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Stationary random entire functions
and related questions

Adi Gliicksam

University of Toronto

UCLA /Caltech analysis seminar, January 2021

The talk is partly based on a joint work
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Motivation
Question: Does there exist an e In fact, there is no translation
entire function with two invariant metric defined on
independent periods? the space of entire functions.
NO! Every entire function with o If there was, then for every n,
two independent periods, is P(07 ez.) = p(0,e*71) = p(0,e*7™)
bounded and therefore implying that
constant. 0= lim p(0,e* ™) = p(0, %)

n—oo

= e =0.
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Definitions

e The group C acts on the space of entire functions, &, by
translations: for every w € C and every entire function f,

(Twf) (2) = [ (z + w).

e A probability measure, A, defined on £ is called a non-trivial
translation invariant probability measure if it is not
supported on the constant functions and

AMA) =X T, A) = AX({T-wf, f €A},

for all measurable sets A C £ and for every w € C.
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Question

e Non-formal: ‘Is it possible to create a random entire function
which is periodic by law?’

e Formal: Does there exist a non-trivial translation invariant
probability measure on the space of entire functions?
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Minimal Possible Growth

e Do such measures exist?!!?!

YES' Many B.Weiss, 1997

e Question: [Weiss] What is the minimal possible growth of
functions in the support of such measures:

R — Mp (R) :== |n‘1a)1§ |F'(2)|,R 7 o0?
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(A) For every non-trivial translation invariant probability
measure on the space of entire functions
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Bounds on the Growth

Theorem (Buhovsky, G., Logunov, and Sodin

Journal d’Analyse Mathematique, 2019. )

(A) For every non-trivial translation invariant probability
measure on the space of entire functions

(B) There exists a non-trivial translation invariant probability
measure on the space of entire functions with

loglog M+ (R
lim sup 0808 7\ (%)

=0, Ve >0, a.s
R— o0 10g2+5 R
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e The classical Krylov-Bogolyubov construction:
Given a function f, and a sequence of sets {S,} /* C define
the sequence of probability measures:

1

/1A (Twf)dm(w), m = Lebesgue’s measure
S7L

for every A C £ measurable.
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Idea of Proof- Construction

e The classical Krylov-Bogolyubov construction:
Given a function f, and a sequence of sets {S,} /* C define
the sequence of probability measures:

1

/1A (Twf)dm(w), m = Lebesgue’s measure
S7L

for every A C £ measurable.

e To have a non-trivial limiting measure, the underlying
function, f, has to be “self similar”.
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Self similar function

e We constructed an ‘inside out
Cantor set’:

o (1= U?:O ijCkra
C= Uzozl Cy.
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Self similar function

e We constructed an ‘inside out
Cantor set’:

o (1= U]8':0 ijCkra
C= Uzozl Cy.

e We constructed the function
f so that it is almost periodic,
looks almost the same on each
copy of C, inside Cy41.
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m (B (x,e(]z]))), m Lebesgue’s measure.
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Recurrent Sets

e We say a set £ C R? is an (e, R)-recurrent set if all z € R?

m (B (z, R (|z])) N E)

m (B (x,e(]z]))), m Lebesgue’s measure.

m (B (z, R(|z]))) —

e Question: What it the
minimal possible growth of
subharmonic functions with
(e, R)-recurrent zero set?
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Recall that for every subharmonic function u,
1 /
u(y)dm(y
(B B Joengay P

su u(y) - m (B(z, R(|z])) N {u > 0})
: yGB(I:E(IID) ) m(B(z, R(|z|)))

u(z) <
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Recall that for every subharmonic function u,

u()

<

IN

IN

1
m(B(z, R(a]))) /B@,M uly)dm{y)

spufy) - B

sel B~ R

yeB(z,R(z))) m(

M, (B(z, R(|a]))) (1 -
M, (B(a, R(2]))) (1 — m (B(z,e(a])))

)
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Why would a large zero set affect the growth?!?!

Recall that for every subharmonic function u,

1
B SN /B@,M uly)dm{y)

)
su u(y) - m (B(z, R(|z])) N {u > 0})
= entongay Y m(B(z, R(|z])))
< e R (1= HE R =)

Mo (B(a, R(la))) (1 — m (B(z,(|2]))))
My (B(z, R(|z]))) - e~ B@(2))

VANV

Implying that
= emB@elaD) . y(z) < My (B(x, R(|z]))).
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Subharmonic Functions with Recurrent Zero Set

Theorem (G. Arziv, 2019)

1 log(t) ,d=2
Let p(t) = , Ka_o(t) := _1( ) .
R(t)\/—Ka—2(c(t)) = ,d>3
(A) Assume that lim sup m <1, and let u be a subharmonic
t—o0

function in R? so that its zero set is (¢, R)-recurrent, and there
exists xo € R? so that u(xg) > 1. Then

Jim int 128 Mu(P)

>0
p—00 flp (t)dt
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Subharmonic Functions with Recurrent Zero Set

Theorem (G. Arziv, 2019)

1 log(t) ,d=2
Let p(t) = , Ka_o(t) := _1( ) .
R(t)\/—Ka—2(c(t)) = ,d>3
(A) Assume that lim sup m <1, and let u be a subharmonic
t—o0

function in R? so that its zero set is (¢, R)-recurrent, and there
exists xo € R? so that u(xg) > 1. Then

Jim int 128 Mu(P)

>0
p—00 flp (t)dt

(B) If % (ﬁ) is bounded, then there exists a subharmonic function,

u in R? whose zero set is (g, R)-recurrent, while u(0) > 1 and

lim sup Ing(Mu (p))
p—>00 fl @(t)dt
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e ¢ is constant: If (x) does not hold, R(t) 2 t. A rescaling
of the logarithm is a subharmonic function with
logarithmic growth and (e, R)-recurrent zero set.
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R(t)4/log (ﬁ)
*) lim su = limsu < 1.
( ) t—)oop t- (P(t> t—)oop t
e ¢ is constant: If (x) does not hold, R(t) 2 t. A rescaling
of the logarithm is a subharmonic function with
logarithmic growth and (e, R)-recurrent zero set.

e R is constant: If (x) does not hold, £(t) < exp(—ct?) and
Wiener Criteria tells us that there exists a subharmonic
function with logarithmic growth and (g, R)-recurrent zero
set.
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A word about the conditions- dimension d = 2

R(t)4/log (ﬁ)
*) lim su = limsu < 1.
( ) t—)oop t- (P(t> t—)oop t
e ¢ is constant: If (x) does not hold, R(t) 2 t. A rescaling
of the logarithm is a subharmonic function with
logarithmic growth and (e, R)-recurrent zero set.

e R is constant: If (x) does not hold, £(t) < exp(—ct?) and
Wiener Criteria tells us that there exists a subharmonic
function with logarithmic growth and (g, R)-recurrent zero
set.

e There is still a gap, which grows with the dimension.
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Theorem (G. Arziv, 2019)

Let ¢ be as defined in previous slide and let B, := {|z| < p}.
(A) If limsup % < 1, then there ezist constants C,c > 0 so
t—00 #(t)

that for every (e, R)- recurrent set E, for every p > 1
D
P(BM in B, \ E hits 0B,,) < Cexp (—c/ go(t)dt) .
1
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Brownian Motion avoiding a Recurrent Set

Theorem (G. Arziv, 2019)

Let ¢ be as defined in previous slide and let B, := {|z| < p}.
(A) If limsup % < 1, then there ezist constants C,c > 0 so
t—00 #(t)

that for every (e, R)- recurrent set E, for every p > 1
D
P(BM in B, \ E hits 0B,,) < Cexp (—c/ go(t)dt) .
1

(B) If & T ( )) is bounded, then there exist constants c,C > 0,
and an (E,R)— recurrent set E, so that for every p > 1

p
P(BM in B, \ E hits 0B,) > C'exp <—c/ go(t)dt) .
1
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The upper bound

Shakira

You




Stationary random entire functions Recurrently Bounded Functions Frequently Oscillating Functions
00000000 00000000e 0000000000000




Stationary random entire functions Recurrently Bounded Functions Frequently Oscillating Functions
00000000 000000000 ©000000000000




Frequently Oscillating Functions
0O@0000000000

Stationary random entire functions
000e00

Bounds on the Growth

Theorem (Buhovsky, G., Logunov, and Sodin

Journal d’Analyse Mathematique, :2019)

(A) For every non-trivial translation invariant probability
measure on the space of entire functions

=o00, Ve >0, a.s.

(B) There exists a non-trivial translation invariant probability
measure on the space of entire functions with

loglog M¢(R
lim sup 0608 FAY) 5%

=0, Ve >0, a.s.
Rooo  log?™ R
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Bounds on the Growth

Theorem (Buhovsky, G., Logunov, and Sodin

Journal d’Analyse Mathematique, L"(Il!).)

(A) For every non-trivial translation invariant probability
measure on the space of entire functions

log log My (R)

=00, Ve >0, a.s.
R—o0 log R

(B) There exists a non-trivial translation invariant probability
measure on the space of entire functions with

loglog M¢ (R
lim sup 0808 17\ )

=0, Ve >0, as
R—oo  log?™® R
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(P) stgl) u(z) > 1 (P2) Ag—1(IN{u<0}) > dq4
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Definitions
e A cube I C R? is called a basic cube (BC) if

d
H [nj,nj+1),n; € Z.

e Given a subharmonic function v in R¢ and a basic cube I, let:

(P) stgl) u(z) > 1 (P2) Ag—1(IN{u<0}) > dq4

e A basic cube is rogue if it does not satisfy either (Py) or (P2).
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Why would good BC affect growth?!?!

There exists a constant cq so that for every subharmonic
function u defined in a neighbourhood of the unit ball B C RY,

1
Ad—1 ({u <0}n —B) >e> 0= sup u(y) > u(0)e=.
2 yeB
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Why would good BC affect growth?!?!

There exists a constant cq so that for every subharmonic
function u defined in a neighbourhood of the unit ball B C RY,

1
Ad—1 ({u <0}n —B) >e> 0= sup u(y) > u(0)e=.
2 yeB

Why iS that tI‘ue (For the experts- scratching that itch...)
E C 3B is compact = w(0, E; B\ E) 24 \g_1(E).
Let £ := {u <0} N 3B and define Q = B\ E. Then

u(0) < /u<y>dw<07y;m < My(B) w(0,0B;0) <
o0
<o < My(B)emoae
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Why would good BC affect growth?!?!

There exists a constant cq so that for every subharmonic
function u defined in a neighbourhood of the unit ball B C RY,

1
Ad—1 ({u <0}n —B) >e> 0= sup u(y) > u(0)e=.
2 yeB

e Definition: Given a monotone non-decreasing function
f (t) < t?, a subharmonic function u, is called f-oscillating if

<1

) # {rogue basic cubes in [N, N]¢}
lim sup
N—o0 f(2N)
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showed that the optimal growth is exponential.
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History

e In dimension d = 2, if f(t) = 1, then in the joint work
mentioned earlier with Buhovsky, Logunov, and Sodin we
showed that the optimal growth is exponential.

e In dimension d = 2, if f(t) = 2, then in the same joint work
we showed that the growth is exp (C'log?**(R)).

e Question: What can we say about the minimal possible
growth of f-oscillating subharmonic functions in general?
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Optimal Bounds

Theorem (G. Arziv, 2020)
Let f(t) =t*, and define

R ,a <1
R 1 loga1(R) ,a>1

(A) Jcg so that if f(t) < cot? for all t large, then every
f-oscillating subharmonic function w satisfies
lim inf M > 0.
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Optimal Bounds

Theorem (G. Arziv, 2020)
Let f(t) =t*, and define

R ,a <1
R 1 loga1(R) ,a>1

(A) Jcg so that if f(t) < cot? for all t large, then every
f-oscillating subharmonic function w satisfies

lim inf M > 0.
(B) There exists an f-oscillating subharmonic function u so
that I log (M, (R))
imsup ———— < o0.

R— o0 Pf (R)
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Truth be tOld ... The ¢ was redundant...

Theorem (Buhovsky, G., Logunov, and Sodin

Analyse Mathematique, ,‘2019.)

(A) For every non-trivial translation invariant probability

measure on the space of entire functions CO .
©)
. loglog M (R) /@\
llm T = ) 6 CL.S.
R—o0 log R

>

(B) There exists a non-trivial translation invariant probability
measure on the space of entire functions with

. log log My (R)
limsup —————~=

=0, Ve >0, a.s.
R—oo 10g2+5 R
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Truth be told....

The theorem above holds for every function f(t) = t* - g(t) with
g a slowly varying function, with

pr(R) = % log a1 <2 + f(R)> ;

if either o < d or @ = d and g is monotone non-increasing.



Stationary random entire functions Recurrently Bounded Functions Frequently Oscillating Functions
00000000 000000000 00000000 e0000

The lower bound



Frequently Oscillating Functions
000000008000

The lower bound

Observation (Reminder)

1
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2 yeB
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that for every £ € JC; there exists 7¢:




Frequently Oscillating Functions
000000008000

The lower bound

Observation (Reminder)

1
Ad—1 <{u <0}n —B) >¢e > 0= sup u(y) > u(0)e*.
2 yeB

e Choose a subsequence of cubes {C}} so
that for every £ € JC; there exists 7¢:
o Ag—1 ({’U,g < 0} N %B) >
ug is u translated by &, rescaled by 7¢.




Frequently Oscillating Functions
000000008000

The lower bound

Observation (Reminder)

1
Ad—1 <{u <0}n —B) >¢e > 0= sup u(y) > u(0)e*.
2 yeB

e Choose a subsequence of cubes {C}} so
that for every £ € JC; there exists 7¢:
o Ag—1 ({’U,g < 0} N %B) >
ug is u translated by &, rescaled by 7¢.
o B(£,7e) € Cjr-




Frequently Oscillating Functions
000000008000

The lower bound

Observation (Reminder)

1
Ad—1 <{u <0}n —B) >¢e > 0= sup u(y) > u(0)e*.
2 yeB

e Choose a subsequence of cubes {C}} so
that for every £ € JC; there exists 7¢:
o Ag—1 ({’U,g < 0} N %B) >
ug is u translated by &, rescaled by 7¢.
o B(¢,re) € Cja
e Using the observation, u increases by a
multiplication by a constant factor when

passing from Cj to Cj41.
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The lower bound

Observation (Reminder)

1
Ad—1 <{u <0}n —B) >¢e > 0= sup u(y) > u(0)e*.
2 yeB

e Choose a subsequence of cubes {C}} so
that for every £ € JC; there exists 7¢:
o Ag—1 ({’U,g < 0} N %B) >
ug is u translated by &, rescaled by 7¢.
o B(¢,re) € Cja
e Using the observation, u increases by a
multiplication by a constant factor when

passing from Cj to Cj41.

e By induction M, (I) - e#1Ci}% < M, (=N, N]9).
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Example

Could ‘self similarity’ help us here?
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Could ‘self similarity’ help us here?

No! for 2 reasons:

1) ‘Self Similarity’ by definition
means we accumulate rogue
cubes from smaller scales.
The accumulation is
proportional to the volume.
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Could ‘self similarity’ help us here?
No! for 2 reasons:

1) ‘Self Similarity’ by definition
means we accumulate rogue
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, - g L g hyperplanes. The dimension
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for higher dimensions only if
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Thank you!!!
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