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Fourier Restriction

Highlights
Outgrowth of work ~50 years ago on the Bochner-Riesz Conjecture; has
extensive applications to PDEs and is a pillar of an interconnected web
of core conjectures in harmonic analysis.
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𝐿𝑝-Improving Radon-Like Transforms

Highlights
Implied by Fourier restriction inequalities but not generally the other
way around; now richly developed for curves and much other work for
surfaces; intermediate cases not well-understood.
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Decoupling Theory

Highlights
Recent development initiated by Bourgain and Demeter; has deep and
not fully understood connections to efficient congruencing in number
theory; one important tool here is Brascamp-Lieb inequalities.
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Main Points For Today
• Quantifying transversality is deeply connected to certain foundational
aspects of Geometric Invariant Theory from algebraic geometry

• We will see this in underlying structure of the Brascamp-Lieb constant
[Bennett, Carbery, Christ, Tao GAFA 2008, MRL 2010]

• We will see this again when studying nonconcentration inequalities.
• For 𝐿𝑝-improving estimates, a complicated game of inflation maps gets
replaced by a less complicated game of finding useful invariant
polynomials.

• Decoupling sees geometry in a fundamentally different way than
restriction and 𝐿𝑝-improving inequalities.
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• You have some vector space of objects (polynomials) and some group
representation on that space. (Our group will always be SL𝑛 or
products.)

• You think of the action of the representation as being geometrically
trivial and consequently would really like to consider all vectors along
a given orbit to be different expressions of the same underlying
geometric object (think coordinate changes).

• The most natural thing to do is to form an equivalence relation, but
this is a bit too naive. Problems occur when the zero vector is in the
(Zariski) closure of an orbit.
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Hilbert Comes to the Rescue
The set 𝑁 of vectors w/orbit closures containing 0 is called the nullcone.
• 𝑣 ∈ 𝑁 iff every group-invariant polynomial vanishes at 𝑣. (nondegen)

• The algebra of group-invariant polynomials is finitely generated.
• 𝑣 ∈ 𝑁 iff there is a one-parameter group of transformations sending it
to 0 in the limit. (degen)
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Algebraic and Analytic Examples
• Homogeneous polynomials of degree 𝑑 in 𝑛 variables in classical GIT
are semistable iff Newton distance = 𝑑

𝑛 in every coordinate system.

• Brascamp-Lieb Constant:
BL−1(𝜋, 𝑁)∫

𝐻

𝑚
∏
𝑗=1
(𝑓𝑗(𝜋𝑗))

𝑁𝑗𝑑
𝑁𝑑𝑗 ≤

𝑚
∏
𝑗=1

(∫
𝐻𝑗
𝑓𝑗)

𝑁𝑗𝑑
𝑁𝑑𝑗

Let Π𝑁 ∶ 𝐻𝑁 × 𝐻
𝑁1
1 × ⋯ × 𝐻𝑁𝑚𝑚 → ℝ be

Π𝑁(𝑥(1), … , 𝑥(𝑁), 𝑦
(1)
1 , … , 𝑦

(𝑁1)
1 , … , 𝑦(𝑁𝑚)𝑚 )

∶= ⟨𝜋1𝑥(1), 𝑦
(1)
1 ⟩

𝐻1
⋯⟨𝜋1𝑥(𝑁1), 𝑦

(𝑁1)
1 ⟩

𝐻1
⋯⟨𝜋𝑚𝑥(𝑁), 𝑦

(𝑁𝑚)
𝑚 ⟩

𝐻𝑚
and let 𝐺 ∶= SL(𝐻) × SL(𝐻1) × ⋯ × SL(𝐻𝑚). Then

[BL−1(𝜋, 𝑁)]
𝑁
𝑑 = 𝐶 inf

𝑀∈𝐺
|||𝜌𝑀Π𝑁|||,

𝜌𝑀 is action of 𝑀 ∈ 𝐺, ||| ⋅ ||| is Hilbert-Schmidt.
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Brascamp-Lieb Example



𝐿𝑝-Improving Inequalities: Two-Step Process
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• The Kakeya-Brascamp-Lieb Inequality
• Geometric Nonconcentration Inequalities



Part 1: Kakeya-Brascamp-Lieb
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General Setup
• We have a defining function 𝜌(𝑥, 𝑦) on ℝ𝑛 × ℝ𝑛 mapping into ℝ𝑛−𝑘. For
each 𝑥, 𝑥Σ is the zero set of 𝜌(𝑥, ⋅). Likewise Σ𝑦 is the zero set of 𝜌(⋅, 𝑦).

• Assume that all 𝑥Σ and Σ𝑦 are algebraic varieties of bounded degree.
• We have derivative matrices 𝐷𝑥𝜌 and 𝐷𝑦𝜌.
• On each 𝑥Σ there is a natural measure 𝑑𝜎 a la the coarea formula:

∫
𝑥Σ
𝑓𝑑𝜎 ∶= ∫

𝑥Σ
𝑓(𝑦) 𝑑𝐻𝑘(𝑦)

det(𝐷𝑦𝜌(𝑥, 𝑦)(𝐷𝑦𝜌(𝑥, 𝑦))𝑇 )1/2
,

• We will study the operator 𝑇 given by
𝑇𝑓(𝑥) ∶= ∫

𝑥Σ
𝑓𝑑𝜎.
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Theorem
For any nonnegative Lebesgue measurable 𝑓1, … , 𝑓𝑚 on ℝ𝑛 ,

∫
ℝ𝑛
[∫

𝑥Σ
⋯∫

𝑥Σ
[BL(𝐷𝑥𝜌)]

−𝑚(𝑛−𝑘)𝑛
𝑚
∏
𝑗=1

𝑓𝑗(𝑦𝑗)𝑑𝜎(𝑦1) ⋯𝑑𝜎(𝑦𝑚)]

𝑛
𝑚(𝑛−𝑘)

𝑑𝑥

≲
𝑚
∏
𝑗=1

||𝑓𝑗||
𝑛

𝑚(𝑛−𝑘)
𝐿1(ℝ𝑛).

History
Based directly on an inequality of Zhang [Analysis&PDE 2018] which
extends multilinear Kakeya [Bennett, Carbery, Tao (Acta 2006); Guth
endpoint (Acta 2010)] so that families of tubes are replaced by families
of slabs.
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∫
ℝ𝑛
[∫

𝑥Σ
⋯∫

𝑥Σ
[BL(𝐷𝑥𝜌)]

−𝑝 𝑚
∏
𝑗=1

𝑓𝑗(𝑦𝑗)𝑑𝜎(𝑦1) ⋯𝑑𝜎(𝑦𝑚)]

1
𝑝

𝑑𝑥 ≲
𝑚
∏
𝑗=1

||𝑓𝑗||
1
𝑝
𝐿1(ℝ𝑛)



Part 2: Nonconcentration Inequalities
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Suppose Φ is some polynomial function from (ℝ𝑛)𝑚 into ℝℓ.
|Φ(𝑦1, … , 𝑦𝑚)| measures nondegeneracy of 𝑚-point configurations.
Nonconcentration Inequalities
For a given Φ and 𝑠, find the “best possible” measure 𝜎 such that

𝐼(𝐸) ∶= ∫
𝐸𝑚
|Φ(𝑦1, … , 𝑦𝑚)|𝑑𝜎(𝑦1) ⋯𝑑𝜎(𝑦𝑘) ≳ (𝜎(𝐸))

𝑚+𝑠 .

Product sets 𝐸𝑚 cannot be degenerate (as measured by Φ) when 𝜎(𝐸) > 0.
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GIT Appears Again
Suppose Ω ⊂ ℝ𝑛−𝑘 is an open set and that Φ(𝑡1, … , 𝑡𝑚) is a polynomial
function of 𝑡1, … , 𝑡𝑚 ∈ ℝ𝑛−𝑘. Suppose 𝜕

𝛼1
1 ⋯𝜕𝛼𝑚𝑚 Φ(𝑡, … , 𝑡) ≡ 0 when

|𝛼𝑖| < 𝑐𝑖 for some 𝑖. Let 𝑠 = (𝑐1 + ⋯ + 𝑐𝑚)/(𝑛 − 𝑘). Then

𝜔(𝑡) ∶= inf
𝑇∈SL𝑛−𝑘

max
|𝛼1|=𝑐1,…,|𝛼𝑚|=𝑐𝑚

|(𝑇∗𝜕)𝛼11 ⋯ (𝑇∗𝜕)𝛼𝑚𝑚 Φ(𝑡, … , 𝑡)|
1
𝑠

If 𝜎 is any nonnegative Borel measure which is absolutely continuous
with respect to Lebesgue measure such that

𝑑𝜎
𝑑𝑡 (𝑡) ≤ 𝜔(𝑡)

at each point 𝑡 ∈ Ω, where 𝑑𝜎
𝑑𝑡 is the Radon-Nikodym derivative of 𝜎 with

respect to Lebesgue measure, then for any Borel set 𝐹 ⊂ Ω,
∫
𝐹
⋯∫

𝐹
|Φ(𝑡1, … , 𝑡𝑚)|𝑑𝜎(𝑡1) ⋯𝑑𝜎(𝑡𝑚) ≳ [𝜎(𝐹)]

𝑚+𝑠

with implicit constant depending only on (𝑛 − 𝑘,𝑚, degΦ).
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Submanifolds of dimension 𝑑 in ℝ𝑑(𝑑+1): Let 𝑥 ∶= (𝑥𝑖, 𝑥𝑖𝑗) for
𝑖, 𝑗 ∈ {1, … , 𝑑}. Defining function is (𝜌)𝑖𝑗 = (𝑥𝑖𝑗 − 𝑦𝑖𝑗) − 𝑥𝑖𝑦𝑗.
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Block-form Matrices

𝐵1
𝐵2 𝐵2

𝐵3 𝐵3
𝐵4
𝐵5 𝐵5...

𝐵𝑘
𝐵𝑘+1

𝐵𝑘+2
𝐵𝑘+3 ...

𝐵𝑛

𝐴1
𝐴2 𝐴2
𝐴3 𝐴3
𝐴4
𝐴5 𝐴5...

𝐴𝑘
𝐴𝑘+1
𝐴𝑘+2
𝐴𝑘+3 ...

𝐴𝑛

Works well for cases when dimension of submanifold (k) exceeds
codimension (n-k). Regard bottom rows as fixed.
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Cayley Ω
Think of “alternating contraction” on indices of a multilinear functional.



Decoupling is a Different Creature
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Joint with S. Guo, L. Pierce, J. Roos, P.-L. Yung
Given 𝜙 ∶ ℕ → ℤ𝑛 and an integer 𝑠 ≥ 1, consider the system of 𝑛
equations 𝜙(𝑥1) + ⋯ + 𝜙(𝑥𝑠) = 𝜙(𝑥𝑠+1) + ⋯ + 𝜙(𝑥2𝑠). For every finite set 𝑆 of
positive integers let 𝐽𝑠,𝜙(𝑆) denote the number of solutions
(𝑥1, … , 𝑥2𝑠) ∈ 𝑆2𝑠 of the system. Fix 𝑁 and consider an arbitrary subset
𝑆 ⊆ {1, … , 𝑁}.

‖
𝑁
∑
𝑗=1
𝑎𝑗𝑒2𝜋𝑖𝑥⋅𝜙(𝑗)‖𝐿2𝑠([0,1]𝑛) ≤ 𝐶𝑠,𝑝,𝜙,𝑁(

𝑁
∑
𝑗=1
|𝑎𝑗|𝑝)

1/𝑝

implies the bound
𝐽𝑠,𝜙(𝑆) ≤ 𝐶2𝑠𝑠,𝑝,𝜙,𝑁|𝑆|2𝑠/𝑝.
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Theorem
Suppose ∃𝜃 = 𝜃(𝜙, 𝑠) ∈ [𝑠, 2𝑠) and a constant 𝑐 = 𝑐(𝜙, 𝑠) ∈ (0,∞) such
that for all 𝑁 ≥ 1 and for all subsets 𝑆 ⊂ {1, … , 𝑁} we have the inequality

𝐽𝑠,𝜙(𝑆) ≤ 𝑐|𝑆|𝜃.

Then the ℓ𝑝 decoupling inequality for 𝐿2𝑠 holds for 𝑝 = 2𝑠
𝜃 ∈ (1, 2]:

namely, there exists a constant 𝑐′ such that for every (𝑎𝑗)𝑗 ∈ ℂ𝑁 , we have

‖
𝑁
∑
𝑗=1
𝑎𝑗𝑒2𝜋𝑖𝑥⋅𝜙(𝑗)‖𝐿2𝑠([0,1]𝑛) ≤ 𝑐

′(1 + 𝑝−1(log 𝑁)
1
𝑝′ )(

𝑁
∑
𝑗=1
|𝑎𝑗|𝑝)

1/𝑝. (1)

Here we have 1/𝑝 + 1/𝑝′ = 1, and we may take 𝑐′ = 21/𝑝41/𝑝′𝑐1/2𝑠 .
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Theorem
Suppose that 𝛾 ∶ [0, 1] → ℝ𝑛 is a non-degenerate 𝐶𝑛 curve. Then there
exists a constant 𝐶 = 𝐶(𝛾, 𝑛) ∈ (0,∞) such that the following holds: for
each integer 1 ≤ 𝑚 ≤ 𝑛, for every 𝑅 ≥ 1 and every ball 𝐵 of radius at least
𝑅𝑛 , we have that for all 𝑓 ∈ 𝐿2𝑚(𝑤𝐵),

‖𝐸[0,1]𝑓‖𝐿2𝑚(𝑤𝐵) ≤ 𝐶‖( ∑
|𝐼|=𝑅−1

|𝐸𝐼𝑓|2)
1/2‖𝐿2𝑚(𝑤𝐵)

(2)

where the summation is over intervals 𝐼 belonging to a dissection of
[0, 1] into intervals of length 𝑅−1.
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