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Fourier Restriction

Highlights

Outgrowth of work ~50 years ago on the Bochner-Riesz Conjecture; has
extensive applications to PDEs and is a pillar of an interconnected web
of core conjectures in harmonic analysis.




Geometric Structures in Harmonic Analysis

LP-Improving Radon-Like Transforms

Highlights

Implied by Fourier restriction inequalities but not generally the other
way around; now richly developed for curves and much other work for
surfaces; intermediate cases not well-understood.




Geometric Structures in Harmonic Analysis

Decoupling Theory

Highlights

Recent development initiated by Bourgain and Demeter; has deep and
not fully understood connections to efficient congruencing in number
theory; one important tool here is Brascamp-Lieb inequalities.
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« You have some vector space of objects (polynomials) and some group
representation on that space. (Our group will always be SL, or
products.)

» You think of the action of the representation as being geometrically
trivial and consequently would really like to consider all vectors along
a given orbit to be different expressions of the same underlying
geometric object (think coordinate changes).

« The most natural thing to do is to form an equivalence relation, but
this is a bit too naive. Problems occur when the zero vector is in the
(Zariski) closure of an orbit.
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Geometric Invariant Theory

Hilbert Comes to the Rescue

The set N of vectors w/orbit closures containing 0 is called the nullcone.
« v € N iff every group-invariant polynomial vanishes at v. (nondegen)
« The algebra of group-invariant polynomials is finitely generated.

« v € N iff there Is a one-parameter group of transformations sending it
to 0 in the limit. (degen)
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Geometric Invariant Theory

Brascamp-Lieb Example
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« The Kakeya-Brascamp-Lieb Inequality
« Geometric Nonconcentration Inequalities

13
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General Setup

. We have a defining function p(x, y) on R" x R" mapping into R"*. For
each x, *Z is the zero set of p(x,-). Likewise ¥¥ is the zero set of p(-, y).

« Assume that all *2 and ¥¥ are algebraic varieties of bounded degree.

- We have derivative matrices D, p and D,p.

« On each *% there is a natural measure do a la the coarea formula:
dH*(y)

fdo:= [ f) ,
[xz x5 det(D,p(x,y)(D,p(x, y))) /2
« We will study the operator T given by

TF(X) := jx; fdo.




Part 1: Kakeya-Brascamp-Lieb

Theorem
For any nonnegative Lebesgue measurable f,, ..., f, on R",

n
m(n-R)

fi(y;)do(y,)--do(y,)| dx

m(n k)
]‘[ 115,113

m
J

[[fmear T

History

Based directly on an inequality of Zhang [Analysis&PDE 2018] which
extends multilinear Kakeya [Bennett, Carbery, Tao (Acta 2006); Guth
endpoint (Acta 2010)] so that families of tubes are replaced by families

of slabs.
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Rn[[f[B'-(DxP)] ﬂf(y)do(yo -da(y,,) dx<ﬂ||f||L1(Rn)
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Part 2: Nonconcentration Inequalities 1
Suppose ® is some polynomial function from (R")™ into RY.
|D(y4, ..., ¥,,,)| measures nondegeneracy of m-point configurations.

For a given @ and s, find the “best possible” measure o such that

E) = [ 100, y)ldoly,) ~dolyy) 2 (o(E)™

Product sets E™ cannot be degenerate (as measured by ®) when a(E) > 0.
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Finding Good Invariant Polynomials

Cayley O

Think of “alternating contraction” on indices of a multilinear functional.
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Joint with S. Guo, L. Pierce, ). Roos, P-L. Yung




Decoupling is a Different Creature

Theorem

Suppose 360 = 6(¢, s) € [s,2s) and a constant ¢ = c(¢, s) € (0, ) such
that for all N 2 1 and for all subsets S c {1, ..., N} we have the inequality

Js9(S) < clSI°.

Then the £ decoupling inequality for L% holds for p = 2 € (1,2]:
namely, there exists a constant ¢’ such that for every (a ) e ", we have

||Zaez"'*¢°)||L25([o1]n)-c'(1+p (log N)? Z|a|P”" (1)
j=1

Here we have 1/p+1/p’ =1, and we may take ¢’ = 21/P4V/P'c/2s,
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Theorem

Suppose that y : [0,1] = R" is a non-degenerate C" curve. Then there
exists a constant C = C(y, n) € (0, o) such that the following holds: for
each integer 1 < m < n, for every R 21 and every ball B of radius at least
R", we have that for all f € L2™(w),

1/2
IIE[O,’I]f"Lzm(WB) S C"( 21 |Elf|2) "L2m(WB) (2>
|I|=R-

where the summation is over intervals I belonging to a dissection of
[0, 1] into intervals of length R7".
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