Sign Uncertainty

Felipe Gonçalves

Overview

$\square \quad$ Sign uncertainty principle
$\square \quad$ Linear programming bounds for sphere packings
$\square \quad$ Very recent results

We say $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is eventually nonnegantive if

$$
f(x) \geqslant 0, \quad|x| \gg 1
$$

Let

$$
r(f)=\text { last sign change of } f .
$$

If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is integrable we define its Fourier Transform by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i \xi x} d x
$$

If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is integrable we define its Fourier Transform by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i \xi x} d x
$$

$$
\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right), \text { even and real-valued } \\
f(x) \geqslant 0 \text { if }|x| \gg 1 \\
\widehat{f}(x) \geqslant 0 \text { if }|x| \gg 1 \\
f(0) \leqslant 0, \widehat{f}(0) \leqslant 0
\end{array}\right.
$$

If $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is integrable we define its Fourier Transform by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{d}} f(x) e^{-2 \pi i \xi x} d x
$$

$$
\mathcal{A}_{+}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right), \text { even and real-valued } \\
f(x) \geqslant 0 \text { if }|x| \gg 1 \\
\widehat{f}(x) \geqslant 0 \text { if }|x| \gg 1 \\
f(0) \leqslant 0, \widehat{f}(0) \leqslant 0
\end{array}\right.
$$

Can f and \widehat{f} both have mass $\leqslant 0$ and be nonnegative outside a small ball $B_{\varepsilon}(0)$?
Can we make $r(f) r(\widehat{f})$ arbitrarily small?

Thm [Bourgain et al., Ann. Inst. Fourier, 2010]
If $f \in \mathcal{A}_{+}(d)$ then

$$
\sqrt{r(f) r(\widehat{f})} \geqslant 0.241 \sqrt{d}
$$

Moreover, there is $f \in \mathcal{A}_{+}(d)$ so that

$$
\sqrt{r(f) r(\widehat{f})} \leqslant 0.398 \sqrt{d}
$$

Thm [Bourgain et al., Ann. Inst. Fourier, 2010]
If $f \in \mathcal{A}_{+}(d)$ then

$$
\sqrt{r(f) r(\widehat{f})} \geqslant 0.241 \sqrt{d}
$$

Moreover, there is $f \in \mathcal{A}_{+}(d)$ so that

$$
\sqrt{r(f) r(\widehat{f})} \leqslant 0.398 \sqrt{d}
$$

$$
\mathbb{A}_{+}(d):=\inf _{f \in \mathcal{A}_{+}(d) \backslash\{0\}} \sqrt{r(f) r(\widehat{f})}
$$

$$
\mathbb{A}_{+}(d) \asymp \sqrt{d}
$$

Thm [Cohn \& G., Invent. Math., 2019]

We have

$$
\mathbb{A}_{+}(12)=\sqrt{2}
$$

and there is $f \in \mathcal{A}_{+}(12) \cap \mathcal{S}_{\mathrm{rad}}\left(\mathbb{R}^{12}\right)$ with

$$
\widehat{f}=f, \quad f(0)=0 \text { and } r(f)=\sqrt{2}
$$

Moreover, any such f must satisfy

$$
f(\sqrt{2 n})=0 \quad(n \geqslant 0)
$$

Optimal f

The proof has an important reduction

The proof has an important reduction

- We can assume f is radial

The proof has an important reduction

- We can assume f is radial
- We can assume $r(f)=r(\widehat{f})$ since is invariant $\sqrt{r(f) r(\widehat{f})}$ by $f(x) \mapsto f(\lambda x)$

The proof has an important reduction

- We can assume f is radial
- We can assume $r(f)=r(\widehat{f})$ since is invariant $\sqrt{r(f) r(\widehat{f})}$ by $f(x) \mapsto f(\lambda x)$
- Then can assume $\widehat{f}=f$ by adding $f+\widehat{f}$

The proof has an important reduction

- We can assume f is radial
- We can assume $r(f)=r(\widehat{f})$ since is invariant $\sqrt{r(f) r(\widehat{f})}$ by $f(x) \mapsto f(\lambda x)$
- Then can assume $\widehat{f}=f$ by adding $f+\widehat{f}$
- Then can assume $f(0)=0$ by adding $|f(0)| e^{-\pi x^{2}}$

The proof has an important reduction

- We can assume f is radial
- We can assume $r(f)=r(\widehat{f})$ since is invariant $\sqrt{r(f) r(\widehat{f})}$ by $f(x) \mapsto f(\lambda x)$
- Then can assume $\widehat{f}=f$ by adding $f+\widehat{f}$
- Then can assume $f(0)=0$ by adding $|f(0)| e^{-\pi x^{2}}$

$$
\begin{aligned}
\mathbb{A}_{+}(d)=\inf r(f): & f \in L_{r a d}^{1}\left(\mathbb{R}^{d}\right) \backslash\{0\} \\
& \widehat{f}=f(\text { self-dual }) \\
& f(0)=0 \\
& f(x) \geqslant 0 \text { if }|x| \gg 1
\end{aligned}
$$

Lower Bounds

- Assume $d \equiv 4 \bmod 8$.

Lower Bounds

- Assume $d \equiv 4 \bmod 8$.
- Let $M \in M_{k}\left(S L_{2}(\mathbb{Z})\right)$ be a modular form of weight $k=\frac{d}{2}$.

Lower Bounds

- Assume $d \equiv 4 \bmod 8$.
- Let $M \in M_{k}\left(S L_{2}(\mathbb{Z})\right)$ be a modular form of weight $k=\frac{d}{2}$.

$$
M(z)=\sum_{n \geqslant 0} a(n) e^{2 \pi i n z}
$$

- Assume all $a(n)$ for $n \geqslant 1$ have the same sign.

Lower Bounds

- Assume $d \equiv 4 \bmod 8$.
- Let $M \in M_{k}\left(S L_{2}(\mathbb{Z})\right)$ be a modular form of weight $k=\frac{d}{2}$.

$$
M(z)=\sum_{n \geqslant 0} a(n) e^{2 \pi i n z}
$$

- Assume all $a(n)$ for $n \geqslant 1$ have the same sign.

Thm [Cohn \& G., Invent. Math., 2019]
Then

$$
\mathbb{A}_{+}(d) \geqslant \sqrt{2 k}
$$

where a_{k} is the first non-zero coefficient. In particular, the Eisenstein series E_{6} shows that $\mathbb{A}_{+}(12) \geqslant \sqrt{2}$.

Thm [G. \& Oliveira e Silva \& Steinerberger, J. Math. Anal. Appl., 2016]

Existence: $\exists f \in \mathcal{A}_{+}(d) \backslash\{0\}$ such that

$$
r(f)=\mathbb{A}_{+}(d)
$$

we can assume f radial, $\widehat{f}=f$ and $f(0)=0$.
Multiple Roots: $f(|x|)$ has infinitely many roots for $|x|>r(f)$.

> To explain the $\mathbb{A}_{+}(12)=\sqrt{2}$ mystery we need to talk about sphere packings.

To explain the $\mathbb{A}_{+}(12)=\sqrt{2}$ mystery we need to talk about sphere packings.

Sphere Packing Problem

What is the most dense arrangement of non-overlapping equal spheres in \mathbb{R}^{d} ? $\rightsquigarrow \Delta(d)=$ largest packing density

To explain the $\mathbb{A}_{+}(12)=\sqrt{2}$ mystery we need to talk about sphere packings.

Sphere Packing Problem

What is the most dense arrangement of non-overlapping equal spheres in \mathbb{R}^{d} ? $\rightsquigarrow \Delta(d)=$ largest packing density
(Thue, 1910)

Honeycomb $\Delta=91 \%$
(Hales, 1998)

Cannonball $\Delta=74 \%$

(Viazovska, 2016)

(CKMRV, 2016)

E8 Lattice $\Delta=25 \%$

Leech Lattice $\Lambda_{24} \Delta=0.2 \%$

$$
\mathcal{A}_{L P}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right), \text { both radial and real-valued } \\
f(x) \leqslant 0 \text { if }|x| \gg 1 \\
\widehat{f} \geqslant 0 \\
f(0)=\widehat{f}(0)=1
\end{array}\right.
$$

$$
\mathcal{A}_{L P}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right), \text { both radial and real-valued } \\
f(x) \leqslant 0 \text { if }|x| \gg 1 \\
\widehat{f} \geqslant 0 \\
f(0)=\widehat{f}(0)=1
\end{array}\right.
$$

Thm [Cohn \& Elkies, Ann. of Math., 2003]

$$
\operatorname{Dens}(P) \leqslant \operatorname{vol}\left(\frac{1}{2} B^{d}\right) r(f)^{d}
$$

for any sphere packing $P \subset \mathbb{R}^{d}$ and any $f \in \mathcal{A}_{L P}(d)$.

$$
\mathbb{A}_{L P}(d):=\inf _{f \in \mathcal{A}_{L P}(d)} r(f) \quad \Longrightarrow \quad \Delta(d) \leqslant \operatorname{vol}\left(\frac{1}{2} B^{d}\right) \mathbb{A}_{L P}(d)^{d}
$$

$$
\mathbb{A}_{L P}(d):=\inf _{f \in \mathcal{A}_{L P}(d)} r(f) \quad \Longrightarrow \quad \Delta(d) \leqslant \operatorname{vol}\left(\frac{1}{2} B^{d}\right) \mathbb{A}_{L P}(d)^{d}
$$

$$
\begin{array}{cll}
\mathbb{A}_{L P}(8) \geqslant \sqrt{2} & \longleftarrow & \text { E8 lattice } \\
\mathbb{A}_{L P}(24) \geqslant \sqrt{4} & \longleftarrow & \text { Leech lattice }
\end{array}
$$

$$
\mathbb{A}_{L P}(d):=\inf _{f \in \mathcal{A}_{L P}(d)} r(f) \quad \Longrightarrow \quad \Delta(d) \leqslant \operatorname{vol}\left(\frac{1}{2} B^{d}\right) \mathbb{A}_{L P}(d)^{d}
$$

$$
\begin{array}{cll}
\mathbb{A}_{L P}(8) \geqslant \sqrt{2} & \longleftarrow & \text { E8 lattice } \\
\mathbb{A}_{L P}(24) \geqslant \sqrt{4} & \longleftarrow & \text { Leech lattice }
\end{array}
$$

Viazovska (Ann. of Math., 2017) proved these bounds are attained by constructing the magic function $f \in \mathcal{A}_{L P}(d)$

Ansatz: $\quad f(r)=\sin ^{2}\left(\pi r^{2} / 2\right) \int_{0}^{i \infty} R(z) e^{\pi i r r^{2}} d z$

We realized that there is a underlying -1 uncertainty principle.

$$
\begin{aligned}
& \mathcal{A}_{-}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right), \text { even and real-valued } \\
f(x) \geqslant 0 \text { if }|x| \gg 1 \\
-\widehat{f}(x) \geqslant 0 \text { if }|x| \gg 1 \\
-f(0) \leqslant 0, \widehat{f}(0) \leqslant 0
\end{array}\right. \\
& \mathbb{A}_{-}(d):=\inf _{\left.f \in \mathcal{A}_{-}(d) \backslash 0\right\}} \sqrt{r(f) r(\widehat{f})}
\end{aligned}
$$

We realized that there is a underlying -1 uncertainty principle.

$$
\begin{aligned}
& \mathcal{A}_{-}(d)=\left\{\begin{array}{l}
f, \widehat{f} \in L^{1}\left(\mathbb{R}^{d}\right), \text { even and real-valued } \\
f(x) \geqslant 0 \text { if }|x| \gg 1 \\
-\widehat{f}(x) \geqslant 0 \text { if }|x| \gg 1 \\
-f(0) \leqslant 0, \widehat{f}(0) \leqslant 0
\end{array}\right. \\
& \mathbb{A}_{-}(d):=\inf _{f \in \mathcal{A}_{-}(d) \backslash\{0\}} \sqrt{r(f) r(\widehat{f})}
\end{aligned}
$$

Thm [Cohn \& G., Invent. Math., 2019]

$$
\begin{gathered}
0.241 \sqrt{d} \leqslant \mathbb{A}_{-}(d) \leqslant 0.319 \sqrt{d} \\
\mathbb{A}_{-}(d)=\inf \{r(f): \widehat{f}=-f, f(0)=0, f(x) \geqslant 0 \text { if }|x| \gg 1\}
\end{gathered}
$$

- $f \in \mathcal{A}_{L P}(d)$ then $b:=\widehat{f}-f \in \mathcal{A}_{-}(d)$ and $r(b) \leqslant r(f)$.

$$
\mathbb{A}_{L P}(d) \geqslant \mathbb{A}_{-}(d)
$$

In fact, we conjecture equality for all d.

- $f \in \mathcal{A}_{L P}(d)$ then $b:=\widehat{f}-f \in \mathcal{A}_{-}(d)$ and $r(b) \leqslant r(f)$.

$$
\mathbb{A}_{L P}(d) \geqslant \mathbb{A}_{-}(d)
$$

In fact, we conjecture equality for all d.

- From Viazovska's proof, b is indeed optimal.

$$
\mathbb{A}_{L P}(8)=\mathbb{A}_{-}(8)=\sqrt{2} ; \quad \mathbb{A}_{L P}(24)=\mathbb{A}_{-}(24)=\sqrt{4} .
$$

- $f \in \mathcal{A}_{L P}(d)$ then $b:=\widehat{f}-f \in \mathcal{A}_{-}(d)$ and $r(b) \leqslant r(f)$.

$$
\mathbb{A}_{L P}(d) \geqslant \mathbb{A}_{-}(d)
$$

In fact, we conjecture equality for all d.

- From Viazovska's proof, b is indeed optimal.

$$
\mathbb{A}_{L P}(8)=\mathbb{A}_{-}(8)=\sqrt{2} ; \quad \mathbb{A}_{L P}(24)=\mathbb{A}_{-}(24)=\sqrt{4} .
$$

- In 2019, Cohn \& G. used these ideas to show

$$
\begin{aligned}
& \mathbb{A}_{+}(12)=\sqrt{2} \\
& f(r)=\sin ^{2}\left(\pi r^{2} / 2\right) \int_{0}^{i \infty} \frac{\left(\theta_{3}(z)^{4}+\theta_{2}(z)^{4}\right) \theta_{4}(z)^{12}}{\eta(z)^{12}} e^{\pi i z r^{2}} d z
\end{aligned}
$$

d	Best Packing	$\mathbb{A}_{L P}(d)$	$\mathbb{A}_{-}(d)$	$\mathbb{A}_{+}(d)$
1	\mathbb{Z}	1	1	$? ? ? ? ? ? ?$
2	Honeycomb	$?=(4 / 3)^{\frac{1}{4}}$	$?=(4 / 3)^{\frac{1}{4}}$	$?$
8	E8	$\sqrt{2}$	$\sqrt{2}$	$?$
12	$?$	$?$	$?$	$\sqrt{2}$
24	Leech	$\sqrt{4}$	$\sqrt{4}$	$?$

d	Best Packing	$\mathbb{A}_{L P}(d)$	$\mathbb{A}_{-}(d)$	$\mathbb{A}_{+}(d)$
1	\mathbb{Z}	1	1	$? ? ? ? ? ? ?$

2 Honeycomb ? $=(4 / 3)^{\frac{1}{4}}$

There is numerical evidence for the

$$
\mathbb{A}_{L P}(d)=\mathbb{A}_{-}(d) \sim \mathbb{A}_{+}(d) \sim c \sqrt{d} . \quad \text { (conjecture) }
$$

New results related with modular bootstrap in CFTs propose $c=\frac{1}{\pi}=0.318 \ldots$.
So far $\mathbb{A}_{+}(d)$ does not have an associated geometrical problem. \rightsquigarrow CFTs ?

New Sign Uncertainty Principles
(G., Oliveira e Silva, Ramos, 2020)

New Sign Uncertainty Principles
(G., Oliveira e Silva, Ramos, 2020)

- Spherical Harmonics and Jacobi Polynomials (\rightsquigarrow Spherical Designs and Quadrature).

New Sign Uncertainty Principles
(G., Oliveira e Silva, Ramos, 2020)

- Spherical Harmonics and Jacobi Polynomials (\rightsquigarrow Spherical Designs and Quadrature).
- Fourier Series, Bessel-Dini Series.

New Sign Uncertainty Principles

(G., Oliveira e Silva, Ramos, 2020)

- Spherical Harmonics and Jacobi Polynomials (\rightsquigarrow Spherical Designs and Quadrature).
- Fourier Series, Bessel-Dini Series.
- Discrete Fourier and Hankel Transf..
- Functions on the Hamming cube (\rightsquigarrow Complexity of Boolean Functions)

$$
H_{2}\left(\frac{\operatorname{deg}(f)}{N}\right)>1-\frac{\log _{2}(16 \#\{f=0\})}{N}
$$

New Sign Uncertainty Principles

(G., Oliveira e Silva, Ramos, 2020)

- Spherical Harmonics and Jacobi Polynomials (\rightsquigarrow Spherical Designs and Quadrature).
- Fourier Series, Bessel-Dini Series.
- Discrete Fourier and Hankel Transf..
- Functions on the Hamming cube (\rightsquigarrow Complexity of Boolean Functions)

$$
H_{2}\left(\frac{\operatorname{deg}(f)}{N}\right)>1-\frac{\log _{2}(16 \#\{f=0\})}{N}
$$

- Hilbert Transf., Hankel Transf., and other Smooth Conv. Kernels.

For $f: \mathbb{Z}_{Q} \rightarrow \mathbb{C}$ we define the DFT

$$
\widehat{f}(n)=\frac{1}{\sqrt{Q}} \sum_{|m| \leqslant \frac{Q-1}{2}} f(m) e^{-2 \pi i m n / Q} \quad(Q \text { Odd })
$$

For $f: \mathbb{Z}_{Q} \rightarrow \mathbb{C}$ we define the DFT

$$
\widehat{f}(n)=\frac{1}{\sqrt{Q}} \sum_{|m| \leqslant \frac{Q-1}{2}} f(m) e^{-2 \pi i m n / Q} \quad(Q \text { Odd }) .
$$

Thm [G., Oliveira e Silva, Ramos, 2020]

$$
\begin{gathered}
\mathcal{A}_{ \pm}^{\text {disc }}[Q]=\left\{\begin{array}{l}
f, \widehat{f}: \mathbb{Z}_{Q} \rightarrow \mathbb{R} \text { both even } \\
\widehat{f}(0) \leqslant 0, \pm f(0) \leqslant 0 .
\end{array}\right. \\
\mathbb{A}_{ \pm}^{\text {disc }}[Q]:=\min \{\sqrt{k(f) k(\pm \widehat{f})}\}
\end{gathered}
$$

where $k(f)=\min \left\{k>0: f(n) \geqslant 0\right.$ for $\left.n \in\left[k, \frac{Q-1}{2}\right]\right\}$.
Then

$$
\mathbb{A}_{ \pm}^{\text {disc }}[Q] \gtrsim \sqrt{Q} .
$$

Heuristically we expect

$$
\frac{\mathbb{A}_{ \pm}^{\text {disc }}[Q]}{\sqrt{Q}} \longrightarrow \mathbb{A}_{ \pm}(1) \quad(Q \rightarrow \infty)
$$

Heuristically we expect

$$
\frac{\mathbb{A}_{ \pm}^{\text {disc }}[Q]}{\sqrt{Q}} \longrightarrow \mathbb{A}_{ \pm}(1) \quad(Q \rightarrow \infty)
$$

Conjecture

$$
\mathbb{A}_{+}(1)=\frac{1}{\sqrt{2 G R}}=\frac{\sqrt{\sqrt{5}-1}}{2}=0.555 \ldots
$$

Heuristically we expect

$$
\frac{\mathbb{A}_{ \pm}^{\text {disc }}[Q]}{\sqrt{Q}} \longrightarrow \mathbb{A}_{ \pm}(1) \quad(Q \rightarrow \infty)
$$

Conjecture

$$
\mathbb{A}_{+}(1)=\frac{1}{\sqrt{2 G R}}=\frac{\sqrt{\sqrt{5}-1}}{2}=0.555 \ldots
$$

Good News: The discrete case we can use a Linear Programming solver! (Gurobi)
-1 Optimal anti-dual $(f(n))$ for $Q=51^{2}$ and $k(f)=51$.

-1 Optimal anti-dual $(f(n))$ for $Q=51^{2}$ and $k(f)=51$.

$f(x) \approx|\sin (2 \pi x)| \chi_{[-1,1]}(x)-\frac{2 \sin ^{2}(\pi x)}{\pi\left(1-x^{2}\right)}$
$\frac{\mathbb{A}_{-}^{\text {disc }}[Q]}{\sqrt{Q}} \approx \mathbb{A}_{-}(1)=1$
+1 Optimal self-dual $(f(n))$ for $Q=7596$ and $k(f)=49$.

+1 Optimal self-dual $(f(n))$ for $Q=7596$ and $k(f)=49$.

8 Generalized sign uncertainty $\binom{$ "New sign una. principles" }{ oliveina e silva, ramos }
$T H M: L_{E} T \quad T: L^{P}(x, \mu) \longrightarrow L^{q}(y, \nu)$ be BOONDED And wVertible. For $f \in L^{p}(x, \mu)$ and

$$
\begin{aligned}
& \varepsilon_{1}=\operatorname{sign}\left(\int f\right), \varepsilon_{i}=\operatorname{sign}\left(\int T f\right) \\
& \mu\left(\left\{\varepsilon_{1} f>0\right\}\right)^{\frac{1}{p^{\prime}}} v\left(\left\{\varepsilon_{2} T f>0\right\}\right)^{\frac{1}{q}} \geqslant C \frac{\|f\|_{1}}{\|T \rho\|_{\infty}} \\
& C=C\left(\|T\|,\left\|T^{-1}\right\|\right)
\end{aligned}
$$

NOTE: $T=$ FOURIER TRANSF., $p=q=2$ WE RECOVER.

APPLICATIONS $L^{2}(x, \mu)$ and φ_{n} an orthonormal oasis.

$$
T: f \in L^{2}(x, \mu) \longrightarrow(\hat{f}(n))_{n=0}^{\infty} \epsilon \ell^{2}(\mathbb{N})
$$

WHERE $\quad f=\sum_{n=0}^{\infty} \hat{f}(n) \varphi_{n} . \quad f(\eta)=\sum \hat{f}(n)\left\|\varphi_{n}\right\|_{\infty}$
THM ASSUME $\exists \eta \in X$ so THAT $\varphi_{n}(\eta)=\left\|\varphi_{n}\right\|_{\infty}$. THEN FOR $\varepsilon_{1}=\operatorname{sign}\left(\int f\right), \varepsilon_{2}=\operatorname{sign}(f(\eta))$

$$
\mu\left(\left\{\varepsilon_{1} f>0\right\}\right) \sum_{n: \varepsilon_{2} \hat{f}(n)>0}\left\|\varphi_{n}\right\|_{\infty}^{2} \geqslant \frac{1}{16}
$$

HM $L^{2}\left(S^{n-1}\right)=H_{k}$ AND CHOOSE ORTHONORMAL
Basis $\left\{Y_{k, j}\right\}_{j=1}^{h_{k}} \quad \begin{aligned} & k \geqslant 0 \\ & \text { of }\end{aligned} H_{k}$ so That $\quad Y_{k, j}(\eta)>0$ assume $f: S^{n-1} \longrightarrow \mathbb{R}$ is such that
(1) $f(x) \geqslant 0$ if $\operatorname{disi}(x, \eta) \geqslant \theta_{f}$
(2)

$$
\begin{aligned}
& f=\sum \hat{f}(k, j) Y_{k, j} \quad \text { THEN } \\
& \varepsilon \hat{f}(k, j) \geqslant 0 \quad \text { iF } \quad k \geqslant k_{f}
\end{aligned}
$$

(3) $\varepsilon f(\eta) \leqslant 0, \quad \int_{S^{n-1}} f \leqslant 0$

$$
\text { THEN } \quad k_{f} \cdot\left(1-\cos ^{2} \theta_{f}\right)^{1 / 2} \geqslant \frac{1}{e}+\frac{c}{n}
$$

- LET $P: S^{n-1} \longrightarrow \mathbb{R}$ be A polynomial satisfying the conditions of the tim above. We say P is Locally optimal if $K_{p}\left(1-\cos ^{2} \theta_{p}\right)^{1 / 2}$ is minimial For all poly. Close to P and deg not greater.

SUPPOSE $\Omega C S^{n-1}$ is A TIGHT SPHERICAL t-DESIGN. WITH COSINE DISTANCES $\left\{\alpha_{m}<\alpha_{m-1}<\cdots<\alpha_{1}\right\}, m=\lceil t / 2\rceil$
let

$$
P(x)=(x-1)\left(x-\alpha_{m}\right)^{a}\left(x-\alpha_{1}\right) \prod_{j=2}^{m-1}\left(x-\alpha_{j}\right)^{2}
$$

$a=2 \quad$ iF $\quad \alpha_{m}>-1$

$$
a=1 \quad \text { iF } \quad \propto m=-1
$$

THM P is Locally opT.
For any $\varepsilon= \pm 1$.
simplex and cnoss-polytope are globally optimal

Complexity of Boolean functions
$L_{E T} \quad f:\{ \pm 1\}^{N} \longrightarrow\{0,1\} \quad B E$ A BOOLEAN function.
A LOT OF interest in Bounding $\operatorname{deg}(f)$

$$
f(x)=\sum_{S \subset[N]} \hat{f}(s) x^{s}, \operatorname{deg}(f)=M A \times\{\neq s: \hat{f}(s) \neq 0\}
$$

For instance, recently it was shown

$$
\begin{aligned}
& \sqrt{s(f)} \leqslant \operatorname{deg}(f) \leqslant s(f)^{2} \quad(s(f)=\underset{\operatorname{sensiriviry}}{\circ}) \\
& \operatorname{deg}(f) \geqslant \log _{2} N-O(\log \log N)
\end{aligned}
$$

THM

$$
\begin{aligned}
& H M \quad H_{2}\left(\frac{\operatorname{deg}(f)}{N}\right) \geqslant 1-\frac{\log _{2}(16 \theta(f))}{N} \\
& \theta(f)=\min \{\#\{f=1\}, \#\{f=0\}) \\
& H_{2}(x)=-x \log _{2} x-(1-x) \log _{2}(1-x)
\end{aligned}
$$

1. +1 Sign Uncertainty [Bourgain et al., 2010.]
2. Dim 8 and 24 papers on optimal sphere Packings [Viazoviska et al., 2017]
3. Existence of optimizers [G. et al., 2017]
4. Interpolation on \sqrt{n} [V. R. 2016]
5. Solution of $\mathbb{A}_{+}(12)=\sqrt{2}$ [Cohn \& G., 2019]
6. First order interpolation on $\sqrt{2 n}$ (and Gaussian energy minimization) [C.K.M.R.V, 2019]
7. Fourier uniqueness on $f\left(n^{\alpha}\right), \widehat{f}\left(n^{\beta}\right)$ [Ramos Sousa, 2020] [Nazarov and Sodin, 2020]
8. Perturbed interpolation at $\sqrt{n+\varepsilon_{n}}$ [Ramos et al., 2020]
9. Interpolation on the zeros of the zeta function
[Bondarenko et al, 2020]
10. Mass concentration phenomena for sign uncertainty [G. et al., 2020]
11. Generalized sign Fourier uncertainty [Carneiro et al. 2020]
12. New sign uncertainty principles [G. et al., 2020]
