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Random walk associated to a group action

Consider an action Gy X.
Let µ ∈ P(G) be a probability measure. Let x ∈ X.

Definition
The random walk on X induced by µ and starting at x is the sequence of
random variable (gngn−1 · · · g1x)n≥1 where (gn)n≥1 is i.i.d. of law µ.

The law of gngn−1 · · · g1x is µn := µ∗n ∗ δx, i.e. for any function
f : X → C,

E[f(gngn−1 · · · g1x)] =

∫
X
f d(µ∗n ∗ δx).

We are interested in the convergence in law, i.e. the convergence of
µ∗n ∗ δx in the weak-∗ topology on X.
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Compact nilmanifolds

Let X = N/Λ be a compact nilmanifold. That is,
1 N is a connected simply-connected nilpotent Lie group,
2 Λ ⊂ N is a lattice in N , i.e. it is a discrete subgroup of N and
3 the Haar measure on N induces a finite N -invariant measure on N/Λ.

We normalize this measure to be a probability measure and denote it by
mX .
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Group of affine transformations

On X = N/Λ, we consider the action of its automorphism group

Aut(X) = { γ ∈ Aut(N) | γ(Λ) = Λ } = Aut(Λ)

and that of its affine transformations

Aff(X) = Aut(X) nN,

Here, for γ ∈ Aut(X) and n ∈ N , (γ, n) ∈ Aut(X) nN is the map

∀x ∈ N, xΛ 7→ nγ(x)Λ.

For g = (γ, n), we call γ the automorphism/linear part and denote
θ(g) = γ.
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Examples

1 Let d ≥ 1, N = Rd and Λ = Zd. Then X = Td = Rd/Zd,
Aut(X) = GLd(Z).

2 Let N be the Heisenberg group, N = R3 endowed with the law

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′).

Let Λ = { (x, y, z) ∈ N | x, y, z ∈ Z }.
Then Aut(X) = GL2(Z) n Z2 is the set of transformations

(x, y, z) 7→
(
ax+by, cx+dy,det(g)(z−xy

2
)+

1

2
(ax+by)(cx+dy)+αx+βy

)
where g =

(
a b
c d

)
∈ GL2(Z) and (α, β) ∈ 1

2Z
2 satisfies some parity

condition.
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Motivating question on equidistribution in law

Question
Let X be a compact nilmanifold. Given µ ∈ P(Aff(X)) and x ∈ X,

1 does µ∗n ∗ δx ⇀∗ mX?
2 If it does, how fast is the convergence?

Expected anwser : Yes, unless there is obvious obstruction.

Remark (Example of obstruction)
Let H = 〈Supp(µ)〉, the subgroup generated by the support.
If Hx 6= X, then µ∗n ∗ δx 6⇀∗ mX .
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Orbit closures, case of a torus

Theorem (Guivarc’h-Starkov & Muchnik)

Let Γ be a subgroup of GLd(Z) = Aut(Td). Assume
1 the action of the Γ on Qd is strongly irreducible.
2 the Zariski closure Γ in GLd(R) is semisimple without compact factor.

Then for every x ∈ Td, the orbit Γx is either finite or dense.

Definition
We say Γ acts strongly irreducibly on Qd if it does not preserve any finite
nontrivial union of proper subspaces of Qd.
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Orbit closures, nilmanifold case

Note that Aff(X) y X is transitive. Hence X = Aff(X)/(Aut(X)nΛ) is
a homogeneous space. Let g be the Lie algebra of Aff(X).

Theorem (Benoist-Quint)
Let H ⊂ Aff(X) be a subgroup and x ∈ X.
Assume that the Zariski closure of Ad(H) in GL(g) is semisimple without
compact factor.
Then Hx is a finite homogeneous union of affine submanifolds.
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Equidistribution in law, torus, linear

Theorem (Bourgain-Furman-Lindenstrauss-Mozes, He-Saxcé)
Let µ ∈ P(GLd(Z)) having a finite β-exponential moment for some β > 0.
Let Γ = 〈Supp(µ)〉. Assume that the action of the Γ on Rd is strongly
irreducible.
Then for any x ∈ Td, µ∗n ∗ δx ⇀∗ mTd unless x ∈ Qd/Zd (i.e. Γx is finite).

Definition
For some β > 0, we say µ has a finite β-exponential moment if

Cβ =

∫
LipX(g)β dµ(g) < +∞,

where LipX(g) = supx,x′∈X, x 6=x′
dX(gx,gx′)
dX(x,x′) .

Tsviqa Lakrec (HUJI) Affine RW on nilmanifolds 10 / 25



Equidistribution in law, torus, affine

Recall that θ : Aff(X)→ Aut(X) denotes the projection.

Theorem (He-Lindenstrauss-L.)

Let µ ∈ P(GLd(Z) nRd) having a finite support.
Let H = 〈Supp(µ)〉 and Γ = θ(H).
Assume Γ satisfies the assumptions in the BFLM theorem.
Then for any x ∈ Td, µ∗n ∗ δx ⇀∗ mTd unless Hx is finite.

Very similar result was obtained by Boyer, under different assumptions.
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Equidistribution in law, Heisenberg nilmanifold

Let X = N/Λ with N being the (2k + 1)-dimensional Heisenberg group.
Note that [N,N ] is the one dimensional center and N/[N,N ]Λ is a
2k-dimensional torus.
Denote by π : X → N/[N,N ]Λ the projection.

Theorem (H-Lindenstrauss-L.)
Let µ ∈ P(Aff(X)) with a finite support.
Let H = 〈Supp(µ)〉 and Γ = θ(H).
Assume that the action of Γ on N/[N,N ] satisfies the assumptions in the
BFLM theorem.
Then for any x ∈ X, µ∗n ∗ δx ⇀∗ mX unless π(Hx) is finite.

If µ ∈ P(Aut(X)), then finite support can be relaxed to having a finite
exponential moment.
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Wasserstein distance

We fix a Riemannian distance on X = N/Λ.
For α ∈ (0, 1), let C0,α(X) denote the space of α-Hölder continuous
functions on X, equipped with the norm

‖f‖0,α = ‖f‖∞ + sup
x 6=y∈X

|f(x)− f(y)|
d(x, y)α

.

Definition
Let ν and η be Borel measures on X. The α-Wasserstein distance between
them is

Wα(ν, η) = sup
f∈C0,α(X):‖f‖0,α≤1

∣∣∣∣∫
X
f dν −

∫
X
f dη

∣∣∣∣ .
We use Wα(µ∗m ∗ δx,mX) as a function of m to measure the rate of
equidistribution.
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Top Lyapunov exponent

Definition
Denote by λ1,N/(N,N)(θ∗µ) the top Lyapunov exponent of the random walk
induced by θ∗µ on the Euclidean space N/(N,N).

λ1,N/(N,N)(θ∗µ) = lim
n→+∞

1

n

∫
log‖θ(g)‖N/(N,N) dµ∗n(g)

where ‖ · ‖N/(N,N) denotes any operator norm on End(N/(N,N)).
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Quantitative statement, Heisenberg nilmanifold

Theorem (He-Lindenstrauss-L.)

Assume N = Rd or a Heisenberg group. Assume that the action of Γ on
N/(N,N) satisfies the assumptions in the BFLM theorem.
Given λ ∈ (0, λ1,N/(N,N)(µ)) and α ∈ (0, β), there exists C ≥ 1 such that
(C, λ, α)-quantitative equidistribtion holds, i.e:

If for some x ∈ X, t ∈ (0, 1
2) and m ≥ C log 1

t ,

Wα(µ∗m ∗ δx,mX) > t,

then there exists x′ ∈ X and a finite set F ⊂ Aff(X) such that
1 dX(x, x′) ≤ e−λm,
2 for any g ∈ Supp(µ) we have dAff(X)(g, F ) ≤ e−λm (unnecessary in

linear case),
3 and the projection of the orbit 〈F 〉x′ in N/(N,N)Λ is finite of

cardinality less than t−C .
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Growth rate

Let H be a group and µ a probability measure on H.

Definition
Consider an action of H on a group Z by automorphisms.
Let θZ : H → Aut(Z) denote the homomorphism. Define

τZ(µ) = lim
m→+∞

1

m
log #θZ(Supp(µ∗m)).

This definition needs to be modified when µ is not finitely supported, but
the idea is similar.
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Spectral radius

Definition
If (X,mX)→ (Y,mY ) is a factor map of a H-spaces (H acts equivariantly
on X,Y by probability measure preserving transformations), define

σX,Y (µ) = − lim
m→+∞

1

m
log‖P (µ)m‖L2(X,mX)	L2(Y,mY ),

where P is the Markov operator.

In this definition we look at L2(Y,mY ) as the subspace in L2(X,mX) of
functions constant on fibers of the factor map.
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Height of a torus subgroup

Example (Motivating example)

Let T = R2/Z2.The subgroup of T generated by
(

1/2
1/2

)
and

(
1/2
1/3

)
has

height ≤ 6.

Formally, let T = V/∆ be some torus of dimension d. We choose an
identification Zd with its group of unitary characters via some isomorphism
a 7→ χa. Each closed subgroup L of T is uniquely determined by its dual

L∗ = { a ∈ Zd | L ⊂ kerχa }.

Definition
A closed subgroup L of a torus T is said to have height ≤ h if its dual
L∗ ⊂ Zd can be generated by integer vectors of norm ≤ h.

This definition depends on the choice of basis for Zd, but not in a way that
would matter to us if we just fix some basis for this.
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Quantitative equidistribution

For a nilmanifold X = N/Λ as before, denote by T = N/[N,N ]Λ the
maximal factor torus and by π : X → T the canonical projection.

Definition (Quantitative equidistribution, general case)
Let λ > 0, C > 1, α ∈ (0, 1], µ ∈ P(Aut(X)), and let H = 〈Supp(µ)〉.
We say that the µ-induced random walk on X satisfies
(C, λ, α)-quantitative equidistribution if the following holds for any integer
m ≥ 1 and any t ∈ (0, 1

2). Assume

m ≥ C log
1

t
and Wα(µ∗m ∗ δx,mX) > t.

Then there exists a point x′ ∈ X such that
1 d(x, x′) ≤ e−λm

2 π(Hx′) lies in a proper closed H-invariant subset of T of
height ≤ t−C .
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Quantitative equidistribution - remarks

1 For µ ∈ P(Aff(X)), the definition can be modified like in the
Heisenberg special case we showed.

2 For X torus or Heisenberg nilmanifold, this coincides with our previous
definition.

3 If we have (C, λ, α)-quantitative equidistribution for some C > 1, we
say that we have (λ, α)-quantitative equidistribution.
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Quantitative statement, general case

Theorem (He-Lindenstrauss-L.)
Let µ ∈ P(Aut(X)) be with a finite β-exponential moment, Γ as before.
Assume that there exists a rational Γ-invariant connected central subgroup
Z ⊂ N such that

τZ(µ) < 2σX,Y (µ)

where Y = N/(ΛZ).The following holds:
If the µ-induced random walk on Y satisfies (λ, α)-quantitative
equidistribution for some λ > 0 and α ∈ (0, β]
then the µ-induced random walk on X satisfies (λ′, α)-quantitative
equidistribution for any λ′ ∈ (0, λ).

For a general nilmanifold, if e.g the ascending central sequence
1 = Z0 ⊂ Z1 ⊂ · · · ⊂ Zl = N satisfies the conditions of this theorem in
every step, then we can get from the quantitative equidistribution on the
torus that BFLM/HS/HLL gives us quantitative equidistribution on the
nilmanifold.
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Examples

1 N is a step 2 nilpotent group and the action of Γ on its center Z(N)
is virtually nilpotent, such as the Heisenberg nilmanifold we discussed.

2 Action of Γ ⊂ SL2d(Z) on T2d consisting of d× d-block triangular
matrices. For example, let µ be the law of(

A Id
0 D

)
.

where A and D are independent random variables. Given any A, we
can choose D to ensure

τRd⊕0(µ) < 2σT2d,0⊕Td(µ).
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Thank you for listening!
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