Explicit and nonlinear variants of Bourgain's projection theorem

Pablo Shmerkin

Department of Mathematics
Univ. of British Columbia
(on leave, T. Di Tella University and CONICET)

UCLA-Caltech joint Analysis seminar, April 6, 2021

The "dimension of projections" problem

Problem

Let $A \subset \mathbb{R}^{2}$ be a Borel of Hausdorff dimension $\alpha \in(0,2)$ and let $E \subset S^{1}$ be a Borel set of directions of Hausdorff dimension $\eta \in(0,1]$. What can we say about $\operatorname{dim}_{\mathrm{H}}\left(P_{\theta} A\right)$ for "typical" $\theta \in E$?
In other words, we want to compute

$$
s(\alpha, \eta)=\sup \left\{s: \operatorname{dim}_{H}\left\{\theta: \operatorname{dim}_{H}\left(P_{\theta} A\right)<s\right\} \leq \eta\right\} .
$$

The "dimension of projections" problem

Problem

Let $A \subset \mathbb{R}^{2}$ be a Borel of Hausdorff dimension $\alpha \in(0,2)$ and let $E \subset S^{1}$ be a Borel set of directions of Hausdorff dimension $\eta \in(0,1]$. What can we say about $\operatorname{dim}_{\mathrm{H}}\left(P_{\theta} A\right)$ for "typical" $\theta \in E$?
In other words, we want to compute

$$
s(\alpha, \eta)=\sup \left\{s: \operatorname{dim}_{H}\left\{\theta: \operatorname{dim}_{H}\left(P_{\theta} A\right)<s\right\} \leq \eta\right\} .
$$

- This can be seen as some sort of Szemerédi-Trotter problem for Hausdorff dimension.

The "dimension of projections" problem

Problem

Let $A \subset \mathbb{R}^{2}$ be a Borel of Hausdorff dimension $\alpha \in(0,2)$ and let $E \subset S^{1}$ be a Borel set of directions of Hausdorff dimension $\eta \in(0,1]$. What can we say about $\operatorname{dim}_{\mathrm{H}}\left(P_{\theta} A\right)$ for "typical" $\theta \in E$?
In other words, we want to compute

$$
s(\alpha, \eta)=\sup \left\{s: \operatorname{dim}_{H}\left\{\theta: \operatorname{dim}_{H}\left(P_{\theta} A\right)<s\right\} \leq \eta\right\} .
$$

- This can be seen as some sort of Szemerédi-Trotter problem for Hausdorff dimension.
- Trivial: $s(\alpha, \eta) \leq \max (\alpha, 1)$, since projections do not increase Hausdorff dimension and the dimension of a subset of the line is ≤ 1.

The "dimension of projections" problem

Problem

Let $A \subset \mathbb{R}^{2}$ be a Borel of Hausdorff dimension $\alpha \in(0,2)$ and let $E \subset S^{1}$ be a Borel set of directions of Hausdorff dimension $\eta \in(0,1]$. What can we say about $\operatorname{dim}_{\mathrm{H}}\left(P_{\theta} A\right)$ for "typical" $\theta \in E$?
In other words, we want to compute

$$
s(\alpha, \eta)=\sup \left\{s: \operatorname{dim}_{H}\left\{\theta: \operatorname{dim}_{H}\left(P_{\theta} A\right)<s\right\} \leq \eta\right\}
$$

- This can be seen as some sort of Szemerédi-Trotter problem for Hausdorff dimension.
- Trivial: $\boldsymbol{s}(\alpha, \eta) \leq \max (\alpha, 1)$, since projections do not increase Hausdorff dimension and the dimension of a subset of the line is ≤ 1.
- Also trivial: $s(\alpha, \eta)$ is non-decreasing in α and η.

Classical results on dimensions of projections

Theorem (Kaufman 1968)
$s(\alpha, \eta) \geq \min (\alpha, \eta)$.

Classical results on dimensions of projections

Theorem (Kaufman 1968)
$s(\alpha, \eta) \geq \min (\alpha, \eta)$.
Theorem (Falconer 1982)
$s(\alpha, \eta) \geq \alpha+\eta-1$ assuming $\alpha+\eta \leq 2$.

Classical results on dimensions of projections

Theorem (Kaufman 1968)
$s(\alpha, \eta) \geq \min (\alpha, \eta)$.
Theorem (Falconer 1982)
$s(\alpha, \eta) \geq \alpha+\eta-1$ assuming $\alpha+\eta \leq 2$.
Theorem (Folklore, D. Oberlin 2012)
$s(\alpha, \eta) \geq \alpha / 2$ (if $\eta>0$).

Classical results on dimensions of projections

Theorem (Kaufman 1968)
$s(\alpha, \eta) \geq \min (\alpha, \eta)$.
Theorem (Falconer 1982)
$s(\alpha, \eta) \geq \alpha+\eta-1$ assuming $\alpha+\eta \leq 2$.
Theorem (Folklore, D. Oberlin 2012)
$s(\alpha, \eta) \geq \alpha / 2$ (if $\eta>0$).

Observation

All three estimates yield $s(1,1 / 2) \geq 1 / 2$.

Bourgain's projection theorem, dim_{H} version

Theorem (Bourgain 2010)
If $\eta>0$ and $\alpha \in(0,2)$, then

$$
s(\alpha, \eta) \geq \frac{\alpha}{2}+c(\alpha, \eta)
$$

for some $\boldsymbol{c}(\alpha, \eta)>0$. In particular,

$$
s(1,1 / 2) \geq 1 / 2+c
$$

Bourgain's projection theorem, dim_{H} version

Theorem (Bourgain 2010)
If $\eta>0$ and $\alpha \in(0,2)$, then

$$
s(\alpha, \eta) \geq \frac{\alpha}{2}+c(\alpha, \eta)
$$

for some $\boldsymbol{c}(\alpha, \eta)>0$. In particular,

$$
s(1,1 / 2) \geq 1 / 2+c
$$

Remark

The conjecture, based partly on Szemerédi-Trotter heuristics, is that s is linear in η; in particular, $s(1,1 / 2)=3 / 4$.

The Erdős-Volkmann conjecture

Proposition (Erdős-Volkmann 1966)

There are Borel subgroups of the reals of every Hausdorff dimension in $[0,1]$.

The Erdős-Volkmann conjecture

Proposition (Erdős-Volkmann 1966)

There are Borel subgroups of the reals of every Hausdorff dimension in $[0,1]$.

Conjecture (Erdős-Volkmann 1966)
If B is a Borel subring of the reals, then $\operatorname{dim}_{H}(B) \in\{0,1\}$.

The Erdős-Volkmann conjecture

Proposition (Erdős-Volkmann 1966)

There are Borel subgroups of the reals of every Hausdorff dimension in $[0,1]$.

Conjecture (Erdős-Volkmann 1966)
If B is a Borel subring of the reals, then $\operatorname{dim}_{H}(B) \in\{0,1\}$.
Theorem (Edgard-Miller 2003, Bourgain 2003)
The Erdős-Volkmann conjecture holds.

The Erdős-Volkmann conjecture

Proposition (Erdős-Volkmann 1966)

There are Borel subgroups of the reals of every Hausdorff dimension in $[0,1]$.

Conjecture (Erdős-Volkmann 1966)
If B is a Borel subring of the reals, then $\operatorname{dim}_{H}(B) \in\{0,1\}$.
Theorem (Edgard-Miller 2003, Bourgain 2003)
The Erdős-Volkmann conjecture holds.

Observation

In fact, this is immediate from Bourgain's projection theorem: since $\eta\left(\operatorname{dim}_{H}(B \times B), \operatorname{dim}_{H}(B)\right)>\operatorname{dim}_{H}(B)$, there is $b \in B$ such that

$$
\operatorname{dim}_{H}(B+b B)>\operatorname{dim}_{H}(B) .
$$

δ-discretized projections: applications

- Bourgain's Projection Theorem is deduced from a δ-discretized "single-scale" version.

δ-discretized projections: applications

- Bourgain's Projection Theorem is deduced from a δ-discretized "single-scale" version.
- It is the discretized version that gets used in applications:

δ-discretized projections: applications

- Bourgain's Projection Theorem is deduced from a δ-discretized "single-scale" version.
- It is the discretized version that gets used in applications:
- Dimensions of Furstenberg(-type) sets (N. Katz-T. Tao, T. Orponen, K. Héra-P.S.-A. Yavicoli, P.S.).

δ-discretized projections: applications

- Bourgain's Projection Theorem is deduced from a δ-discretized "single-scale" version.
- It is the discretized version that gets used in applications:
- Dimensions of Furstenberg(-type) sets (N. Katz-T. Tao, T. Orponen, K. Héra-P.S.-A. Yavicoli, P.S.).
- Kakeya sets in \mathbb{R}^{3} have dimension $\geq 5 / 2+\varepsilon$ (N. Katz and J. Zahl).

δ-discretized projections: applications

- Bourgain's Projection Theorem is deduced from a δ-discretized "single-scale" version.
- It is the discretized version that gets used in applications:
- Dimensions of Furstenberg(-type) sets (N. Katz-T. Tao, T. Orponen, K. Héra-P.S.-A. Yavicoli, P.S.).
- Kakeya sets in \mathbb{R}^{3} have dimension $\geq 5 / 2+\varepsilon$ (N. Katz and J. Zahl).
- Quantitative equidistribution of orbits for non-Abelian semigroups on tori (J. Bourgain, A. Furman, E. Lindenstrauss, S. Mozes).

δ-discretized projections: applications

- Bourgain's Projection Theorem is deduced from a δ-discretized "single-scale" version.
- It is the discretized version that gets used in applications:
- Dimensions of Furstenberg(-type) sets (N. Katz-T. Tao, T. Orponen, K. Héra-P.S.-A. Yavicoli, P.S.).
- Kakeya sets in \mathbb{R}^{3} have dimension $\geq 5 / 2+\varepsilon$ (N. Katz and J. Zahl).
- Quantitative equidistribution of orbits for non-Abelian semigroups on tori (J. Bourgain, A. Furman, E. Lindenstrauss, S. Mozes).
- Estimates on exponential sums, Fourier decay in nonlinear dynamics (J. Bourgain, S. Dyatlov).

δ-discretized projections: applications

- Bourgain's Projection Theorem is deduced from a δ-discretized "single-scale" version.
- It is the discretized version that gets used in applications:
- Dimensions of Furstenberg(-type) sets (N. Katz-T. Tao, T. Orponen, K. Héra-P.S.-A. Yavicoli, P.S.).
- Kakeya sets in \mathbb{R}^{3} have dimension $\geq 5 / 2+\varepsilon$ (N. Katz and J. Zahl).
- Quantitative equidistribution of orbits for non-Abelian semigroups on tori (J. Bourgain, A. Furman, E. Lindenstrauss, S. Mozes).
- Estimates on exponential sums, Fourier decay in nonlinear dynamics (J. Bourgain, S. Dyatlov).
- Discretized Elekes-Rónyai and dimension-expanding polynomials (O. Raz, J. Zahl).

δ-discretized projections: the setting

- Let $A \subset B^{2}(0,1)$ be δ-separated with $|A|=\delta^{-\alpha}$.

δ-discretized projections: the setting

- Let $A \subset B^{2}(0,1)$ be δ-separated with $|A|=\delta^{-\alpha}$.
- Let $E \subset S^{1}$ be δ-separated with $|E|=\delta^{-\eta}$.

δ-discretized projections: the setting

- Let $A \subset B^{2}(0,1)$ be δ-separated with $|A|=\delta^{-\alpha}$.
- Let $E \subset S^{1}$ be δ-separated with $|E|=\delta^{-\eta}$.
- Let $|\cdot|_{\delta}$ denote the covering number by balls/intervals of radius δ.

δ-discretized projections: the setting

- Let $A \subset B^{2}(0,1)$ be δ-separated with $|A|=\delta^{-\alpha}$.
- Let $E \subset S^{1}$ be δ-separated with $|E|=\delta^{-\eta}$.
- Let $|\cdot|_{\delta}$ denote the covering number by balls/intervals of radius δ.
- What can we say about $\left|\pi_{\theta} A\right|_{\delta}$ for a typical $\theta \in E$?

δ-discretized projections: the setting

- Let $A \subset B^{2}(0,1)$ be δ-separated with $|A|=\delta^{-\alpha}$.
- Let $E \subset S^{1}$ be δ-separated with $|E|=\delta^{-\eta}$.
- Let $|\cdot|_{\delta}$ denote the covering number by balls/intervals of radius δ.
- What can we say about $\left|\pi_{\theta} A\right|_{\delta}$ for a typical $\theta \in E$?
- Without additional assumptions, not much!

δ-discretized projections: the theorem

Theorem (Bourgain 2010)
Given $\eta>0,0<\alpha<2$, there exist $\varepsilon(\alpha, \eta)>0$ and $\tau(\alpha, \eta)>0$ such that the following holds. Let $A \subset B^{2}(0,1),|A|_{\delta}=\delta^{-\alpha}$, and let $E \subset S^{1}$ satisfy

$$
\begin{array}{ll}
|A \cap B(x, r)|_{\delta} \leq \delta^{-\tau} r^{\eta}|A|_{\delta} & \text { for all } x \in \mathbb{R}^{2}, r \in[\delta, 1], \\
|E \cap B(\theta, r)|_{\delta} \leq \delta^{-\tau} r^{\eta}|E|_{\delta} & \text { for all } \theta \in S^{1}, r \in[\delta, 1] .
\end{array}
$$

Then there is $\theta \in E$ such that for any set $A^{\prime} \subset A$ with $\left|A^{\prime}\right|_{\delta} \geq \delta^{\tau}|A|_{\delta}$, one has

$$
\left|P_{\theta} A^{\prime}\right|_{\delta} \geq \delta^{-\alpha / 2-\varepsilon}=\delta^{-\varepsilon}|A|_{\delta}^{1 / 2} .
$$

In fact, this holds for all $\theta \in E$ outside of a set E^{\prime} with $\left|E^{\prime}\right|_{\delta} \leq \delta^{\tau}|E|_{\delta}$.

δ-discretized projections: remarks

- It is crucial in applications (and the proof of the Hausdorff dimension version) that the same angle θ works simultaneously for all subsets $A^{\prime} \subset A$ of relative size $\geq \delta^{\tau}$.

δ-discretized projections: remarks

- It is crucial in applications (and the proof of the Hausdorff dimension version) that the same angle θ works simultaneously for all subsets $A^{\prime} \subset A$ of relative size $\geq \delta^{\tau}$.
- The non-concentration assumptions on A and E rule out the possibility that they are too concentrated in a square/interval of size $\delta^{1 / 2}$ (in fact, they say that they are not too concentrated in a square/interval of size δ^{ρ}, where $\rho>0$ is not explicit). It seems plausible that $\rho=1 / 2$ should work. Spoiler alert: $\rho=1 / 2$ works for A.

δ-discretized projections: remarks

- It is crucial in applications (and the proof of the Hausdorff dimension version) that the same angle θ works simultaneously for all subsets $A^{\prime} \subset A$ of relative size $\geq \delta^{\tau}$.
- The non-concentration assumptions on A and E rule out the possibility that they are too concentrated in a square/interval of size $\delta^{1 / 2}$ (in fact, they say that they are not too concentrated in a square/interval of size δ^{ρ}, where $\rho>0$ is not explicit). It seems plausible that $\rho=1 / 2$ should work. Spoiler alert: $\rho=1 / 2$ works for A.
- On the other hand, the non-concentration assumption on A is still quite weak: the set A doesn't have to look like the discretization of a fractal.

Beyond Bourgain's (proof of the) projection theorem

- The proof of Bourgain's projection theorem is quite complicated.

Beyond Bourgain's (proof of the) projection theorem

- The proof of Bourgain's projection theorem is quite complicated.
- The proof is effective, but tracking the dependencies is quite cumbersome, and it is clear that one would end up with tiny numbers that also have poor qualitative dependence on α and η.

Beyond Bourgain's (proof of the) projection theorem

- The proof of Bourgain's projection theorem is quite complicated.
- The proof is effective, but tracking the dependencies is quite cumbersome, and it is clear that one would end up with tiny numbers that also have poor qualitative dependence on α and η.
- The proof seems to depend strongly on the linear nature of the projections, but some well-known problems would benefit from a non-linear analog.

Beyond Bourgain's (proof of the) projection theorem

- The proof of Bourgain's projection theorem is quite complicated.
- The proof is effective, but tracking the dependencies is quite cumbersome, and it is clear that one would end up with tiny numbers that also have poor qualitative dependence on α and η.
- The proof seems to depend strongly on the linear nature of the projections, but some well-known problems would benefit from a non-linear analog.

Remark

M. Hochman-E. Lindenstrauss-P. Varjú have work in progress that yields, using totally different methods, explicit estimates for a related problem (using entropy instead of dimension). They have very good qualitative dependence on the parameters, but the constants are still tiny.

A simple(r) proof of Bourgain's projection theorem

- In joint work in progress with H. Wang, we obtain a fairly short and elementary self-contained proof of Bourgain's projection theorem.

A simple(r) proof of Bourgain's projection theorem

- In joint work in progress with H. Wang, we obtain a fairly short and elementary self-contained proof of Bourgain's projection theorem.
- Guth-Katz-Zahl (2018) obtained a quantitative and elementary proof of a discretized sum product estimate: if $|E|_{\delta}=\delta^{-\eta}$, with $s \in(0,1)$, then under a suitable non-concentration assumption on E at scale δ, either $|E+E|_{\delta} \geq|E|_{\delta}^{1+c}$ or $|E \cdot E|_{\delta} \geq|E|_{\delta}^{1+c}$, for some explicit $c=c(\eta)>0$.

A simple(r) proof of Bourgain's projection theorem

- In joint work in progress with H. Wang, we obtain a fairly short and elementary self-contained proof of Bourgain's projection theorem.
- Guth-Katz-Zahl (2018) obtained a quantitative and elementary proof of a discretized sum product estimate: if $|E|_{\delta}=\delta^{-\eta}$, with $s \in(0,1)$, then under a suitable non-concentration assumption on E at scale δ, either $|E+E|_{\delta} \geq|E|_{\delta}^{1+c}$ or $|E \cdot E|_{\delta} \geq|E|_{\delta}^{1+c}$, for some explicit $c=c(\eta)>0$.
- We use some of the ideas of Guth-Katz-Zahl and combine them with a small part of Bourgain's argument. A new idea is a bootstrapping argument to show that projections of A satisfy the non-concentration estimates needed to apply a generalized sum-product estimate derived from (the proof of) Guth-Katz-Zahl.

A simple(r) proof of Bourgain's projection theorem

- In joint work in progress with H. Wang, we obtain a fairly short and elementary self-contained proof of Bourgain's projection theorem.
- Guth-Katz-Zahl (2018) obtained a quantitative and elementary proof of a discretized sum product estimate: if $|E|_{\delta}=\delta^{-\eta}$, with $s \in(0,1)$, then under a suitable non-concentration assumption on E at scale δ, either $|E+E|_{\delta} \geq|E|_{\delta}^{1+c}$ or $|E \cdot E|_{\delta} \geq|E|_{\delta}^{1+c}$, for some explicit $c=c(\eta)>0$.
- We use some of the ideas of Guth-Katz-Zahl and combine them with a small part of Bourgain's argument. A new idea is a bootstrapping argument to show that projections of A satisfy the non-concentration estimates needed to apply a generalized sum-product estimate derived from (the proof of) Guth-Katz-Zahl.
- This approach is fully quantitative but the resulting estimates are very poor unless $\eta \approx \alpha / 2$.

An effective projection theorem for $\alpha \approx 2 \eta$

Theorem (P.S. and H. Wang 2021?, special case)
We have

$$
\begin{aligned}
s(1,0.4996) & \geq 1 / 2+1 / 500 \\
s(1,1 / 2) & \geq 1 / 2+1 / 250
\end{aligned}
$$

In other words, if $A \subset \mathbb{R}^{2}$ is a Borel set with $\operatorname{dim}_{H}(A) \geq 1$ and $E \subset S^{1}$, then

$$
\begin{aligned}
\operatorname{dim}_{H}(E)>0.4996 & \Longrightarrow \operatorname{dim}_{H}\left(P_{\theta} A\right) \geq \frac{1}{2}+\frac{1}{500} \\
\operatorname{dim}_{H}(E)>1 / 2 & \Longrightarrow \operatorname{dim}_{H}\left(P_{\theta} A\right) \geq \frac{1}{2}+\frac{1}{250}
\end{aligned}
$$

for some (in fact "nearly all") $\theta \in E$.

Remarks on effective projection theorem

- Recall that $s(1,1 / 2) \geq 1 / 2$ follows from three different classical results and $s(1,1 / 2) \geq 1 / 2+\varepsilon$ from Bourgain's projection theorem. We provide an explicit value $\varepsilon=1 / 250$.

Remarks on effective projection theorem

- Recall that $s(1,1 / 2) \geq 1 / 2$ follows from three different classical results and $s(1,1 / 2) \geq 1 / 2+\varepsilon$ from Bourgain's projection theorem. We provide an explicit value $\varepsilon=1 / 250$.
- Arguably the more interesting result is $s(1,0.4995)>1 / 2+1 / 500$ since in particular it covers the case when the set of projections has dimension $=1 / 2$ which is known to be much trickier (and an explicit interval to the left of $1 / 2$).

Remarks on effective projection theorem

- Recall that $s(1,1 / 2) \geq 1 / 2$ follows from three different classical results and $s(1,1 / 2) \geq 1 / 2+\varepsilon$ from Bourgain's projection theorem. We provide an explicit value $\varepsilon=1 / 250$.
- Arguably the more interesting result is $s(1,0.4995)>1 / 2+1 / 500$ since in particular it covers the case when the set of projections has dimension $=1 / 2$ which is known to be much trickier (and an explicit interval to the left of $1 / 2$).
- We also get (worse but still quantitative) estimates for $\boldsymbol{s}(\alpha, \eta)$ when $\alpha \approx 2 \eta$ and η is small.

Remarks on effective projection theorem

- Recall that $s(1,1 / 2) \geq 1 / 2$ follows from three different classical results and $s(1,1 / 2) \geq 1 / 2+\varepsilon$ from Bourgain's projection theorem. We provide an explicit value $\varepsilon=1 / 250$.
- Arguably the more interesting result is $s(1,0.4995)>1 / 2+1 / 500$ since in particular it covers the case when the set of projections has dimension $=1 / 2$ which is known to be much trickier (and an explicit interval to the left of $1 / 2$).
- We also get (worse but still quantitative) estimates for $s(\alpha, \eta)$ when $\alpha \approx 2 \eta$ and η is small.
- I stated the Hausdorff dimension version for simplicity, but in fact this is a corollary of a fully effective version of Bourgain's projection theorem under the original assumptions.

Some ideas in the proof I

- We say that X is a (δ, s)-set if

$$
\left|X \cap B_{r}\right|_{\delta} \lesssim r^{s}|X|_{\delta}
$$

for $r \in[\delta, 1]$. So X looks like a set of dimension s at scale δ.

Some ideas in the proof I

- We say that X is a (δ, s)-set if

$$
\left|X \cap B_{r}\right|_{\delta} \lesssim r^{s}|X|_{\delta}
$$

for $r \in[\delta, 1]$. So X looks like a set of dimension s at scale δ.

- Fix a small scale δ and let $E \subset[1,2]$ be a ($\delta, 1 / 2$)-set.

Some ideas in the proof I

- We say that X is a (δ, s)-set if

$$
\left|X \cap B_{r}\right|_{\delta} \lesssim r^{s}|X|_{\delta}
$$

for $r \in[\delta, 1]$. So X looks like a set of dimension s at scale δ.

- Fix a small scale δ and let $E \subset[1,2]$ be a ($\delta, 1 / 2$)-set.
- By Bourgain's projection theorem, there is $x \in E$ such that $E+x E$ contains a $(\delta, 1 / 2+c)$-set F.

Some ideas in the proof I

- We say that X is a (δ, s)-set if

$$
\left|X \cap B_{r}\right|_{\delta} \lesssim r^{s}|X|_{\delta}
$$

for $r \in[\delta, 1]$. So X looks like a set of dimension s at scale δ.

- Fix a small scale δ and let $E \subset[1,2]$ be a ($\delta, 1 / 2$)-set.
- By Bourgain's projection theorem, there is $x \in E$ such that $E+x E$ contains a $(\delta, 1 / 2+c)$-set F.
- Now $(-E) \times(-E)$ is a $(\delta, 1)$-set and $E \times F$ is a $(\delta, 1+c)$-set. By a theorem of T. Orponen, the set of directions spanned by $(-E \times-E)$ and $E \times F$ has Lebesgue measure $\gtrsim 1$.

Some ideas in the proof II

- Now fix a ($\delta, 1 / 2$)-set B. By Kaufman's (or Marstrand's) Theorem, there is a direction θ spanned by $(-E) \times(-E)$ and $F \times E$ such that

$$
\left|P_{\theta}(B \times B)\right|_{\delta} \gtrsim \delta^{-1}
$$

Some ideas in the proof II

- Now fix a ($\delta, 1 / 2$)-set B. By Kaufman's (or Marstrand's) Theorem, there is a direction θ spanned by $(-E) \times(-E)$ and $F \times E$ such that

$$
\left|P_{\theta}(B \times B)\right|_{\delta} \gtrsim \delta^{-1}
$$

- Since $F \subset E+x E$, there are $y_{1}, y_{2}, y_{3}, y_{4}, y_{5} \in E$ such that

$$
\left|\left(x y_{1}+y_{2}+y_{3}\right) B+\left(y_{4}+y_{5}\right) B\right|_{\delta} \gtrsim \delta^{-1}
$$

Some ideas in the proof II

- Now fix a ($\delta, 1 / 2$)-set B. By Kaufman's (or Marstrand's) Theorem, there is a direction θ spanned by $(-E) \times(-E)$ and $F \times E$ such that

$$
\left|P_{\theta}(B \times B)\right|_{\delta} \gtrsim \delta^{-1}
$$

- Since $F \subset E+x E$, there are $y_{1}, y_{2}, y_{3}, y_{4}, y_{5} \in E$ such that

$$
\left|\left(x y_{1}+y_{2}+y_{3}\right) B+\left(y_{4}+y_{5}\right) B\right|_{\delta} \gtrsim \delta^{-1}
$$

- Plünnecke-Ruzsa gives the claim for product sets $A=B \times B^{\prime}$; the general case is obtained by following Bourgain's argument.

Nonlinear Bourgain: the problem

Question

Let $\left\{\Delta_{\omega}: \mathbb{R}^{2} \rightarrow \mathbb{R}\right\}_{\omega \in \Omega}$ be a family of smooth maps, where the index set Ω is a metric space. What assumptions on the family give rise to an analog of Bourgain's projection theorem, that is, to the statement that for ω outside of a set of small dimension η,

$$
\operatorname{dim}_{H}\left(\Delta_{\omega} A\right) \geq \frac{\operatorname{dim}_{H}(A)}{2}+\varepsilon\left(\operatorname{dim}_{H}(A), \eta\right) ?
$$

Nonlinear Bourgain: the problem

Question

Let $\left\{\Delta_{\omega}: \mathbb{R}^{2} \rightarrow \mathbb{R}\right\}_{\omega \in \Omega}$ be a family of smooth maps, where the index set Ω is a metric space. What assumptions on the family give rise to an analog of Bourgain's projection theorem, that is, to the statement that for ω outside of a set of small dimension η,

$$
\operatorname{dim}_{H}\left(\Delta_{\omega} A\right) \geq \frac{\operatorname{dim}_{H}(A)}{2}+\varepsilon\left(\operatorname{dim}_{H}(A), \eta\right) ?
$$

Remark

Unlike e.g. Kaufman's/Marstrand's projection theorem, that has been generalized to quite general families satisfying a "transversality" assumption, Bourgain's proof appears to be intrinsically linear.

Nonlinear Bourgain: motivation

Motivation

An important problem in analysis/geometric measure theory/combinatorics is "counting patterns" in a set in terms of its Hausdorff dimension.

Key examples are distances and radial projections corresponding to the families:

$$
\begin{aligned}
& \Delta_{y}(x)=|x-y| \\
& \Delta_{y}(x)=N(x-y), \quad N \text { some smooth norm } \\
& \Delta_{y}(x)=\frac{x-y}{|x-y|}
\end{aligned}
$$

(In all these cases, $\Omega=\mathbb{R}^{2}$.)

Nonlinear Bourgain's Projection Thm, dim ${ }_{H}$ version

Theorem (P.S. 2020)
Given $0<\alpha<2,0<\eta<1$, there is $\varepsilon(\alpha, \eta)>0$ such that the following holds:
Let $\left\{\Delta_{\omega}: \mathbb{R}^{2} \rightarrow \mathbb{R}\right\}_{\omega \in \Omega}$ be a family of C^{2} maps with no singular points. Let

$$
\theta_{x}(\omega)=\operatorname{dir}\left(\Delta_{\omega}^{\prime}(x)\right): \Omega \rightarrow S^{1}
$$

Let $A \subset \mathbb{R}^{2}$ be a Borel with $\operatorname{dim}_{\mathrm{H}}(A)=\alpha$, and suppose that there exists $\nu \in \mathcal{P}(\Omega)$ such that

$$
\nu\left(\theta_{x}^{-1}(B(\theta, r))\right) \leq C_{x} r^{\eta}
$$

for all $x \in A$. Then for ν-almost all $\omega \in \Omega$,

$$
\operatorname{dim}_{\mathrm{H}}\left(\Delta_{\omega} A\right) \geq \frac{\operatorname{dim}_{\mathrm{H}}(A)}{2}+\varepsilon(\alpha, \eta)
$$

Nonlinear Bourgain's Projection Thm: remarks

- When Δ_{ω} is projection in direction ω, θ_{x} is the identity map and this reduces back to Bourgain's projection theorem.

Nonlinear Bourgain's Projection Thm: remarks

- When Δ_{ω} is projection in direction ω, θ_{x} is the identity map and this reduces back to Bourgain's projection theorem.
- There is a corresponding discretized single-scale analog, which again should be considered as the base result.

Nonlinear Bourgain's Projection Thm: remarks

- When Δ_{ω} is projection in direction ω, θ_{x} is the identity map and this reduces back to Bourgain's projection theorem.
- There is a corresponding discretized single-scale analog, which again should be considered as the base result.
- In fact, in the discretized version I am able to weaken the non-concentration assumption on A to the natural one: recall that in Bourgain's thm, the assumption was (essentially)

$$
\left|\boldsymbol{A} \cap \boldsymbol{B}_{\delta^{\rho}}\right|_{\delta} \leq \delta^{\eta}|\boldsymbol{A}|_{\delta}
$$

where η is any positive number and $\rho=\rho(\eta)>0$ is not explicit. I need to assume

$$
\left|\boldsymbol{A} \cap \boldsymbol{B}_{\delta^{1 / 2}}\right|_{\delta} \leq \delta^{\eta}|\boldsymbol{A}|_{\delta},
$$

with the "dimension gain" ε obviously depending on η.

A few words about the proof

The proof relies on:

- A lower bound for the entropy of $\Delta_{\omega} \mu$ based on projected entropies of a multi-scale decomposition of μ (M.Hochman-P.S, T. Orponen, T.Keleti-P.S.)

A few words about the proof

The proof relies on:

- A lower bound for the entropy of $\Delta_{\omega} \mu$ based on projected entropies of a multi-scale decomposition of μ (M.Hochman-P.S, T. Orponen, T.Keleti-P.S.)
- A decomposition of μ into measures "with Moran (tree) structure" plus a negligible term (J. Bourgain, T. Keleti-P.S.)

A few words about the proof

The proof relies on:

- A lower bound for the entropy of $\Delta_{\omega} \mu$ based on projected entropies of a multi-scale decomposition of μ (M.Hochman-P.S, T. Orponen, T.Keleti-P.S.)
- A decomposition of μ into measures "with Moran (tree) structure" plus a negligible term (J. Bourgain, T. Keleti-P.S.)
- A new way of choosing the scales in the multi-scale decomposition of Moran measures, so that "all the conditional measures are almost Frostman measures, with no entropy loss".

A few words about the proof

The proof relies on:

- A lower bound for the entropy of $\Delta_{\omega} \mu$ based on projected entropies of a multi-scale decomposition of μ (M.Hochman-P.S, T. Orponen, T.Keleti-P.S.)
- A decomposition of μ into measures "with Moran (tree) structure" plus a negligible term (J. Bourgain, T. Keleti-P.S.)
- A new way of choosing the scales in the multi-scale decomposition of Moran measures, so that "all the conditional measures are almost Frostman measures, with no entropy loss".
- Applying Bourgain's discretized projection theorem (and also Kaufman's and Falconer's classical theorems on exceptional projections) to this multiscale decomposition.

The Falconer distance set problem

Conjecture (Originating in Falconer 1985)

Let $A \subset \mathbb{R}^{2}$ be a Borel set with $\operatorname{dim}_{H}(A)=1$. Then $\operatorname{dim}_{H}(\Delta(A))=1$ where $\Delta(A)=\{|x-y|: x, y \in A\}$.

The Falconer distance set problem

Conjecture (Originating in Falconer 1985)
Let $A \subset \mathbb{R}^{2}$ be a Borel set with $\operatorname{dim}_{H}(A)=1$. Then $\operatorname{dim}_{H}(\Delta(A))=1$ where $\Delta(A)=\{|x-y|: x, y \in A\}$.

Theorem (Katz-Tao 2001+Bourgain 2003)
If $A \subset \mathbb{R}^{2}$ is a Borel set with $\operatorname{dim}_{H}(A)=1$, then $\operatorname{dim}_{H}(\Delta(A))=1 / 2+c$, where $c>0$ is universal.

The Falconer distance set problem

Conjecture (Originating in Falconer 1985) Let $A \subset \mathbb{R}^{2}$ be a Borel set with $\operatorname{dim}_{H}(A)=1$. Then $\operatorname{dim}_{H}(\Delta(A))=1$ where $\Delta(A)=\{|x-y|: x, y \in A\}$.

Theorem (Katz-Tao 2001+Bourgain 2003)
If $A \subset \mathbb{R}^{2}$ is a Borel set with $\operatorname{dim}_{H}(A)=1$, then $\operatorname{dim}_{H}(\Delta(A))=1 / 2+c$, where $c>0$ is universal.

Stronger Conjecture

Let $A \subset \mathbb{R}^{2}$ be a Borel set with $\operatorname{dim}_{H}(A)=1$. Then there is $x \in A$ such that $\operatorname{dim}_{\mathrm{H}}\left(\Delta^{x}(A)\right)=1$ where $\Delta^{x}(A)=\{|x-y|: y \in A\}$. Moreover, this also holds if the Euclidean norm is replaced by any C^{∞} norm with positive curvature everywhere.

Falconer's problem: recent progress for $\operatorname{dim}_{H}(A)>1$

Theorem (T. Keleti, P.S. (2018))
If $\operatorname{dim}_{\mathrm{H}}(A)>1$ then there is $x \in A$ such that

$$
\operatorname{dim}_{H}\left(\Delta^{x} A\right)>2 / 3+1 / 42
$$

Falconer's problem: recent progress for $\operatorname{dim}_{H}(A)>1$

Theorem (T. Keleti, P.S. (2018))
If $\operatorname{dim}_{\mathrm{H}}(A)>1$ then there is $x \in A$ such that

$$
\operatorname{dim}_{H}\left(\Delta^{x} A\right)>2 / 3+1 / 42
$$

Theorem (L. Guth, A. Iosevich, Y. Ou and H. Wang (2018)) If $\operatorname{dim}_{H}(A)>5 / 4$ then there is $x \in A$ such that $\left|\Delta^{x} A\right|>0$.

Falconer's problem: recent progress for $\operatorname{dim}_{\mathrm{H}}(A)>1$

Theorem (T. Keleti, P.S. (2018))
If $\operatorname{dim}_{\mathrm{H}}(A)>1$ then there is $x \in A$ such that

$$
\operatorname{dim}_{H}\left(\Delta^{x} A\right)>2 / 3+1 / 42
$$

Theorem (L. Guth, A. Iosevich, Y. Ou and H. Wang (2018)) If $\operatorname{dim}_{H}(A)>5 / 4$ then there is $x \in A$ such that $\left|\Delta^{x} A\right|>0$.

Remark

The proofs of these results rely on a spherical projection theorem of Orponen that requires $\operatorname{dim}_{\mathrm{H}}(A)>1$ in an essential way.

Nonlinear Bourgain to Falconer's problem

Theorem (P.S. 2020)

Given $0<\alpha<2,0<\eta<1$, there is $\varepsilon(\alpha, \eta)>0$ such that the following holds: if $A \subset \mathbb{R}^{2}$ is a Borel set of dimension α, then

$$
\operatorname{dim}_{\mathrm{H}}\left(\Delta_{y} A\right) \geq \frac{\operatorname{dim}_{\mathrm{H}}(A)}{2}+\varepsilon(\alpha, \eta)
$$

for all $y \in \mathbb{R}^{2}$ outside of a set of exceptions of dimension $\leq \eta$.
The same holds if the Euclidean norm is replaced by a C^{2} norm whose unit circle has everywhere positive Gaussian curvature.

Remarks on the improvement in Falconer's problem

- To my knowledge, the proof of Katz-Tao+Bourgain doesn't extend to pinned distance sets nor to other smooth norms.

Remarks on the improvement in Falconer's problem

- To my knowledge, the proof of Katz-Tao+Bourgain doesn't extend to pinned distance sets nor to other smooth norms.
- Even though the result is an application of the nonlinear Bourgain projection theorem, it is not a direct consequence: it relies on a (different!) radial projection theorem of Orponen.

Remarks on the improvement in Falconer's problem

- To my knowledge, the proof of Katz-Tao+Bourgain doesn't extend to pinned distance sets nor to other smooth norms.
- Even though the result is an application of the nonlinear Bourgain projection theorem, it is not a direct consequence: it relies on a (different!) radial projection theorem of Orponen.
- Combining the effective and nonlinear versions of Bourgain's projection theorem, it is possible to obtain explicit values for ε (work in progress). For example, it seems plausible that $\operatorname{dim}_{\mathrm{H}}\left(\Delta^{x} A\right) \geq 1 / 2+1 / 1000$.

Remarks on the improvement in Falconer's problem

- To my knowledge, the proof of Katz-Tao+Bourgain doesn't extend to pinned distance sets nor to other smooth norms.
- Even though the result is an application of the nonlinear Bourgain projection theorem, it is not a direct consequence: it relies on a (different!) radial projection theorem of Orponen.
- Combining the effective and nonlinear versions of Bourgain's projection theorem, it is possible to obtain explicit values for ε (work in progress). For example, it seems plausible that $\operatorname{dim}_{H}\left(\Delta^{x} A\right) \geq 1 / 2+1 / 1000$.
- Very recently, and relying on the non-linear Bourgain projection thm (plus many other ideas), O. Raz and J. Zahl proved an ε-improvement for the discretized distance set problem considering only 3 non-collinear vantage points x.

An improvement on Kaufman's projection theorem?

- Both Kaufman's and Falconer's classic bounds yield $s(1,3 / 4) \geq 3 / 4$ (in other words, the projection of a set of dimension 1 has dimension at least $3 / 4$, outside of a set of exceptional directions of dimension $\leq 3 / 4$).

An improvement on Kaufman's projection theorem?

- Both Kaufman's and Falconer's classic bounds yield $s(1,3 / 4) \geq 3 / 4$ (in other words, the projection of a set of dimension 1 has dimension at least $3 / 4$, outside of a set of exceptional directions of dimension $\leq 3 / 4$).
- Since already $s(3 / 4,3 / 4)=3 / 4$, no gain is obtained by increasing the dimension of A from $3 / 4$ to 1 . Moreover, Bourgain's projection theorem is vacuous here.

An improvement on Kaufman's projection theorem?

- Both Kaufman's and Falconer's classic bounds yield $s(1,3 / 4) \geq 3 / 4$ (in other words, the projection of a set of dimension 1 has dimension at least $3 / 4$, outside of a set of exceptional directions of dimension $\leq 3 / 4$).
- Since already $s(3 / 4,3 / 4)=3 / 4$, no gain is obtained by increasing the dimension of A from $3 / 4$ to 1 . Moreover, Bourgain's projection theorem is vacuous here.

```
Theorem* (P.S. work in progress)
If }\eta\in(0,1)\mathrm{ , then s(1, })>\eta+\varepsilon(\eta)
```


The end

Many thanks!!!

