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Szemerédi’s theorem on Z

Let n ≥ 3 be an integer, 0 < δ ≤ 1/2. There is a positive integer N
such that each set S ⊆ {0, 1, 2, . . . ,N − 1} with |S | ≥ δN contains a
non-trivial arithmetic progression of length n.

Proven by

n = 3 : Roth ’53

n ≥ 4 : Szemerédi ’69,’75

Smallest N = N(n, δ)?

N(3, δ) ≤ exp(δ−C ) Heath-Brown ’87

N(4, δ) ≤ exp(δ−C ) Green and Tao ’17

N(n, δ) ≤ exp(exp(δ−Cn)) if n ≥ 5 Gowers ’01
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Szemerédi in the unit box

A variant of the averaging trick by Varnavides gives:

Theorem

Let n ≥ 3 and d ≥ 1 integers. Then there exists C (n, d) such that for

any 0 < δ ≤ 1/2 and any measurable A ⊆ [0, 1]d with measure at least δ

one has ∫
[0,1]d

∫
[0,1]d

n−1∏
i=0

1A(x + it)dtdx

≥
{

exp(δ−C(n,d))−1 ; n = 3, 4

exp(exp(δ−C(n,d))−1) ; n ≥ 5
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Arithmetic progressions and their gaps

We start with 3-term arithmetic progressions

x , x + t, x + 2t

in a set A ⊆ [0, 1]d .

Question: What can we say about the gaps

G (A) =
{
t ∈ [−1, 1]d : (∃x ∈ [0, 1]d)

(
x , x + t, x + 2t ∈ A

)}
?

If |A| > 0, then G (A) contains a ball around the origin.

A generalization of the Steinhaus theorem.
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Modification of an argument by Strömberg

If |A| > 0, then G (A) contains a ball around the origin.

We may assume A is compact. Find an open set U ⊇ A with

|U| ≤ 7
6 |A|.

Set ε := dist(A,Rd\U)
3 6= 0.

For any t ∈ [−1, 1]d , |t| < ε,

A ∩ (A− t) ∩ (A− 2t) ⊆ U

and occupies at least half of U, so it is non-empty.

Take any point from the intersection and arrive at an a.p.

x , x + t, x + 2t in A.

No lower bound on the radius ε of the ball contained in G (A) that
depends only on |A|. Such a bound is impossible!
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Bourgain’s counterexample

gaps3(A) =
{
λ ∈ [0,∞) : (∃x , t)

(
x , x + t, x + 2t ∈ A and |t| = λ

)}
Does gaps3(A) contain an interval of length depending only on d and
|A|? No!

Consider A =
{
x ∈ [0, 1]d : (∃m ∈ Z)

(
m − 1

10 <
|x|
ε < m + 1

10

)}

x + tx
+
2t

x

t

Parallelogram law:

|x |2 − 2|x + t|2 + |x + 2t|2 = 2|t|2

implies m − 2
5 < 2 |t|ε < m + 2

5 .

Therefore any interval contained in gaps(A) has to be shorter than

ε. However, |A| & 1.
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Gaps in `p

Cook, Magyar and Pramanik investigated sizes of gaps

gapsp,3(A) =
{
λ ∈ [0,∞) : (∃x , t)

(
x , x + t, x + 2t ∈ A and ‖t‖`p = λ

)}
of three-term progressions in `p, p 6= 2 in subsets of Rd of positive

Banach density.

A consequence of their work is the following result in the unit box:

Theorem (Cook, Magyar, Pramanik, 2015)

If p 6= 1, 2,∞, d sufficiently large, 0 < δ ≤ 1/2, A ⊆ [0, 1]d a measurable

set of measure |A| > δ. Then gapsp,3(A) contains an interval of length

depending only on p, d , δ.

What about longer progressions?
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Longer progressions

gapsp,n(A)

=
{
λ ∈ [0,∞) : (∃x , t)

(
x , x + t, . . . , x + (n − 1)t ∈ A and ‖t‖`p = λ

)}
Theorem (D., Kovač 2020)

For every n ≥ 3, p ∈ [1,∞) \ {1, 2, . . . , n − 1}, and dimension

d ≥ D(n, p) there exists a constant C (n, p, d) with the following

property: if 0 < δ ≤ 1/2 and A ⊆ [0, 1]d is a measurable set with

|A| ≥ δ, then the set gapsp,n(A) contains an interval I with

|I | ≥

{(
exp(exp(δ−C(n,p,d)))

)−1
when 3 ≤ n ≤ 4,(

exp(exp(exp(δ−C(n,p,d))))
)−1

when n ≥ 5.

Sharp regarding the values of p.

D(n, p) = 2n+3(n + p) works

The lower bounds reflect the best known bounds in Szemeredi’s

theorem.
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Proof strategy: Pattern counting forms

Multilinear which detect progressions with gaps of size λ > 0 in a

set A ⊆ [0, 1]d of measure |A| > δ:

N 0
λ =

∫
Rd

∫
Rd

n−1∏
i=0

1A(x + it) dσλ(t) dx

where dσλ surface measure on the `p sphere of radius λ

Smoothened out version at a scale 0 < ε < 1:

N ε
λ =

∫
Rd

∫
Rd

( n−1∏
i=0

1A(x + it)
)

(σλ ∗ ϕελ)(t) dt dx
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Structured, uniform, and error part

For each λ we decompose

N 0
λ = N 1

λ +
(
N 0
λ −N ε

λ

)
+
(
N ε
λ −N 1

λ

)
Sturctured part: lower bound uniform in λ. This is guaranteed by

Szemeredi’s theorem.

Uniform part: controlled by Gowers uniformity norms. Small

uniformly in λ. Follows from a bound on certain oscillatory integrals.

Error part: Our goal is to find j ∈ {1, 2, . . . , J} such that for each

λ ∈ (2−j , 2−j+1] the error term is small.

In all of the above, ”small” and J chosen suitably.

Combining the three estimates gives a lower bound on N 0
λ .
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Error part

Error part: How to find one such interval (2−j , 2−j+1]? Pigeonholing!

If this doesn’t happen, then for each j ∈ {1, . . . , J} there exist λj ∼ 2−j

such that the error term large. Contradicts

J∑
j=1

|N ε
λj
−N 1

λj
| ≤ ε−F (n,p,d)o(J)

Left-hand side equals

J∑
j=1

∣∣∣ ∫
Rd

∫
Rd

( n−1∏
i=0

1A(x + it)
)

(σλj ∗ ϕελj − σλj ∗ ϕλj )(t) dt dx
∣∣∣

n = 3: bilinear Hilbert transform (Lacey, Thiele, 1997, 1999)∫
R

∫
R
f0(x)f1(x + t)f2(x + 2t)

dt

t
dx

Cancellation estimates suffice. Tao (2015), Zorin-Kranich (2015), D.,
Kovač, Thiele (2016).
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Related results

Patterns in sets A ⊆ Rd of positive upper Banach density

δd(A) := lim sup
N→∞

sup
x∈Rd

|A ∩ (x + [0,N]d)|
|x + [0,N]d |

Falconer and Marstrand 1986, Furstenberg, Katznelson, and Weiss

1978: the distance/gap set

{|t| : x , x + t ∈ A}

where A ⊆ R2 of positive density contains all large numbers.

Bourgain 1986: Isometric copies of all large dilates of a fixed simplex

in Rn whose affine span n − 1 dimensional.

3AP: Cook, Magyar, Paramanik 2015 measured in `p. Longer

progressions: open.

Product of simplices in Rd : Lyall and Magyar (2018).
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Related problems

A particular case of Lyall and Magyar: Let n ≥ 1, A ⊆ ([0, 1]2)n with

|A| > δ: there exists an interval I with

|I | ≥ (exp(exp(· · · exp(C (n)δ−3·2
n

) · · · )))−1

such that for any λ ∈ I one finds a box

(x1 + r1t1, x2 + r2t2, . . . , xn + rntn), ri ∈ {0, 1}

in A with |ti | = λ for each i .

D, Kovač 2020: Quantitative improvement to

|I | ≥ (exp(δ−C(n)))−1

Simpler than 3AP. Twisted paraproducts (vs the multilinear HT).

Harder: corners

(x1, x2, . . . , xn), (x1 + t, x2, . . . , xn), . . . , (x1, x2, . . . , xn + t)

n = 3, D. Kovač, Rimanič 2016 in sets of positive density, in `p.

n ≥ 4 analogous result in ([0, 1]2)n but bad quantitative estimates.

Leads to the simplex Hilbert transform – its boundedness open,

cancellation estimates sufficient.
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Non-linear patterns

What about non-linear progressions, say,

x , x + t, x + t2 ?

Theorem (Bourgain 1988)

For every A ⊂ [0, 1] with Lebesgue measure at least δ there exist

t > exp(− exp(δ−c)) and x with x , x + t, x + t2 ∈ A.

D., Guo, Roos 2016: polynomials.

Bourgain’s argument is based on a structural/frequency

decomposition of functions and a pigenoholing argument.

One key estimate for an error term:

Let ĝ be supported near λ� 1. The there exist C , σ > 0 such that∥∥∥∫
R
f (x + t)g(x + t2)η(x , t)dt

∥∥∥
1
≤ Cλ−σ‖f ‖2‖g‖2

where η is a smooth compactly function supported in R× R \ {0}.

Investigated by Christ 2020.
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Related objects

Bilinear Hilbert transfrom along curves

T (f , g)(x) =

∫
R
f (x + t)g(x + t2)

dt

t

Li ’13, Lie ’15, Li and Xiao ’16, Lie ’18. Previous estimate and

paraproducts, splitting motivated by stationary phase considerations.

Multiplier analysis:

T (f , g)(x) =

∫
R2

f̂ (ξ)ĝ(η)
(∫

R
e2πi(ξt+ηt

2) dt

t

)
e2πix(ξ+η)dξdη

Derivative of the phase: ξ − 2ηt. Decompose f̂ , ĝ , 1/t into

Littlewood-Paley blocks. If |t| ∼ 1:

– |ξ| and |η| small: no oscillation (paraproducts)

– |ξ| � |η| or |η| � |ξ|: rapid decay (paraproducts)

– |ξ| ∼ |η| large: critical points (local inequality)

15 / 22



More general patterns

Longer progressions x , x + t, x + t2, x + t3, . . . , x + tn open

A pattern which is in difficulty betweem three- and four term

progressions: ”non-linear corners” in A ⊆ [0, 1]× [0, 1]

(x , y), (x + t, y), (x , y + t2)

Imply the result by Bourgain.

Key estimate:

Theorem (Christ, D., Roos 2020)

Let ĝ(ξ1, ξ2) be supported near |ξ2| ∼ λ. Then there is C > 0 and σ > 0

such that for all f , g ∈ S(Rd)∥∥∥∫
R
f (x + t, y)g(x , y + t2)η(x , y , t)dt

∥∥∥
1
≤ Cλ−σ‖f ‖2‖g‖2

where η is a smooth compactly function supported in R2 × R \ {0}.

More fundamental motivation: Natural object from the point of view

from oscillatory integrals. The first natural higher-dimensional case

not treated by Christ 2020.
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Related problems

The key estimate can be to obtain Lp bound the triangular Hilbert

transfrom along curves:

Theorem (Christ, D., Roos 2020)

The following bound holds∥∥∥ ∫
R
f (x + t, y)g(x , y + t2)

dt

t

∥∥∥
r
≤ C‖f ‖p‖g‖q

where 1
p + 1

q = 1
r , 1 < p, q <∞, 1 ≤ r < 2

Implies bounds for the bilinear HT along curves and oscillatory

integrals of Stein and Wainger 1995, 2001

Key ingredient #2 for the SIO: bounds for the twisted paraproduct∫
R2

f (x + t, y)g(x , y + s)K (s, t)dsdt

where K two-dimensional CZ kernel with parabolic scaling. First

investigated by Kovač (2010, 2020 – connection with anisotropic

boxes), Bernicot 2010. Range of exponents!
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Ergodic averages

Bound for the corresponding maximal function.

Continuous averages studied by Austin 2012:

1

n

∫ n

0

f1(S tx)f2(T t2x)dt

where S tx = (t, 0) · x and T tx = (0, t) · x with a given R2 action on

a probability space (X ,F , µ)

– a.e. convergence as n→∞: Christ, D., Kovač, Roos 2020

Ergodic averages

1

n

n−1∑
i=0

f (S ix)g(T i2x)dt

where S ,T : X → X commuting m.p. transformation on a

probability space X

– a.e. convergence as n→∞ is open in general.

– S = T : Krause, Mirek, Tao 2020.
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What goes in the proof of the key estimate ?

Enough to prove a bound on L∞ × L∞ by L3/2 → L3 improving for

the parabola (Strichartz ’70) and interpolation.

Spatial decomposition of f1, f2 at scale λ−1/2 < λ−γ < λ−1.

Cauchy-Schwarz in x , y to compensate a highly singular situation:

bound the L1 norm of the localized operator by

λ−2γ
∫
R4

f1(x + t + s, y)f1(x + t, y)

f2(x , y + (t + s)2)f2(x , y + t2)ζ(x , y , t, s)dx dy dtds

where ζ is a smooth non-negative function compactly supported in a

cube with side lengths O(λ−γ)
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What goes in the proof of the key estimate?

Replace (localized) f1, f2 by

f1(x + t + s, y)f1(x + t, y) = D(1)
s f1(x + t, y)

f2(x , y + (t + s)2)f2(x , y + t2) = D
(2)

2st
f2(x , y + t2) + O(λ−2δ)

where

D(1)
s f (x , y) = f (x + s, y)f (x , y)

D(2)
s f (x , y) = f (x , y + s)f (x , y).

and regard s as a parameter. (Ratio 2·2
3 < 2 vs 4·2

4 = 2)

Taking D
(j)
s , high frequency can be converted into low frequencies:

e.g. if f (x , y) = e ia(y)x , then D
(1)
s f (x , y) = e ia(y)s independent of x .
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Key estimate continued

Gain if ”D
(j)
s fj has large frequencies for most s”, i.e.∫

R

∫
R2

1|ξj |≤R |D̂
(j)
s fj(ξ)|2 dξ ds . %‖f ‖42.

for suitable R, % and at least one j .

Structural decomposition: f = f] + f[

f[ good in the above sense, f] admits a structure

f](x) =
N∑
n=1

hn(x)e iαnx

with N = O(%−1), hn smooth and supported in [−R,R], αn ∈ R.

Apply this decomposition to the fibers of f1 and f2.

Terms with f] lead to a sublevel set estimate.
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Sublevel set inequality

Lemma

Let K ⊂ R2 × (0,∞) be a compact set and α, β measurable functions

R2 → R. Suppose that either |α| � 1 or |β| � 1. Then there exist

σ,C ∈ (0,∞) such that for all ε ∈ (0, 1],∣∣{(x , y , t) ∈ K : |α(x + t, y)− 2tβ(x , y + t2)| ≤ ε}
∣∣ ≤ Cεσ.

The constants C and σ only depend on K and not on the measurable

functions α, β.
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Thank you!


