Multilinear singular and oscillatory integrals and applications

Polona Durcik

Chapman University

Caltech/UCLA joint analysis seminar
February 2, 2021

Let $n \geq 3$ be an integer, $0<\delta \leq 1 / 2$. There is a positive integer N such that each set $S \subseteq\{0,1,2, \ldots, N-1\}$ with $|S| \geq \delta N$ contains a non-trivial arithmetic progression of length n.

- Proven by

$$
\begin{array}{ll}
n=3: & \text { Roth '53 } \\
n \geq 4: & \text { Szemerédi '69,'75 }
\end{array}
$$

- Smallest $N=N(n, \delta)$?

$$
\begin{aligned}
& N(3, \delta) \leq \exp \left(\delta^{-C}\right) \quad \text { Heath-Brown '87 } \\
& N(4, \delta) \leq \exp \left(\delta^{-C}\right) \quad \text { Green and Tao '17 } \\
& N(n, \delta) \leq \exp \left(\exp \left(\delta^{-C_{n}}\right)\right) \text { if } n \geq 5 \quad \text { Gowers '01 }
\end{aligned}
$$

A variant of the averaging trick by Varnavides gives:

Theorem

Let $n \geq 3$ and $d \geq 1$ integers. Then there exists $C(n, d)$ such that for any $0<\delta \leq 1 / 2$ and any measurable $A \subseteq[0,1]^{d}$ with measure at least δ one has

$$
\begin{aligned}
\int_{[0,1]^{d}} \int_{[0,1]^{d}} & \prod_{i=0}^{n-1} 1_{A}(x+i t) d t d x \\
& \geq \begin{cases}\exp \left(\delta^{-C(n, d)}\right)^{-1} & ; n=3,4 \\
\exp \left(\exp \left(\delta^{-C(n, d)}\right)^{-1}\right) & ; n \geq 5\end{cases}
\end{aligned}
$$

We start with 3-term arithmetic progressions

$$
x, x+t, x+2 t
$$

in a set $A \subseteq[0,1]^{d}$.

Question: What can we say about the gaps

$$
G(A)=\left\{t \in[-1,1]^{d}:\left(\exists x \in[0,1]^{d}\right)(x, x+t, x+2 t \in A)\right\} ?
$$

We start with 3-term arithmetic progressions

$$
x, x+t, x+2 t
$$

in a set $A \subseteq[0,1]^{d}$.

Question: What can we say about the gaps

$$
G(A)=\left\{t \in[-1,1]^{d}:\left(\exists x \in[0,1]^{d}\right)(x, x+t, x+2 t \in A)\right\} ?
$$

If $|A|>0$, then $G(A)$ contains a ball around the origin.

We start with 3-term arithmetic progressions

$$
x, x+t, x+2 t
$$

in a set $A \subseteq[0,1]^{d}$.

Question: What can we say about the gaps

$$
G(A)=\left\{t \in[-1,1]^{d}:\left(\exists x \in[0,1]^{d}\right)(x, x+t, x+2 t \in A)\right\} ?
$$

If $|A|>0$, then $G(A)$ contains a ball around the origin.
A generalization of the Steinhaus theorem.

If $|A|>0$, then $G(A)$ contains a ball around the origin.

- We may assume A is compact. Find an open set $U \supseteq A$ with $|U| \leq \frac{7}{6}|A|$.
- Set $\varepsilon:=\frac{\operatorname{dist}\left(A, \mathbb{R}^{d} \backslash U\right)}{3} \neq 0$.
- For any $t \in[-1,1]^{d},|t|<\varepsilon$,

$$
A \cap(A-t) \cap(A-2 t) \subseteq U
$$

and occupies at least half of U, so it is non-empty.

- Take any point from the intersection and arrive at an a.p. $x, x+t, x+2 t$ in A.

If $|A|>0$, then $G(A)$ contains a ball around the origin.

- We may assume A is compact. Find an open set $U \supseteq A$ with

$$
|U| \leq \frac{7}{6}|A| .
$$

- Set $\varepsilon:=\frac{\operatorname{dist}\left(A, \mathbb{R}^{d} \backslash U\right)}{3} \neq 0$.
- For any $t \in[-1,1]^{d},|t|<\varepsilon$,

$$
A \cap(A-t) \cap(A-2 t) \subseteq U
$$

and occupies at least half of U, so it is non-empty.

- Take any point from the intersection and arrive at an a.p.

$$
x, x+t, x+2 t \text { in } A
$$

No lower bound on the radius ε of the ball contained in $G(A)$ that depends only on $|A|$.

If $|A|>0$, then $G(A)$ contains a ball around the origin.

- We may assume A is compact. Find an open set $U \supseteq A$ with

$$
|U| \leq \frac{7}{6}|A| .
$$

- Set $\varepsilon:=\frac{\operatorname{dist}\left(A, \mathbb{R}^{d} \backslash U\right)}{3} \neq 0$.
- For any $t \in[-1,1]^{d},|t|<\varepsilon$,

$$
A \cap(A-t) \cap(A-2 t) \subseteq U
$$

and occupies at least half of U, so it is non-empty.

- Take any point from the intersection and arrive at an a.p.

$$
x, x+t, x+2 t \text { in } A
$$

No lower bound on the radius ε of the ball contained in $G(A)$ that depends only on $|A|$. Such a bound is impossible!

$$
\operatorname{gaps}_{3}(A)=\{\lambda \in[0, \infty):(\exists x, t)(x, x+t, x+2 t \in A \text { and }|t|=\lambda)\}
$$

Does gaps $_{3}(A)$ contain an interval of length depending only on d and $|A|$? No!

- Consider $A=\left\{x \in[0,1]^{d}:(\exists m \in \mathbb{Z})\left(m-\frac{1}{10}<\frac{|x|}{\varepsilon}<m+\frac{1}{10}\right)\right\}$
- Parallelogram law:

$$
|x|^{2}-2|x+t|^{2}+|x+2 t|^{2}=2|t|^{2}
$$

implies $m-\frac{2}{5}<2 \frac{|t|}{\varepsilon}<m+\frac{2}{5}$.

- Therefore any interval contained in $\operatorname{gaps}(A)$ has to be shorter than ع. However, $|A| \gtrsim 1$.

$$
\operatorname{gaps}_{3}(A)=\{\lambda \in[0, \infty):(\exists x, t)(x, x+t, x+2 t \in A \text { and }|t|=\lambda)\}
$$

Does gaps $_{3}(A)$ contain an interval of length depending only on d and $|A|$? No!

- Consider $A=\left\{x \in[0,1]^{d}:(\exists m \in \mathbb{Z})\left(m-\frac{1}{10}<\frac{|x|}{\varepsilon}<m+\frac{1}{10}\right)\right\}$
- Parallelogram law:

$$
|x|^{2}-2|x+t|^{2}+|x+2 t|^{2}=2|t|^{2}
$$

implies $m-\frac{2}{5}<2 \frac{|t|}{\varepsilon}<m+\frac{2}{5}$.

- Therefore any interval contained in $\operatorname{gaps}(A)$ has to be shorter than ع. However, $|A| \gtrsim 1$.

$$
\operatorname{gaps}_{3}(A)=\{\lambda \in[0, \infty):(\exists x, t)(x, x+t, x+2 t \in A \text { and }|t|=\lambda)\}
$$

Does gaps $_{3}(A)$ contain an interval of length depending only on d and $|A|$? No!

- Consider $A=\left\{x \in[0,1]^{d}:(\exists m \in \mathbb{Z})\left(m-\frac{1}{10}<\frac{|x|}{\varepsilon}<m+\frac{1}{10}\right)\right\}$
- Parallelogram law:

$$
|x|^{2}-2|x+t|^{2}+|x+2 t|^{2}=2|t|^{2}
$$

implies $m-\frac{2}{5}<2 \frac{|t|}{\varepsilon}<m+\frac{2}{5}$.

- Therefore any interval contained in $\operatorname{gaps}(A)$ has to be shorter than ع. However, $|A| \gtrsim 1$.
- Cook, Magyar and Pramanik investigated sizes of gaps

$$
\operatorname{gaps}_{p, 3}(A)=\left\{\lambda \in[0, \infty):(\exists x, t)\left(x, x+t, x+2 t \in A \text { and }\|t\|_{\ell^{p}}=\lambda\right)\right\}
$$ of three-term progressions in $\ell^{p}, p \neq 2$ in subsets of \mathbb{R}^{d} of positive Banach density.

- A consequence of their work is the following result in the unit box:

Theorem (Cook, Magyar, Pramanik, 2015)

If $p \neq 1,2, \infty, d$ sufficiently large, $0<\delta \leq 1 / 2, A \subseteq[0,1]^{d}$ a measurable set of measure $|A|>\delta$. Then gaps ${ }_{p, 3}(A)$ contains an interval of length depending only on p, d, δ.

- Cook, Magyar and Pramanik investigated sizes of gaps

$$
\operatorname{gaps}_{p, 3}(A)=\left\{\lambda \in[0, \infty):(\exists x, t)\left(x, x+t, x+2 t \in A \text { and }\|t\|_{\ell^{p}}=\lambda\right)\right\}
$$ of three-term progressions in $\ell^{p}, p \neq 2$ in subsets of \mathbb{R}^{d} of positive Banach density.

- A consequence of their work is the following result in the unit box:

Theorem (Cook, Magyar, Pramanik, 2015)

If $p \neq 1,2, \infty, d$ sufficiently large, $0<\delta \leq 1 / 2, A \subseteq[0,1]^{d}$ a measurable set of measure $|A|>\delta$. Then gaps ${ }_{p, 3}(A)$ contains an interval of length depending only on p, d, δ.

What about longer progressions?

$$
\begin{aligned}
& \operatorname{gaps}_{p, n}(A) \\
& \quad=\left\{\lambda \in[0, \infty):(\exists x, t)\left(x, x+t, \ldots, x+(n-1) t \in A \text { and }\|t\|_{\ell^{\rho}}=\lambda\right)\right\}
\end{aligned}
$$

Theorem (D., Kovaと̌ 2020)

For every $n \geq 3, p \in[1, \infty) \backslash\{1,2, \ldots, n-1\}$, and dimension $d \geq D(n, p)$ there exists a constant $C(n, p, d)$ with the following property: if $0<\delta \leq 1 / 2$ and $A \subseteq[0,1]^{d}$ is a measurable set with $|A| \geq \delta$, then the set $\operatorname{gaps}_{p, n}(A)$ contains an interval I with

$$
|I| \geq \begin{cases}\left(\exp \left(\exp \left(\delta^{-C(n, p, d)}\right)\right)\right)^{-1} & \text { when } 3 \leq n \leq 4 \\ \left(\exp \left(\exp \left(\exp \left(\delta^{-C(n, p, d)}\right)\right)\right)\right)^{-1} & \text { when } n \geq 5\end{cases}
$$

- Sharp regarding the values of p.
- $D(n, p)=2^{n+3}(n+p)$ works
- The lower bounds reflect the best known bounds in Szemeredi's theorem.
- Multilinear which detect progressions with gaps of size $\lambda>0$ in a set $A \subseteq[0,1]^{d}$ of measure $|A|>\delta$:

$$
\mathcal{N}_{\lambda}^{0}=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \prod_{i=0}^{n-1} 1_{A}(x+i t) \mathrm{d} \sigma_{\lambda}(t) \mathrm{d} x
$$

where $d \sigma_{\lambda}$ surface measure on the ℓ^{p} sphere of radius λ

- Smoothened out version at a scale $0<\epsilon<1$:

$$
\mathcal{N}_{\lambda}^{\epsilon}=\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}\left(\prod_{i=0}^{n-1} 1_{A}(x+i t)\right)\left(\sigma_{\lambda} * \varphi_{\epsilon \lambda}\right)(t) \mathrm{d} t \mathrm{~d} x
$$

■ For each λ we decompose

$$
\mathcal{N}_{\lambda}^{0}=\mathcal{N}_{\lambda}^{1}+\left(\mathcal{N}_{\lambda}^{0}-\mathcal{N}_{\lambda}^{\epsilon}\right)+\left(\mathcal{N}_{\lambda}^{\epsilon}-\mathcal{N}_{\lambda}^{1}\right)
$$

■ Sturctured part: lower bound uniform in λ. This is guaranteed by Szemeredi's theorem.

■ Uniform part: controlled by Gowers uniformity norms. Small uniformly in λ. Follows from a bound on certain oscillatory integrals.

■ Error part: Our goal is to find $j \in\{1,2, \ldots, J\}$ such that for each $\lambda \in\left(2^{-j}, 2^{-j+1}\right]$ the error term is small.

In all of the above, "small" and J chosen suitably.

Combining the three estimates gives a lower bound on $\mathcal{N}_{\lambda}^{0}$.

Error part: How to find one such interval $\left(2^{-j}, 2^{-j+1}\right]$? Pigeonholing!
If this doesn't happen, then for each $j \in\{1, \ldots, J\}$ there exist $\lambda_{j} \sim 2^{-j}$ such that the error term large. Contradicts

$$
\sum_{j=1}^{J}\left|\mathcal{N}_{\lambda_{j}}^{\epsilon}-\mathcal{N}_{\lambda_{j}}^{1}\right| \leq \epsilon^{-F(n, p, d)} O(J)
$$

Left-hand side equals

$$
\sum_{j=1}^{J}\left|\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}\left(\prod_{i=0}^{n-1} 1_{A}(x+i t)\right)\left(\sigma_{\lambda_{j}} * \varphi_{\epsilon \lambda_{j}}-\sigma_{\lambda_{j}} * \varphi_{\lambda_{j}}\right)(t) \mathrm{d} t \mathrm{~d} x\right|
$$

- $n=3$: bilinear Hilbert transform (Lacey, Thiele, 1997, 1999)

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} f_{0}(x) f_{1}(x+t) f_{2}(x+2 t) \frac{d t}{t} d x
$$

Error part: How to find one such interval $\left(2^{-j}, 2^{-j+1}\right]$? Pigeonholing!
If this doesn't happen, then for each $j \in\{1, \ldots, J\}$ there exist $\lambda_{j} \sim 2^{-j}$ such that the error term large. Contradicts

$$
\sum_{j=1}^{J}\left|\mathcal{N}_{\lambda_{j}}^{\epsilon}-\mathcal{N}_{\lambda_{j}}^{1}\right| \leq \epsilon^{-F(n, p, d)} O(J)
$$

Left-hand side equals

$$
\sum_{j=1}^{J}\left|\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}\left(\prod_{i=0}^{n-1} 1_{A}(x+i t)\right)\left(\sigma_{\lambda_{j}} * \varphi_{\epsilon \lambda_{j}}-\sigma_{\lambda_{j}} * \varphi_{\lambda_{j}}\right)(t) \mathrm{d} t \mathrm{~d} x\right|
$$

- $n \geq$ 4: multilinear Hilbert transform, open problem.

$$
\int_{\mathbb{R}} \int_{\mathbb{R}} f_{0}(x) f_{1}(x+t) f_{2}(x+2 t) \ldots f_{n-1}(x+(n-1) t) \frac{d t}{t} d x
$$

Cancellation estimates suffice. Tao (2015), Zorin-Kranich (2015), D., Kovač, Thiele (2016).

Patterns in sets $A \subseteq \mathbb{R}^{d}$ of positive upper Banach density

$$
\bar{\delta}_{d}(A):=\limsup _{N \rightarrow \infty} \sup _{x \in \mathbb{R}^{d}} \frac{\left|A \cap\left(x+[0, N]^{d}\right)\right|}{\left|x+[0, N]^{d}\right|}
$$

- Falconer and Marstrand 1986, Furstenberg, Katznelson, and Weiss 1978: the distance/gap set

$$
\{|t|: x, x+t \in A\}
$$

where $A \subseteq \mathbb{R}^{2}$ of positive density contains all large numbers.

- Bourgain 1986: Isometric copies of all large dilates of a fixed simplex in \mathbb{R}^{n} whose affine span $n-1$ dimensional.
- 3AP: Cook, Magyar, Paramanik 2015 measured in ℓ^{p}. Longer progressions: open.
- Product of simplices in \mathbb{R}^{d} : Lyall and Magyar (2018).

■ A particular case of Lyall and Magyar: Let $n \geq 1, A \subseteq\left([0,1]^{2}\right)^{n}$ with $|A|>\delta$: there exists an interval I with

$$
|I| \geq\left(\exp \left(\exp \left(\cdots \exp \left(C(n) \delta^{-3 \cdot 2^{n}}\right) \cdots\right)\right)\right)^{-1}
$$

such that for any $\lambda \in I$ one finds a box

$$
\left(x_{1}+r_{1} t_{1}, x_{2}+r_{2} t_{2}, \ldots, x_{n}+r_{n} t_{n}\right), \quad r_{i} \in\{0,1\}
$$

in A with $\left|t_{i}\right|=\lambda$ for each i.

- D, Kovač 2020: Quantitative improvement to

$$
|I| \geq\left(\exp \left(\delta^{-C(n)}\right)\right)^{-1}
$$

Simpler than 3AP. Twisted paraproducts (vs the multilinear HT).
■ Harder: corners

$$
\left(x_{1}, x_{2}, \ldots, x_{n}\right),\left(x_{1}+t, x_{2}, \ldots, x_{n}\right), \ldots,\left(x_{1}, x_{2}, \ldots, x_{n}+t\right)
$$

$n=3$, D. Kovač, Rimanič 2016 in sets of positive density, in ℓ^{p}.
$n \geq 4$ analogous result in $\left([0,1]^{2}\right)^{n}$ but bad quantitative estimates.
Leads to the simplex Hilbert transform - its boundedness open, cancellation estimates sufficient.

What about non-linear progressions, say,

$$
x, x+t, x+t^{2} ?
$$

What about non-linear progressions, say,

$$
x, x+t, x+t^{2} ?
$$

Theorem (Bourgain 1988)

For every $A \subset[0,1]$ with Lebesgue measure at least δ there exist $t>\exp \left(-\exp \left(\delta^{-c}\right)\right)$ and x with $x, x+t, x+t^{2} \in A$.

- D., Guo, Roos 2016: polynomials.

■ Bourgain's argument is based on a structural/frequency decomposition of functions and a pigenoholing argument.
■ One key estimate for an error term:
Let \widehat{g} be supported near $\lambda \gg 1$. The there exist $C, \sigma>0$ such that

$$
\left\|\int_{\mathbb{R}} f(x+t) g\left(x+t^{2}\right) \eta(x, t) d t\right\|_{1} \leq C \lambda^{-\sigma}\|f\|_{2}\|g\|_{2}
$$

where η is a smooth compactly function supported in $\mathbb{R} \times \mathbb{R} \backslash\{0\}$.
■ Investigated by Christ 2020.

■ Bilinear Hilbert transfrom along curves

$$
T(f, g)(x)=\int_{\mathbb{R}} f(x+t) g\left(x+t^{2}\right) \frac{d t}{t}
$$

Li '13, Lie '15, Li and Xiao '16, Lie '18. Previous estimate and paraproducts, splitting motivated by stationary phase considerations.
■ Multiplier analysis:

$$
T(f, g)(x)=\int_{\mathbb{R}^{2}} \widehat{f}(\xi) \widehat{g}(\eta)\left(\int_{\mathbb{R}} e^{2 \pi i\left(\xi t+\eta t^{2}\right)} \frac{d t}{t}\right) e^{2 \pi i x(\xi+\eta)} d \xi d \eta
$$

Derivative of the phase: $\xi-2 \eta t$. Decompose $\widehat{f}, \widehat{g}, 1 / t$ into
Littlewood-Paley blocks. If $|t| \sim 1$:
$-|\xi|$ and $|\eta|$ small: no oscillation (paraproducts)
$-|\xi| \ll|\eta|$ or $|\eta| \ll|\xi|$: rapid decay (paraproducts)
$-|\xi| \sim|\eta|$ large: critical points (local inequality)

■ Longer progressions $x, x+t, x+t^{2}, x+t^{3}, \ldots, x+t^{n}$ open

- A pattern which is in difficulty betweem three- and four term progressions: " non-linear corners" in $A \subseteq[0,1] \times[0,1]$

$$
(x, y),(x+t, y),\left(x, y+t^{2}\right)
$$

■ Imply the result by Bourgain.
■ Key estimate:

Theorem (Christ, D., Roos 2020)

Let $\widehat{g}\left(\xi_{1}, \xi_{2}\right)$ be supported near $\left|\xi_{2}\right| \sim \lambda$. Then there is $C>0$ and $\sigma>0$ such that for all $f, g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\left\|\int_{\mathbb{R}} f(x+t, y) g\left(x, y+t^{2}\right) \eta(x, y, t) d t\right\|_{1} \leq C \lambda^{-\sigma}\|f\|_{2}\|g\|_{2}
$$

where η is a smooth compactly function supported in $\mathbb{R}^{2} \times \mathbb{R} \backslash\{0\}$.

- More fundamental motivation: Natural object from the point of view from oscillatory integrals. The first natural higher-dimensional case not treated by Christ 2020.

■ Longer progressions $x, x+t, x+t^{2}, x+t^{3}, \ldots, x+t^{n}$ open

- A pattern which is in difficulty betweem three- and four term progressions: " non-linear corners" in $A \subseteq[0,1] \times[0,1]$

$$
(x, y),(x+t, y),\left(x, y+t^{2}\right)
$$

■ Imply the result by Bourgain.
■ Key estimate:

Theorem (Christ, D., Roos 2020)

Let $\widehat{g}\left(\xi_{1}, \xi_{2}\right)$ be supported near $\left|\xi_{2}\right| \sim \lambda$. Then there is $C>0$ and $\sigma>0$ such that for all $f, g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\left\|\int_{\mathbb{R}} f(x+t, y) \varphi(y) \varphi(x) g\left(x, y+t^{2}\right) \eta(x, y, t) d t\right\|_{1} \leq C \lambda^{-\sigma}\|f\|_{2}\|g\|_{2}
$$

where η is a smooth compactly function supported in $\mathbb{R}^{2} \times \mathbb{R} \backslash\{0\}$.

- More fundamental motivation: Natural object from the point of view from oscillatory integrals. The first natural higher-dimensional case not treated by Christ 2020.

■ Longer progressions $x, x+t, x+t^{2}, x+t^{3}, \ldots, x+t^{n}$ open

- A pattern which is in difficulty betweem three- and four term progressions: "non-linear corners" in $A \subseteq[0,1] \times[0,1]$

$$
(x, y),(x+t, y),\left(x, y+t^{2}\right)
$$

■ Imply the result by Bourgain.

- Key estimate:

Theorem (Christ, D., Roos 2020)

Let $\widehat{g}\left(\xi_{1}, \xi_{2}\right)$ be supported near $\left|\xi_{2}\right| \sim \lambda$. Then there is $C>0$ and $\sigma>0$ such that for all $f, g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$

$$
\left\|\varphi(x) \varphi(y) \int_{\mathbb{R}} f(x+t, y) g\left(x, y+t^{2}\right) \eta(x, y, t) d t\right\|_{1} \leq C \lambda^{-\sigma}\|f\|_{2}\|g\|_{2}
$$

where η is a smooth compactly function supported in $\mathbb{R}^{2} \times \mathbb{R} \backslash\{0\}$.

- More fundamental motivation: Natural object from the point of view from oscillatory integrals. The first natural higher-dimensional case not treated by Christ 2020.
- The key estimate can be to obtain L^{p} bound the triangular Hilbert transfrom along curves:

Theorem (Christ, D., Roos 2020)

The following bound holds

$$
\left\|\int_{\mathbb{R}} f(x+t, y) g\left(x, y+t^{2}\right) \frac{d t}{t}\right\|_{r} \leq C\|f\|_{p}\|g\|_{q}
$$

where $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}, 1<p, q<\infty, 1 \leq r<2$
■ Implies bounds for the bilinear HT along curves and oscillatory integrals of Stein and Wainger 1995, 2001
■ Key ingredient \#2 for the SIO: bounds for the twisted paraproduct

$$
\int_{\mathbb{R}^{2}} f(x+t, y) g(x, y+s) K(s, t) d s d t
$$

where K two-dimensional CZ kernel with parabolic scaling. First investigated by Kovač (2010, 2020 - connection with anisotropic boxes), Bernicot 2010. Range of exponents!

■ Bound for the corresponding maximal function.
■ Continuous averages studied by Austin 2012:

$$
\frac{1}{n} \int_{0}^{n} f_{1}\left(S^{t} x\right) f_{2}\left(T^{t^{2}} x\right) d t
$$

where $S^{t} x=(t, 0) \cdot x$ and $T^{t} x=(0, t) \cdot x$ with a given \mathbb{R}^{2} action on a probability space (X, \mathcal{F}, μ)

- a.e. convergence as $n \rightarrow \infty$: Christ, D., Kovač, Roos 2020
- Ergodic averages

$$
\frac{1}{n} \sum_{i=0}^{n-1} f\left(S^{i} x\right) g\left(T^{i^{2}} x\right) d t
$$

where $S, T: X \rightarrow X$ commuting m.p. transformation on a probability space X

- a.e. convergence as $n \rightarrow \infty$ is open in general.
$-S=T$: Krause, Mirek, Tao 2020.
- Enough to prove a bound on $L^{\infty} \times L^{\infty}$ by $L^{3 / 2} \rightarrow L^{3}$ improving for the parabola (Strichartz '70) and interpolation.
- Spatial decomposition of f_{1}, f_{2} at scale $\lambda^{-1 / 2}<\lambda^{-\gamma}<\lambda^{-1}$.
- Cauchy-Schwarz in x, y to compensate a highly singular situation: bound the L^{1} norm of the localized operator by

$$
\begin{aligned}
\lambda^{-2 \gamma} \int_{\mathbb{R}^{4}} & f_{1}(x+t+s, y) \overline{f_{1}(x+t, y)} \\
\quad & f_{2}\left(x, y+(t+s)^{2}\right) \overline{f_{2}\left(x, y+t^{2}\right)} \zeta(x, y, t, s) d x d y d t d s
\end{aligned}
$$

where ζ is a smooth non-negative function compactly supported in a cube with side lengths $O\left(\lambda^{-\gamma}\right)$

- Replace (localized) f_{1}, f_{2} by

$$
\begin{aligned}
& f_{1}(x+t+s, y) \overline{f_{1}(x+t, y)}=D_{s}^{(1)} f_{1}(x+t, y) \\
& f_{2}\left(x, y+(t+s)^{2}\right) \overline{f_{2}\left(x, y+t^{2}\right)}=D_{2 s t}^{(2)} f_{2}\left(x, y+t^{2}\right)+O\left(\lambda^{-2 \delta}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& D_{s}^{(1)} f(x, y)=f(x+s, y) \overline{f(x, y)} \\
& D_{s}^{(2)} f(x, y)=f(x, y+s) \overline{f(x, y)} .
\end{aligned}
$$

and regard s as a parameter. (Ratio $\frac{2 \cdot 2}{3}<2$ vs $\frac{4 \cdot 2}{4}=2$)

- Taking $D_{s}^{(j)}$, high frequency can be converted into low frequencies: e.g. if $f(x, y)=e^{i(y) x}$, then $D_{s}^{(1)} f(x, y)=e^{i a(y) s}$ independent of x.

■ Gain if " $D_{s}^{(j)} f_{j}$ has large frequencies for most s ", i.e.

$$
\left.\int_{\mathbb{R}} \int_{\mathbb{R}^{2}} 1_{\left|\xi_{j}\right| \leq R} \widehat{D_{s}^{(j)}} f_{j}(\xi)\right|^{2} d \xi d s \lesssim \varrho\|f\|_{2}^{4}
$$

for suitable R, ϱ and at least one j.
■ Structural decomposition: $f=f_{\sharp}+f_{b}$
■ f_{b} good in the above sense, f_{\sharp} admits a structure

$$
f_{\sharp}(x)=\sum_{n=1}^{\mathcal{N}} h_{n}(x) e^{i \alpha_{n} x}
$$

with $\mathcal{N}=O\left(\varrho^{-1}\right)$, h_{n} smooth and supported in $[-R, R], \alpha_{n} \in \mathbb{R}$.
■ Apply this decomposition to the fibers of f_{1} and f_{2}.
■ Terms with f_{\sharp} lead to a sublevel set estimate.

Lemma

Let $K \subset \mathbb{R}^{2} \times(0, \infty)$ be a compact set and α, β measurable functions $\mathbb{R}^{2} \rightarrow \mathbb{R}$. Suppose that either $|\alpha| \asymp 1$ or $|\beta| \asymp 1$. Then there exist $\sigma, C \in(0, \infty)$ such that for all $\epsilon \in(0,1]$,

$$
\left|\left\{(x, y, t) \in K:\left|\alpha(x+t, y)-2 t \beta\left(x, y+t^{2}\right)\right| \leq \epsilon\right\}\right| \leq C \epsilon^{\sigma}
$$

The constants C and σ only depend on K and not on the measurable functions α, β.

Thank you!

