THE JOINTS PROBLEM axtivi: Oosorbib FOR VARIETIES

YUFEI ZHAO (MIT)

with

Jonathan Tidor \& Hung-Hsun Hans Mu

Joints problem What's the max \# of joints that N lines in \mathbb{R}^{3} can make?

A joint is a point contained in 3 non-coplanar lines

(2) $k \sim \sqrt{2 N}$ genomic planes \rightarrow pair wise form $\binom{k}{2} \sim N$ lines \& triplewise form $\binom{k}{3} \sim \frac{\sqrt{2}}{3} N^{3 / 2}$ joints

Introduced by Chazelle-Edelsbrunner-Guibas - $O\left(N^{74}\right)$
Guth-Katz (2010): N lines in \mathbb{R}^{3} form $O\left(N^{3 k}\right)$ joints
Sussed. generalized to arb dim \& fields $\left(\mathbb{F}^{d}\right)$

Kaplan-Sharir-Shustin Quilodrán
$Y_{u}-Z .(2019+)$: optimal canst, $\leqslant \frac{\sqrt{2}}{3} N^{3 / 2}$ joint
Connections

- Kakeya problem (Wolff)
- Finite field Kakeya problem (Dir) \leftarrow polynomid method
- Multilinear Kakoya, "joints of tubes" (Bennett-Carbery -Tao, Guth)

Joints of flats: max \# joints for N planes in \mathbb{F}^{6} ?
a point contained in a triple 9
ᄃ2 -dim flat
of planes in spanning \& indep directions
construction $\Theta\left(N^{3 / 2}\right)_{j o i n t s: ~ g e n e r i c ~ 4-f l a t s ~}^{\text {s }}$
pairwise intersect \rightarrow planes tripleaise intersect \rightarrow joints
Why I like this problem:

- natural extension of the joints problem
- a key step in pf of joints the fails badly
- need a new extension of the polynomial method

Incidence geometry for higher dimensional objects

Prior results on joints of higher dim objects [Yang] N planes in \mathbb{R}^{6} have $N^{\frac{3}{2}+o(1)}$ joints

Limitations
(1) Error term
(2) Only \mathbb{R}
$\left[Y_{u}-Z . /\right.$ Carbery-Iliopoulou] N lines \& $M_{\text {planes in }} \mathbb{F}^{4}$ make $O\left(N M^{1 / 2}\right)$ joints (plane-line ${ }^{2}$)

$$
\begin{aligned}
& \text { line-line -plane, in indef f spanning } \\
& \text { directions }
\end{aligned}
$$

Our results [Tidor $-Y_{u}-Z$.]
Joints of flats N planes in \mathbb{F}^{6} have $O\left(N^{3 / 2}\right)$ joints
Joints of varieties A set of 2 -dim varieties in \mathbb{F}^{6} of total degree N has $O\left(N^{3 / 2}\right)$ joints
$p \in V_{1}, V_{2}, V_{3}$ regular point tangent planes at p spanning \& indep directions
And more generally:

- arbitrary dimensions
- several sets of varieties (multijoints) $\left\{\begin{array}{l}\text { prev. for joints in } \\ \text { conj. [Carbery] }\end{array}\right.$
- counting joints with multiplicities [Iliopoulou] [chang]

Review of the proof of: [kaplan-Sharir-Shustin, Quilodiem]
N lines in \mathbb{R}^{3} have $O\left(N^{3 / 2}\right)$ joints
(1) Parameter counting:
using $\operatorname{dim} \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]_{\leqslant n}=\binom{n+d}{d}$
deduce that \exists nonzero poly g, $\operatorname{deg} \leqslant \mathrm{CJ}^{1 / 3}$, vanishing on joints

Take g with $\min \mathrm{deg}$.
(2) Vanishing lemine: a single-variable polynomial cannot vanish more times than its degree
(3) A joint-specific argument. If all lines have $>C J^{1 / 3}$ joints, then vanishing Lemma $\Rightarrow \mathrm{g}$ vanishes on all lines $\Rightarrow \nabla \mathrm{g}$ vanishes on all joints \Rightarrow one \&f $\partial_{x y}, \partial_{y g}, \partial_{z} g$ is nonzerolower deg \& vanish on all joints vanish on all join's
so some line has $\leqslant C J^{1 / 3}$ joints. Remove this line \& repeat $J \leqslant C J^{1 / 3} N$ Thus $J=O\left(N^{3 / 2}\right)$

How to generalize vanishing lemma to 2 -var polynomials?

Thy (Tidor-Yu-Z.) N planes in \mathbb{R}^{6} have $O\left(N^{3 / 2}\right)$ joints

Above proof would generalize if...

Attempt I
$g \in \mathbb{R}[x, y]_{\leqslant n}$ vanishing at $\binom{n+2}{2}$ distinct points $\stackrel{? ? ?}{\Longrightarrow} g \equiv 0$
NO
Method of multiplicities:
Attempt II
$g \in \mathbb{R}[x, y]_{\leq n}$ Vanishing to order $>n$ at a single point $\stackrel{? ? ?}{\Longrightarrow} g \equiv 0$
ie. $\frac{\partial^{i t i} g}{\partial x^{i} \partial j}(p)=0 \quad \forall i+j \leqslant n$
YES, but how does it help?
Attempt III

$$
\text { NO es. } g(x, y)=y^{s}
$$

Linear dependencies among
vanishing conditions: linear constraints on $g \in \mathbb{R}(x, y) \leq n . e g .\left(\partial_{x x}-\partial_{y y}\right) g(p)=0$

- viewed as both (derivative op, point)
for some fixed p \& linear functional on $\mathbb{R}[x, y] \leqslant n$
*Key idea 1 Collecting linearly indep vanishing conditions Restricting to a plane for now

We will construct a set of $\operatorname{dim} \mathbb{R}[x, y]_{s n}=\binom{n+2}{2}$ linearly indep vanishing conditions on $\mathbb{R}\left[\begin{array}{l}y\end{array}\right] \leqslant n$

Attached to each point p is a set of Vanishing conditions for $g \in \mathbb{R}[x, y] \leqslant n$:

$$
\begin{array}{ll}
g(p)=0, & \partial_{x} g(p)=0, \quad \partial_{y} g(p)=0 \\
\partial_{x x} g(p)=0, & \partial_{x y} g(p)=0, \quad \partial_{y y} g(p)=0, \quad \partial_{x \times x} g(p)=0, \ldots
\end{array}
$$

The above vanishing conditions attached to several different points are lin. dep. as linear functionals on $\mathbb{R}[x, y] \leqslant n$

We will select a basis of linear functional on $\mathbb{R}[x, y] \leqslant n$ via the following procedure.
First attempt
Cycle through the points on the plane

$$
p_{1}, p_{2}, p_{3}, \cdots, p_{1}, p_{2}, p_{3}, \cdots, p_{1}, p_{2}, p_{3}, \cdots
$$

p_{1} : ald vanishing condition $g\left(p_{1}\right)=0$
p_{2} : add vanishing condition $g\left(p_{2}\right)=0$ if non redundant
p_{1} : add a non redundant subset of $\partial_{x} g\left(p_{1}\right)=0, \partial_{y} g\left(p_{1}\right)=0$
\uparrow none implied by other added + pervaded ie. basis extension
p_{2} : add a non redundant subset of $\partial_{x} g\left(p_{2}\right)=0, \partial_{y} g\left(p_{2}\right)=0$

Can we control the \# van. cond. attached to each pt?
Example \qquad
pts on grid get way more UNDESIRABLE Vanishing conditions than pts on the line
(This example also comes up for inverse B'ézout; see Tao blog)
*Key idea 2 Let some points get a head start $\underset{(100}{\left.e p_{p}\right)}, p_{1}, p_{2}, \cdots, p_{50}, p_{1}, \cdots, p_{5}, \cdots, p_{1}, \cdots, p_{50}, p_{1}, \cdots, p_{100}, p_{1} \cdots, \cdots, p_{100}, \cdots$
Handicap $\vec{\alpha} \in \mathbb{Z}^{J}$ assigns an integer to each point

\rightarrow order: $c c b c a b c d$ $a b c d e a b c d e$
Modify process of assigning vanishing conditions
c : add a noniedundant set of $0^{\text {th }}$ oder derivative vanishing $@ c$
c — $1^{\text {st }}$ \qquad
\qquad $0^{\text {th }}$ \qquad
$c=2^{n a}$ \qquad
a \qquad $0^{\text {th }}$ \qquad
Want a "Good" choice of handicaps: treating all joints "fairly"
$\begin{gathered}\vec{\alpha} \in \mathbb{Z} \\ \text { andicap }\end{gathered}>$ partition of $\binom{n+2}{2}$ among joints Hard to compute! dim R(xxy)s, (\# vanish. conc. assigned)

* Key idea 3: Existence of good handicap via compactness/smoothing
(1) Monotonicity $\alpha_{p} \lambda \Rightarrow$ \#van. con at p cannot \downarrow
(2) Lipchitz continuity
small Δ in handicap \rightarrow small Δ in \#van cord
(3) Bounded domain suffices to consider handicaps with bounded values (else come pt gets no van. cool)

Putting different planes together
Handicap $\vec{\alpha} \in \mathbb{Z}^{J}$ assigns an integer to each joint
Separately for each plane F, apply above process to assign vanishing conditions \longleftrightarrow (derivative op, point) restricted to F to joints on F
A new vanishing lemma Given $0 \neq g \in \mathbb{R}\left[x_{1}, \ldots, x_{b}\right] \leq n$ \exists joint p, contained in planes F_{1}, F_{2}, F_{3} (indef d spanning directions) \& derivative operator D_{1} assigned to p or F_{1} (\& likewise D_{2}, D_{3}) st. $D_{1} D_{2} D_{3} g(p) \neq 0$.
Remark (a) We are assigning only a small \#posibile (D, P). else claim is trinal
(b) The prot relies on (D.p)'s coming from the procedure cartier By parameter counting,
\# linear constraints

By compactesss/smothing, considering the handicap $\vec{\alpha}$ that minimizes

$$
\max _{p} f(\vec{\alpha}, p)-\min _{p}(\dot{\alpha}, p)
$$

we deduce that ${ }^{p} \exists \vec{\alpha}$ st. $\overbrace{0}^{p}\left(n^{6}\right)$
Total $\binom{n+2}{2}$ vanishing conn. assigned to each plane
Putting together $+A M-G M \Rightarrow$ joints of flats theorem \square

Joints of varieties
Flats: higher order directional directives along a flat
Varieties: derivatives in local coordinates
e.g. $\bigoplus^{y=x^{2}+y^{2}}$

$$
\begin{aligned}
y & =x^{2}+y^{2} \quad \text { Power series in local coord } \\
& =x^{2}+\left(x^{2}+y^{2}\right)^{2} \\
& =x^{2}+\left(x^{2}+\left(x^{2}+y^{2}\right)^{2}\right)^{2}=\cdots \text { completion } \\
& =x^{2}+x^{4}+2 x^{6}+\cdots
\end{aligned}
$$

so that evaluations give linear functional on the space of regular functions
Extension to arbitrary fields \mathbb{F}
When differentiating, we only care about coeff extraction Hasse derivatives (formal algebraic derivatives)

Question Other applications of this variant of polynomial method for higher dim objects?

