Extreme values of the argument of the zeta function

Alex Dobner

Definitions

Riemann zeta function:

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \operatorname{Re} s>1
$$

Definitions

Riemann zeta function:

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \operatorname{Re} s>1
$$

Euler product:

$$
\zeta(s)=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1}, \operatorname{Re} s>1
$$

Definitions

Riemann zeta function:

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \operatorname{Re} s>1
$$

Euler product:

$$
\zeta(s)=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1}, \operatorname{Re} s>1
$$

- $\zeta(s)$ has a meromorphic continuation to all of \mathbb{C}

Definitions

Riemann zeta function:

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \operatorname{Re} s>1
$$

Euler product:

$$
\zeta(s)=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1}, \operatorname{Re} s>1
$$

- $\zeta(s)$ has a meromorphic continuation to all of \mathbb{C}
- most interesting behavior is in the critical strip $0 \leq \operatorname{Re}(s) \leq 1$

Definitions

Riemann zeta function:

$$
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \operatorname{Re} s>1
$$

Euler product:

$$
\zeta(s)=\prod_{p \text { prime }}\left(1-\frac{1}{p^{s}}\right)^{-1}, \operatorname{Re} s>1
$$

- $\zeta(s)$ has a meromorphic continuation to all of \mathbb{C}
- most interesting behavior is in the critical strip $0 \leq \operatorname{Re}(s) \leq 1$
- $\zeta(s)$ has lots of zeros in the critical strip. We know most are near the critical line $\operatorname{Re}(s)=1 / 2$

Logarithm of zeta

For $\operatorname{Re}(s)>1$,

$$
\log \zeta(s)=-\sum_{p} \log \left(1-p^{-s}\right)=\sum_{n \geq 1} \frac{\Lambda(n)}{(\log n) n^{s}}
$$

where

$$
\Lambda(n):= \begin{cases}\log p & \text { if } n=p^{k} \\ 0 & \text { otherwise }\end{cases}
$$

Logarithm of zeta

For $\operatorname{Re}(s)>1$,

$$
\log \zeta(s)=-\sum_{p} \log \left(1-p^{-s}\right)=\sum_{n \geq 1} \frac{\Lambda(n)}{(\log n) n^{s}}
$$

where

$$
\Lambda(n):= \begin{cases}\log p & \text { if } n=p^{k} \\ 0 & \text { otherwise }\end{cases}
$$

Heuristic

$$
\log \zeta(s) \approx \sum_{p} \frac{1}{p^{s}}
$$

Riemann-von Mangoldt formula

Denote nontrivial zeros of ζ by $\rho=\beta+i \gamma$.

$$
N(T):=\text { number of zeros with } 0<\gamma<T
$$

Theorem (Riemann-von Mangoldt)

For $T \geq 1$,

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}+S(T)+O\left(T^{-1}\right)
$$

where $S(T):=\frac{1}{\pi} \operatorname{Im} \log \zeta\left(\frac{1}{2}+i T\right)$.

Riemann-von Mangoldt formula

Denote nontrivial zeros of ζ by $\rho=\beta+i \gamma$.

$$
N(T):=\text { number of zeros with } 0<\gamma<T
$$

Theorem (Riemann-von Mangoldt)

For $T \geq 1$,

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}+S(T)+O\left(T^{-1}\right)
$$

where $S(T):=\frac{1}{\pi} \operatorname{Im} \log \zeta\left(\frac{1}{2}+i T\right)$.

- It is known that $S(T)=O(\log T)$. Hence $N(T) \sim \frac{T}{2 \pi} \log T$.

Riemann-von Mangoldt formula

Denote nontrivial zeros of ζ by $\rho=\beta+i \gamma$.

$$
N(T):=\text { number of zeros with } 0<\gamma<T
$$

Theorem (Riemann-von Mangoldt)

For $T \geq 1$,

$$
N(T)=\frac{T}{2 \pi} \log \frac{T}{2 \pi}-\frac{T}{2 \pi}+\frac{7}{8}+S(T)+O\left(T^{-1}\right)
$$

where $S(T):=\frac{1}{\pi} \operatorname{Im} \log \zeta\left(\frac{1}{2}+i T\right)$.

- It is known that $S(T)=O(\log T)$. Hence $N(T) \sim \frac{T}{2 \pi} \log T$.
- Average spacing between zeros at height T is $\frac{2 \pi}{\log T}$ but on short intervals they can be irregularly spaced

Extreme values of $S(t)$

How big does $S(t)$ get?
Upper bounds:

- (Backlund) $S(t)=O(\log t)$

Extreme values of $S(t)$

How big does $S(t)$ get?
Upper bounds:

- (Backlund) $S(t)=O(\log t)$
- (Littlewood) On RH, $S(t)=O\left(\frac{\log t}{\log \log t}\right)$

Extreme values of $S(t)$

How big does $S(t)$ get?
Upper bounds:

- (Backlund) $S(t)=O(\log t)$
- (Littlewood) On RH, $S(t)=O\left(\frac{\log t}{\log \log t}\right)$
Ω theorems:
- (Selberg, 1946) $S(t)=\Omega\left(\frac{(\log t)^{1 / 3}}{(\log \log t)^{7 / 3}}\right)$
- (Tsang, 1986) $S(t)=\Omega\left(\left(\frac{\log t}{\log \log t}\right)^{1 / 3}\right)$

Extreme values of $S(t)$

How big does $S(t)$ get?
Upper bounds:

- (Backlund) $S(t)=O(\log t)$
- (Littlewood) On RH, $S(t)=O\left(\frac{\log t}{\log \log t}\right)$
Ω theorems:
- (Selberg, 1946) $S(t)=\Omega\left(\frac{(\log t)^{1 / 3}}{(\log \log t)^{7 / 3}}\right)$
- (Tsang, 1986) $S(t)=\Omega\left(\left(\frac{\log t}{\log \log t}\right)^{1 / 3}\right)$
- (Montgomery, 1977) On RH, $S(t)=\Omega\left(\left(\frac{\log t}{\log \log t}\right)^{1 / 2}\right)$
- (Bondarenko-Seip, 2018) On RH,

$$
S(t)=\Omega\left(\left(\frac{\log t \log \log \log t}{\log \log t}\right)^{1 / 2}\right)
$$

Behavior of $\log \zeta(s)$ in the critical strip

Theorem (Selberg central limit theorem)

For any fixed Δ,

$$
\begin{aligned}
& \frac{1}{T} \text { meas }\left\{t \in[T, 2 T]: \frac{\operatorname{lm} \log \zeta\left(\frac{1}{2}+i t\right)}{\sqrt{\frac{1}{2} \log \log T}} \geq \Delta\right\}= \\
& \frac{1}{\sqrt{2 \pi}} \int_{\Delta}^{\infty} e^{-u^{2} / 2} d u+o_{T \rightarrow \infty}(1) .
\end{aligned}
$$

This also holds for $\operatorname{Re} \log \zeta\left(\frac{1}{2}+i t\right)$.

Behavior of $\log \zeta(s)$ in the critical strip

Theorem (Selberg central limit theorem)

For any fixed Δ,

$$
\begin{aligned}
& \frac{1}{T} \text { meas }\left\{t \in[T, 2 T]: \frac{\operatorname{lm} \log \zeta\left(\frac{1}{2}+i t\right)}{\sqrt{\frac{1}{2} \log \log T}} \geq \Delta\right\}= \\
& \frac{1}{\sqrt{2 \pi}} \int_{\Delta}^{\infty} e^{-u^{2} / 2} d u+o_{T \rightarrow \infty}(1)
\end{aligned}
$$

This also holds for $\operatorname{Re} \log \zeta\left(\frac{1}{2}+i t\right)$.
Restatement: Choosing t randomly from [$T, 2 T$], the random variable Im $\log \zeta\left(\frac{1}{2}+i t\right) / \sqrt{\frac{1}{2} \log \log T}$ converges in distribution to $\mathcal{N}(0,1)$.

Large deviations of $S(t)$

Heuristic

In the range $[T, 2 T], S(t)$ has Gaussian distribution with mean 0 and variance $\frac{1}{2 \pi^{2}} \log \log T$.

Large deviations of $S(t)$

Heuristic

In the range $[T, 2 T], S(t)$ has Gaussian distribution with mean 0 and variance $\frac{1}{2 \pi^{2}} \log \log T$.

Conjecture

Even for V much larger than $\sqrt{\log \log T}$, we have

$$
\operatorname{meas}\{t \in[T, 2 T]: S(t) \geq V\} \gg T \exp \left(-c V^{2} / \log \log T\right)
$$

for some constant c.

Large deviations of $S(t)$

Heuristic

In the range $[T, 2 T], S(t)$ has Gaussian distribution with mean 0 and variance $\frac{1}{2 \pi^{2}} \log \log T$.

Conjecture

Even for V much larger than $\sqrt{\log \log T}$, we have

$$
\operatorname{meas}\{t \in[T, 2 T]: S(t) \geq V\} \gg T \exp \left(-c V^{2} / \log \log T\right)
$$

for some constant c.

- (Soundararajan, 2008) For Re $\log \zeta$ instead of $\operatorname{Im} \log \zeta$, the conjecture holds for $V \ll(\log T)^{1 / 2-\varepsilon}$
- (Radziwiłt, 2011) For $V \ll(\log \log T)^{1 / 2+1 / 10-\varepsilon}$, the asymptotic predicted by Selberg CLT holds for both real and imaginary parts

Large deviations of $S(t)$

Theorem (D.)

Let $0<a<1 / 3$. There exist constants $\kappa, c>0$ depending on a such that for all T sufficiently large and all V in the range $(\log T)^{a} \leq V \leq \kappa\left(\frac{\log T}{\log \log T}\right)^{\frac{1}{3}}$ we have

$$
\operatorname{meas}\{t \in[T, 2 T]: S(t) \geq V\} \geq T \exp \left(-c V^{2}\right)
$$

The same is true we replace $S(t)$ with $-S(t)$.

Large deviations of $S(t)$

Theorem (D.)

Let $0<a<1 / 3$. There exist constants $\kappa, c>0$ depending on a such that for all T sufficiently large and all V in the range $(\log T)^{a} \leq V \leq \kappa\left(\frac{\log T}{\log \log T}\right)^{\frac{1}{3}}$ we have

$$
\operatorname{meas}\{t \in[T, 2 T]: S(t) \geq V\} \geq T \exp \left(-c V^{2}\right)
$$

The same is true we replace $S(t)$ with $-S(t)$.
Differences between $\operatorname{Re} \log \zeta$ and $S(t)$:

Large deviations of $S(t)$

Theorem (D.)

Let $0<a<1 / 3$. There exist constants $\kappa, c>0$ depending on a such that for all T sufficiently large and all V in the range $(\log T)^{a} \leq V \leq \kappa\left(\frac{\log T}{\log \log T}\right)^{\frac{1}{3}}$ we have

$$
\operatorname{meas}\{t \in[T, 2 T]: S(t) \geq V\} \geq T \exp \left(-c V^{2}\right)
$$

The same is true we replace $S(t)$ with $-S(t)$.
Differences between $\operatorname{Re} \log \zeta$ and $S(t)$:

- To get large values of $\operatorname{Re} \log \zeta\left(\frac{1}{2}+i t\right)$, may work with $\left|\zeta\left(\frac{1}{2}+i t\right)\right|$ instead

Large deviations of $S(t)$

Theorem (D.)

Let $0<a<1 / 3$. There exist constants $\kappa, c>0$ depending on a such that for all T sufficiently large and all V in the range $(\log T)^{a} \leq V \leq \kappa\left(\frac{\log T}{\log \log T}\right)^{\frac{1}{3}}$ we have

$$
\text { meas }\{t \in[T, 2 T]: S(t) \geq V\} \geq T \exp \left(-c V^{2}\right)
$$

The same is true we replace $S(t)$ with $-S(t)$.
Differences between $\operatorname{Re} \log \zeta$ and $S(t)$:

- To get large values of $\operatorname{Re} \log \zeta\left(\frac{1}{2}+i t\right)$, may work with $\left|\zeta\left(\frac{1}{2}+i t\right)\right|$ instead
- Possibility of zeros off the critical line can only help you for finding large values of $\operatorname{Re} \log \zeta\left(\frac{1}{2}+i t\right)$

Steps of proof

Step 1: Get a rigorous version of $\log \zeta\left(\frac{1}{2}+i t\right) \approx \sum_{p} \frac{1}{\sqrt{p}} p^{-i t}$ using convolution formula of Selberg. This will give $S(t)$ in terms of primes and zeros.

Steps of proof

Step 1: Get a rigorous version of $\log \zeta\left(\frac{1}{2}+i t\right) \approx \sum_{p} \frac{1}{\sqrt{p}} p^{-i t}$ using convolution formula of Selberg. This will give $S(t)$ in terms of primes and zeros.

Step 2: Show the zeros contribution is $\leq V$ for $t \in[T, 2 T]$ other than an exceptional set

Steps of proof

Step 1: Get a rigorous version of $\log \zeta\left(\frac{1}{2}+i t\right) \approx \sum_{p} \frac{1}{\sqrt{p}} p^{-i t}$ using convolution formula of Selberg. This will give $S(t)$ in terms of primes and zeros.

Step 2: Show the zeros contribution is $\leq V$ for $t \in[T, 2 T]$ other than an exceptional set

Step 3: Show primes contribution is $\geq 2 V$ on a set whose measure is greater than the exceptional set

Steps of proof

Step 1: Get a rigorous version of $\log \zeta\left(\frac{1}{2}+i t\right) \approx \sum_{p} \frac{1}{\sqrt{p}} p^{-i t}$ using convolution formula of Selberg. This will give $S(t)$ in terms of primes and zeros.

Step 2: Show the zeros contribution is $\leq V$ for $t \in[T, 2 T]$ other than an exceptional set

Step 3: Show primes contribution is $\geq 2 V$ on a set whose measure is greater than the exceptional set

The crossover point where the measure bound from step 2 is worse than step 3 occurs at $V=\kappa\left(\frac{\log T}{\log \log T}\right)^{1 / 3}$

Step 1

Let λ be a parameter. Convolving $\log \zeta\left(\frac{1}{2}+i t\right)$ with a smooth function of width λ^{-1} cuts out large prime frequencies $\log p \geq \lambda$. This gives a formula like

$$
\text { smoothed } S(t) \approx \operatorname{Re} \sum_{\log p \leq \lambda} \frac{1}{\sqrt{p}} p^{-i t}+Z(t)
$$

where $Z(t)$ is a contribution coming from zeta zeros off the critical line. $Z(t)$ is dominated by zeros $\rho=\beta+i \gamma$ for which $|t-\gamma| \leq \lambda^{-1}$.

Step 2

Heuristic: each individual zero contributes $\ll \lambda^{2}\left(\beta-\frac{1}{2}\right)^{2}$ and there are $\ll \lambda^{-1} \log T$ zeros in the range $|t-\lambda| \ll \lambda^{-1}$.

Step 2

Heuristic: each individual zero contributes $\ll \lambda^{2}\left(\beta-\frac{1}{2}\right)^{2}$ and there are $\ll \lambda^{-1} \log T$ zeros in the range $|t-\lambda| \ll \lambda^{-1}$.

Let $\theta_{t}=\max \left|\beta-\frac{1}{2}\right|$ where the max is taken over a window of zeros at height t. Then by the heuristic,

$$
Z(t) \ll\left(\lambda^{2} \theta_{t}^{2}\right)\left(\lambda^{-1} \log T\right)=\lambda \theta_{t}^{2} \log T
$$

Step 2

Heuristic: each individual zero contributes $\ll \lambda^{2}\left(\beta-\frac{1}{2}\right)^{2}$ and there are $\ll \lambda^{-1} \log T$ zeros in the range $|t-\lambda| \ll \lambda^{-1}$.

Let $\theta_{t}=\max \left|\beta-\frac{1}{2}\right|$ where the max is taken over a window of zeros at height t. Then by the heuristic,

$$
Z(t) \ll\left(\lambda^{2} \theta_{t}^{2}\right)\left(\lambda^{-1} \log T\right)=\lambda \theta_{t}^{2} \log T
$$

The bound $Z(t)<V$ holds if $\theta_{t} \ll\left(\frac{V}{\lambda \log T}\right)^{1 / 2}$.

Step 2

Heuristic: each individual zero contributes $\ll \lambda^{2}\left(\beta-\frac{1}{2}\right)^{2}$ and there are $\ll \lambda^{-1} \log T$ zeros in the range $|t-\lambda| \ll \lambda^{-1}$.

Let $\theta_{t}=\max \left|\beta-\frac{1}{2}\right|$ where the max is taken over a window of zeros at height t. Then by the heuristic,

$$
Z(t) \ll\left(\lambda^{2} \theta_{t}^{2}\right)\left(\lambda^{-1} \log T\right)=\lambda \theta_{t}^{2} \log T
$$

The bound $Z(t)<V$ holds if $\theta_{t} \ll\left(\frac{V}{\lambda \log T}\right)^{1 / 2}$.
Apply a zero density estimate to see that this holds except on a set of measure

$$
\leq T \exp \left(-c^{\prime}\left(\frac{V \log T}{\lambda}\right)^{1 / 2}\right)
$$

Step 3

Want to understand how often $\operatorname{Re} \sum_{\log p \leq \lambda} \frac{1}{\sqrt{p}} p^{-i t} \gg V$. Terms coming from $p \leq V$ (say) are insignificant because $\sum_{p \leq V} \frac{1}{\sqrt{p}} \ll \sqrt{V}$.

Heuristic

The sum

$$
\sum_{\log V \leq \log p \leq \lambda} \frac{1}{\sqrt{p}} p^{-i t}
$$

for $t \in[T, 2 T]$ behaves like

$$
\sum_{\log V \leq \log p \leq \lambda} \frac{X_{p}}{\sqrt{p}}
$$

where X_{p} are iid random variables.

Step 3

So we may predict that $\operatorname{Re} \sum_{\log V \leq \log p \leq \lambda} \frac{1}{\sqrt{p}} p^{-i t}$ behaves like a Gaussian with variance

$$
\asymp \sum_{\log p \leq \lambda} \frac{1}{p} \approx \log \lambda-\log \log V
$$

Step 3

So we may predict that $\operatorname{Re} \sum_{\log V \leq \log p \leq \lambda} \frac{1}{\sqrt{p}} p^{-i t}$ behaves like a Gaussian with variance

$$
\asymp \sum_{\log p \leq \lambda} \frac{1}{p} \approx \log \lambda-\log \log V
$$

So we expect it is $\gg V$ on a set of measure

$$
\gg T \exp \left(-c^{\prime \prime} V^{2} /(\log \lambda-\log \log V)\right)
$$

Step 3

So we may predict that $\operatorname{Re} \sum_{\log V \leq \log p \leq \lambda} \frac{1}{\sqrt{p}} p^{-i t}$ behaves like a Gaussian with variance

$$
\asymp \sum_{\log p \leq \lambda} \frac{1}{p} \approx \log \lambda-\log \log V
$$

So we expect it is $\gg V$ on a set of measure

$$
\gg T \exp \left(-c^{\prime \prime} V^{2} /(\log \lambda-\log \log V)\right)
$$

Compare this with upper bound on exceptional set from zeros:

$$
\leq T \exp \left(-c^{\prime}\left(\frac{V \log T}{\lambda}\right)^{1 / 2}\right)
$$

To get largest range of V, optimal choice of λ is $\lambda \asymp \log \log T$. This makes the variance in the prime sum $\asymp 1$, which is why our bound in the theorem is $T \exp \left(-c V^{2}\right)$.

Rigorous proofs of steps 2 and 3

Selberg proved the bound $Z(t) \ll \lambda \theta_{t}^{2} \log T$ for every $t \in[T, 2 T]$ when $\lambda \asymp \log \log T$. Surprisingly this is unconditional on RH even though it requires control of zeros on intervals of length $1 / \log \log T$.

Rigorous proofs of steps 2 and 3

Selberg proved the bound $Z(t) \ll \lambda \theta_{t}^{2} \log T$ for every $t \in[T, 2 T]$ when $\lambda \asymp \log \log T$. Surprisingly this is unconditional on RH even though it requires control of zeros on intervals of length $1 / \log \log T$.

For step 3, we use Soundararajan's resonance method

Resonance method

Let $D(t)=\operatorname{Re} \sum_{p \leq \log T} \frac{1}{\sqrt{p}} p^{-i t}$ (or any Dirichlet polynomial we want to study).

Pick a resonator $R(t)=\sum_{n \leq N} f(n) n^{-i t}$, and let

$$
\begin{aligned}
M_{1}(R, T) & :=\int|R(t)|^{2} \Phi\left(\frac{t}{T}\right) d t \\
M_{2}(R, T) & :=\int D(t)|R(t)|^{2} \Phi\left(\frac{t}{T}\right) d t
\end{aligned}
$$

where Φ is a smooth bump function supported in [1, 2].

Resonance method

Let $D(t)=\operatorname{Re} \sum_{p \leq \log T} \frac{1}{\sqrt{p}} p^{-i t}$ (or any Dirichlet polynomial we want to study).

Pick a resonator $R(t)=\sum_{n \leq N} f(n) n^{-i t}$, and let

$$
\begin{aligned}
M_{1}(R, T) & :=\int|R(t)|^{2} \Phi\left(\frac{t}{T}\right) d t \\
M_{2}(R, T) & :=\int D(t)|R(t)|^{2} \Phi\left(\frac{t}{T}\right) d t
\end{aligned}
$$

where Φ is a smooth bump function supported in [1, 2].
Then $\sup _{t \in[T, 2 T]} D(t) \geq M_{2}(R, T) / M_{1}(R, T)$.

Resonance method

Let $D(t)=\operatorname{Re} \sum_{p \leq \log T} \frac{1}{\sqrt{p}} p^{-i t}$ (or any Dirichlet polynomial we want to study).

Pick a resonator $R(t)=\sum_{n \leq N} f(n) n^{-i t}$, and let

$$
\begin{aligned}
& M_{1}(R, T):=\int|R(t)|^{2} \Phi\left(\frac{t}{T}\right) d t \\
& M_{2}(R, T):=\int D(t)|R(t)|^{2} \Phi\left(\frac{t}{T}\right) d t
\end{aligned}
$$

where Φ is a smooth bump function supported in [1, 2].
Then $\sup _{t \in[T, 2 T]} D(t) \geq M_{2}(R, T) / M_{1}(R, T)$.
Pick R to make this ratio is large as possible!

Resonance method

To get a bound on the measure of $F_{V}:=\{D(t) \geq V\}$, note that

$$
\begin{aligned}
M_{2}(R, T) & \leq V M_{1}(R, T)+\int_{F_{V}} D(t)|R(t)|^{2} \Phi\left(\frac{t}{T}\right) d t \\
& \leq V M_{1}(R, T)+\log T \int_{F_{V}}|R(t)|^{2} \Phi\left(\frac{t}{T}\right) d t \\
& \leq V M_{1}(R, T)+\log T\left(\operatorname{meas}\left(F_{V}\right)\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty}|R(t)|^{4} \Phi\left(\frac{t}{T}\right) d t\right)^{\frac{1}{2}}
\end{aligned}
$$

Resonance method

To get a bound on the measure of $F_{V}:=\{D(t) \geq V\}$, note that

$$
\begin{aligned}
M_{2}(R, T) & \leq V M_{1}(R, T)+\int_{F_{V}} D(t)|R(t)|^{2} \Phi\left(\frac{t}{T}\right) d t \\
& \leq V M_{1}(R, T)+\log T \int_{F_{V}}|R(t)|^{2} \Phi\left(\frac{t}{T}\right) d t \\
& \leq V M_{1}(R, T)+\log T\left(\operatorname{meas}\left(F_{V}\right)\right)^{\frac{1}{2}}\left(\int_{-\infty}^{\infty}|R(t)|^{4} \Phi\left(\frac{t}{T}\right) d t\right)^{\frac{1}{2}}
\end{aligned}
$$

Then if $M_{2}(R, T) \geq 2 M_{1}(R, T)$, rearranging gives

$$
\operatorname{meas}\left(F_{V}\right) \gg \frac{M_{2}(R, T)^{2}}{(\log T)^{2}}\left(\int|R(t)|^{4} \Phi\left(\frac{t}{T}\right) d t\right)^{-1}
$$

If the resonator coefficients are real valued, and N is small relative to T

$$
\begin{aligned}
& M_{1}(R, T) \approx T \hat{\Phi}(0) \sum_{n \leq N} f(n)^{2} \\
& M_{2}(R, T) \approx T \hat{\Phi}(0) \sum_{\substack{m p=n \leq N \\
p \leq \log T}} \frac{f(m) f(n)}{\sqrt{p}} \\
& \int|R(t)|^{4} \approx \Phi\left(\frac{t}{T}\right) d t \approx T \hat{\Phi}(0) \sum_{\substack{a, b, c, d \leq N \\
a b=c d}} f(a) f(b) f(c) f(d)
\end{aligned}
$$

Choose f to be a multiplicative function supported on square free numbers with

$$
f(p)=\frac{V}{\sqrt{p}}, \text { for }(\log N)^{2 / 3} \leq p \leq(\log N)^{5 / 6}
$$

Can show that the I^{2} mass of $f(n)$ is mostly supported on number $n<N$ with at least V prime divisors.

$$
\frac{1}{\sum f(i)^{2}} \sum_{\substack{m p=n \leq N \\ p \leq \log T}} \frac{f(m) f(n)}{\sqrt{p}} \gg V
$$

$$
\sum_{\substack{a, b, c, d \leq N \\ a b=c d}} f(a) f(b) f(c) f(d) \ll \exp \left(V^{2}\right)
$$

Thanks for listening!

