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Definitions

Riemann zeta function:

ζ(s) :=
∞∑
n=1

1

ns
, Re s > 1

Euler product:

ζ(s) =
∏

p prime

(
1− 1

ps

)−1

, Re s > 1

ζ(s) has a meromorphic continuation to all of C
most interesting behavior is in the critical strip 0 ≤ Re(s) ≤ 1

ζ(s) has lots of zeros in the critical strip. We know most are
near the critical line Re(s) = 1/2
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Logarithm of zeta

For Re(s) > 1,

log ζ(s) = −
∑
p

log(1− p−s) =
∑
n≥1

Λ(n)

(log n)ns

where

Λ(n) :=

{
log p if n = pk

0 otherwise.

Heuristic

log ζ(s) ≈
∑
p

1

ps
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Riemann-von Mangoldt formula

Denote nontrivial zeros of ζ by ρ = β + iγ.

N(T ) := number of zeros with 0 < γ < T

Theorem (Riemann-von Mangoldt)

For T ≥ 1,

N(T ) =
T

2π
log

T

2π
− T

2π
+

7

8
+ S(T ) + O(T−1),

where S(T ) := 1
π Im log ζ( 1

2 + iT ).

It is known that S(T ) = O(logT ). Hence N(T ) ∼ T
2π logT .

Average spacing between zeros at height T is 2π
log T but on

short intervals they can be irregularly spaced
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Extreme values of S(t)

How big does S(t) get?
Upper bounds:

(Backlund) S(t) = O(log t)

(Littlewood) On RH, S(t) = O
(

log t
log log t

)
Ω theorems:

(Selberg, 1946) S(t) = Ω
(

(log t)1/3

(log log t)7/3

)
(Tsang, 1986) S(t) = Ω

((
log t

log log t

)1/3
)

(Montgomery, 1977) On RH, S(t) = Ω

((
log t

log log t

)1/2
)

(Bondarenko-Seip, 2018) On RH,

S(t) = Ω

((
log t log log log t

log log t

)1/2
)
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Behavior of log ζ(s) in the critical strip

Theorem (Selberg central limit theorem)

For any fixed ∆,

1

T
meas

t ∈ [T , 2T ] :
Im log ζ( 1

2 + it)√
1
2 log logT

≥ ∆

 =

1√
2π

∫ ∞
∆

e−u
2/2 du + oT→∞(1).

This also holds for Re log ζ( 1
2 + it).

Restatement: Choosing t randomly from [T , 2T ], the random

variable Im log ζ( 1
2 + it)/

√
1
2 log logT converges in distribution to

N (0, 1).
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Large deviations of S(t)

Heuristic

In the range [T , 2T ], S(t) has Gaussian distribution with mean 0
and variance 1

2π2 log logT .

Conjecture

Even for V much larger than
√

log logT , we have

meas{t ∈ [T , 2T ] : S(t) ≥ V } � T exp(−cV 2/ log logT )

for some constant c .

(Soundararajan, 2008) For Re log ζ instead of Im log ζ, the
conjecture holds for V � (logT )1/2−ε

(Radziwi l l, 2011) For V � (log logT )1/2+1/10−ε, the
asymptotic predicted by Selberg CLT holds for both real and
imaginary parts
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Large deviations of S(t)

Theorem (D.)

Let 0 < a < 1/3. There exist constants κ, c > 0 depending on a
such that for all T sufficiently large and all V in the range

(logT )a ≤ V ≤ κ
(

log T
log log T

) 1
3

we have

meas {t ∈ [T , 2T ] : S(t) ≥ V } ≥ T exp
(
−cV 2

)
.

The same is true we replace S(t) with −S(t).

Differences between Re log ζ and S(t):

To get large values of Re log ζ( 1
2 + it), may work with

|ζ( 1
2 + it)| instead

Possibility of zeros off the critical line can only help you for
finding large values of Re log ζ( 1

2 + it)
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Steps of proof

Step 1: Get a rigorous version of log ζ( 1
2 + it) ≈

∑
p

1√
pp
−it using

convolution formula of Selberg. This will give S(t) in terms of
primes and zeros.

Step 2: Show the zeros contribution is ≤ V for t ∈ [T , 2T ] other
than an exceptional set

Step 3: Show primes contribution is ≥ 2V on a set whose measure
is greater than the exceptional set

The crossover point where the measure bound from step 2 is worse

than step 3 occurs at V = κ
(

log T
log log T

)1/3
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Step 1

Let λ be a parameter. Convolving log ζ( 1
2 + it) with a smooth

function of width λ−1 cuts out large prime frequencies log p ≥ λ.
This gives a formula like

smoothed S(t) ≈ Re
∑

log p≤λ

1
√
p
p−it + Z (t)

where Z (t) is a contribution coming from zeta zeros off the critical
line. Z (t) is dominated by zeros ρ = β + iγ for which
|t − γ| ≤ λ−1.

10 / 20



Step 2

Heuristic: each individual zero contributes � λ2(β − 1
2 )2 and there

are � λ−1 logT zeros in the range |t − λ| � λ−1.

Let θt = max |β − 1
2 | where the max is taken over a window of

zeros at height t. Then by the heuristic,

Z (t)� (λ2θ2
t )(λ−1 logT ) = λθ2

t logT

The bound Z (t) < V holds if θt �
(

V
λ log T

)1/2
.

Apply a zero density estimate to see that this holds except on a set
of measure

≤ T exp

(
−c ′
(
V logT

λ

)1/2
)
.
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Step 3

Want to understand how often Re
∑

log p≤λ
1√
pp
−it � V .

Terms coming from p ≤ V (say) are insignificant because∑
p≤V

1√
p �

√
V .

Heuristic

The sum ∑
log V≤log p≤λ

1
√
p
p−it

for t ∈ [T , 2T ] behaves like ∑
log V≤log p≤λ

Xp√
p

where Xp are iid random variables.

12 / 20



Step 3

So we may predict that Re
∑

log V≤log p≤λ
1√
pp
−it behaves like a

Gaussian with variance

�
∑

log p≤λ

1

p
≈ log λ− log logV .

So we expect it is � V on a set of measure

� T exp(−c ′′V 2/(log λ− log logV )).

Compare this with upper bound on exceptional set from zeros:

≤ T exp

(
−c ′
(
V logT

λ

)1/2
)
.

To get largest range of V , optimal choice of λ is λ � log logT .
This makes the variance in the prime sum � 1, which is why our
bound in the theorem is T exp(−cV 2).
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Rigorous proofs of steps 2 and 3

Selberg proved the bound Z (t)� λθ2
t logT for every t ∈ [T , 2T ]

when λ � log logT . Surprisingly this is unconditional on RH even
though it requires control of zeros on intervals of length
1/ log logT .

For step 3, we use Soundararajan’s resonance method
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Resonance method

Let D(t) = Re
∑

p≤log T
1√
pp
−it (or any Dirichlet polynomial we

want to study).

Pick a resonator R(t) =
∑

n≤N f (n)n−it , and let

M1(R,T ) :=

∫
|R(t)|2Φ( t

T ) dt

M2(R,T ) :=

∫
D(t)|R(t)|2Φ( t

T ) dt

where Φ is a smooth bump function supported in [1, 2].

Then supt∈[T ,2T ] D(t) ≥ M2(R,T )/M1(R,T ).

Pick R to make this ratio is large as possible!
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Resonance method

To get a bound on the measure of FV := {D(t) ≥ V }, note that

M2(R,T ) ≤ V M1(R,T ) +

∫
FV

D(t)|R(t)|2Φ
(
t
T

)
dt

≤ V M1(R,T ) + logT

∫
FV

|R(t)|2Φ
(
t
T

)
dt

≤ V M1(R,T ) + logT
(

meas(FV )
) 1

2

(∫ ∞
−∞
|R(t)|4Φ

(
t
T

)
dt

) 1
2

Then if M2(R,T ) ≥ 2M1(R,T ), rearranging gives

meas(FV )� M2(R,T )2

(logT )2

(∫
|R(t)|4Φ( t

T ) dt

)−1
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∫
FV

|R(t)|2Φ
(
t
T

)
dt

≤ V M1(R,T ) + logT
(

meas(FV )
) 1

2

(∫ ∞
−∞
|R(t)|4Φ

(
t
T

)
dt

) 1
2

Then if M2(R,T ) ≥ 2M1(R,T ), rearranging gives

meas(FV )� M2(R,T )2

(logT )2

(∫
|R(t)|4Φ( t

T ) dt

)−1
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If the resonator coefficients are real valued, and N is small relative
to T

M1(R,T ) ≈ T Φ̂(0)
∑
n≤N

f (n)2

M2(R,T ) ≈ T Φ̂(0)
∑

mp=n≤N
p≤log T

f (m)f (n)
√
p

∫
|R(t)|4 ≈ Φ( t

T ) dt ≈ T Φ̂(0)
∑

a,b,c,d≤N
ab=cd

f (a)f (b)f (c)f (d)
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Choose f to be a multiplicative function supported on square free
numbers with

f (p) =
V
√
p

, for (logN)2/3 ≤ p ≤ (logN)5/6

Can show that the l2 mass of f (n) is mostly supported on number
n < N with at least V prime divisors.

1∑
f (i)2

∑
mp=n≤N
p≤log T

f (m)f (n)
√
p

� V
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∑
a,b,c,d≤N
ab=cd

f (a)f (b)f (c)f (d)� exp
(
V 2
)
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Thanks for listening!
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