Zeros of Fekete polynomials

(joint work with Y. Lamzouri and M. Munsch)

University of Bristol

Outline

- Main theme: "Law of small numbers"

Outline

- Main theme: "Law of small numbers"
- Zeros of polynomials: classical results
- Zeros of Fekete polynomials: what we know
- Some new results and ideas of the proof
- Speculations and more results

Question

Given a polynomial $P_{N}(z)=\sum_{n=0}^{N} a_{n} z^{n}$ with $a_{n} \in \mathbb{C}$, what can we say about the set

$$
\left\{z \in \mathbb{C} \mid P_{N}(z)=0\right\} ?
$$

Question

Given a polynomial $P_{N}(z)=\sum_{n=0}^{N} a_{n} z^{n}$ with $a_{n} \in \mathbb{C}$, what can we say about the set

$$
\left\{z \in \mathbb{C} \mid P_{N}(z)=0\right\} ?
$$

Figure: Roots of polynomials with ± 1 coefficients of degree ≤ 24 (by . Derbyshire)

Angular distribution of the roots

Given an arc I on the unit circle, let $N(I ; P)$ denote the number of zeros $\alpha_{j}=r_{j} e^{i \theta_{j}}$ of P such that $e^{i \theta_{j}}$ lies on the arc I.
Theorem (Erdős-Turan)
We have the estimate

$$
\mathcal{D}(P):=\max _{I}\left|N(I ; P)-\frac{|I|}{2 \pi} N\right| \leq \frac{8}{\pi} \sqrt{N h(P)}
$$

where

$$
h(P)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log ^{+} \frac{\left|P\left(e^{i \theta}\right)\right|}{\sqrt{\left|a_{0}\right|}} d \theta, \quad \log ^{+} x=\max (0, \log x)
$$

Real zeros and Littlewood polynomials

Littlewood polynomials: coefficients are ± 1. Then

$$
N_{R}(P) \ll \sqrt{N \log N} .
$$

Real zeros and Littlewood polynomials

Littlewood polynomials: coefficients are ± 1. Then

$$
N_{R}(P) \ll \sqrt{N \log N}
$$

- Borwein-Erdélyi-Kós: $N_{R}(P) \ll \sqrt{N}$ (sharp)

Real zeros and Littlewood polynomials

Littlewood polynomials: coefficients are ± 1. Then

$$
N_{R}(P) \ll \sqrt{N \log N} .
$$

- Borwein-Erdélyi-Kós: $N_{R}(P) \ll \sqrt{N}$ (sharp)
- Littlewood-Offord: except for $o\left(2^{N+1}\right)$ choices of Littlewood polynomials, expected $N_{R}(P) \ll \log ^{2} N$
- Kac-Rice: random polynomials with Gaussian coefficients, expected $N_{R}(P) \sim \frac{2}{\pi} \log N$
- Erdős-Offord: generalization to random Littlewood polynomials, $N_{R}(P) \sim \frac{2}{\pi} \log N$

Fekete polynomials and L - functions

$$
F_{p}(t):=\sum_{n=0}^{p-1}\left(\frac{n}{p}\right) t^{n}
$$

- For D a positive fundamental discriminant, set

$$
F_{D}(t):=\sum_{n=0}^{D-1}\left(\frac{D}{n}\right) t^{n} .
$$

$$
L\left(s, \chi_{D}\right) \Gamma(s)=\int_{0}^{+\infty} F_{D}\left(e^{-x}\right)\left(1-e^{-|D| x}\right)^{-1} x^{s-1} d x, \quad \Re(s)>0
$$

where $L\left(s, \chi_{D}\right)=\sum_{n \geq 1} \frac{\chi_{D}(n)}{n^{s}}$.

Fekete polynomials and L - functions

$$
F_{p}(t):=\sum_{n=0}^{p-1}\left(\frac{n}{p}\right) t^{n}
$$

- For D a positive fundamental discriminant, set

$$
F_{D}(t):=\sum_{n=0}^{D-1}\left(\frac{D}{n}\right) t^{n} .
$$

$$
L\left(s, \chi_{D}\right) \Gamma(s)=\int_{0}^{+\infty} F_{D}\left(e^{-x}\right)\left(1-e^{-|D| x}\right)^{-1} x^{s-1} d x, \quad \Re(s)>0
$$

where $L\left(s, \chi_{D}\right)=\sum_{n \geq 1} \frac{\chi_{D}(n)}{n^{s}}$.
Fekete: If $F_{D}(t)$ has no real zeros t with $0<t<1$, then $L\left(s,\left(\frac{D}{.}\right)\right)$ has no real zeros $s>0$ (Siegel zero).

- Pólya, 1919: there are infinitely many discriminants D, such that F_{D} has zero in $(0,1)$.
- Pólya, 1919: there are infinitely many discriminants D, such that F_{D} has zero in $(0,1)$.
- Chowla, 1936: $F_{D}(s)$ has no real zeros for sufficiently large D.
- Pólya, 1919: there are infinitely many discriminants D, such that F_{D} has zero in $(0,1)$.
- Chowla, 1936: $F_{D}(s)$ has no real zeros for sufficiently large D.
- Heilbronn, 1937: there are infinitely many discriminants D, such that F_{D} has zero in $(0,1)$.

Zeros of Fekete polynomials

Roots of the Fekete polynomial F_{43}.

Complex zeros of Fekete polynomials

Let $\xi_{p}=e^{2 \pi i / p}$ and $H_{p}(z)=z^{-p / 2} F_{p}(z)$, then for $1 \leq k \leq p-1$:

$$
\begin{gathered}
H_{p}\left(\xi_{p}\right)=2 \sum_{a=1}^{(p-1) / 2}\left(\frac{a}{p}\right) \cos ((2 a-p) \pi t) \\
H_{p}\left(\xi_{p}^{k}\right)=(-1)^{k}\left(\frac{k}{p}\right) H_{p}\left(\xi_{p}\right)
\end{gathered}
$$

Complex zeros of Fekete polynomials

Let $\xi_{p}=e^{2 \pi i / p}$ and $H_{p}(z)=z^{-p / 2} F_{p}(z)$, then for $1 \leq k \leq p-1$:

$$
\begin{gathered}
H_{p}\left(\xi_{p}\right)=2 \sum_{a=1}^{(p-1) / 2}\left(\frac{a}{p}\right) \cos ((2 a-p) \pi t) \\
H_{p}\left(\xi_{p}^{k}\right)=(-1)^{k}\left(\frac{k}{p}\right) H_{p}\left(\xi_{p}\right)
\end{gathered}
$$

$$
N_{R}\left(F_{p}\left(e^{i \theta}\right)\right) \geq\left|\left\{k \leq p-2 \left\lvert\,\left(\frac{k}{p}\right)=\left(\frac{k+1}{p}\right)\right.\right\}\right|=\frac{p-3}{2}
$$

- Up to $p<500$, those are all zeros! One finds more for $p=661$.
- Up to $p<500$, those are all zeros! One finds more for $p=661$.

Theorem (Conrey-Granville-Poonen-Soundararajan, 1999)
There exists a constant $1 / 2<\kappa_{0}<1$ such that, as $p \rightarrow+\infty$

$$
\#\left\{z:|z|=1 \text { and } F_{p}(z)=0\right\} \sim \kappa_{0} p
$$

- $0.500667<k_{0}<0.500883$

Problem [Littlewood]: Given finite $\mathcal{A} \in \mathbb{Z}$, let

$$
f_{\mathcal{A}}(z)=\sum_{k \in A} \cos (k z)
$$

What is $\min _{|\mathcal{A}|=n} N_{R}\left(f_{\mathcal{A}}\right)$?

Littlewood: "Perhaps $n-1$ or not much less."

Problem [Littlewood]: Given finite $\mathcal{A} \in \mathbb{Z}$, let

$$
f_{\mathcal{A}}(z)=\sum_{k \in A} \cos (k z)
$$

What is $\min _{|\mathcal{A}|=n} N_{R}\left(f_{\mathcal{A}}\right)$?

Littlewood: "Perhaps $n-1$ or not much less."

Borwein-Erdélyi-Fergusson-Lockhart, Juckevicius-Sahasrabudhe:

$$
(\log \log \log n)^{1-\epsilon} \ll \min _{|\mathcal{A}|=n} N_{R}\left(f_{\mathcal{A}}\right) \ll n^{2 / 3}(\log n)^{1 / 3}
$$

Real zeros of Fekete polynomials

Conjecture (Baker-Montgomery,
Conrey-Granville-Poonen-Soundararajan)
"It seems likely that for almost all $D \in \mathbb{N}$, the corresponding $F_{D}(t)$ has

$$
\asymp \log \log D
$$

zeros in $(0,1)$."

Real zeros of Fekete polynomials

Conjecture (Baker-Montgomery,
 Conrey-Granville-Poonen-Soundararajan)

"It seems likely that for almost all $D \in \mathbb{N}$, the corresponding $F_{D}(t)$ has

$$
\asymp \log \log D
$$

zeros in $(0,1)$."

Theorem (Baker-Montgomery, 92)
For almost all discriminants, the number of zeros of $F_{D}(t)$ in $(0,1)$ goes to $+\infty$ with D.

Lower bound

Let $\mathcal{F}(x)$ be the set of fundamental discriminants $|D| \leq x$
Theorem (K-L-M, 20+)
For almost all fundamental discriminants $D \in \mathcal{F}(x), F_{D}(x)$ has

$$
\gg \frac{\log \log D}{\log \log \log \log D}
$$

zeros in $(0,1)$.

What about upper bounds?

Reminder (Erdélyi, survey): the number of real zeros of F_{D} is $\ll \sqrt{D}$.

What about upper bounds?

Reminder (Erdélyi, survey): the number of real zeros of F_{D} is $\ll \sqrt{D}$.

Theorem (K-L-M, 20+)

- Under $G R H$, for $\gg N^{1-\epsilon}$ fundamental discriminants $D \leq N$, $F_{D}(z)$ has $O\left(D^{1 / 3}\right)$ real zeros.

What about upper bounds?

Reminder (Erdélyi, survey): the number of real zeros of F_{D} is $\ll \sqrt{D}$.

Theorem (K-L-M, 20+)

- Under GRH, for $\gg N^{1-\epsilon}$ fundamental discriminants $D \leq N$, $F_{D}(z)$ has $O\left(D^{1 / 3}\right)$ real zeros.
- For $\gg N^{2 / 3}$ fundamental discriminants $D \leq N, F_{D}(z)$ has $O\left(D^{1 / 4}\right)$ real zeros.

Lower bound: ideas of the proof

$$
L_{D}(s) \Gamma(s)\left(\frac{L_{D}^{\prime}}{L_{D}}(s)+\frac{\Gamma^{\prime}}{\Gamma}(s)\right)=\int_{0}^{\infty} F_{D}\left(e^{-x}\right)\left(1-e^{-D x}\right)^{-1} x^{s-1}(\log x) d x .
$$

Lower bound: ideas of the proof

$$
L_{D}(s) \Gamma(s)\left(\frac{L_{D}^{\prime}}{L_{D}}(s)+\frac{\Gamma^{\prime}}{\Gamma}(s)\right)=\int_{0}^{\infty} F_{D}\left(e^{-x}\right)\left(1-e^{-D x}\right)^{-1} x^{s-1}(\log x) d x
$$

Karlin: $\mathcal{S}(f,-\infty,+\infty) \geq \mathcal{S}(\mathcal{L}, 0,+\infty)$, where $\mathcal{L}(s)$ is the Laplace transform of f.

Plan of the proof

- Statistical study of the functions $\left(L_{D}^{\prime} / L_{D}\right)(s)$ for s close to 1/2.
- Approximation by a short sum over primes for almost all discriminants.
- Define a random model for this sum using random variables indexed by primes.
- Convergence to a suitable normal variable.
- Good choice of points s_{i} making random variables at these points "independent" and creating change of signs.
- Discrepancy between random model and the approximation.

Approximation of $-L^{\prime} / L\left(s, \chi_{D}\right)$: First part

Let $1 / 2+(\log \log x)^{2} / \log x \leq \sigma \leq 1$, and put $A=12 /(\sigma-1 / 2)$ and $y=(\log |D|)^{A}$. Then for all fundamental discriminants $|D| \leq x$ except for a set $\mathcal{E}(x)$ with cardinality

$$
|\mathcal{E}(x)| \ll x^{1-(\sigma-1 / 2) / 5}(\log x)^{72}
$$

we have

$$
-\frac{L^{\prime}}{L}\left(s, \chi_{D}\right)=\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n} \chi_{D}(n) e^{-n / y}+O\left(\frac{1}{\log |D|}\right)
$$

where $\Lambda(D)=\log p$ is $D=p^{k}$ and 0 otherwise.
Proof uses standard zero density estimate, contour shifting.

Approximation of $-L^{\prime} / L\left(s, \chi_{D}\right)$: Short sum over primes

Proposition (K-L-M, 20+)
Let $s=1 / 2+1 / g(x)$ where
$(\log \log x)^{2} \leq g(x) \leq \sqrt{\log x} /(\log \log x)^{2}$. Put

$$
u(s)=\exp \left(\frac{g(x)}{\log \log g(x)}\right), \text { and } v(s)=\exp (g(x) \log \log g(x))
$$

Then for almost all fundamental discriminants $|D| \leq x$ we have

$$
\left|\frac{L^{\prime}}{L}\left(s, \chi_{D}\right)+\sum_{u(s) \leq p \leq v(s)} \frac{\chi_{D}(p) \log p}{p^{s}}\right| \leq 2 g(x)
$$

High moments estimates via the large sieve inequality.

Random model for the short sum over primes

Consider a sequence of independent random variables $\{X(p)\}_{p}$, , indexed by the primes, and taking values in $\{0,-1,1\}$ such that

$$
\mathbb{P}(\mathbb{X}(p)=-1)=\mathbb{P}(\mathbb{X}(p)=1)=\frac{p}{2(p+1)}, \mathbb{P}(\mathbb{X}(p)=0)=\frac{1}{p+1}
$$

Random model for the short sum over primes

Consider a sequence of independent random variables $\{X(p)\}_{p}$, , indexed by the primes, and taking values in $\{0,-1,1\}$ such that

$$
\mathbb{P}(\mathbb{X}(p)=-1)=\mathbb{P}(\mathbb{X}(p)=1)=\frac{p}{2(p+1)}, \mathbb{P}(\mathbb{X}(p)=0)=\frac{1}{p+1}
$$

The random variable

$$
\mathbb{X}(s)=\sum_{u(s)<p<v(s)} \frac{\mathbb{X}(p) \log p}{p^{s}}
$$

converges to a centered normal distribution with variance

$$
\sum_{u(s)<p<v(s)} \frac{(\log p)^{2} p}{p^{2 s}(p+1)}=\frac{(1+o(1))}{(2 s-1)^{2}} .
$$

Choice of the points

Take $R:=\left\lfloor\frac{\delta \log _{2} x}{3 \log _{4} x}\right\rfloor$, for $R / 5 \leq r \leq R$ and let

$$
s_{r}:=\frac{1}{2}+\frac{1}{(\log r)^{3 r}}
$$

$(\log x)^{-\delta}<s_{r}-1 / 2<(\log x)^{-\delta / 5}$ for all $R / 5 \leq r \leq R$.

Choice of the points

Take $R:=\left\lfloor\frac{\delta \log _{2} x}{3 \log _{4} x}\right\rfloor$, for $R / 5 \leq r \leq R$ and let

$$
s_{r}:=\frac{1}{2}+\frac{1}{(\log r)^{3 r}}
$$

$(\log x)^{-\delta}<s_{r}-1 / 2<(\log x)^{-\delta / 5}$ for all $R / 5 \leq r \leq R$.
We also define u_{r} and v_{r} as before. This gives a sequence of points s_{r} such that $2 \leq u_{r}<v_{r}<u_{r+1}<v_{r+1} \leq x$ for all $R / 5 \leq r \leq R$.

Choice of the points

Take $R:=\left\lfloor\frac{\delta \log _{2} x}{3 \log _{4} x}\right\rfloor$, for $R / 5 \leq r \leq R$ and let

$$
s_{r}:=\frac{1}{2}+\frac{1}{(\log r)^{3 r}},
$$

$(\log x)^{-\delta}<s_{r}-1 / 2<(\log x)^{-\delta / 5}$ for all $R / 5 \leq r \leq R$.
We also define u_{r} and v_{r} as before. This gives a sequence of points s_{r} such that $2 \leq u_{r}<v_{r}<u_{r+1}<v_{r+1} \leq x$ for all $R / 5 \leq r \leq R$.

Goal: Show that there are many sign changes at these points.

"Large values" in both sides

We consider for $s=\left(s_{R / 5}, \ldots, s_{R}\right)$ the probabilistic random vector

$$
\begin{aligned}
& L_{R}(s, \mathbb{X})=\left(\sum_{u_{r}<p<v_{r}} \frac{\mathbb{X}(p) \log p}{p^{s_{r}}}\right)_{R / 5 \leq r \leq R} \\
& \begin{aligned}
\mathbb{P}\left(\mathbb{X}\left(s_{r}\right)>4(\log r)^{3 r}\right) & =\mathbb{P}\left(\mathbb{X}\left(s_{r}\right)<-4(\log r)^{3 r}\right) \\
& =(1+o(1)) \frac{1}{\sqrt{2 \pi}} \int_{a}^{\infty} e^{-x^{2} / 2} d x>0 .
\end{aligned}
\end{aligned}
$$

Moreover, distinct points s_{r} produce non overlapping intervals of primes that do not see each other ="Independence".

Discrepancy estimate

Define the vector of Dirichlet polynomials:

$$
L_{R}\left(s, \chi_{D}\right)=\left(\sum_{u_{r}<p<v_{r}} \frac{\chi_{D}(p) \log p}{p^{s_{r}}}\right)_{R / 5 \leq r \leq R}
$$

We want to compare the distribution of $L_{R}\left(\mathrm{~s}, \chi_{D}\right)$ and $L_{R}(\mathrm{~s}, \mathbb{X})$.

Discrepancy estimate

Define the vector of Dirichlet polynomials:

$$
L_{R}\left(s, \chi_{D}\right)=\left(\sum_{u_{r}<p<v_{r}} \frac{\chi_{D}(p) \log p}{p^{s_{r}}}\right)_{R / 5 \leq r \leq R}
$$

We want to compare the distribution of $L_{R}\left(\mathrm{~s}, \chi_{D}\right)$ and $L_{R}(\mathrm{~s}, \mathbb{X})$. Define the discrepancy:

$$
D(\mathrm{~s})=\sup _{\mathcal{R}}\left|\frac{1}{|\mathcal{F}(x)|}\right|\left\{D \in \mathcal{F}(x): L_{R}\left(\mathrm{~s}, \chi_{D}\right) \in \mathcal{R}\right\}\left|-\mathbb{P}\left(L_{R}(\mathrm{~s}, \mathbb{X}) \in \mathcal{R}\right)\right|
$$

where the supremum is taken over all rectangular boxes (possibly unbounded) $\mathcal{R} \subset \mathbb{R}^{R}$ with sides parallel to coordinates axes.

Discrepancy estimate

Define the vector of Dirichlet polynomials:

$$
L_{R}\left(s, \chi_{D}\right)=\left(\sum_{u_{r}<p<v_{r}} \frac{\chi_{D}(p) \log p}{p^{s_{r}}}\right)_{R / 5 \leq r \leq R}
$$

We want to compare the distribution of $L_{R}\left(\mathrm{~s}, \chi_{D}\right)$ and $L_{R}(\mathrm{~s}, \mathbb{X})$. Define the discrepancy:

$$
D(\mathrm{~s})=\sup _{\mathcal{R}}\left|\frac{1}{|\mathcal{F}(x)|}\right|\left\{D \in \mathcal{F}(x): L_{R}\left(\mathrm{~s}, \chi_{D}\right) \in \mathcal{R}\right\}\left|-\mathbb{P}\left(L_{R}(\mathrm{~s}, \mathbb{X}) \in \mathcal{R}\right)\right|
$$

where the supremum is taken over all rectangular boxes (possibly unbounded) $\mathcal{R} \subset \mathbb{R}^{R}$ with sides parallel to coordinates axes. Using techniques (Fourier analytic) of Lamzouri-Lester-Radziwiłł :

Proposition

We have

$$
D(\mathrm{~s}) \ll \frac{1}{(\log x)^{1 / 5}}
$$

Summary

Sequence of points s_{r} such that $\mathbb{X}\left(s_{r}\right)$ changes sign with "size" with high probability

$$
\Downarrow
$$

Summary

Sequence of points s_{r} such that $\mathbb{X}\left(s_{r}\right)$ changes sign with "size" with high probability

$$
\Downarrow
$$

For almost all D this is true for $\sum_{u_{r} \leq p \leq v_{r}} \frac{\chi_{D}(p) \log p}{p^{s_{r}}}$
\Downarrow

Summary

Sequence of points s_{r} such that $\mathbb{X}\left(s_{r}\right)$ changes sign with "size" with high probability

$$
\Downarrow
$$

For almost all D this is true for $\sum_{u_{r} \leq p \leq v_{r}} \frac{\chi_{D}(p) \log p}{p^{s_{r}}}$

$$
\Downarrow
$$

There are a lot of sign changes for $L_{D}^{\prime}\left(s_{r}\right) / L_{D}\left(s_{r}\right)$.

Jensen's formula and concentric circles

$\#\left\{\right.$ zeros of P inside $\left.\mathcal{C}_{r}\right\} \leq\left(\log \frac{\max _{\left|z-z_{0}\right|=R}|P(z)|}{\left|P\left(z_{0}\right)\right|}\right) / \log (R / r)$.

Jensen's formula and concentric circles

$\#\left\{\right.$ zeros of P inside $\left.\mathcal{C}_{r}\right\} \leq\left(\log \frac{\max _{\left|z-z_{0}\right|=R}|P(z)|}{\left|P\left(z_{0}\right)\right|}\right) / \log (R / r)$.

Figure: Covering the line

Covering with two circles

Let: $x_{\alpha}=\exp \left(-1 / x^{\alpha}\right)$ and $x_{\beta}=\exp \left(-1 / x^{\beta}\right)$ for $0<\alpha<1 / 2<\beta<1$.
Idea: For many discriminants D, F_{D} is not too small simultaneously at x_{α} and x_{β}.

Covering with two circles

Let: $x_{\alpha}=\exp \left(-1 / x^{\alpha}\right)$ and $x_{\beta}=\exp \left(-1 / x^{\beta}\right)$ for $0<\alpha<1 / 2<\beta<1$.
Idea: For many discriminants D, F_{D} is not too small simultaneously at x_{α} and x_{β}.

Covering with two circles

Let: $x_{\alpha}=\exp \left(-1 / x^{\alpha}\right)$ and $x_{\beta}=\exp \left(-1 / x^{\beta}\right)$ for $0<\alpha<1 / 2<\beta<1$.
Idea: For many discriminants D, F_{D} is not too small simultaneously at x_{α} and x_{β}.

Simultaneous "size" and mixed moments

Consider $\mathcal{L}(x)$ the set of discrimants such that

$$
F_{D}\left(x_{\alpha}\right), F_{D}\left(x_{\beta}\right) \gg 1 / x^{100}
$$

Simultaneous "size" and mixed moments

Consider $\mathcal{L}(x)$ the set of discrimants such that

$$
F_{D}\left(x_{\alpha}\right), F_{D}\left(x_{\beta}\right) \gg 1 / x^{100} .
$$

We show that $\mathcal{L}(x)$ is relatively "large" by bounding the mixed moments:

$$
S_{1}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)=\sum_{D \in \mathcal{F}(x)} F_{D}\left(x_{\alpha_{1}}\right) F_{D}\left(x_{\alpha_{2}}\right) \ldots F_{D}\left(x_{\alpha_{k}}\right)
$$

and

$$
S_{2}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)=\sum_{D \in \mathcal{F}(x)}\left(F_{D}\left(x_{\alpha_{1}}\right) F_{D}\left(x_{\alpha_{2}}\right) \ldots F_{D}\left(x_{\alpha_{k}}\right)\right)^{2}
$$

Simultaneous "size" and mixed moments

Consider $\mathcal{L}(x)$ the set of discrimants such that

$$
F_{D}\left(x_{\alpha}\right), F_{D}\left(x_{\beta}\right) \gg 1 / x^{100} .
$$

We show that $\mathcal{L}(x)$ is relatively "large" by bounding the mixed moments:

$$
S_{1}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)=\sum_{D \in \mathcal{F}(x)} F_{D}\left(x_{\alpha_{1}}\right) F_{D}\left(x_{\alpha_{2}}\right) \ldots F_{D}\left(x_{\alpha_{k}}\right)
$$

and

$$
S_{2}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)=\sum_{D \in \mathcal{F}(x)}\left(F_{D}\left(x_{\alpha_{1}}\right) F_{D}\left(x_{\alpha_{2}}\right) \ldots F_{D}\left(x_{\alpha_{k}}\right)\right)^{2}
$$

Proposition

Under the conditions $1 / 2<\alpha+\beta<1$ the following inequality holds $S_{1}(\alpha, \beta) \gg x^{1+\alpha / 2+\beta / 2} \log x$ and $S_{2}(\alpha, \beta) \ll x^{1 / 2+2 \alpha+2 \beta+\epsilon}$. In practice we use more circles and higher mixed moments.

Fekete polynomials with no real zeros

More general Heuristic [Sarnak]: there exist infinitely many D such that F_{D} does not vanish on $(0,1)$.

Sarnak in his letter to Bachmat: $G L_{n}$ analogues of Fekete polynomials and asks about the existence of such polynomials without zeros on subintervals of $(0,1)$.

Fekete polynomials with no real zeros

More general Heuristic [Sarnak]: there exist infinitely many D such that F_{D} does not vanish on $(0,1)$.

Sarnak in his letter to Bachmat: $G L_{n}$ analogues of Fekete polynomials and asks about the existence of such polynomials without zeros on subintervals of $(0,1)$.

$$
F_{D}(t):=\sum_{n=0}^{D-1}\left(\frac{D}{n}\right) t^{n}=(1-t) \sum_{k \leq D-1} S_{k}(D) t^{k}
$$

where $S_{k}(D)=\sum_{n \leq k}\left(\frac{D}{n}\right)$.

Polynomials with no real zeros in some interval

Proposition (K-L-M, 20+)

There exists at least $x^{1-o(1)}$ fundamental discriminants $0<D \leq x$ such that $F_{D}(z)$ has no zeros in the interval

$$
\left[0,1-\frac{1}{(\log x)^{\sqrt{e}+\varepsilon}}\right]
$$

Borwein-Erdélyi-Kós: Any Littlewood polynomial has at most $\bar{O}(\log x)$ zeros in $(0,1-1 / \log x)$.

