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Motivation

Question: Does there exist an
entire function with two
independent periods?

NO! Every entire function with
two independent periods, is
bounded and therefore
constant.

z1

z2

• In fact, there is no translation
invariant metric defined on
the space of entire functions.

• If there was, then for every n,
ρ(0, ez) = ρ(0, ez−1) = ρ(0, ez−n)
implying that

0 = lim
n→∞

ρ(0, ez−n) = ρ(0, ez)

⇒ ez = 0.
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Definitions

• The group C acts on the space of entire functions, E , by
translations: for every w ∈ C and every entire function f ,

(Twf ) (z) := f (z + w).

• A probability measure, λ, defined on E is called a non-trivial
translation invariant probability measure if it is not
supported on the constant functions and

λ(A) = λ ◦ T−1
w (A) := λ ({T−wf, f ∈ A}) ,

for all measurable sets A ⊂ E and for every w ∈ C.
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Question

• Non-formal: ‘Is it possible to create a random entire function
which is periodic by law?’

• Formal: Does there exist a non-trivial translation invariant
probability measure on the space of entire functions?
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Minimal Possible Growth

• Do such measures exist?!!?!

YES! Many B.Weiss, 1997

• Question: [Weiss] What is the minimal possible growth of
functions in the support of such measures:

R 7→MF (R) := max
|z|=R

|F (z)| , R↗∞?
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Bounds on the Growth

Theorem (Buhovsky, G., Logunov, and Sodin
Journal d’Analyse Mathematique, 2019.)

(A) For every non-trivial translation invariant probability
measure on the space of entire functions

lim
R→∞

log logMf (R)

log2−εR
=∞, ∀ε > 0, a.s.

(B) There exists a non-trivial translation invariant probability
measure on the space of entire functions with

lim sup
R→∞

log logMf (R)

log2+εR
= 0, ∀ε > 0, a.s.
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Idea of Proof- Construction

• The classical Krylov-Bogolyubov construction:
Given a function f , and a sequence of sets {Sn} ↗ C define
the sequence of probability measures:

µn(A) =
1

m(Sn)

∫
Sn

1A (Twf ) dm(w), m = Lebesgue’s measure

for every A ⊂ E measurable.

• To have a non-trivial limiting measure, the underlying
function, f , has to be “self similar”.
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Self similar function

• We constructed an ‘inside out
Cantor set’:

• Ck+1 =
⋃8
j=0 TwjCk,

C =
⋃∞
k=1Ck.

• We constructed the function
f so that it is almost periodic,
looks almost the same on each
copy of Ck inside Ck+1.

2a3

2a2

ωj
n
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Recurrently Bounded Functions
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Recurrent Sets

• We say a set E ⊂ Rd is an (ε,R)-recurrent set if all x ∈ Rd

m (B (x,R (|x|)) ∩ E)

m (B (x,R (|x|))) ≥ m (B (x, ε (|x|))) , m Lebesgue’s measure.

R

• Question: What it the
minimal possible growth of
subharmonic functions with
(ε,R)-recurrent zero set?



Stationary random entire functions Recurrently Bounded Functions Frequently Oscillating Functions

Recurrent Sets

• We say a set E ⊂ Rd is an (ε,R)-recurrent set if all x ∈ Rd

m (B (x,R (|x|)) ∩ E)

m (B (x,R (|x|))) ≥ m (B (x, ε (|x|))) , m Lebesgue’s measure.

R

• Question: What it the
minimal possible growth of
subharmonic functions with
(ε,R)-recurrent zero set?



Stationary random entire functions Recurrently Bounded Functions Frequently Oscillating Functions

Recurrent Sets

• We say a set E ⊂ Rd is an (ε,R)-recurrent set if all x ∈ Rd

m (B (x,R (|x|)) ∩ E)

m (B (x,R (|x|))) ≥ m (B (x, ε (|x|))) , m Lebesgue’s measure.

R

• Question: What it the
minimal possible growth of
subharmonic functions with
(ε,R)-recurrent zero set?



Stationary random entire functions Recurrently Bounded Functions Frequently Oscillating Functions

Recurrent Sets

• We say a set E ⊂ Rd is an (ε,R)-recurrent set if all x ∈ Rd

m (B (x,R (|x|)) ∩ E)

m (B (x,R (|x|))) ≥ m (B (x, ε (|x|))) , m Lebesgue’s measure.

R

• Question: What it the
minimal possible growth of
subharmonic functions with
(ε,R)-recurrent zero set?



Stationary random entire functions Recurrently Bounded Functions Frequently Oscillating Functions

Why would a large zero set affect the growth?!?!

Recall that for every subharmonic function u,

u(x) ≤ 1

m(B(x,R(|x|)))

∫
B(x,R(|x|))

u(y)dm(y)

≤ sup
y∈B(x,R(|x|))

u(y) · m (B(x,R(|x|)) ∩ {u > 0})
m(B(x,R(|x|)))

≤ Mu(B(x,R(|x|)))
(

1− m (B(x,R(|x|)) ∩ {u ≤ 0})
m(B(x,R(|x|)))

)
≤ Mu(B(x,R(|x|))) (1−m (B(x, ε(|x|))))
≤ Mu(B(x,R(|x|))) · e−m(B(x,ε(|x|)))

Implying that

⇒ em(B(x,ε(|x|))) · u(x) ≤Mu(B(x,R(|x|))).
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Subharmonic Functions with Recurrent Zero Set

Theorem (G. Arxiv, 2019)

Let ϕ(t) =
1

R(t)
√
−Kd−2(ε(t))

, Kd−2(t) :=

{
log(t) , d = 2
−1
td−2 , d ≥ 3

.

(A) Assume that lim sup
t→∞

1
t·ϕ(t) < 1, and let u be a subharmonic

function in Rd so that its zero set is (ε,R)-recurrent, and there
exists x0 ∈ Rd so that u(x0) ≥ 1. Then

lim inf
ρ→∞

logMu(ρ)∫ ρ
1
ϕ(t)dt

> 0.

(B) If d
dt

(
1
ϕ(t)

)
is bounded, then there exists a subharmonic function,

u in Rd whose zero set is (ε,R)-recurrent, while u(0) ≥ 1 and

lim sup
ρ→∞

log (Mu(ρ))∫ ρ
1
ϕ(t)dt

<∞.
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A word about the conditions- dimension d = 2

(?) lim sup
t→∞

1

t · ϕ(t)
= lim sup

t→∞

R(t)

√
log
(

1
ε(t)

)
t

< 1.

• ε is constant: If (?) does not hold, R(t) & t. A rescaling
of the logarithm is a subharmonic function with
logarithmic growth and (ε,R)-recurrent zero set.

• R is constant: If (?) does not hold, ε(t) ≤ exp(−ct2) and
Wiener Criteria tells us that there exists a subharmonic
function with logarithmic growth and (ε,R)-recurrent zero
set.

• There is still a gap, which grows with the dimension.
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function with logarithmic growth and (ε,R)-recurrent zero
set.

• There is still a gap, which grows with the dimension.
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Brownian Motion avoiding a Recurrent Set

Theorem (G. Arxiv, 2019)

Let ϕ be as defined in previous slide and let Bρ := {|x| < ρ}.

(A) If lim sup
t→∞

1
t·ϕ(t) < 1, then there exist constants C, c > 0 so

that for every (ε,R)- recurrent set E, for every ρ > 1

P (BM in Bρ \ E hits ∂Bρ) ≤ C exp

(
−c
∫ ρ

1
ϕ(t)dt

)
.

(B) If d
dt

(
1
ϕ(t)

)
is bounded, then there exist constants c, C > 0,

and an (ε,R)- recurrent set E, so that for every ρ > 1

P (BM in Bρ \ E hits ∂Bρ) ≥ C exp

(
−c
∫ ρ

1
ϕ(t)dt

)
.
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The upper bound- dependence of ∼
√
−Kd−2(ε) layers
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K2�bm`2 QM i?2 bT�+2 Q7 2MiB`2 7mM+iBQMb

lim
_→∞

log log J7 (_)

logk−ε _
= ∞, ∀ε > y, �Xb.
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Definitions

• A cube I ⊂ Rd is called a basic cube (BC) if

I =

d∏
j=1

[nj , nj + 1), nj ∈ Z.

• Given a subharmonic function u in Rd and a basic cube I, let:

(P1) sup
x∈I

u(x) ≥ 1 (P2) λd−1(I ∩ {u ≤ 0}) ≥ δd

• A basic cube is rogue if it does not satisfy either (P1) or (P2).
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Why would good BC affect growth?!?!

Observation

There exists a constant cd so that for every subharmonic
function u defined in a neighbourhood of the unit ball B ⊂ Rd,

λd−1

(
{u ≤ 0} ∩ 1

2
B

)
> ε > 0⇒ sup

y∈B
u(y) ≥ u(0)ecd·ε.
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Why would good BC affect growth?!?!

Observation

There exists a constant cd so that for every subharmonic
function u defined in a neighbourhood of the unit ball B ⊂ Rd,

λd−1

(
{u ≤ 0} ∩ 1

2
B

)
> ε > 0⇒ sup

y∈B
u(y) ≥ u(0)ecd·ε.

Why is that true (For the experts- scratching that itch...)

E ⊂ 1
2B is compact ⇒ ω(0, E;B \ E) &d λd−1(E).

Let E := {u ≤ 0} ∩ 1
2B and define Ω = B \ E. Then

u(0) ≤
∫
∂Ω

u(y)dω(0, y; Ω) ≤ Mu(B) · ω(0, ∂B; Ω) ≤

≤ · · · ≤ Mu(B)e−αd·ε.
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Why would good BC affect growth?!?!

Observation

There exists a constant cd so that for every subharmonic
function u defined in a neighbourhood of the unit ball B ⊂ Rd,

λd−1

(
{u ≤ 0} ∩ 1

2
B

)
> ε > 0⇒ sup

y∈B
u(y) ≥ u(0)ecd·ε.

• Definition: Given a monotone non-decreasing function
f (t) ≤ td, a subharmonic function u, is called f-oscillating if

lim sup
N→∞

#
{

rogue basic cubes in [−N,N ]d
}

f(2N)
< 1.



Stationary random entire functions Recurrently Bounded Functions Frequently Oscillating Functions

History

• In dimension d = 2, if f(t) = 1, then in the joint work
mentioned earlier with Buhovsky, Logunov, and Sodin we
showed that the optimal growth is exponential.

• In dimension d = 2, if f(t) = t2, then in the same joint work
we showed that the growth is exp

(
C log2±ε(R)

)
.

• Question: What can we say about the minimal possible
growth of f -oscillating subharmonic functions in general?
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Optimal Bounds

Theorem (G. Arxiv, 2020)

Let f(t) = tα, and define

ϕf (R) :=

{
R ,α ≤ 1

R
d−α
d−1 log

d
d−1 (R) , α > 1

.

(A) ∃c0 so that if f(t) ≤ c0t
d for all t large, then every

f -oscillating subharmonic function u satisfies

lim inf
R→∞

log(Mu(R))

ϕf (R)
> 0.

(B) There exists an f -oscillating subharmonic function u so
that lim sup

R→∞

log(Mu(R))

ϕf (R)
<∞.
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Truth be told....

The theorem above holds for every function f(t) = tα · g(t) with
g a slowly varying function, with

ϕf (R) :=
R

1 +
(
f(R)
R

) 1
d−1

log
d
d−1

(
2 +

f(R)

R

)
,

if either α < d or α = d and g is monotone non-increasing.
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The lower bound

Observation (Reminder)

λd−1

(
{u ≤ 0} ∩ 1

2
B

)
> ε > 0⇒ sup

y∈B
u(y) ≥ u(0)ecd·ε.

I

2N

• Choose a subsequence of cubes {Cj} so
that for every ξ ∈ ∂Cj there exists rξ:

◦ λd−1

(
{uξ ≤ 0} ∩ 1

2B
)
> ε

uξ is u translated by ξ, rescaled by rξ.
◦ B(ξ, rξ) ⊆ Cj+1.

• Using the observation, u increases by a
multiplication by a constant factor when
passing from Cj to Cj+1.

• By induction Mu(I) · e#{Cj}δd ≤Mu([−N,N ]d).
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passing from Cj to Cj+1.

• By induction Mu(I) · e#{Cj}δd ≤Mu([−N,N ]d).
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The lower bound

Observation (Reminder)

λd−1

(
{u ≤ 0} ∩ 1

2
B

)
> ε > 0⇒ sup

y∈B
u(y) ≥ u(0)ecd·ε.

I

2N

• Choose a subsequence of cubes {Cj} so
that for every ξ ∈ ∂Cj there exists rξ:

◦ λd−1

(
{uξ ≤ 0} ∩ 1

2B
)
> ε

uξ is u translated by ξ, rescaled by rξ.
◦ B(ξ, rξ) ⊆ Cj+1.

• Using the observation, u increases by a
multiplication by a constant factor when
passing from Cj to Cj+1.

• By induction Mu(I) · e#{Cj}δd ≤Mu([−N,N ]d).
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Example

Could ‘self similarity’ help us here?

2a3

2a2

ωj
n

No! for 2 reasons:

1) ‘Self Similarity’ by definition
means we accumulate rogue
cubes from smaller scales.
The accumulation is
proportional to the volume.

2) We separate similar copies by
hyperplanes. The dimension
of a hyperplane is (d− 1),
which will work for d = 2 but
for higher dimensions only if
f(t) & td−1.
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Example: d=2
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Example: d=3
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Thank you!!!
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