Extreme values of the argument of the zeta

function
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Riemann zeta function:

Euler product:

)= 11 <1—pls>_1, Res > 1

p prime

@ ((s) has a meromorphic continuation to all of C
@ most interesting behavior is in the critical strip 0 < Re(s) <1

@ ((s) has lots of zeros in the critical strip. We know most are
near the critical line Re(s) = 1/2
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Logarithm of zeta

For Re(s) > 1,

where
k

| if n=
A(n) = °gp 1n p
0 otherwise.
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Logarithm of zeta

For Re(s) > 1,
log¢(s) =~ log(l1—p~%)=>_ (/\(”)
p

where
k

| if n=
A(n) = ogp hn p
0 otherwise.

1
log ¢(s) ~ Z_s
- P
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Riemann-von Mangoldt formula

Denote nontrivial zeros of { by p = 8+ i.

N(T) := number of zeros with 0 <~y < T

Theorem (Riemann-von Mangoldt)
For T >1,

T T T 7
|g———+§+5(T)+O(T_1),

N(T
( ) o 2 27

where S(T) == 1 Imlog ¢(3 +iT).
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Riemann-von Mangoldt formula

Denote nontrivial zeros of { by p = 8+ i.

N(T) := number of zeros with 0 <~y < T

Theorem (Riemann-von Mangoldt)
For T >1,

T T T 7 I
5-log 5 — 5+ 2+ S(T)+O(T™),

N(T) =
where S(T) == 1 Imlog ¢(3 +iT).

@ It is known that S(T) = O(log T). Hence N( T) ~ —log T.

@ Average spacing between zeros at height T is
short intervals they can be irregularly spaced

but on

Io
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Extreme values of S(t)

How big does S(t) get?
Upper bounds:

e (Backlund) S(t) = O(logt)
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2 theorems:

1/3
o (Selberg, 1946) S(t) = Q(%)

o (Tsang, 1986) S(t) = Q<<Iog’i;t)l/3>

loglog t

log t 1/2
e (Montgomery, 1977) On RH, 5(t) = Q ( g )
e (Bondarenko-Seip, 2018) On RH,

1/2
5(0) - a (esisistent) )
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Behavior of log ((s) in the critical strip

Theorem (Selberg central limit theorem)

For any fixed A,

ImIogC(%-i—it)

1/%IoglogT
1 (0.0
_/ :
V2m Ja

This also holds for Relog (% + it).

1
—measq t € [T,2T]:

> A ) =
T 2

/2 gy o1yeo(1).

6/20



Behavior of log ((s) in the critical strip

Theorem (Selberg central limit theorem)

For any fixed A,

ImIogC(%-i—it)

1/%IoglogT
1 (0.0
_/ :
V2m Ja

This also holds for Relog (% + it).

1
—measq t € [T,2T]:

> A ) =
T 2

/2 gy o1yeo(1).

Restatement: Choosing t randomly from [T,2T], the random

variable Im log C(% + it) /4 /% loglog T converges in distribution to
N(0,1).
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Large deviations of S(t)

In the range [T,2T], S(t) has Gaussian distribution with mean 0
and variance ﬁ loglog T.
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Large deviations of S(t)

In the range [T,2T], S(t) has Gaussian distribution with mean 0
and variance # loglog T.

Conjecture
Even for V much larger than y/loglog T, we have

meas{t € [T,2T]: S(t) > V} > T exp(—cV?/loglog T)

for some constant c.

e (Soundararajan, 2008) For Relog( instead of Imlog(, the
conjecture holds for V < (log T)'/2-¢

o (Radziwitt, 2011) For V < (loglog T)/2+1/10-¢ the
asymptotic predicted by Selberg CLT holds for both real and

imaginary parts
7/20



Large deviations of S(t)

Theorem (D.)

Let 0 < a < 1/3. There exist constants k,c > 0 depending on a
such that for all T sufficiently large and all V' in the range
1

(logT)? <V < n(lol—gﬂ%y we have
meas {t € [T,2T]: S(t) > V} > T exp(—cV?).

The same is true we replace S(t) with —5(t).

8/20



Large deviations of S(t)

Theorem (D.)

Let 0 < a < 1/3. There exist constants k,c > 0 depending on a
such that for all T sufficiently large and all V' in the range
1

(logT)? <V < n(%%) * we have
meas {t € [T,2T]: S(t) > V} > T exp(—cV?).
The same is true we replace S(t) with —5(t).

Differences between Relog ¢ and S(t):

8/20



Large deviations of S(t)

Theorem (D.)

Let 0 < a < 1/3. There exist constants k,c > 0 depending on a
such that for all T sufficiently large and all V' in the range
1

(logT)? <V < n(%%) * we have

meas {t € [T,2T]: S(t) > V} > T exp(—cV?).
The same is true we replace S(t) with —5(t).

Differences between Relog ¢ and S(t):

o To get large values of Re Iogg(% + it), may work with
I¢(3 + it)| instead

8/20



Large deviations of S(t)

Theorem (D.)

Let 0 < a < 1/3. There exist constants k,c > 0 depending on a
such that for all T sufficiently large and all V' in the range
1

(logT)? <V < n(%%) * we have

meas {t € [T,2T]: S(t) > V} > T exp(—cV?).
The same is true we replace S(t) with —5(t).

Differences between Relog ¢ and S(t):

o To get large values of Re Iogg(% + it), may work with
I¢(3 + it)| instead

@ Possibility of zeros off the critical line can only help you for
finding large values of Relog((% + it)
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Steps of proof

Step 1: Get a rigorous version of log (3 +it) = >, ﬁp*it using
convolution formula of Selberg. This will give S(t) in terms of

primes and zeros.
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Steps of proof

Step 1: Get a rigorous version of log (3 +it) = >, %p*it using
convolution formula of Selberg. This will give S(t) in terms of

primes and zeros.

Step 2: Show the zeros contribution is < V for t € [T,2T] other
than an exceptional set

Step 3: Show primes contribution is > 2V on a set whose measure
is greater than the exceptional set

The crossover point where the measure bound from step 2 is worse

log T\ /3
loglog T

than step 3 occurs at V' = /<c<
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Let A be a parameter. Convolving log C(% + it) with a smooth
function of width A™! cuts out large prime frequencies log p > .
This gives a formula like

1 .
smoothed 5(t) ~ Re Z —p T+ Z(t)
log p<A ﬁ

where Z(t) is a contribution coming from zeta zeros off the critical
line. Z(t) is dominated by zeros p = /3 + iy for which
[t =] <A7h
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Heuristic: each individual zero contributes < A?(3 — $)? and there
are < M~ llog T zeros in the range |t — A\| < A7L.
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Heuristic: each individual zero contributes < A?(3 — $)? and there
are < M~ llog T zeros in the range |t — A\| < A7L.

Let 6; = max|5 — %| where the max is taken over a window of
zeros at height t. Then by the heuristic,

Z(t) < (A0 (A Llog T) = X% log T

1/2
The bound Z(t) < V holds if 6, < (yi7) .

Apply a zero density estimate to see that this holds except on a set

of measure /2
Vieg T
< Texp <—c’< (;\g ) )
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Step 3

Want to understand how often Re .. .\ \%pp_"t > V.

Terms coming from p < V' (say) are insignificant because
S p<v ﬁ <VV.

The sum
Y
Vi
log V<log p<A

for t € [T,2T] behaves like

> 2
log V<log p<A \/I_J

where X,, are iid random variables.
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: 1 —it :
So we may predict that Re Zbg V<log p<A V5P behaves like a
Gaussian with variance

1
= Z — =~ log A — loglog V.
log p<A

13/20



: 1 —it :
So we may predict that Re Zbg V<log p<A V5P behaves like a
Gaussian with variance

1
= Z — =~ log A — loglog V.
log p<A

So we expect it is > V on a set of measure

> Texp(—c”V?/(log A — log log V)).

13/20



: 1 —it :
So we may predict that Re Zbg V<log p<A V5P behaves like a
Gaussian with variance

1
= Z — =~ log A — loglog V.
log p<A

So we expect it is > V on a set of measure
> Texp(—c”V?/(log A — log log V)).

Compare this with upper bound on exceptional set from zeros:

Vieg T 1/2
< —c )
_Texp( c< \ >

To get largest range of V/, optimal choice of A is A < loglog T.
This makes the variance in the prime sum < 1, which is why our
bound in the theorem is T exp(—cV?).

13/20



Rigorous proofs of steps 2 and 3

Selberg proved the bound Z(t) < M0?log T for every t € [T,2T]
when A\ < loglog T. Surprisingly this is unconditional on RH even
though it requires control of zeros on intervals of length
1/loglog T.
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Rigorous proofs of steps 2 and 3

Selberg proved the bound Z(t) < A\0?log T for every t € [T,2T]
when A\ < loglog T. Surprisingly this is unconditional on RH even

though it requires control of zeros on intervals of length
1/loglog T.

For step 3, we use Soundararajan’s resonance method
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Resonance method

Let D(t) =Re}_ ,ciog T ﬁp"lt (or any Dirichlet polynomial we
want to study).

Pick a resonator R(t) =3,y f(n)n~', and let

My (R, T) :_/|R(t)\2d>(7t.)dt
Mx(R, T) ::/D(t)|R(t)|2¢(;)dt

where ® is a smooth bump function supported in [1,2].
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Resonance method

Let D(t) =Re}_ ,ciog T ﬁp_it (or any Dirichlet polynomial we
want to study).

Pick a resonator R(t) =3,y f(n)n~', and let
Mi(R.T) = [ IR(OPo($) de
Mi(R.T) = [ DOIR(PO($) de

where ® is a smooth bump function supported in [1,2].

Then SUPte[T,2T] D(t) > M2(R7 T)/Ml(Ra T)

Pick R to make this ratio is large as possible!
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Resonance method

To get a bound on the measure of Fy = {D(t) > V}, note that

My(R, T) < V My(R, T)—|—/ D(1)|R(H)Pd (L) dt

Fv

< VMR, T) +log T/ IR(t)[P® (L) dt
Fv

/Oo IR(t)[*®(£) dt)é

—00

< VM (R, T)+log T (meas(Fy))

N
N\
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Resonance method

To get a bound on the measure of Fy = {D(t) > V}, note that

My(R, T) < V Mi(R, T)+/ D(t)|R(t)] CD(%) dt

Fv

IN

V Mi(R, T) + log T/F IR(t)[P® (L) dt

NI

[e.9]

IN

VM(R, T)+log T (meas(Fv))% </

—00

IR(t)[*®(£) dt>

Then if M(R, T) > 2My(R, T), rearranging gives

meas(FV)>>MzRT)</]R(t)\4 T)dt> -
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If the resonator coefficients are real valued, and N is small relative
to T

My(R, T) ~ T(0) > f(n)

n<N
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Choose f to be a multiplicative function supported on square free
numbers with

%4
f(p) = % for (log N)?/3 < p < (log N)*/®

Can show that the /2> mass of f(n) is mostly supported on number
n < N with at least V' prime divisors.

18/20



> f(a)f (b)f(c)f(d) < exp(V?)
"
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Thanks for listening!
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