Equidistribution of affine random walks on some nilmanifolds.

Based on joint works with Weikun He and Elon Lindenstrauss

Tsviqa Lakrec

Hebrew University of Jerusalem

Tsviqa Lakrec (HUJI)

Affine RW on nilmanifolds

1/25

1 Random walks on tori and Heisenberg nilmanifold

2 Quantitative statement

Tsviqa Lakrec (HUJI)

∃ ► < ∃ ►</p>

Image: Image:

Consider an action $G \curvearrowright X$. Let $\mu \in \mathcal{P}(G)$ be a probability measure. Let $x \in X$.

Definition

The random walk on X induced by μ and starting at x is the sequence of random variable $(g_ng_{n-1}\cdots g_1x)_{n\geq 1}$ where $(g_n)_{n\geq 1}$ is i.i.d. of law μ .

The law of
$$g_n g_{n-1} \cdots g_1 x$$
 is $\mu_n \coloneqq \mu^{*n} * \delta_x$, i.e. for any function $f \colon X \to \mathbb{C}$,

$$\mathbb{E}[f(g_n g_{n-1} \cdots g_1 x)] = \int_X f d(\mu^{*n} * \delta_x).$$

We are interested in the convergence in law, i.e. the convergence of $\mu^{*n} * \delta_x$ in the weak-* topology on X.

- Let $X = N/\Lambda$ be a compact nilmanifold. That is,
 - O N is a connected simply-connected nilpotent Lie group,
 - 2) $\Lambda \subset N$ is a lattice in N, i.e. it is a discrete subgroup of N and

3 the Haar measure on N induces a finite N-invariant measure on N/Λ . We normalize this measure to be a probability measure and denote it by m_X . On $X = N/\Lambda$, we consider the action of its automorphism group

$$\operatorname{Aut}(X) = \{ \gamma \in \operatorname{Aut}(N) \mid \gamma(\Lambda) = \Lambda \} = \operatorname{Aut}(\Lambda)$$

and that of its affine transformations

$$\operatorname{Aff}(X) = \operatorname{Aut}(X) \ltimes N,$$

Here, for $\gamma \in Aut(X)$ and $n \in N$, $(\gamma, n) \in Aut(X) \ltimes N$ is the map

$$\forall x \in N, \quad x\Lambda \mapsto n\gamma(x)\Lambda.$$

For $g = (\gamma, n)$, we call γ the automorphism/linear part and denote $\theta(g) = \gamma$.

Examples

- Let $d \ge 1$, $N = \mathbb{R}^d$ and $\Lambda = \mathbb{Z}^d$. Then $X = \mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$, Aut $(X) = \operatorname{GL}_d(\mathbb{Z})$.
- 2 Let N be the Heisenberg group, $N = \mathbb{R}^3$ endowed with the law

$$(x, y, z) \cdot (x', y', z') = (x + x', y + y', z + z' + xy').$$

Let $\Lambda = \{ (x, y, z) \in N \mid x, y, z \in \mathbb{Z} \}.$ Then $\operatorname{Aut}(X) = \operatorname{GL}_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$ is the set of transformations

$$(x, y, z) \mapsto \left(ax + by, cx + dy, \det(g)(z - \frac{xy}{2}) + \frac{1}{2}(ax + by)(cx + dy) + \alpha x + \beta y\right)$$

where $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z})$ and $(\alpha, \beta) \in \frac{1}{2}\mathbb{Z}^2$ satisfies some parity condition.

Question

Let X be a compact nilmanifold. Given $\mu \in \mathcal{P}(Aff(X))$ and $x \in X$,

• does $\mu^{*n} * \delta_x \rightharpoonup^* m_X$?

If it does, how fast is the convergence?

Expected anwser : Yes, unless there is obvious obstruction.

Remark (Example of obstruction)

Let $H = \langle \text{Supp}(\mu) \rangle$, the subgroup generated by the support. If $\overline{Hx} \neq X$, then $\mu^{*n} * \delta_x \not\rightharpoonup^* m_X$.

Theorem (Guivarc'h-Starkov & Muchnik)

Let Γ be a subgroup of $GL_d(\mathbb{Z}) = Aut(\mathbb{T}^d)$. Assume

- the action of the Γ on \mathbb{Q}^d is strongly irreducible.
- **2** the Zariski closure Γ in $\operatorname{GL}_d(\mathbb{R})$ is semisimple without compact factor. Then for every $x \in \mathbb{T}^d$, the orbit Γx is either finite or dense.

Definition

We say Γ acts strongly irreducibly on \mathbb{Q}^d if it does not preserve any finite nontrivial union of proper subspaces of \mathbb{Q}^d .

Note that $\operatorname{Aff}(X) \curvearrowright X$ is transitive. Hence $X = \operatorname{Aff}(X)/(\operatorname{Aut}(X) \ltimes \Lambda)$ is a homogeneous space. Let \mathfrak{g} be the Lie algebra of $\operatorname{Aff}(X)$.

Theorem (Benoist-Quint)

Let $H \subset Aff(X)$ be a subgroup and $x \in X$. Assume that the Zariski closure of Ad(H) in $GL(\mathfrak{g})$ is semisimple without compact factor. Then \overline{Hx} is a finite homogeneous union of affine submanifolds.

Theorem (Bourgain-Furman-Lindenstrauss-Mozes, He-Saxcé)

Let $\mu \in \mathcal{P}(\mathrm{GL}_d(\mathbb{Z}))$ having a finite β -exponential moment for some $\beta > 0$. Let $\Gamma = \langle \mathrm{Supp}(\mu) \rangle$. Assume that the action of the Γ on \mathbb{R}^d is strongly irreducible.

Then for any $x \in \mathbb{T}^d$, $\mu^{*n} * \delta_x \rightharpoonup^* m_{\mathbb{T}^d}$ unless $x \in \mathbb{Q}^d / \mathbb{Z}^d$ (i.e. Γx is finite).

Definition

For some $\beta > 0$, we say μ has a finite β -exponential moment if

$$C_{\beta} = \int \operatorname{Lip}_X(g)^{\beta} \mathrm{d}\mu(g) < +\infty,$$

where $\operatorname{Lip}_X(g) = \sup_{x,x' \in X, x \neq x'} \frac{\operatorname{d}_X(gx,gx')}{\operatorname{d}_X(x,x')}$.

Recall that $\theta \colon \operatorname{Aff}(X) \to \operatorname{Aut}(X)$ denotes the projection.

Theorem (He-Lindenstrauss-L.)

Let $\mu \in \mathcal{P}(\operatorname{GL}_d(\mathbb{Z}) \ltimes \mathbb{R}^d)$ having a finite support. Let $H = \langle \operatorname{Supp}(\mu) \rangle$ and $\Gamma = \theta(H)$. Assume Γ satisfies the assumptions in the BFLM theorem. Then for any $x \in \mathbb{T}^d$, $\mu^{*n} * \delta_x \rightharpoonup^* m_{\mathbb{T}^d}$ unless Hx is finite.

Very similar result was obtained by Boyer, under different assumptions.

Let $X = N/\Lambda$ with N being the (2k + 1)-dimensional Heisenberg group. Note that [N, N] is the one dimensional center and $N/[N, N]\Lambda$ is a 2k-dimensional torus.

Denote by $\pi \colon X \to N/[N,N]\Lambda$ the projection.

Theorem (H-Lindenstrauss-L.)

Let $\mu \in \mathcal{P}(\operatorname{Aff}(X))$ with a finite support. Let $H = \langle \operatorname{Supp}(\mu) \rangle$ and $\Gamma = \theta(H)$. Assume that the action of Γ on N/[N, N] satisfies the assumptions in the BFLM theorem.

Then for any $x \in X$, $\mu^{*n} * \delta_x \rightharpoonup^* m_X$ unless $\pi(Hx)$ is finite.

If $\mu \in \mathcal{P}(Aut(X))$, then finite support can be relaxed to having a finite exponential moment.

3

・ロト ・四ト ・ヨト ・ヨト

Random walks on tori and Heisenberg nilmanifold

Tsviqa Lakrec (HUJI)

-∢∃>

Wasserstein distance

We fix a Riemannian distance on $X = N/\Lambda$. For $\alpha \in (0,1)$, let $\mathcal{C}^{0,\alpha}(X)$ denote the space of α -Hölder continuous functions on X, equipped with the norm

$$||f||_{0,\alpha} = ||f||_{\infty} + \sup_{x \neq y \in X} \frac{|f(x) - f(y)|}{d(x,y)^{\alpha}}$$

Definition

Let ν and η be Borel measures on X. The α -Wasserstein distance between them is

$$\mathcal{W}_{\alpha}(\nu,\eta) = \sup_{f \in \mathcal{C}^{0,\alpha}(X) : \|f\|_{0,\alpha} \le 1} \left| \int_X f \,\mathrm{d}\nu - \int_X f \,\mathrm{d}\eta \right|.$$

We use $W_{\alpha}(\mu^{*m} * \delta_x, m_X)$ as a function of m to measure the rate of equidistribution.

Tsviqa Lakrec (HUJI)

Definition

Denote by $\lambda_{1,N/(N,N)}(\theta_*\mu)$ the top Lyapunov exponent of the random walk induced by $\theta_*\mu$ on the Euclidean space N/(N,N).

$$\lambda_{1,N/(N,N)}(\theta_*\mu) = \lim_{n \to +\infty} \frac{1}{n} \int \log \|\theta(g)\|_{N/(N,N)} \,\mathrm{d}\mu^{*n}(g)$$

where $\|\cdot\|_{N/(N,N)}$ denotes any operator norm on $\operatorname{End}(N/(N,N))$.

Theorem (He-Lindenstrauss-L.)

Assume $N = \mathbb{R}^d$ or a Heisenberg group. Assume that the action of Γ on N/(N,N) satisfies the assumptions in the BFLM theorem. Given $\lambda \in (0, \lambda_{1,N/(N,N)}(\mu))$ and $\alpha \in (0, \beta)$, there exists $C \ge 1$ such that (C, λ, α) -quantitative equidistribution holds, i.e:

If for some $x \in X$, $t \in (0, \frac{1}{2})$ and $m \ge C \log \frac{1}{t}$,

 $\mathcal{W}_{\alpha}(\mu^{*m} * \delta_x, \mathbf{m}_X) > t,$

then there exists $x' \in X$ and a finite set $F \subset Aff(X)$ such that

$$d_X(x, x') \le e^{-\lambda m}$$

- of any g ∈ Supp(µ) we have d_{Aff(X)}(g, F) ≤ e^{-λm} (unnecessary in linear case),
- and the projection of the orbit $\langle F \rangle x'$ in $N/(N,N)\Lambda$ is finite of cardinality less than t^{-C} .

Tsviqa Lakrec (HUJI)

Random walks on tori and Heisenberg nilmanifold

2 Quantitative statement

- ∢ ∃ →

Let H be a group and μ a probability measure on H.

Definition

Consider an action of H on a group Z by automorphisms. Let $\theta_Z \colon H \to \operatorname{Aut}(Z)$ denote the homomorphism. Define

$$\tau_Z(\mu) = \lim_{m \to +\infty} \frac{1}{m} \log \# \theta_Z(\operatorname{Supp}(\mu^{*m})).$$

This definition needs to be modified when μ is not finitely supported, but the idea is similar.

Definition

If $(X, m_X) \rightarrow (Y, m_Y)$ is a factor map of a *H*-spaces (*H* acts equivariantly on *X*, *Y* by probability measure preserving transformations), define

$$\sigma_{X,Y}(\mu) = -\lim_{m \to +\infty} \frac{1}{m} \log \|P(\mu)^m\|_{L^2(X,m_X) \ominus L^2(Y,m_Y)},$$

where P is the Markov operator.

In this definition we look at $L^2(Y, m_Y)$ as the subspace in $L^2(X, m_X)$ of functions constant on fibers of the factor map.

Example (Motivating example)

Let $T = \mathbb{R}^2/\mathbb{Z}^2$. The subgroup of T generated by $\begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}$ and $\begin{pmatrix} 1/2 \\ 1/3 \end{pmatrix}$ has height ≤ 6 .

Formally, let $T = V/\Delta$ be some torus of dimension d. We choose an identification \mathbb{Z}^d with its group of unitary characters via some isomorphism $a \mapsto \chi_a$. Each closed subgroup L of T is uniquely determined by its dual

$$L^* = \{ a \in \mathbb{Z}^d \mid L \subset \ker \chi_a \}.$$

Definition

A closed subgroup L of a torus T is said to have height $\leq h$ if its dual $L^* \subset \mathbb{Z}^d$ can be generated by integer vectors of norm $\leq h$.

This definition depends on the choice of basis for \mathbb{Z}^d , but not in a way that would matter to us if we just fix some basis for this.

Tsviqa Lakrec (HUJI)

Quantitative equidistribution

For a nilmanifold $X = N/\Lambda$ as before, denote by $T = N/[N,N]\Lambda$ the maximal factor torus and by $\pi : X \to T$ the canonical projection.

Definition (Quantitative equidistribution, general case)

Let $\lambda > 0$, C > 1, $\alpha \in (0, 1]$, $\mu \in \mathcal{P}(\operatorname{Aut}(X))$, and let $H = \langle \operatorname{Supp}(\mu) \rangle$. We say that the μ -induced random walk on X satisfies (C, λ, α) -quantitative equidistribution if the following holds for any integer $m \ge 1$ and any $t \in (0, \frac{1}{2})$. Assume

$$m \ge C \log \frac{1}{t}$$
 and $\mathcal{W}_{\alpha}(\mu^{*m} * \delta_x, \mathbf{m}_X) > t.$

Then there exists a point $x' \in X$ such that

 $d(x, x') \le e^{-\lambda m}$

② π(Hx') lies in a proper closed H-invariant subset of T of height ≤ t^{−C}.

< 47 ▶

- For $\mu \in \mathcal{P}(Aff(X))$, the definition can be modified like in the Heisenberg special case we showed.
- For X torus or Heisenberg nilmanifold, this coincides with our previous definition.

Theorem (He-Lindenstrauss-L.)

Let $\mu \in \mathcal{P}(\operatorname{Aut}(X))$ be with a finite β -exponential moment, Γ as before. Assume that there exists a rational Γ -invariant connected central subgroup $Z \subset N$ such that

$$\tau_Z(\mu) < 2\sigma_{X,Y}(\mu)$$

where $Y = N/(\Lambda Z)$. The following holds: If the μ -induced random walk on Y satisfies (λ, α) -quantitative equidistribution for some $\lambda > 0$ and $\alpha \in (0, \beta]$ then the μ -induced random walk on X satisfies (λ', α) -quantitative equidistribution for any $\lambda' \in (0, \lambda)$.

For a general nilmanifold, if e.g the ascending central sequence $1 = Z_0 \subset Z_1 \subset \cdots \subset Z_l = N$ satisfies the conditions of this theorem in every step, then we can get from the quantitative equidistribution on the torus that BFLM/HS/HLL gives us quantitative equidistribution on the nilmanifold.

Tsviqa Lakrec (HUJI)

- N is a step 2 nilpotent group and the action of Γ on its center Z(N) is virtually nilpotent, such as the Heisenberg nilmanifold we discussed.
- e Action of Γ ⊂ SL_{2d}(ℤ) on 𝔅^{2d} consisting of d × d-block triangular matrices. For example, let µ be the law of

$$\left(\begin{array}{c|c} A & I_d \\ \hline 0 & D \end{array}\right).$$

where A and D are independent random variables. Given any A, we can choose D to ensure

$$\tau_{\mathbb{R}^d\oplus 0}(\mu) < 2\sigma_{\mathbb{T}^{2d},0\oplus\mathbb{T}^d}(\mu).$$

Thank you for listening!

2

イロト イヨト イヨト イヨト