# Nonuniqueness in MCF and Ricci Flow

CalTech/UCLA, February 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Joint work with

Juanjo Velázquez Tom Ilmanen

Dan Knopf

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

#### Motivation

find examples of nonuniqueness after a singularity occurs find examples of nonuniqueness from nonsmooth initial data

both for MCF and RF

#### Mean Curvature Flow

A family of hypersurfaces parametrized by  $X : \mathcal{M}^n \times (t_0, t_1) \to \mathbb{R}^{n+1}$  evolves by MCF if

$$V = H \quad \text{where} \quad V \stackrel{\text{def}}{=} \boldsymbol{X}_t \cdot \boldsymbol{\nu}, \quad \underbrace{H \stackrel{\text{def}}{=} g^{ij}(\nabla \boldsymbol{X}) \boldsymbol{\nu} \cdot \nabla_i \nabla_j \boldsymbol{X}}_{\text{and} g_{ii}}(\nabla \boldsymbol{X}) = \nabla_i \boldsymbol{X} \cdot \nabla_i \boldsymbol{X}$$

**Theorem.** For any compact smooth initial immersed hypersurface  $X_0 : \mathcal{M} \to \mathbb{R}^{n+1}$  there exist T > 0 and a smooth solution  $X : [0, T) \times \mathcal{M} \to \mathbb{R}^{n+1}$  with  $X(0, p) = X_0(p)$ .

Variations:

- if  $X_0$  is proper and has bounded second fundamental form then there is still a proper solution with bounded curvatures, for a short time.

- prescribed boundary conditions

# Shrinking and Expanding solitons

"Separate variables"

Self similar solutions:

typeequation for  $\mathcal{N}$ Stationary: $\mathcal{M}_t = \mathcal{N}$  $t \in \mathbb{R}$ H = 0Translators: $\mathcal{M}_t = \mathcal{N} + t\mathbf{y}$  $t \in \mathbb{R}$  $H + \mathbf{X} \cdot \mathbf{v} = 0$ Shinkers: $\mathcal{M}_t = \sqrt{-t} \mathcal{N}$  $-\infty < t < 0$  $H + \frac{1}{2}\mathbf{X} \cdot \mathbf{v}$ Expanders: $\mathcal{M}_t = \sqrt{t} (\mathcal{N})$  $0 < t < \infty$  $H - \frac{1}{2}\mathbf{X} \cdot \mathbf{v} = 0$ 

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Examples



#### Expanders from cones in 3D

A-Ilmanen-Chopp, 1994

 $C_{\alpha}$  : round double cone with opening angle  $\alpha \in (0, \frac{\pi}{2})$ .  $\mathcal{M}_{t}^{\alpha}$  (t > 0) : the disconnected expander. **Theorem.** *There is an*  $\alpha_{*} \in (0, \frac{\pi}{2})$  *such that* 

 $\alpha < \alpha_* \implies \mathcal{M}_t^{\alpha}$  is the unique MCF starting with  $C_{\alpha}$ 

 $\alpha > \alpha_* \implies$  There are three distinct smooth self similar evolutions of  $C_{\alpha}$ .

## Expanders from cones in 3D



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

#### Shrinkers & expanders from cones in $\mathbb{R}^p \times \mathbb{R}^q$

Consider  $O(p) \times O(q)$  symmetric hypersurfaces in  $\mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^q$  of the formally

$$\mathcal{M}_t = \left\{ (\underline{X}, \underline{Y}) \in \mathbb{R}^p \times \mathbb{R}^q : ||\underline{Y}|| = \underline{u}(||\underline{X}||, t) \right\}$$

MCF is equivalent with





▲□▶▲□▶▲□▶▲□▶ □ のQで

#### Shrinkers & expanders from cones in $\mathbb{R}^p \times \mathbb{R}^q$



イロト 不得 とくほ とくほう

 $4 \le p + q \le 7$  minimal cone, but not minimizing

#### Shrinkers & expanders from cones in $\mathbb{R}^p \times \mathbb{R}^q$ (equations)

$$y = \sqrt{\pm t} U\left(\frac{x}{\sqrt{\pm t}}\right) \text{ is a shrinking } (-) \text{ or expanding } (+) \text{ soliton iff}$$
$$\frac{U_{\xi\xi}}{1 + U_{\xi}^{2}} + \left(\frac{p-1}{\xi} \pm \frac{\xi}{2}\right) U_{\xi} \mp \frac{1}{2}U - \frac{q-1}{U} = 0$$
Boundary condition at  $\xi = 0$ :
$$U_{\xi}(0) = 0, \qquad U(0) > 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

#### Shrinkers & expanders from cones in $\mathbb{R}^p \times \mathbb{R}^q$

**Expanders Theorem (A-Ilmanen-Velázquez).** For each a > 0 there is a unique solution  $U_+(a; \xi)$  of the expander ODE that is defined for all  $\xi \ge 0$  and that satisfies  $U_{\xi}(a; 0) = 0$ , U(a; 0) = a.

 $-\xi \mapsto U_{+}(a;\xi)$  is strictly increasing - the asymptotic slope  $A_+(a) = \lim_{\xi \to \infty} \frac{U_+(a;\xi)}{\xi}$  exists. SO(p,R)  $y = \sqrt{\frac{q-1}{p-1}} x$ orange V=U(a;x)  $y = A_{+}(a)x$ expander asymptote  $R^{n} = R^{p} \times R^{q}$ SO(q,R

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

#### Multiplicity of expanding solitons



イロト 不得 とうほう イヨン

э.

The asymptotic slope  $A_+(a)$  is a continuous function of a -

$$\lim_{a \searrow 0} A_{+}(a) = \sqrt{\frac{q-1}{p-1}} \quad \bullet$$
  
$$\forall N \in \mathbb{N} \ \exists \epsilon_{N} > 0 \ \forall A : \left| \sqrt{\frac{q-1}{p-1}} - A \right| < \epsilon \qquad \checkmark$$
  
$$\implies \text{ there exist } 0 < a_{1} < \dots < a_{N} \text{ with } A_{+}(a_{j}) = A$$



▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

#### Shrinkers & expanders from cones in $\mathbb{R}^p \times \mathbb{R}^q$

**Shrinker Theorem (A-Ilmanen-Velázquez).** There is a sequence of solutions  $U_{-,j}(\xi)$  of the shrinker ODE that are defined for all  $\xi \ge 0$  and that satisfy  $U_{\xi}(0) = 0$ ,  $U_{-,j}(0) = a_j \searrow 0$ .

- the asymptotic slopes  $A_{-,j} = \lim_{\xi \to \infty} \frac{U_{-,j(\xi)}}{\xi}$  exist.



# Shrinkers & expanders from cones in $\mathbb{R}^p \times \mathbb{R}^q$

Conclusion:

There is a sequence of shrinking solitons  $N_{-j}$  each of which is asymptotic to a cone with aperture  $A_{-j}$ .

 $A_{-j} \rightarrow \sqrt{\frac{q-1}{p-1}}$  as  $j \rightarrow \infty$ For each *j* there are  $K_j$  expanding solitons  $N_{+j}^{(1)}, \dots, N_{+j}^{(K_j)}$  that have the same asymptotic cone as  $N_{-j}$ .

 $K_j \to \infty$  as  $j \to \infty$ 

For each *j* the family of surfaces

$$\mathcal{M}_{j}^{(m)}(t) = \begin{cases} \sqrt{-t} \mathcal{N}_{-j}^{(m)} & (t < 0) \\ \sqrt{t} \mathcal{N}_{+j}^{(m)} & (t > 0) \end{cases} \quad t = 0 \quad \text{asympt.}$$

is a varifold solution of MCF with one singular point at the origin, at time t = 0

#### **Ricci flow**

A similar construction can be carried out for Ricci flow:

**Theorem (A - Knopf, 2019).** *Assume*  $p, q \ge 2, p + q \le 8$ .

For every  $K \in \mathbb{N}$  there is a shrinking soliton  $(G^-, \mathfrak{X}^-)$  on  $\mathbb{D}^{p+1} \times S^q$  and there are K different expanding solitons  $(G_j^+, \mathfrak{X}_j^+)$  all of which are asymptotic to the same cone metric on  $(0, \infty) \times S^p \times S^q$ .

Together the shrinking and expanding solitons form K distinct Ricci flow spacetimes with one singular point, all of which coincide for t < 0.

$$-2\mathrm{Rc} = \mathcal{L}_{\mathfrak{X}}g + \lambda g, \quad g = (ds)^2 + \varphi(s)^2 g_{S^p} + \psi(s)^2 g_{S^q}, \quad \mathfrak{X} = f(s) \frac{\partial}{\partial s}$$

◆□▶ ◆畳▶ ◆豆≯ ◆豆≯ →□ ▼

#### Renormalized MCF and Huisken's functional "Variation of constants"

Shrinking renormalized flow:  $\mathcal{M}_t = \sqrt{-t} \mathcal{N}_{\log(-t)}$   $(-\infty < t < 0)$ Evolution Equation:  $V = H + \frac{1}{2} \mathbf{X} \cdot \mathbf{v}$ Huisken's Lyapunov functional:  $\mathcal{H}(\mathcal{N}_{\tau}) = \int_{\mathcal{N}_{\tau}} e^{-\|\mathbf{X}\|^2/4} dH_{\mathcal{N}_{\tau}}^n$ 

Expanding renormalized flow:  $\mathcal{M}_t = \sqrt{t} \mathcal{N}_{\log t}$   $(0 < t < \infty)$ Evolution Equation:  $V = H - \frac{1}{2} \mathbf{X} \cdot \mathbf{v}$ Huisken's Lyapunov functional:  $\mathcal{H}(N_\tau) = \int_{N_\tau} e^{+||\mathbf{X}||^2/4} dH_{N_\tau}^n$ 

## $SO(p) \times SO(q)$ invariant expander flow

Let  $N_t = \{(X, Y) : ||Y|| = u(||X||, t)\}$ . Then the renormalized expanding MCF is equivalent with

$$\frac{\partial u}{\partial t} = \frac{u_{xx}}{1+u_x^2} + \left(\frac{p-1}{x} + \frac{x}{2}\right)u_x - \frac{1}{2}u - \frac{q-1}{u}$$
$$\begin{cases} u_x(0,t) = 0\\ u(x,t) = Ax + o(1) \quad (x \to \infty) \end{cases}$$

Quasilinear parabolic pde of the form

$$u_t = a(x, u, u_x)u_{xx} + b(x, u, u_x) \bullet$$

If U is a given expanding soliton, then the IVP generates a real analytic local semiflow in the space

$$X = \{ u = U(x) + e^{-\gamma x^2} f \mid x^2 f, x f_x, f_{xx} \in C^{0,\alpha} \}$$

where  $\gamma$  depends on U.

| • |
|---|
|   |

#### Unstable manifolds

# **Unstable manifold theorem.** *If U is an expanding soliton and if m is the Morse index of the linearization at U, i.e. the number of positive eigenvalues of the operator*

$$\mathcal{L} = \frac{d}{dx} \left( \frac{1}{1 + U_x^2} \frac{d}{dx} \right) + \left( \frac{p-1}{x} + \frac{x}{2} \right) \frac{d}{dx} - \frac{1}{2} + \frac{q-1}{U(x)^2} \quad \bigstar$$

in the space X, then there is an m-dimensional real analytic family of ancient solutions  $W(\mu_1, \ldots, \mu_m; x, t)$  to the expanding flow with  $W(\mu_1, \ldots, \mu_m; x, t) \in X$ , and  $W(\mu_1, \ldots, \mu_m; x, t) \to U(x)$  as  $t \to -\infty$ .



## Back to $\mathbb{R}^3$

The Minimax Expander and Connecting Orbits

 $M_+$  and  $M_-$  are both local minima of the renormalized Huisken functional. The third expander  $M_1$  between  $M_-$  and  $M_+$  is not a local minimizer. Linearization shows  $M_1$  has Morse index 1.





▲□▶▲@▶▲≣▶▲≣▶ ≣ めへで

# Connecting Orbits with $O(p) \times O(q)$ symmetry



イロト イポト イヨト イヨト

э

◆□▶ ◆畳▶ ◆豆≯ ◆豆≯ →□ ▼

◆□▶ ◆畳▶ ◆豆≯ ◆豆≯ →□ ▼