FD(xαk
))2.

Proposition
Under the conditions 1/2 < α + β < 1 the following inequality
holds S1(α, β)� x1+α/2+β/2 log x and S2(α, β)� x1/2+2α+2β+ε.

In practice we use more circles and higher mixed moments.



Simultaneous “size” and mixed moments
Consider L(x) the set of discrimants such that

FD(xα),FD(xβ)� 1/x100.

We show that L(x) is relatively “large” by bounding the mixed
moments:

S1(α1, α2, . . . , αk) =
∑

D∈F(x)

FD(xα1)FD(xα2) . . .FD(xαk
),

and

S2(α1, α2, . . . , αk) =
∑

D∈F(x)

(FD(xα1)FD(xα2) . . .FD(xαk
))2.

Proposition
Under the conditions 1/2 < α + β < 1 the following inequality
holds S1(α, β)� x1+α/2+β/2 log x and S2(α, β)� x1/2+2α+2β+ε.

In practice we use more circles and higher mixed moments.



Simultaneous “size” and mixed moments
Consider L(x) the set of discrimants such that

FD(xα),FD(xβ)� 1/x100.

We show that L(x) is relatively “large” by bounding the mixed
moments:

S1(α1, α2, . . . , αk) =
∑

D∈F(x)

FD(xα1)FD(xα2) . . .FD(xαk
),

and

S2(α1, α2, . . . , αk) =
∑

D∈F(x)

(FD(xα1)FD(xα2) . . .FD(xαk
))2.

Proposition
Under the conditions 1/2 < α + β < 1 the following inequality
holds S1(α, β)� x1+α/2+β/2 log x and S2(α, β)� x1/2+2α+2β+ε.

In practice we use more circles and higher mixed moments.



Fekete polynomials with no real zeros

More general Heuristic [Sarnak]: there exist infinitely many D
such that FD does not vanish on (0, 1).

Sarnak in his letter to Bachmat: GLn analogues of Fekete
polynomials and asks about the existence of such polynomials
without zeros on subintervals of (0, 1).

FD(t) :=
D−1∑
n=0

(
D

n

)
tn = (1− t)

∑
k≤D−1

Sk(D)tk ,

where Sk(D) =
∑

n≤k
(
D
n

)
.
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Polynomials with no real zeros in some interval

Proposition (K-L-M, 20+)
There exists at least x1−o(1) fundamental discriminants 0 < D ≤ x
such that FD(z) has no zeros in the interval[

0, 1− 1
(log x)

√
e+ε

]
.

Borwein-Erdélyi-Kós: Any Littlewood polynomial has at most
O(log x) zeros in (0, 1− 1/ log x).


