Multilinear singular and oscillatory integrals and applications

Polona Durcik

Chapman University

Caltech/UCLA joint analysis seminar February 2, 2021 Let $n \ge 3$ be an integer, $0 < \delta \le 1/2$. There is a positive integer N such that each set $S \subseteq \{0, 1, 2, ..., N-1\}$ with $|S| \ge \delta N$ contains a non-trivial arithmetic progression of length n.

Proven by

n = 3: Roth '53 $n \ge 4$: Szemerédi '69,'75

• Smallest $N = N(n, \delta)$?

$$N(3, \delta) \le \exp(\delta^{-C})$$
 Heath-Brown '87
 $N(4, \delta) \le \exp(\delta^{-C})$ Green and Tao '17
 $N(n, \delta) \le \exp(\exp(\delta^{-C_n}))$ if $n \ge 5$ Gowers '02

A variant of the averaging trick by Varnavides gives:

Theorem

Let $n \ge 3$ and $d \ge 1$ integers. Then there exists C(n, d) such that for any $0 < \delta \le 1/2$ and any measurable $A \subseteq [0, 1]^d$ with measure at least δ one has

$$\int_{[0,1]^d} \int_{[0,1]^d} \prod_{i=0}^{n-1} 1_A(x+it) dt dx$$

$$\geq \begin{cases} \exp(\delta^{-C(n,d)})^{-1} & ; n = 3, 4 \\ \exp(\exp(\delta^{-C(n,d)})^{-1}) & ; n \ge 5 \end{cases}$$

We start with 3-term arithmetic progressions

$$x, x + t, x + 2t$$

in a set $A \subseteq [0,1]^d$.

Question: What can we say about the gaps

$$G(A) = \left\{t \in [-1,1]^d : (\exists x \in [0,1]^d)(x,x+t,x+2t \in A)\right\}?$$

We start with 3-term arithmetic progressions

$$x, x + t, x + 2t$$

in a set $A \subseteq [0,1]^d$.

Question: What can we say about the gaps

$$G(A) = \left\{ t \in [-1,1]^d : (\exists x \in [0,1]^d) (x, x+t, x+2t \in A) \right\}?$$

If |A| > 0, then G(A) contains a ball around the origin.

We start with 3-term arithmetic progressions

$$x, x + t, x + 2t$$

in a set $A \subseteq [0,1]^d$.

Question: What can we say about the gaps

$$G(A) = \left\{ t \in [-1,1]^d : (\exists x \in [0,1]^d) (x, x+t, x+2t \in A) \right\}?$$

If |A| > 0, then G(A) contains a ball around the origin.

A generalization of the Steinhaus theorem.

If |A| > 0, then G(A) contains a ball around the origin.

- We may assume A is compact. Find an open set $U \supseteq A$ with $|U| \le \frac{7}{6}|A|$.
- Set $\varepsilon := \frac{\operatorname{dist}(A, \mathbb{R}^d \setminus U)}{3} \neq 0.$
- For any $t \in [-1,1]^d, |t| < \varepsilon$,

$$A \cap (A - t) \cap (A - 2t) \subseteq U$$

and occupies at least half of U, so it is non-empty.

Take any point from the intersection and arrive at an a.p. x, x + t, x + 2t in A.

If |A| > 0, then G(A) contains a ball around the origin.

- We may assume A is compact. Find an open set $U \supseteq A$ with $|U| \le \frac{7}{6}|A|$.
- Set $\varepsilon := \frac{\operatorname{dist}(A, \mathbb{R}^d \setminus U)}{3} \neq 0.$
- For any $t\in [-1,1]^d, |t|<arepsilon$,

$$A \cap (A - t) \cap (A - 2t) \subseteq U$$

and occupies at least half of U, so it is non-empty.

Take any point from the intersection and arrive at an a.p. x, x + t, x + 2t in A.

No lower bound on the radius ε of the ball contained in G(A) that depends only on |A|.

If |A| > 0, then G(A) contains a ball around the origin.

- We may assume A is compact. Find an open set $U \supseteq A$ with $|U| \le \frac{7}{6}|A|$.
- Set $\varepsilon := \frac{\operatorname{dist}(A, \mathbb{R}^d \setminus U)}{3} \neq 0.$
- For any $t \in [-1,1]^d, |t| < \varepsilon$,

$$A \cap (A - t) \cap (A - 2t) \subseteq U$$

and occupies at least half of U, so it is non-empty.

Take any point from the intersection and arrive at an a.p. x, x + t, x + 2t in A.

No lower bound on the radius ε of the ball contained in G(A) that depends only on |A|. Such a bound is impossible!

$$\mathsf{gaps}_3(A) = \left\{\lambda \in [0,\infty) : (\exists x,t) (x,x+t,x+2t \in A \text{ and } |t| = \lambda) \right\}$$

Does $gaps_3(A)$ contain an interval of length depending only on d and |A|? No!

• Consider $A = \left\{ x \in [0,1]^d : (\exists m \in \mathbb{Z}) \left(m - \frac{1}{10} < \frac{|x|}{\varepsilon} < m + \frac{1}{10} \right) \right\}$

Parallelogram law:

$$|x|^{2} - 2|x + t|^{2} + |x + 2t|^{2} = 2|t|^{2}$$

implies $m - \frac{2}{5} < 2\frac{|t|}{\varepsilon} < m + \frac{2}{5}$. Therefore any interval contained in gaps(A) has to be shorter than ε . However, $|A| \gtrsim 1$.

$$\mathsf{gaps}_3(A) = \left\{\lambda \in [0,\infty) : (\exists x,t) (x,x+t,x+2t \in A \text{ and } |t| = \lambda) \right\}$$

Does $gaps_3(A)$ contain an interval of length depending only on d and |A|? No!

• Consider $A = \left\{ x \in [0,1]^d : (\exists m \in \mathbb{Z}) \left(m - \frac{1}{10} < \frac{|x|}{\varepsilon} < m + \frac{1}{10} \right) \right\}$

Parallelogram law:

$$|x|^{2} - 2|x + t|^{2} + |x + 2t|^{2} = 2|t|^{2}$$

implies $m - \frac{2}{5} < 2\frac{|t|}{\varepsilon} < m + \frac{2}{5}$. Therefore any interval contained in gaps(A) has to be shorter than ε . However, $|A| \gtrsim 1$.

$$\mathsf{gaps}_3(A) = \left\{\lambda \in [0,\infty) : (\exists x,t) (x,x+t,x+2t \in A \text{ and } |t| = \lambda) \right\}$$

Does $gaps_3(A)$ contain an interval of length depending only on d and |A|? No!

• Consider $A = \left\{ x \in [0,1]^d : (\exists m \in \mathbb{Z}) \left(m - \frac{1}{10} < \frac{|x|}{\varepsilon} < m + \frac{1}{10} \right) \right\}$

Parallelogram law:

$$|x|^{2} - 2|x + t|^{2} + |x + 2t|^{2} = 2|t|^{2}$$

implies $m - \frac{2}{5} < 2\frac{|t|}{\varepsilon} < m + \frac{2}{5}$. Therefore any interval contained in gaps(A) has to be shorter than ε . However, $|A| \gtrsim 1$. Cook, Magyar and Pramanik investigated sizes of gaps

$$\mathsf{gaps}_{p,3}(A) = \big\{ \lambda \in [0,\infty) : (\exists x,t) \big(x,x+t,x+2t \in A \text{ and } \|t\|_{\ell^p} = \lambda \big) \big\}$$

of three-term progressions in $\ell^p, \, p \neq 2$ in subsets of \mathbb{R}^d of positive Banach density.

• A consequence of their work is the following result in the unit box:

Theorem (Cook, Magyar, Pramanik, 2015)

If $p \neq 1, 2, \infty$, d sufficiently large, $0 < \delta \leq 1/2$, $A \subseteq [0, 1]^d$ a measurable set of measure $|A| > \delta$. Then gaps_{p,3}(A) contains an interval of length depending only on p, d, δ .

Cook, Magyar and Pramanik investigated sizes of gaps

$$\mathsf{gaps}_{p,3}(A) = \big\{ \lambda \in [0,\infty) : (\exists x,t) \big(x,x+t,x+2t \in A \text{ and } \|t\|_{\ell^p} = \lambda \big) \big\}$$

of three-term progressions in $\ell^p, \, p \neq 2$ in subsets of \mathbb{R}^d of positive Banach density.

• A consequence of their work is the following result in the unit box:

Theorem (Cook, Magyar, Pramanik, 2015)

If $p \neq 1, 2, \infty$, d sufficiently large, $0 < \delta \leq 1/2$, $A \subseteq [0, 1]^d$ a measurable set of measure $|A| > \delta$. Then gaps_{p,3}(A) contains an interval of length depending only on p, d, δ .

What about longer progressions?

Longer progressions

$$\begin{split} \mathsf{gaps}_{p,n}(A) \\ &= \big\{ \lambda \in [0,\infty) : (\exists x,t) \big(x,x+t,\ldots,x+(n-1)t \in A \text{ and } \|t\|_{\ell^p} = \lambda \big) \big\} \end{split}$$

Theorem (D., Kovač 2020)

For every $n \ge 3$, $p \in [1, \infty) \setminus \{1, 2, ..., n-1\}$, and dimension $d \ge D(n, p)$ there exists a constant C(n, p, d) with the following property: if $0 < \delta \le 1/2$ and $A \subseteq [0, 1]^d$ is a measurable set with $|A| \ge \delta$, then the set $gaps_{p,n}(A)$ contains an interval I with $|I| \ge \begin{cases} (exp(exp(\delta^{-C(n,p,d)})))^{-1} & when \ 3 \le n \le 4, \\ (exp(exp(exp(\delta^{-C(n,p,d)}))))^{-1} & when \ n \ge 5. \end{cases}$

- Sharp regarding the values of *p*.
- $D(n, p) = 2^{n+3}(n+p)$ works
- The lower bounds reflect the best known bounds in Szemeredi's theorem.

■ Multilinear which detect progressions with gaps of size λ > 0 in a set A ⊆ [0,1]^d of measure |A| > δ:

$$\mathcal{N}_{\lambda}^{0} = \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \prod_{i=0}^{n-1} \mathbf{1}_{\mathcal{A}}(x+it) \, \mathrm{d}\sigma_{\lambda}(t) \, \mathrm{d}x$$

where $d\sigma_{\lambda}$ surface measure on the ℓ^{p} sphere of radius λ

Smoothened out version at a scale $0 < \epsilon < 1$:

$$\mathcal{N}_{\lambda}^{\epsilon} = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \Big(\prod_{i=0}^{n-1} \mathbb{1}_{\mathcal{A}}(x+it) \Big) (\sigma_{\lambda} * \varphi_{\epsilon\lambda})(t) \, \mathrm{d}t \, \mathrm{d}x$$

For each λ we decompose

$$\mathcal{N}_{\lambda}^{0} = \mathcal{N}_{\lambda}^{1} + \left(\mathcal{N}_{\lambda}^{0} - \mathcal{N}_{\lambda}^{\epsilon}\right) + \left(\mathcal{N}_{\lambda}^{\epsilon} - \mathcal{N}_{\lambda}^{1}
ight)$$

- Sturctured part: lower bound uniform in λ . This is guaranteed by Szemeredi's theorem.
- Uniform part: controlled by Gowers uniformity norms. Small uniformly in λ. Follows from a bound on certain oscillatory integrals.
- Error part: Our goal is to find $j \in \{1, 2, ..., J\}$ such that for each $\lambda \in (2^{-j}, 2^{-j+1}]$ the error term is small.

In all of the above, "small" and J chosen suitably.

Combining the three estimates gives a lower bound on $\mathcal{N}^{0}_{\lambda}$.

Error part

Error part: How to find one such interval $(2^{-j}, 2^{-j+1}]$? Pigeonholing!

If this doesn't happen, then for each $j \in \{1, ..., J\}$ there exist $\lambda_j \sim 2^{-j}$ such that the error term large. Contradicts

$$\sum_{j=1}^{J} |\mathcal{N}_{\lambda_{j}}^{\epsilon} - \mathcal{N}_{\lambda_{j}}^{1}| \leq \epsilon^{-F(n,p,d)} o(J)$$

Left-hand side equals

$$\sum_{j=1}^{J} \Big| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \Big(\prod_{i=0}^{n-1} \mathbb{1}_A(x+it) \Big) (\sigma_{\lambda_j} * \varphi_{\epsilon\lambda_j} - \sigma_{\lambda_j} * \varphi_{\lambda_j})(t) \, \mathrm{d}t \, \mathrm{d}x \Big|$$

• n = 3: bilinear Hilbert transform (Lacey, Thiele, 1997, 1999)

$$\int_{\mathbb{R}}\int_{\mathbb{R}}f_0(x)f_1(x+t)f_2(x+2t)\frac{dt}{t}dx$$

Error part

Error part: How to find one such interval $(2^{-j}, 2^{-j+1}]$? Pigeonholing!

If this doesn't happen, then for each $j \in \{1, ..., J\}$ there exist $\lambda_j \sim 2^{-j}$ such that the error term large. Contradicts

$$\sum_{j=1}^{J} |\mathcal{N}_{\lambda_{j}}^{\epsilon} - \mathcal{N}_{\lambda_{j}}^{1}| \leq \epsilon^{-F(n,p,d)} o(J)$$

Left-hand side equals

$$\sum_{j=1}^{J} \Big| \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \Big(\prod_{i=0}^{n-1} \mathbb{1}_A(x+it) \Big) (\sigma_{\lambda_j} * \varphi_{\epsilon\lambda_j} - \sigma_{\lambda_j} * \varphi_{\lambda_j})(t) \, \mathrm{d}t \, \mathrm{d}x \Big|$$

• $n \ge 4$: multilinear Hilbert transform, open problem.

$$\int_{\mathbb{R}} \int_{\mathbb{R}} f_0(x) f_1(x+t) f_2(x+2t) \dots f_{n-1}(x+(n-1)t) \frac{dt}{t} dx$$

Cancellation estimates suffice. Tao (2015), Zorin-Kranich (2015), D., Kovač, Thiele (2016).

Patterns in sets $A \subseteq \mathbb{R}^d$ of positive upper Banach density

$$\overline{\delta}_d(A) := \limsup_{N o \infty} \sup_{x \in \mathbb{R}^d} rac{|A \cap (x + [0, N]^d)|}{|x + [0, N]^d|}$$

 Falconer and Marstrand 1986, Furstenberg, Katznelson, and Weiss 1978: the distance/gap set

$$\{|t|: x, x+t \in A\}$$

where $A \subseteq \mathbb{R}^2$ of positive density contains all large numbers.

- Bourgain 1986: Isometric copies of all large dilates of a fixed simplex in \mathbb{R}^n whose affine span n-1 dimensional.
- 3AP: Cook, Magyar, Paramanik 2015 measured in *l*^p. Longer progressions: open.
- Product of simplices in \mathbb{R}^d : Lyall and Magyar (2018).

• A particular case of Lyall and Magyar: Let $n \ge 1$, $A \subseteq ([0, 1]^2)^n$ with $|A| > \delta$: there exists an interval I with

$$|I| \geq (\exp(\exp(\cdots \exp(C(n)\delta^{-3\cdot 2^n})\cdots)))^{-1}$$

such that for any $\lambda \in I$ one finds a box

 $(x_1 + r_1t_1, x_2 + r_2t_2, \dots, x_n + r_nt_n), r_i \in \{0, 1\}$

in A with $|t_i| = \lambda$ for each *i*.

D, Kovač 2020: Quantitative improvement to

 $|I| \geq (\exp(\delta^{-C(n)}))^{-1}$

Simpler than 3AP. Twisted paraproducts (vs the multilinear HT). Harder: corners

 $(x_1, x_2, \ldots, x_n), (x_1 + t, x_2, \ldots, x_n), \ldots, (x_1, x_2, \ldots, x_n + t)$

n = 3, D. Kovač, Rimanič 2016 in sets of positive density, in ℓ^{p} . $n \ge 4$ analogous result in $([0, 1]^{2})^{n}$ but bad quantitative estimates. Leads to the simplex Hilbert transform – its boundedness open, cancellation estimates sufficient. What about non-linear progressions, say,

 $x, x + t, x + t^2$?

What about non-linear progressions, say,

$$x, x + t, x + t^2$$
?

Theorem (Bourgain 1988)

For every $A \subset [0,1]$ with Lebesgue measure at least δ there exist $t > \exp(-\exp(\delta^{-c}))$ and x with $x, x + t, x + t^2 \in A$.

- D., Guo, Roos 2016: polynomials.
- Bourgain's argument is based on a structural/frequency decomposition of functions and a pigenoholing argument.
- One key estimate for an error term:

Let
$$\widehat{g}$$
 be supported near $\lambda \gg 1$. The there exist $C, \sigma > 0$ such that
$$\left\| \int_{\mathbb{R}} f(x+t)g(x+t^2)\eta(x,t)dt \right\|_1 \leq C\lambda^{-\sigma} \|f\|_2 \|g\|_2$$

where η is a smooth compactly function supported in $\mathbb{R} \times \mathbb{R} \setminus \{0\}$.

Investigated by Christ 2020.

Bilinear Hilbert transfrom along curves

$$T(f,g)(x) = \int_{\mathbb{R}} f(x+t)g(x+t^2) \frac{dt}{t}$$

Li '13, Lie '15, Li and Xiao '16, Lie '18. Previous estimate and paraproducts, splitting motivated by stationary phase considerations.Multiplier analysis:

$$T(f,g)(x) = \int_{\mathbb{R}^2} \widehat{f}(\xi) \widehat{g}(\eta) \Big(\int_{\mathbb{R}} e^{2\pi i (\xi t + \eta t^2)} \frac{dt}{t} \Big) e^{2\pi i x (\xi + \eta)} d\xi d\eta$$

Derivative of the phase: $\xi - 2\eta t$. Decompose $\hat{f}, \hat{g}, 1/t$ into Littlewood-Paley blocks. If $|t| \sim 1$:

- $-|\xi|$ and $|\eta|$ small: no oscillation (paraproducts)
- $|\xi| \ll |\eta|$ or $|\eta| \ll |\xi|$: rapid decay (paraproducts)
- $-\left|\xi
 ight|\sim\left|\eta
 ight|$ large: critical points (local inequality)

• Longer progressions $x, x + t, x + t^2, x + t^3, \dots, x + t^n$ open

■ A pattern which is in difficulty betweem three- and four term progressions: "non-linear corners" in A ⊆ [0,1] × [0,1]

 $(x,y),(x+t,y),(x,y+t^2)$

- Imply the result by Bourgain.
- Key estimate:

Theorem (Christ, D., Roos 2020)

Let $\widehat{g}(\xi_1, \xi_2)$ be supported near $|\xi_2| \sim \lambda$. Then there is C > 0 and $\sigma > 0$ such that for all $f, g \in S(\mathbb{R}^d)$

$$\left\|\int_{\mathbb{R}}f(x+t,y)g(x,y+t^2)\eta(x,y,t)dt\right\|_{1}\leq C\lambda^{-\sigma}\|f\|_{2}\|g\|_{2}$$

where η is a smooth compactly function supported in $\mathbb{R}^2 \times \mathbb{R} \setminus \{0\}$.

More fundamental motivation: Natural object from the point of view from oscillatory integrals. The first natural higher-dimensional case not treated by Christ 2020. • Longer progressions $x, x + t, x + t^2, x + t^3, \dots, x + t^n$ open

■ A pattern which is in difficulty betweem three- and four term progressions: "non-linear corners" in A ⊆ [0,1] × [0,1]

 $(x,y),(x+t,y),(x,y+t^2)$

- Imply the result by Bourgain.
- Key estimate:

Theorem (Christ, D., Roos 2020)

Let $\widehat{g}(\xi_1, \xi_2)$ be supported near $|\xi_2| \sim \lambda$. Then there is C > 0 and $\sigma > 0$ such that for all $f, g \in S(\mathbb{R}^d)$

$$\left\|\int_{\mathbb{R}}f(x+t,y)\varphi(y)\varphi(x)g(x,y+t^{2})\eta(x,y,t)dt\right\|_{1}\leq C\lambda^{-\sigma}\|f\|_{2}\|g\|_{2}$$

where η is a smooth compactly function supported in $\mathbb{R}^2 \times \mathbb{R} \setminus \{0\}$.

More fundamental motivation: Natural object from the point of view from oscillatory integrals. The first natural higher-dimensional case not treated by Christ 2020.

- Longer progressions $x, x + t, x + t^2, x + t^3, \dots, x + t^n$ open
- A pattern which is in difficulty betweem three- and four term progressions: "non-linear corners" in A ⊆ [0,1] × [0,1]

 $(x, y), (x + t, y), (x, y + t^{2})$

- Imply the result by Bourgain.
- Key estimate:

Theorem (Christ, D., Roos 2020)

Let $\widehat{g}(\xi_1, \xi_2)$ be supported near $|\xi_2| \sim \lambda$. Then there is C > 0 and $\sigma > 0$ such that for all $f, g \in \mathcal{S}(\mathbb{R}^d)$

$$\left\|\varphi(x)\varphi(y)\int_{\mathbb{R}}f(x+t,y)g(x,y+t^{2})\eta(x,y,t)dt\right\|_{1}\leq C\lambda^{-\sigma}\|f\|_{2}\|g\|_{2}$$

where η is a smooth compactly function supported in $\mathbb{R}^2 \times \mathbb{R} \setminus \{0\}$.

More fundamental motivation: Natural object from the point of view from oscillatory integrals. The first natural higher-dimensional case not treated by Christ 2020. ■ The key estimate can be to obtain *L^p* bound the triangular Hilbert transfrom along curves:

Theorem (Christ, D., Roos 2020)

The following bound holds

$$\left\|\int_{\mathbb{R}}f(x+t,y)g(x,y+t^2)\frac{dt}{t}\right\|_{r}\leq C\|f\|_{p}\|g\|_{q}$$

where $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, $1 < p, q < \infty$, $1 \le r < 2$

Implies bounds for the bilinear HT along curves and oscillatory integrals of Stein and Wainger 1995, 2001

• Key ingredient #2 for the SIO: bounds for the twisted paraproduct

$$\int_{\mathbb{R}^2} f(x+t,y)g(x,y+s)K(s,t)dsdt$$

where K two-dimensional CZ kernel with parabolic scaling. First investigated by Kovač (2010, 2020 – connection with anisotropic boxes), Bernicot 2010. Range of exponents!

- Bound for the corresponding maximal function.
- Continuous averages studied by Austin 2012:

$$\frac{1}{n}\int_0^n f_1(S^tx)f_2(T^{t^2}x)dt$$

where $S^t x = (t, 0) \cdot x$ and $T^t x = (0, t) \cdot x$ with a given \mathbb{R}^2 action on a probability space (X, \mathcal{F}, μ)

– a.e. convergence as $n \rightarrow \infty$: Christ, D., Kovač, Roos 2020

Ergodic averages

$$\frac{1}{n}\sum_{i=0}^{n-1}f(S^ix)g(T^{i^2}x)dt$$

where $S, T : X \rightarrow X$ commuting m.p. transformation on a probability space X

- a.e. convergence as $n \to \infty$ is open in general.
- -S = T: Krause, Mirek, Tao 2020.

- Enough to prove a bound on $L^{\infty} \times L^{\infty}$ by $L^{3/2} \to L^3$ improving for the parabola (Strichartz '70) and interpolation.
- **Spatial decomposition** of f_1, f_2 at scale $\lambda^{-1/2} < \lambda^{-\gamma} < \lambda^{-1}$.
- Cauchy-Schwarz in x, y to compensate a highly singular situation: bound the L¹ norm of the localized operator by

$$\lambda^{-2\gamma} \int_{\mathbb{R}^4} f_1(x+t+s,y)\overline{f_1(x+t,y)} f_2(x,y+(t+s)^2)\overline{f_2(x,y+t^2)}\zeta(x,y,t,s)dx\,dy\,dtds$$

where ζ is a smooth non-negative function compactly supported in a cube with side lengths $O(\lambda^{-\gamma})$

• Replace (localized) f_1, f_2 by

$$f_1(x+t+s,y)\overline{f_1(x+t,y)} = D_s^{(1)}f_1(x+t,y)$$

$$f_2(x,y+(t+s)^2)\overline{f_2(x,y+t^2)} = D_{2s\bar{t}}^{(2)}f_2(x,y+t^2) + O(\lambda^{-2\delta})$$

where

$$D_{s}^{(1)}f(x,y) = f(x+s,y)\overline{f(x,y)} \\ D_{s}^{(2)}f(x,y) = f(x,y+s)\overline{f(x,y)}.$$

and regard s as a parameter. (Ratio $\frac{2\cdot 2}{3} < 2$ vs $\frac{4\cdot 2}{4} = 2$)

Taking $D_s^{(j)}$, high frequency can be converted into low frequencies: e.g. if $f(x, y) = e^{ia(y)x}$, then $D_s^{(1)}f(x, y) = e^{ia(y)s}$ independent of x. • Gain if " $D_s^{(j)} f_j$ has large frequencies for most s", i.e.

$$\int_{\mathbb{R}}\int_{\mathbb{R}^2} \mathbb{1}_{|\xi_j|\leq R} |\widehat{D_s^{(j)}f_j}(\xi)|^2 \, d\xi \, ds \lesssim arrho \|f\|_2^4.$$

for suitable R, ρ and at least one j.

- Structural decomposition: $f = f_{\sharp} + f_{\flat}$
- f_{\flat} good in the above sense, f_{\sharp} admits a structure

$$f_{\sharp}(x) = \sum_{n=1}^{\mathcal{N}} h_n(x) e^{i \alpha_n x}$$

with $\mathcal{N} = O(\varrho^{-1})$, h_n smooth and supported in [-R, R], $\alpha_n \in \mathbb{R}$.

- Apply this decomposition to the fibers of f_1 and f_2 .
- Terms with f_{\sharp} lead to a **sublevel set estimate**.

Lemma

Let $K \subset \mathbb{R}^2 \times (0, \infty)$ be a compact set and α, β measurable functions $\mathbb{R}^2 \to \mathbb{R}$. Suppose that either $|\alpha| \asymp 1$ or $|\beta| \asymp 1$. Then there exist $\sigma, C \in (0, \infty)$ such that for all $\epsilon \in (0, 1]$,

$$\left|\{(x,y,t)\in \mathcal{K}:|lpha(x+t,y)-2teta(x,y+t^2)|\leq\epsilon\}
ight|\leq C\epsilon^{\sigma}.$$

The constants C and σ only depend on K and not on the measurable functions α, β .

Thank you!