Radon-like Transforms, Geometric Measures, and Invariant Theory

Philip T. Gressman
University of Pennsylvania

5 January 2021

Geometric Structures in Harmonic Analysis

Geometric Structures in Harmonic Analysis

Fourier Restriction

Highlights

Outgrowth of work ~ 50 years ago on the Bochner-Riesz Conjecture; has extensive applications to PDEs and is a pillar of an interconnected web of core conjectures in harmonic analysis.

Geometric Structures in Harmonic Analysis

Lp-Improving Radon-Like Transforms

Highlights

Implied by Fourier restriction inequalities but not generally the other way around; now richly developed for curves and much other work for surfaces; intermediate cases not well-understood.

Geometric Structures in Harmonic Analysis

Decoupling Theory

Highlights

Recent development initiated by Bourgain and Demeter; has deep and not fully understood connections to efficient congruencing in number theory; one important tool here is Brascamp-Lieb inequalities.

Geometric Structures in Harmonic Analysis

 ．
號

震
\qquad

？
都
？
？
（
（
－
\qquad
（
．

，

都
\square
\square
－
，
\qquad
．

Geometric Structures in Harmonic Analysis

Main Points For Today

- Quantifying transversality is deeply connected to certain foundational aspects of Geometric Invariant Theory from algebraic geometry
- We will see this in underlying structure of the Brascamp-Lieb constant [Bennett, Carbery, Christ, Tao GAFA 2008, MRL 2010]

Geometric Structures in Harmonic Analysis

Main Points For Today

- Quantifying transversality is deeply connected to certain foundational aspects of Geometric Invariant Theory from algebraic geometry
- We will see this in underlying structure of the Brascamp-Lieb constant [Bennett, Carbery, Christ, Tao GAFA 2008, MRL 2010]
- We will see this again when studying nonconcentration inequalities.

Geometric Structures in Harmonic Analysis

 Main Points For Today－Quantifying transversality is deeply connected to certain foundational aspects of Geometric Invariant Theory from algebraic geometry
－We will see this in underlying structure of the Brascamp－Lieb constant －We will see this in underlying structure of the Brasc
－We will see this again when studying nonconcentration inequalities．
－For L^{p}－improving estimates，a complicated game of inflation maps gets replaced by a less complicated game of finding useful invariant polynomials．
\qquad

 \square ．
號


```．
```都
路 ．

\section*{Geometric Structures in Harmonic Analysis}

\section*{Main Points For Today}
- Quantifying transversality is deeply connected to certain foundational aspects of Geometric Invariant Theory from algebraic geometry
- We will see this in underlying structure of the Brascamp-Lieb constant - We will see this in underlying structure of the Brascam
- We will see this again when studying nonconcentration inequalities.
- For \(L^{p}\)-improving estimates, a complicated game of inflation maps gets replaced by a less complicated game of finding useful invariant polynomials.
- Decoupling sees geometry in a fundamentally different way than restriction and \(L^{p}\)-improving inequalities.

Geometric Invariant Theory

\section*{Geometric Invariant Theory}
- You have some vector space of objects (polynomials) and some group representation on that space. (Our group will always be \(\mathrm{SL}_{n}\) or products.)

\section*{Geometric Invariant Theory}
- You have some vector space of objects (polynomials) and some group representation on that space. (Our group will always be \(\mathrm{SL}_{n}\) or products.)
- You think of the action of the representation as being geometrically trivial and consequently would really like to consider all vectors along a given orbit to be different expressions of the same underlying geometric object (think coordinate changes).

\section*{Geometric Invariant Theory}
- You have some vector space of objects (polynomials) and some group representation on that space. (Our group will always be \(\mathrm{SL}_{n}\) or products.)
- You think of the action of the representation as being geometrically trivial and consequently would really like to consider all vectors along a given orbit to be different expressions of the same underlying geometric object (think coordinate changes).
- The most natural thing to do is to form an equivalence relation, but this is a bit too naive. Problems occur when the zero vector is in the (Zariski) closure of an orbit.

\section*{Geometric Invariant Theory}

\section*{Hilbert Comes to the Rescue}

The set \(N\) of vectors w/orbit closures containing 0 is called the nullcone.
- \(v \in N\) iff every group-invariant polynomial vanishes at v. (nondegen)

\section*{Geometric Invariant Theory}

\section*{Hilbert Comes to the Rescue}

The set \(N\) of vectors w/orbit closures containing 0 is called the nullcone.
- \(v \in N\) iff every group-invariant polynomial vanishes at v. (nondegen)
- The algebra of group-invariant polynomials is finitely generated.

\section*{Geometric Invariant Theory}

\section*{Hilbert Comes to the Rescue}

The set \(N\) of vectors \(w /\) orbit closures containing 0 is called the nullcone.
- \(v \in N\) iff every group-invariant polynomial vanishes at v. (nondegen)
- The algebra of group-invariant polynomials is finitely generated.
- \(v \in N\) iff there is a one-parameter group of transformations sending it to 0 in the limit. (degen)

\section*{Geometric Invariant Theory}

\section*{Hilbert Comes to the Rescue}

The set \(N\) of vectors \(\mathbf{w} /\) orbit closures containing 0 is called the nullcone.
- \(v \in N\) iff every group-invariant polynomial vanishes at v. (nondegen)
- The algebra of group-invariant polynomials is finitely generated.
- \(v \in N\) iff there is a one-parameter group of transformations sending it to 0 in the limit. (degen)

\section*{Geometric Invariant Theory}

\section*{Algebraic and Analytic Examples}
- Homogeneous polynomials of degree \(d\) in \(n\) variables in classical GIT are semistable iff Newton distance \(=\frac{d}{n}\) in every coordinate system.

\section*{Geometric Invariant Theory}

\section*{Algebraic and Analytic Examples}
- Homogeneous polynomials of degree \(d\) in \(n\) variables in classical GIT are semistable iff Newton distance \(=\frac{d}{n}\) in every coordinate system.
- Brascamp-Lieb Constant:
\[
\mathrm{BL}^{-1}(\pi, N) \int_{H} \prod_{j=1}^{m}\left(f_{j}\left(\pi_{j}\right)\right)^{\frac{N_{j} d}{N d_{j}}} \leq \prod_{j=1}^{m}\left(\int_{H_{j}} f_{j}\right)^{\frac{N_{j} d}{N d_{j}}}
\]

\section*{Geometric Invariant Theory}

\section*{Algebraic and Analytic Examples}
- Homogeneous polynomials of degree \(d\) in \(n\) variables in classical GIT are semistable iff Newton distance \(=\frac{d}{n}\) in every coordinate system.
- Brascamp-Lieb Constant:
\[
\operatorname{BL}^{-1}(\pi, N) \int_{H} \prod_{j=1}^{m}\left(f_{j}\left(\pi_{j}\right)\right)^{\frac{N_{j} d}{N d_{j}}} \leq \prod_{j=1}^{m}\left(\int_{H_{j}} f_{j}\right)^{\frac{N_{j} d}{N d_{j}}}
\]

Let \(\Pi_{N}: H^{N} \times H_{1}^{N_{1}} \times \cdots \times H_{m}^{N_{m}} \rightarrow \mathbb{R}\) be
\[
\begin{aligned}
& \Pi_{N}\left(x^{(1)}, \ldots, x^{(N)}, y_{1}^{(1)}, \ldots, y_{1}^{\left(N_{1}\right)}, \ldots, y_{m}^{\left(N_{m}\right)}\right) \\
& \\
& :=\left\langle\pi_{1} x^{(1)}, y_{1}^{(1)}\right\rangle_{H_{1}} \ldots\left\langle\pi_{1} x^{\left(N_{1}\right)}, y_{1}^{\left(N_{1}\right)}\right\rangle_{H_{1}} \ldots\left\langle\pi_{m} x^{(N)}, y_{m}^{\left(N_{m}\right)}\right\rangle_{H_{m}}
\end{aligned}
\]
and let \(G:=\operatorname{SL}(H) \times \operatorname{SL}\left(H_{1}\right) \times \cdots \times \operatorname{SL}\left(H_{m}\right)\). Then
\[
\left[\operatorname{BL}^{-1}(\pi, N)\right]^{\frac{N}{d}}=\operatorname{Cinf}_{M \in G}\left\|\mid \rho_{M} \Pi_{N}\right\| \|,
\]
\(\rho_{M}\) is action of \(M \in G,\| \| \cdot\| \|\) is Hilbert-Schmidt. \\ \section*{Geometric Invariant Theory \\ \section*{Geometric Invariant Theory \\ \\ Brascamp-Lieb Example} \\ \\ Brascamp-Lieb Example}
\(\square\)

\(L^{\text {P}}\)-Improving Inequalities: Two-Step Process

\section*{\(L^{p}\)-Improving Inequalities: Two-Step Process}
- The Kakeya-Brascamp-Lieb Inequality
- Geometric Nonconcentration Inequalities

\section*{Part 1: Kakeya-Brascamp-Lieb}

\section*{Part 1: Kakeya-Brascamp-Lieb}

\section*{General Setup}
- We have a defining function \(\rho(x, y)\) on \(\mathbb{R}^{n} \times \mathbb{R}^{n}\) mapping into \(\mathbb{R}^{n-k}\). For each \(x,{ }^{x} \Sigma\) is the zero set of \(\rho(x, \cdot)\). Likewise \(\Sigma^{y}\) is the zero set of \(\rho(\cdot, y)\).
- Assume that all \({ }^{x} \Sigma\) and \(\Sigma^{y}\) are algebraic varieties of bounded degree.
- We have derivative matrices \(D_{x} \rho\) and \(D_{y} \rho\).
- On each \({ }^{\times} \Sigma\) there is a natural measure do a la the coarea formula:
\[
\int_{x \Sigma} f d \sigma:=\int_{x \Sigma} f(y) \frac{d H^{k}(y)}{\operatorname{det}\left(D_{y} \rho(x, y)\left(D_{y} \rho(x, y)\right)^{T}\right)^{1 / 2}},
\]
- We will study the operator \(T\) given by
\[
T f(x):=\int_{X \Sigma} f d \sigma .
\]

\section*{Part 1: Kakeya-Brascamp-Lieb}

\section*{Theorem}

For any nonnegative Lebesgue measurable \(f_{1}, \ldots, f_{m}\) on \(\mathbb{R}^{n}\),
\[
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left[\int_{x_{\Sigma}} \int_{x_{\Sigma}}\left[B L\left(D_{x} \rho\right)\right]^{-\frac{m(n-k)}{n}} \prod_{j=1}^{m} f_{j}\left(y_{j}\right) d \sigma\left(y_{1}\right) \cdots d \sigma\left(y_{m}\right)\right]^{\frac{n}{m(n-k)}} d x \\
& \leq \prod_{j=1}^{m}\left\|f_{j}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}^{\frac{n}{m(n-k)}} .
\end{aligned}
\]

\section*{History}

Based directly on an inequality of Zhang [Analysis\&PDE 2018] which extends multilinear Kakeya [Bennett, Carbery, Tao (Acta 2006); Guth endpoint (Acta 2010)] so that families of tubes are replaced by families of slabs.

Part 1: Kakeya-Brascamp-Lieb
\[
\int_{\mathbb{R}^{n}}\left[\int_{x \Sigma} \cdots \int_{x \Sigma}\left[\operatorname{BL}\left(D_{x} \rho\right)\right]^{-p} \prod_{j=1}^{m} f_{j}\left(y_{j}\right) d \sigma\left(y_{1}\right) \cdots d \sigma\left(y_{m}\right)\right]^{\frac{1}{p}} d x \leqslant \prod_{j=1}^{m}\left\|f_{j}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}^{\frac{1}{p}}
\]

Part 2: Nonconcentration Inequalities

\section*{Part 2: Nonconcentration Inequalities}

Suppose \(\Phi\) is some polynomial function from \(\left(\mathbb{R}^{n}\right)^{m}\) into \(\mathbb{R}^{\ell}\).

Nonconcentration Inequalities
For a given \(\Phi\) and \(s\), find the "best possible" measure \(\sigma\) such that
\[
I(E):=\int_{E^{m}}\left|\Phi\left(y_{1}, \ldots, y_{m}\right)\right| d \sigma\left(y_{1}\right) \cdots d \sigma\left(y_{k}\right) \gtrsim(\sigma(E))^{m+s}
\]

Product sets \(E^{m}\) cannot be degenerate (as measured by \(\Phi\)) when \(\sigma(E)>0\).

\section*{\(\left|\Phi\left(y_{1}, \ldots, y_{m}\right)\right|\) measures nondegeneracy of \(m\)-point configurations.}

Nor a

\section*{}號

\(\square\)

-

\section*{Part 2: Nonconcentration Inequalities}

Suppose \(\Phi\) is some polynomial function from \(\left(\mathbb{R}^{n}\right)^{m}\) into \(\mathbb{R}^{\ell}\).
\(\left|\Phi\left(y_{1}, \ldots, y_{m}\right)\right|\) measures nondegeneracy of \(m\)-point configurations.
Nonconcentration Inequalities
For a given \(\Phi\) and \(s\), find the "best possible" measure \(\sigma\) such that
\[
I(E):=\int_{E^{m}}\left|\Phi\left(y_{1}, \ldots, y_{m}\right)\right| d \sigma\left(y_{1}\right) \cdots d \sigma\left(y_{k}\right) \geqslant(\sigma(E))^{m+s} .
\]

Product sets \(E^{m}\) cannot be degenerate (as measured by \(\Phi\)) when \(\sigma(E)>0\).

\section*{Part 2: Nonconcentration Inequalities}

\section*{GIT Appears Again}

Suppose \(\Omega \subset \mathbb{R}^{n-k}\) is an open set and that \(\Phi\left(t_{1}, \ldots, t_{m}\right)\) is a polynomial function of \(t_{1}, \ldots, t_{m} \in \mathbb{R}^{n-k}\). Suppose \(\partial_{1}^{\alpha_{1}} \ldots \partial_{m}^{\alpha_{m}} \Phi(t, \ldots, t) \equiv 0\) when \(\left|\alpha_{i}\right|<c_{i}\) for some \(i\). Let \(s=\left(c_{1}+\cdots+c_{m}\right) /(n-k)\). Then
\[
\omega(t):=\inf _{T \in \mathrm{~S}_{n-k}\left|\alpha_{1}\right|=c_{1}, \ldots,\left|\alpha_{m}\right|=c_{m}} \max \left|\left(T^{*} \partial\right)_{1}^{\alpha_{1}} \cdots\left(T^{*} \partial\right)_{m}^{\alpha_{m}} \Phi(t, \ldots, t)\right|^{\frac{1}{s}}
\]

If \(\sigma\) is any nonnegative Borel measure which is absolutely continuous with respect to Lebesgue measure such that
\[
\frac{d \sigma}{d t}(t) \leq \omega(t)
\]
at each point \(t \in \Omega\), where \(\frac{d \sigma}{d t}\) is the Radon-Nikodym derivative of \(\sigma\) with respect to Lebesgue measure, then for any Borel set \(F \subset \Omega\),
\[
\int_{F} \cdots \int_{F}\left|\Phi\left(t_{1}, \ldots, t_{m}\right)\right| d \sigma\left(t_{1}\right) \cdots d \sigma\left(t_{m}\right) \geqslant[\sigma(F)]^{m+s}
\]
with implicit constant depending only on (\(n-k, m, \operatorname{deg} \Phi)\).

\section*{Part 2: Nonconcentration Inequalities}

Submanifolds of dimension \(d\) in \(\mathbb{R}^{d(d+1)}\) : Let \(x:=\left(x_{i}, x_{i j}\right)\) for \(i, j \in\{1, \ldots, d\}\). Defining function is \((\rho)_{i j}=\left(x_{i j}-y_{i j}\right)-x_{i} y_{j}\).

\section*{Part 2: Nonconcentration Inequalities}

Submanifolds of dimension \(d\) in \(\mathbb{R}^{d(d+1)}\) : Let \(x:=\left(x_{i}, x_{i j}\right)\) for \(i, j \in\{1, \ldots, d\}\). Defining function is \((\rho)_{i j}=\left(x_{i j}-y_{i j}\right)-x_{i} y_{j}\).

Finding Good Invariant Polynomials

\section*{Finding Good Invariant Polynomials}

Works well for cases when dimension of submanifold (k) exceeds codimension (\(n-k\)). Regard bottom rows as fixed.

\section*{Block-form Matrices \\ Block-form Matrices}

B

\section*{Finding Good Invariant Polynomials}

Cayley \(\Omega\)
Think of "alternating contraction" on indices of a multilinear functional.

\section*{Decoupling is a Different Creature}

\section*{Decoupling is a Different Creature}

\section*{Joint with S. Guo, L. Pierce, J. Roos, P.-L. Yung}

Given \(\phi: \mathbb{N} \rightarrow \mathbb{Z}^{n}\) and an integer \(s \geq 1\), consider the system of \(n\)
equations \(\phi\left(x_{1}\right)+\cdots+\phi\left(x_{s}\right)=\phi\left(x_{s+1}\right)+\cdots+\phi\left(x_{2 s}\right)\). For every finite set \(S\) of positive integers let \(J_{s, \phi}(S)\) denote the number of solutions
\(\left(x_{1}, \ldots, x_{2 s}\right) \in S^{2 s}\) of the system. Fix \(N\) and consider an arbitrary subset \(S \subseteq\{1, \ldots, N\}\).
\[
\left\|\sum_{j=1}^{N} a_{j} e^{2 \pi i x \cdot \phi(j)}\right\|_{L^{2 s}\left([0,1]^{n}\right)} \leq C_{s, p, \phi, N}\left(\sum_{j=1}^{N}\left|a_{j}\right|^{p}\right)^{1 / p}
\]
implies the bound
\[
J_{S, \phi}(S) \leq C_{s, p, \phi, N}^{2 s}|S|^{2 s / p} .
\]

\section*{Decoupling is a Different Creature}

\section*{Theorem}

Suppose \(\exists \theta=\theta(\phi, s) \in[s, 2 s)\) and a constant \(c=c(\phi, s) \in(0, \infty)\) such that for all \(N \geq 1\) and for all subsets \(S \subset\{1, \ldots, N\}\) we have the inequality
\[
J_{s, \phi}(S) \leq c|S|^{\theta} .
\]

Then the \(\ell^{p}\) decoupling inequality for \(L^{2 s}\) holds for \(p=\frac{2 s}{\theta} \in(1,2]\) : namely, there exists a constant \(c^{\prime}\) such that for every \(\left(a_{j}\right)_{j} \in \mathbb{C}^{N}\), we have
\[
\begin{equation*}
\left\|\sum_{j=1}^{N} a_{j} e^{2 \pi i x \cdot \phi(j)}\right\|_{L^{2 s}\left([0,1]^{n}\right)} \leq c^{\prime}\left(1+p^{-1}(\log N)^{\frac{1}{p^{\prime}}}\right)\left(\sum_{j=1}^{N}\left|a_{j}\right|^{p}\right)^{1 / p} . \tag{1}
\end{equation*}
\]

Here we have \(1 / p+1 / p^{\prime}=1\), and we may take \(c^{\prime}=2^{1 / p} 4^{1 / p^{\prime}} c^{1 / 2 s}\).

\section*{Decoupling is a Different Creature}

\section*{Theorem}

Suppose that \(\gamma:[0,1] \rightarrow \mathbb{R}^{n}\) is a non-degenerate \(C^{n}\) curve. Then there exists a constant \(C=C(y, n) \in(0, \infty)\) such that the following holds: for each integer \(1 \leq m \leq n\), for every \(R \geq 1\) and every ball \(B\) of radius at least \(R^{n}\), we have that for all \(f \in L^{2 m}\left(w_{B}\right)\),
\[
\begin{equation*}
\left\|E_{[0,1]} f\right\|_{L^{2 m}\left(w_{B}\right)} \leq C\left\|\left(\sum_{\| I \mid=R^{-1}}\left|E_{I} f\right|^{2}\right)^{1 / 2}\right\|_{L^{2 m}\left(w_{B}\right)} \tag{2}
\end{equation*}
\]
where the summation is over intervals I belonging to a dissection of \([0,1]\) into intervals of length \(R^{-1}\).

Thank You```

