Radon-like Transforms, Geometric Measures, and Invariant Theory

Philip T. Gressman University of Pennsylvania

5 January 2021

Fourier Restriction

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•		•	•	•	•	•		•	•	•		•		•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•						•													•		•
		•	•					•	•	•	•		•	•	•	•			•		•		•
	•	•	•						•		•	•	•	•		•			•				
	•	•									•	•				•							•
	•	•	•						•		•	•	•	•	•	•			•				

Highlights

Outgrowth of work ~50 years ago on the Bochner-Riesz Conjecture; has extensive applications to PDEs and is a pillar of an interconnected web of core conjectures in harmonic analysis.

L^p-Improving Radon-Like Transforms

•	•	•			•	•	•	•		•	•	•	•		•	•	•	•	•		•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•			•	•	•	•	•	•		•	•	•	•			•	•	•	•	•	•
	•							•					•		•								

Highlights

Implied by Fourier restriction inequalities but not generally the other way around; now richly developed for curves and much other work for surfaces; intermediate cases not well-understood.

Decoupling Theory

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

Highlights

Recent development initiated by Bourgain and Demeter; has deep and not fully understood connections to efficient congruencing in number theory; one important tool here is Brascamp-Lieb inequalities.

 Quantifying transversality is deeply connected to certain foundational aspects of Geometric Invariant Theory from algebraic geometry

- Quantifying transversality is deeply connected to certain foundational aspects of Geometric Invariant Theory from algebraic geometry
 - We will see this in underlying structure of the Brascamp-Lieb constant [Bennett, Carbery, Christ, Tao GAFA 2008, MRL 2010]

- Quantifying transversality is deeply connected to certain foundational aspects of Geometric Invariant Theory from algebraic geometry
 - We will see this in underlying structure of the Brascamp-Lieb constant [Bennett, Carbery, Christ, Tao GAFA 2008, MRL 2010]
 - We will see this again when studying nonconcentration inequalities.

- Quantifying transversality is deeply connected to certain foundational aspects of Geometric Invariant Theory from algebraic geometry
 - We will see this in underlying structure of the Brascamp-Lieb constant [Bennett, Carbery, Christ, Tao GAFA 2008, MRL 2010]
 - We will see this again when studying nonconcentration inequalities.
- For L^p-improving estimates, a complicated game of inflation maps gets replaced by a less complicated game of finding useful invariant polynomials.

- Quantifying transversality is deeply connected to certain foundational aspects of Geometric Invariant Theory from algebraic geometry
 - We will see this in underlying structure of the Brascamp-Lieb constant [Bennett, Carbery, Christ, Tao GAFA 2008, MRL 2010]
 - We will see this again when studying nonconcentration inequalities.
- For L^p-improving estimates, a complicated game of inflation maps gets replaced by a less complicated game of finding useful invariant polynomials.
- Decoupling sees geometry in a fundamentally different way than restriction and *L^p*-improving inequalities.

 You have some vector space of objects (polynomials) and some group representation on that space. (Our group will always be SL_n or products.)

- You have some vector space of objects (polynomials) and some group representation on that space. (Our group will always be SL_n or products.)
- You think of the action of the representation as being geometrically trivial and consequently would really like to consider all vectors along a given orbit to be different expressions of the same underlying geometric object (think coordinate changes).

- You have some vector space of objects (polynomials) and some group representation on that space. (Our group will always be SL_n or products.)
- You think of the action of the representation as being geometrically trivial and consequently would really like to consider all vectors along a given orbit to be different expressions of the same underlying geometric object (think coordinate changes).
- The most natural thing to do is to form an equivalence relation, but this is a bit too naive. Problems occur when the zero vector is in the (Zariski) closure of an orbit.

Hilbert Comes to the Rescue

The set *N* of vectors w/orbit closures containing **0** is called the nullcone. • $v \in N$ iff every group-invariant polynomial vanishes at v. (nondegen)

Hilbert Comes to the Rescue

The set **N** of vectors w/orbit closures containing **0** is called the nullcone.

- $v \in N$ iff every group-invariant polynomial vanishes at v. (nondegen)
- The algebra of group-invariant polynomials is finitely generated

Hilbert Comes to the Rescue

The set **N** of vectors w/orbit closures containing **0** is called the nullcone.

- $v \in N$ iff every group-invariant polynomial vanishes at v. (nondegen)
- The algebra of group-invariant polynomials is finitely generated
- $v \in N$ iff there is a one-parameter group of transformations sending it to **0** in the limit. (degen)

Hilbert Comes to the Rescue

The set **N** of vectors w/orbit closures containing **0** is called the nullcone.

- $v \in N$ iff every group-invariant polynomial vanishes at v. (nondegen)
- The algebra of group-invariant polynomials is finitely generated
- $v \in N$ iff there is a one-parameter group of transformations sending it to **0** in the limit. (degen)

•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
	•																						
	•																						
															•								

Algebraic and Analytic Examples

• Homogeneous polynomials of degree *d* in *n* variables in classical GIT are semistable iff Newton distance = $\frac{d}{n}$ in every coordinate system.

Algebraic and Analytic Examples

- Homogeneous polynomials of degree *d* in *n* variables in classical GIT are semistable iff Newton distance = $\frac{d}{n}$ in every coordinate system.
- Brascamp-Lieb Constant

$$\mathsf{BL}^{-1}(\pi, N) \int_{H} \prod_{j=1}^{m} (f_{j}(\pi_{j}))^{\frac{N_{j}d}{Nd_{j}}} \leq \prod_{j=1}^{m} \left(\int_{H_{j}} f_{j} \right)^{\frac{1}{Nd_{j}}}$$

Algebraic and Analytic Examples

- Homogeneous polynomials of degree *d* in *n* variables in classical GIT are semistable iff Newton distance = $\frac{d}{n}$ in every coordinate system.
- Brascamp-Lieb Constant

$$BL^{-1}(\pi, N) \int_{H} \prod_{j=1}^{m} (f_{j}(\pi_{j}))^{\frac{N_{j}d}{Nd_{j}}} \leq \prod_{j=1}^{m} \left(\int_{H_{j}} f_{j} \right)^{\frac{1}{Nd_{j}}}$$
Let $\Pi_{N} : H^{N} \times H_{1}^{N_{1}} \times \cdots \times H_{m}^{N_{m}} \to \mathbb{R}$ be
$$\Pi_{N}(x^{(1)}, \dots, x^{(N)}, y_{1}^{(1)}, \dots, y_{1}^{(N_{1})}, \dots, y_{m}^{(N_{m})})$$

$$:= \left\langle \pi_{1}x^{(1)}, y_{1}^{(1)} \right\rangle_{H_{1}} \cdots \left\langle \pi_{1}x^{(N_{1})}, y_{1}^{(N_{1})} \right\rangle_{H_{1}} \cdots \left\langle \pi_{m}x^{(N)}, y_{m}^{(N_{m})} \right\rangle_{H_{m}}$$
and let $G := SL(H) \times SL(H_{1}) \times \cdots \times SL(H_{m})$. Then
$$\left[BL^{-1}(\pi, N) \right]^{\frac{N}{d}} = C \inf_{M \in G} |||\rho_{M}\Pi_{N}|||,$$

Brascamp-Lieb Example

 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•						•	•	•	•	•	•	•	•		•	•	•			

L^p-Improving Inequalities: Two-Step Process

L^p-Improving Inequalities: Two-Step Process

- The Kakeya-Brascamp-Lieb Inequality
- Geometric Nonconcentration Inequalities

Part 1: Kakeya-Brascamp-Lieb

General Setup

- We have a defining function $\rho(x, y)$ on $\mathbb{R}^n \times \mathbb{R}^n$ mapping into \mathbb{R}^{n-k} . For each x, x_{Σ} is the zero set of $\rho(x, \cdot)$. Likewise Σ^y is the zero set of $\rho(\cdot, y)$.
- Assume that all $^{x}\Sigma$ and Σ^{y} are algebraic varieties of bounded degree.
- We have derivative matrices $D_x \rho$ and $D_v \rho$.
- On each ${}^{x}\Sigma$ there is a natural measure $d\sigma$ *a la* the coarea formula:

$$\int_{x_{\Sigma}} f d\sigma := \int_{x_{\Sigma}} f(y) \frac{dH^{k}(y)}{\det(D_{y}\rho(x,y)(D_{y}\rho(x,y))^{T})^{1/2}}$$

We will study the operator T given by

$$Tf(x) := \int_{x\Sigma} f d\sigma.$$

•		•	•		•	•		•	•		•	•	•
													•
													•

Theorem

For any nonnegative Lebesgue measurable f_1, \dots, f_m on \mathbb{R}^n ,

$$\begin{split} \int_{\mathbb{R}^n} \left[\int_{x \sum} \int_{x \sum} \left[\mathsf{BL}(D_x \rho) \right]^{-\frac{m(n-k)}{n}} \prod_{j=1}^m f_j(y_j) d\sigma(y_1) \cdots d\sigma(y_m) \right]^{\frac{n}{m(n-k)}} dx \\ &\lesssim \prod_{j=1}^m ||f_j||_{L^1(\mathbb{R}^n)}^{\frac{n}{m(n-k)}}. \end{split}$$

History

Based directly on an inequality of Zhang [Analysis&PDE 2018] which extends multilinear Kakeya [Bennett, Carbery, Tao (Acta 2006); Guth endpoint (Acta 2010)] so that families of tubes are replaced by families of slabs.

Part 1: Kakeya-Brascamp-Lieb

$$\int_{\mathbb{R}^n} \left[\int_{x_{\Sigma}} \int_{x_{\Sigma}} \left[\mathsf{BL}(D_x \rho) \right]^{-p} \prod_{j=1}^m f_j(y_j) d\sigma(y_1) \cdots d\sigma(y_m) \right]^{\frac{1}{p}} dx \leq \prod_{j=1}^m ||f_j||_{L^1(\mathbb{R}^n)}^{\frac{1}{p}}$$

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. •
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
•				•									•						•				
																			•				
•				•															•				
																							•

Part 2: Nonconcentration Inequalities

Part 2: Nonconcentration Inequalities Suppose Φ is some polynomial function from $(\mathbb{R}^n)^m$ into \mathbb{R}^{ℓ} . $|\Phi(y_1, \dots, y_m)|$ measures nondegeneracy of *m*-point configurations.

Nonconcentration Inequalities

For a given Φ and s, find the "best possible" measure σ such that $I(E) := \int_{E^m} |\Phi(y_1, \dots, y_m)| d\sigma(y_1) \cdots d\sigma(y_k) \ge (\sigma(E))^{m+s}.$

Product sets E^m cannot be degenerate (as measured by Φ) when $\sigma(E) > 0$.

Part 2: Nonconcentration Inequalities Suppose Φ is some polynomial function from $(\mathbb{R}^n)^m$ into \mathbb{R}^{ℓ} . $|\Phi(y_1, \dots, y_m)|$ measures nondegeneracy of *m*-point configurations.

Nonconcentration Inequalities

For a given Φ and s, find the "best possible" measure σ such that $I(E) := \int_{F^m} |\Phi(y_1, \dots, y_m)| d\sigma(y_1) \cdots d\sigma(y_k) \ge (\sigma(E))^{m+s}.$

Product sets E^m cannot be degenerate (as measured by Φ) when $\sigma(E) > 0$.

÷.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
а. С																							

GIT Appears Again

Suppose $\Omega \subset \mathbb{R}^{n-k}$ is an open set and that $\Phi(t_1, \dots, t_m)$ is a polynomial function of $t_1, \dots, t_m \in \mathbb{R}^{n-k}$. Suppose $\partial_1^{\alpha_1} \cdots \partial_m^{\alpha_m} \Phi(t, \dots, t) \equiv 0$ when $|\alpha_i| < c_i$ for some *i*. Let $s = (c_1 + \dots + c_m)/(n - k)$. Then

$$\omega(t) := \inf_{T \in SL_{n-k}} \max_{|\alpha_1| = c_1, \dots, |\alpha_m| = c_m} \left| (T^* \partial)_1^{\alpha_1} \cdots (T^* \partial)_m^{\alpha_m} \Phi(t, \dots, t) \right|^{\frac{1}{2}}$$

If σ is any nonnegative Borel measure which is absolutely continuous with respect to Lebesgue measure such that

 $\left|\frac{d\sigma}{dt}(t) \le \omega(t)\right|$

at each point $t \in \Omega$, where $\frac{d\sigma}{dt}$ is the Radon-Nikodym derivative of σ with respect to Lebesgue measure, then for any Borel set $F \subset \Omega$,

$$\int_{F} \cdots \int_{F} |\Phi(t_{1}, \dots, t_{m})| d\sigma(t_{1}) \cdots d\sigma(t_{m}) \ge [\sigma(F)]^{m+s}$$

with implicit constant depending only on $(n - k, m, \deg \Phi)$.

Part 2: Nonconcentration Inequalities

Submanifolds of dimension d in $\mathbb{R}^{d(d+1)}$: Let $x := (x_i, x_{ij})$ for $i, j \in \{1, ..., d\}$. Defining function is $(\rho)_{ij} = (x_{ij} - y_{ij}) - x_i y_j$.

•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•			•				•	•				•	•	•	•					•			
	•	•		•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•
	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•

Part 2: Nonconcentration Inequalities

Submanifolds of dimension d in $\mathbb{R}^{d(d+1)}$: Let $x := (x_i, x_{ij})$ for $i, j \in \{1, ..., d\}$. Defining function is $(\rho)_{ij} = (x_{ij} - y_{ij}) - x_i y_j$.

•	•	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•			•					•				•	•	•	•					•			
	•	•		•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	•	•
	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•	•				•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•

Finding Good Invariant Polynomials

Finding Good Invariant Polynomials

Block-form Matrices

Works well for cases when dimension of submanifold (k) exceeds codimension (n-k). Regard bottom rows as fixed.

Finding Good Invariant Polynomials

Cayley Ω

Think of "alternating contraction" on indices of a multilinear functional.

•	•	•	•	•	•	•	•			•	•	•	•		•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•	•		•	•	•
•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•		•	•		•	•	•	•		•		•	•		•				•			•	
	•		•										•										
			•																				
			•																				
			•																				

Decoupling is a Different Creature

Joint with S. Guo, L. Pierce, J. Roos, P.-L. Yung

Given $\phi : \mathbb{N} \to \mathbb{Z}^n$ and an integer $s \ge 1$, consider the system of n equations $\phi(x_1) + \dots + \phi(x_s) = \phi(x_{s+1}) + \dots + \phi(x_{2s})$. For every finite set S of positive integers let $J_{s,\phi}(S)$ denote the number of solutions $(x_1, \dots, x_{2s}) \in S^{2s}$ of the system. Fix N and consider an arbitrary subset $S \subseteq \{1, \dots, N\}$.

$$\left\|\sum_{j=1}^{N} a_{j} e^{2\pi i x \cdot \phi(j)}\right\|_{L^{2s}([0,1]^{n})} \leq C_{s,p,\phi,N} \Big(\sum_{j=1}^{N} |a_{j}|^{p}\Big)^{1/p}$$

implies the bound

 $J_{s,\phi}(S) \leq C_{s,p,\phi,N}^{2s} |S|^{2s/p}.$

Theorem

Suppose $\exists \theta = \theta(\phi, s) \in [s, 2s)$ and a constant $c = c(\phi, s) \in (0, \infty)$ such that for all $N \ge 1$ and for all subsets $S \subset \{1, ..., N\}$ we have the inequality

 $J_{s,\phi}(S) \leq c |S|^{\theta}.$

Then the ℓ^p decoupling inequality for L^{2s} holds for $p = \frac{2s}{\theta} \in (1, 2]$: namely, there exists a constant c' such that for every $(a_i)_i \in \mathbb{C}^N$, we have

$$\|\sum_{j=1}^{N} a_{j} e^{2\pi i x \cdot \phi(j)} \|_{L^{2s}([0,1]^{n})} \leq c' (1 + p^{-1} (\log N)^{\frac{1}{p'}}) \Big(\sum_{j=1}^{N} |a_{j}|^{p} \Big)^{1/p}.$$
(1)

Here we have 1/p + 1/p' = 1, and we may take $c' = 2^{1/p} 4^{1/p'} c^{1/2s}$.

Theorem

Suppose that $\gamma : [0, 1] \to \mathbb{R}^n$ is a non-degenerate C^n curve. Then there exists a constant $C = C(\gamma, n) \in (0, \infty)$ such that the following holds: for each integer $1 \le m \le n$, for every $R \ge 1$ and every ball B of radius at least R^n , we have that for all $f \in L^{2m}(w_B)$,

$$\|E_{[0,1]}f\|_{L^{2m}(w_B)} \le C \| \Big(\sum_{|I|=R^{-1}} |E_If|^2 \Big)^{1/2} \|_{L^{2m}(w_B)}$$
(2)

where the summation is over intervals I belonging to a dissection of [0, 1] into intervals of length R^{-1} .

Thank You