
Introduction

The objective of this book is to give a detailed account of some aspects of the
multivariable residue theory that was initiated by the works of Liebermann, Coleff,
and Herrera in the mid seventies. The core is to study various questions of ideals of
analytic functions, polynomials, etc, by representating ideal sheaves as annahilators
of so-called residue currents, and the ∂̄-equation on nonsmooth analytic spaces.

Currents are analytic objects that in many aspects behave like differential forms,
so, e.g., they may fit inte integral formulas. On the other hand currents also have a
geometric nature. For instance, closed positive, and more generally normal, currents
are natural generalizations of Lelong currents, that can be identified by analytic
varieties. Most of the currents that occur in residue theory are pseudomeromorphic.
Such currents can be seen as generalizations of, possibly non-reduced, varieties, and
they share important geometric properties with the normal currents, such as the
dimension principle, see below.

In one variable, the local theory is quite simple; in fact, each local ideal is principal,
so deciding whether a given function belongs to the local ideal or not at a given point
just amounts to checking its vanishing order at the point. Therefore, residue theory
in one variable is mainly used for global questions, e.g., to find the value of an
integral by summing up all residues of a meromorphic form in an open set. In the
several variable case already the local residue theory is challenging; nevertheless as
soon as it is accessible, many global questions can be handled as well. For instance,
membership problems for polynomial ideals, existence of sections of vector bundles,
etc, are discussed. The residue theory also extends to singular spaces, and in that
case the local theory is non-trivial already in the one-dimensional case.

Residue theory is intimately related to integral formulas, and indeed, integral
formulas plays an important role in this book. For instance, membership in an ideal
can often be expressed by an integral formula. There are are, however, a lot of
important aspects that are not at all touched upon. For instance there is a deep and
close connection to D-module theory that is not discussed.

No previous knowledge of residue theory or integral representation is assumed.
However, we use the books of Demailly, [58], Eisenbud, [62, 63], Lazarsfeld, [?],
Hörmander, [?, 67] (complex analys, distribution), Circa, [?], and Gunning-Rossi,
[65], ??, Griffiths-Harris, ngn med upplosningar, as general references. Only at a few
occasions we include a proof that can be found in some of these books; it is only
when some idea in the proof will be referred to later on.

1. A glimse of multivariable residue calculus

Let J = J0 be an ideal in the local ring O = O0(Cn). We can always find a
finite number of generators, i.e., (germs of) functions f1, . . . , fp, such that φ ∈ J if
and only if φ = ψ1f1 + · · · + ψpfp for some ψj ∈ O. However, for many purposes
such a representation of an ideal in terms of a set of generators is not useful. For
example, the fact that J is topologically closed in O is not at all obvious from
this representation; whereas it is immediate if J is represented as the kernel of a
continuous mapping.

1
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Assume that J is generated by one single function f (not vanishing identically).
From the classical theory there is a Schwartz distribution U such that

(1.1) fU = 1.

Then R = ∂̄U is a (0, 1)-current, and since U = 1/f outside the sero set Z = Z(f)
of f , it follows that R has support on Z; we say that R is a residue current. It has
the following important property:
If φ ∈ O, then φ ∈ J if and only if φR = 01.

In fact, by (1.1) we have that φR = φ∂̄U = ∂̄(φU) so that φR = 0 if and only if
h := φU is holomorphic, and in view of (1.1) this holds if and only if fh = φ for a
holomorphic h. Thus we have expressed J as the annihilator of the current R. It is
now clear that J is closed. Notice that U is neither unique nor explicit. However
one can define the principal-value current [1/f ] as〈[ 1

f

]
, ξ
〉

= lim
ε→0

∫
|f |2>ε

ξ

f
, ξ ∈ Dn,n.

The existence of this limit is highly non-trivial; the proof relies on the possibility
to resolve singularities, Hironaka’s theorem. Given the existence it is however clear
that f(1/f) = 1 and so J will be the annihilator of ∂̄(1/f). Notice that〈

∂̄
[ 1
f

]
, ξ
〉

= lim
ε→0

∫
|f |2=ε

ξ

f
, ξ ∈ Dn,n−1,

where the limit is taken over all regular values of |f |2. If g is another generator of J ,
then g = af , where a is non-vanishing, and it turns out, although not at all obvious,
that a∂̄(1/g) = ∂̄(1/f); thus this current associated to J is essentially canonical. As
we will see the definition of the principal value current 1/f is robust in the sense that
any reasonable limit procedure will do. For instance if χ is any smooth approximand
of the characteristic function for the interval [1,∞), and v is any smooth strictly
positive function, then〈

∂̄
[ 1
f

]
, ξ
〉

= lim
ε→0

∫
χ(v|f |2/ε) ξ

f
, ξ ∈ Dn,n−1.

For this reason we can unambiguously denote this current simply by 1/f , and this
step to consider it as an object in its own without referring to a particular limit
procedure 2, has great notational as well as conceptual advantages and will be of
fundamental importance in this book.

If n = 1, then the condition φ∂̄(1/f) = 0 means that

lim
ε→0

∫
|f |2=ε

φhdz

f

vanishes for all smooth h. If we restrict to holomorphic h, then by Cauchy’s theorem
we can omit the limit since all the intergrals coincide (as soon as ε is small enough),
and the meaning then is that

Res0(φhdz/f) = 0

for each h ∈ O. Already this weaker condition on φ implies that φ/f is holomorphic,
i.e., that φ ∈ J . A similar weaker formulation exists in the several variable case.

1Observe that φR is the current R multiplied by the smooth function φ.
2This is called reification in mathematics education.
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However, it turns out that for many purposes it is much more convenient to work
with the robust current ∂̄(1/f) rather than the one whose action is only determined
on a subspace of all test forms.

A main theme in this book is to discuss analogues for ideals that are not principal.
If J is generated by f1, . . . , fp as before, and Z = Z(J ) has codimension p, then one
can form the so-called Coleff-Herrera product

µf = ∂̄
[ 1
fp
∧ . . . ∧ ∂̄ 1

f1

]
;

for various definitions and historical remarks, see Ch 3, Section ??. This current has
support on Z and we again have that φµf = 0 if and only if φ ∈ J . It turns out that
also µf is canonical, i.e., up to a non-vanishing holomorphic function it only depends
onthe ideal J . For a general ideal J we will associate a (vector-valued) current RJ

that has support on Z(J ) and whose annihilator ideal coincides with J . This current
RJ is also explicit, in the sense that it is obtained from generators of the ideal and
all its syzygies by a limit procedure. Moreover, it fits into integral formulas. Most
important are interpolation-division formulas like

(1.2) φ(z) = f(z) ·
∫
ζ
A(ζ, z)φ(ζ) +

∫
ζ
B(ζ, z)RJ (ζ)φ(ζ),

where A and B are kernels that are holomorphic in z; for convenience we here make
use of the analytic side of currents and write integrals in (1.2) although formally it is
actually currents acting on test forms. In particular, if φ is in the ideal J , then the
second term vanishes so (1.2) indeed provides a realization of the membership. In a
sense that will be made precise in Ch 4 the current RJ is also essentially unique.

In many situations it is convenient to consider a residue current Rf obtained from
the generators fj of J whose annihilator ideal is at least contained in J and with
the advantage that it is much simpler and more explicit than RJ . In such a case we
still have a representation like (1.2).

As suggested above, in the multivariable residue theory much attention is paid
to the question to decide whether a given current µ (like φRJ ) vanishes, which is
a purely local question. To this end we have some basic tools: Most currents that
occur are pseudomeromorphic. The sheaf PM of pseudomeromorphic currents has
several useful properties. It is closed under ∂̄; if V is a subvariety of X and µ is psu-
domeromorphic, then the natural restriction of µ to the open set X \V has a natural
extension to X that we denote 1X\V µ and this current is again pseudomeromorphic.
It follows that

1V := µ− 1X\V µ

has support on V . In this way µ can be put into pieces, and the vanishing of µ can
be proved in different ways on different pieces. The geometric nature of pseudomero-
morphic currents is reflected by the dimension principle (a similar principle holds for
positive closed (or normal) (q, q)-currents):
If µ is pseudomeromorphic has bidegree (∗, q) is pseudomeromorphic and has support
on an analytic subvariety of codimension larger than q, then µ = 0.

Multiplication by 1V should be considered as an operatation µ 7→ 1V µ on the
sheaf PM and 1V 1Wµ = 1V ∩Wµ = 1W1V µ. We also have some other important
operatations on PM: Given a pseudomeromorphic current µ and a holomorphic
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function f we define new pseudomeromorphic currents

(1.3)
[ 1
f

]
µ :=

|f |2λ

f
∧ µ
∣∣
λ=0

, ∂̄
[ 1
f

]
∧ µ :=

∂̄|f |2λ

f
∧ µ
∣∣
λ=0

,

of course the existence of the necessary analytic continuations is part of a theorem,
and then the Leibniz rules

∂̄
([ 1
f

]
µ
)

= ∂̄
[ 1
f

]
∧ µ+

[ 1
f

]
∂̄µ, ∂̄

(
∂̄
[ 1
f

]
∧ µ
)

= −∂̄
[ 1
f

]
∧ ∂̄µ,

hold. Again, as in the case for the simple principal value current 1/f above, any
reasonable limit procedure can be used here, so these operations are robust.

Although we write the expressions in (1.3) as multiplications, and sometimes think
of them in this way, formally they are operators acting on µ. Thus if f and g are
two holomorphic functions then in general

(1.4) ∂̄
[1
g

]
∧ ∂̄
[ 1
f

]
will change (by more than a minus sign) if f and g are interchanged. For instance,
one can verify that

∂̄
[ 1
zw

]
∧ ∂̄
[1
z

]
= 0,

wheras
∂̄
[1
z

]
∧ ∂̄
[ 1
zw

]
= ∂̄

[1
z

]
∧ ∂̄
[ 1
w

]
6= 0.

If f and g form a complete intersection, i.e., codim {f = g = 0} is 2, then (1.4)
just changes sign when f and g are interchanged. Let us prove this and at the same
time illustrate the usefulness of the dimension principle: It is not hard to see that
α∂̄[1/f ] = ∂̄[1/f ] · α if α is a smooth function. Therefore the pseudomeromorphic
current

µ =
[1
g

]
∂̄
[ 1
f

]
− ∂̄

[ 1
f

]
·
[1
g

]
vanishes outside the zero set of g. However, µ s certainly has support on the zero
set of f , so its support is in fact contained in a variety of codimension 2. By the
dimension principle therefore µ = 0. Applying Leibniz’ rules we find that

∂̄
[1
g

]
∧ ∂̄
[ 1
f

]
+ ∂̄

[ 1
f

]
∧ ∂̄
[1
g

]
= 0.

2. Summary of content

In Ch.1 we discuss integral representation in general, but specifically focused on
constructions for applications in later chapters.

In Ch.2 we discuss basic limit procedures in residue theory. We introduce the
sheaf PM of pseudomeromorphic currents. We discuss the Coleff-Herrera product,
the somewhat more general notion of Coleff-Herrera currents, a certain uniqueness
property. The chapter contains a quite long discussion about the history and various
definitions of the Coleff-Herrera product.

For the construction of more general currents we need the concept of super struc-
ture. Chapter 3 contains ...... fundamental principle, etc etc etc

Ch 4 Division problems (and interpolation).
Ch 5 Interpolation-division integral formulas.
Ch 6 The ∂̄-equation on a reduced analytic space.
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Chapter 1

Some prerequisites

In this chapter we collect some results that will be used throughout this book and
which are not so easily accessible in the literature.

1. Functional calculus for forms of even degree

Let E be an m-dimensional vector space and recall that ΛkE consists of all alter-
nating multilinear forms on the dual space E∗. If v ∈ E∗ we define contraction (or
interior multiplication) with v, δv : Λk+1E → ΛkE, by

(δvω)(u1, . . . , uk) = ω(v, u1, . . . , uk).

It is readily checked that this is an alternating form and therefore an element in ΛkE.
Clearly δv is complex-linear in v.

To get a more hands-on idea how δv acts, let us choose a basis ej for E, with dual
basis e∗j , such that v = e∗1. Then δv(e1 ∧ eJ) = eJ if 1 /∈ J . Thus

(1.1) δv(α ∧ β) = δvα ∧ β + (−1)degαα ∧ δvβ,
if α = eJ and β = eK . By linearity, then (1.1) holds for arbitrary forms. One says
that δv is an anti-derivation.

Now let ω1, . . . , ωm be even forms, i.e., in ⊕`Λ2`E, and let ωj = ω′j + ω′′j be the
decomposition in components of degree zero and positive degree, respectively. Notice
that ∧ is commutative for even forms. Thus if p(z) =

∑
α cαz

α =
∑

α cαz
α1
1 · · · zαmm

is a polynomial, then we have a natural definition of p(ω) as the form
∑

α cαω
α1
1 ∧

. . .∧ωαmm . However, it is often convenient to use more general holomorphic functions.
Now ω′ = (ω′1, . . . , ω

′
m) is a point in Cm and for f holomorphic in some neighbor-

hood of ω′ we define

(1.2) f(ω) =
∑
α

f (α)(ω′)(ω′′)α,

where we use the convention that

wα =
wα1

1 ∧ . . . ∧ wαmm
α1! · · ·αm!

.

Thus f(ω) = f(ω′ + ω′′) is defined as the formal power series expansion at the point
ω′. Since the sum is finite, f(ω) is a well-defined form, and if ω depends continuously
(smoothly, holomorphically) on some parameter(s), f(ω) will do as well.

If f(z)− g(z) = O((z − ω′)M ) for a large enough M , then f(ω) = g(ω).

Lemma 1.1. Suppose that fk → f in a neighborhood of ω′ ∈ Cm and that ωk → ω.
Then fk(ωk)→ f(ω).

Proof. In fact, by the Cauchy estimates, f (α)
k → f (α) uniformly for each α in a slightly

smaller neighborhood . Therefore, f (α)
k (ω′k)→ f (α)(ω′k) for each α. It follows that

fk(ωk)− f(ω) = fk(ωk)− f(ωk) + f(ωk)− f(ω)→ 0

since only a finite number of derivatives come into play. �
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Clearly
(af + bg)(ω) = af(ω) + bg(ω), a, b ∈ C,

and moreover we have

Proposition 1.2. If p is a polynomial, then the definition above of p(ω) coincides
with the natural one. If f, g are holomorphic in a neighborhood of ω′, then

(1.3) (fg)(ω) = f(ω) ∧ g(ω).

If f is holomorphic in a neighborhood of ω′ (possibly Cr-valued) and h is holomorpic
in a neighborhood of f(ω′), then

(1.4) (h ◦ f)(ω) = h(f(ω)).

If v is in E∗, then

(1.5) δvf(ω) =
m∑
1

∂f

∂zj
(ω) ∧ δvωj ,

and if ω depends on a parameter, then

(1.6) df(ω) =
m∑
1

∂f

∂zj
(ω) ∧ dωj .

Proof. For the first statement, with no loss of generality, we may assume that ω′ = 0,
and p(z) = zβ. Then p(α)(0)(ω′′)α vanishes for α 6= β and equals (ω′′)β for α = β.
By linearity the first statement follows.

Now (1.3) clearly holds for polynomials, and since we can approximate f, g with
polynomials fk, gk in O({0}), the general case follows from Lemma 1.1. One can
obtain (1.4) in a similar way, noting that if τk = fk(ω) and hk → h in a neighborhood
of f(ω′), then hk(τk)→ h(τ) = h(f(ω)), and hk(τk) = (hk ◦ fk)(ω)→ (h ◦ f)(ω).

The remaining statements also clearly hold for polynomials and hence in general.
�

Example 1.3. Since
1

1− z
= 1 + z + z2+

in a the unit disk, if ω is an even form and |ω′| < 1, we have
1

1− ω
= 1 + ω + ω2 + ω3 + · · · ,

and (1−ω)[1/(1−ω)] = 1. In fact, the partial sums SN converge in a neighborhood
of ω′. If in addition ω′ = 0 we have

1
1− ω

= 1 + ω + ω2 + ω3 + · · ·ωm.

�

Example 1.4. If ω1 and ω2 are even forms, then

(1.7) eω1+ω2 = eω1 ∧ eω2 .

In fact, if f(z1, z2) = z1 + z2, πj(z1, z2) = zj , then (exp ◦f) = (expπ1)(expπ2). By
(1.3) and (1.4) hence

eω1+ω2 = exp(f(ω1, ω2)) = (exp ◦f)(ω1, ω2) =

expπ1(ω1, ω2) ∧ expπ2(ω1, ω2) = eω1 ∧ eω2 ,
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since (clearly) πj(ω1, ω2) = ωj . �

Of course, in both examples one can easily check the statements directly as well.

2. Integral operators

Let α(ζ, z) be any form of on Cn × Cn with compact support in ζ. We define

(2.1)
∫
ζ
α(ζ, z)

as the form in z such that∫
z
φ(z) ∧

∫
ζ
α(ζ, z) =

∫
z,ζ
φ(z) ∧ α(ζ, z)

for test forms forms φ. The right hand side is well-defined since Cn has even real
dimension so the orientation (volume form) on Cn×Cn is unambiguously defined. A
moment of thought reveals that in practice the definition means that one first moves
all differentials of ζ to the right (or to the left) and then perform the integration with
respect to ζ. For instance, if ψ(ζ, z) is a function, then∫

ζ
ψ(ζ, z)dζ ∧ dz ∧ dζ̄ = −

[ ∫
ζ
ψ(ζ, z)dζ ∧ dζ̄

]
dz.

Clearly, only components of α that have bidegree (n, n) in ζ can give any contribution
in (2.1). We have the Fubini theorem

(2.2)
∫
z

∫
ζ
α(ζ, z) =

∫
ζ

∫
z
α(ζ, z)

if α has bidegree (2n, 2n).

3. Interior multiplication by a holomorphic vector field

Let

ξ = ξ1
∂

∂ζ1
+ · · ·+ ξn

∂

∂ζn

be a holomorphic vector field, and let δξ denote interior multiplication (contraction)
by ξ, cf., Section 1 above, so that δξ is a mapping

δξ : Ep,q → Ep−1,q, Cp,q → Cp−1,q.

Recall that δξ is an anti-derivation, cf., (1.1). We claim that

(3.1) δξ∂̄f = −∂̄δξf.

In fact, by linearity it is enough to check for f of the form f = φγ, where φ is a
function and γ = dzI ∧dz̄J . We have ∂̄δξf = ∂̄(φδγ) = ∂̄φ∧δξγ since δξγ is ∂̄-closed,
and δξ∂̄f = δξ(∂̄φ ∧ γ) = −∂̄φ ∧ δξγ, since ∂̄φ is a (0, 1)-form.
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4. Convolution of forms and currents in Cn

Let ν : Cn
ζ ×Cn

z → Cn be the mapping ν(ζ, z) = z−ζ. If f(ν) is a form in Cn, then
ν∗f is a form in Cn

z × Cn
ζ that we simple write as f(z − ζ). In practice this means

that each occurence of νj in B(ν) shall be replaced by zj − ζj , each ocurrence of dνj
shall be replaced by d(zj − ζj) etc.

Given forms f, g in the Schwartz class S = S(Cn) (i.e., their coefficients when
expressed in the standard coordinates are in S) we can define the convolution

(f ∗ g)(z) =
∫
ζ
f(z − ζ) ∧ g(ζ).

In principle this definition is real; however we will profit from the fact that our
underlaying space Cn has even real dimension, and leave it to the interested reader
to find out what happens in the odd-dimensional case. Since the convolution is just
(up to a sign) the ordinary convolution of certain components of f and g, it follows
that f ∗ g is again a form with coefficients in S. Notice that if ψ is in S, then

(4.1)
∫
z
(f ∗ g)(z) ∧ ψ(z) =

∫
z

∫
ζ
f(z) ∧ g(ζ) ∧ ψ(z + ζ);

this is seen by making the change of coordinates ζ ′ = ζ, z′ = z − ζ on C2n, and as
in the usual case we can take (4.1) as the definion of f ∗ g when they are currents,
and one of them has compact support. The following facts are easily verified:

(4.2) deg f ∗ g = deg f + deg g − 2n,
if f ∈ Sp,q and g ∈ Sp′,q′ , then f ∗ g ∈ Sp+p′−n,q+q′−n,

f ∗ g = (−1)deg f ·deg gg ∗ f,
(f ∗ g) ∗ h = f ∗ (g ∗ h),

f ∗ [0] = f,

d(f ∗ g) = df ∗ g + (−1)deg ff ∗ dg,

∂̄(f ∗ g) = ∂̄f ∗ g + (−1)deg ff ∗ ∂̄g.

Let us just verify the last three of them: If f = [0], then in view of (4.1) we have
that ∫

z
(f ∗ [0])(z) ∧ ψ(z) =

∫
z
f(z) ∧

∫
ζ
[0](ζ) ∧ ψ(z + ζ) =

∫
z
f(z) ∧ ψ(z)

for any form ψ in S. The next to last equality follows in the following way:∫
d(f ∗ g) ∧ ψ = (−1)1+deg f+deg g

∫
f ∗ g ∧ dψ =∫ ∫

f(z) ∧ g(ζ) ∧ dψ(ζ + z) =
∫ ∫

d(f(z) ∧ g(ζ)) ∧ ψ =∫ ∫
df(z) ∧ g(ζ) ∧ ψ + (−1)deg f

∫ ∫
f(z) ∧ dg(ζ) ∧ ψ =∫

df ∗ g ∧ ψ + (−1)deg f

∫
f ∗ dg ∧ ψ.

The last equality follows by identifying terms of relevant bidegree.
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Example 4.1 (Approximate identity). Let φ be a (n, n)-form with compact support
such that

∫
φ = 1, and let φε(z) = φ(z/ε). Then φε → [0] in the current sense. �

5. Double complexes

The following special case of a general spectral sequence will be encountered over
and over in this book ????. We refer to any basic text on homological algebra for
proofs.

Let M`,k be modules over a ring R and assume that for each fixed k have a complex

(5.1) · · · d
′
→M`−1,k

d′→M`,k
d′→M`+1,k

d′→ · · ·

and for each fixed ` have a complex

(5.2) · · · d
′′
→M`,k−1

d′′→M`,k
d′′→M`,k+1

d′′→ · · ·

such that d′d′′ = −d′′d′. We then have a double complex. If

(5.3) Mj = ⊕`+k=jM`,k

and d = d′ + d′′, then

· · · d→Mj−1
d→Mj

d→Mj+1
d→ · · ·

is a complex, called the total complex associated with M`,k. The double complex
M`,k is bounded if for each j only a finite number of M`,k with k+ ` = j are nonzero,
i.e., all the sums (5.3) are finite.

Lemma 5.1. Assume that M`,k is bounded and that, for each k, the complex (5.1)
is exact except at ` = 0 where we have the cohomology group (module)

Ak =
Ker (M0,k →M1,k)
Im (M−1,k →M0,k)

.

Then we get induced mappings d′′ : Aj → Aj+1 so that

· · · d
′′
→ Ak−1

d′′→ Ak
d′′→ Ak+1

d′→ · · ·

is a complex, and moreover, the natural mappings

(5.4) Hk(A•)→ Hk(M•)

are isomorphisms.

In particular, if (5.1) is exact for each k, then Ak = 0 and hence Hk(M•) = 0.
Let us describe the mapping (5.4). If φ ∈ Hj(A•), then it is represented by an

element φ0,k ∈ M0,k such that d′′φ0,k = d′φ−1,k+1 for some φ−1,k+1 ∈ M−1,k+1. By
the anti-commutativity, d′d′′φ−1,k+1 = −d′′d′φ−1,k+1 = 0 and hence by the exactness,
d′′φ−1,k+1 = d′φ−2,k+2 for some φ−2,k+2, etc. By the boundedness, this procedure will
terminate, and thus we get an element φ̃ = φ0,k +φ−1,k+1 +φ−2,k+2 + · · ·+φ−N,k+N

such that dφ̃ = 0. Thus φ̃ defines an element in Hk(M•). The lemma states that
this procedure induces a well-defined mapping (5.4) that is an an isomorphism.

In many cases we will meet, M`,k = 0 for ` < 0 and then Ak = Ker (M0,k →M1,k).
In such a case, the mapping (5.4) is much simpler, since then φ ∈ Hk(A•) is just
represented by φ̃0,k.
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If in addition (5.2) is exact for each ` except at k = 0, and the cohomology there
is B`, then we have natural isomorphisms

Hk(B•) ' Hk(M•) 'Mk(A•).

6. Forms and currents on a reduced analytic space

Let X be a reduced analytic space of pure dimension n. Locally there is an
embedding

i : X → Ω ⊂ CN .

We say i∗ξ = 0 for a smooth form ξ ∈ EΩ if i∗ξ vanishes on the regular part Xreg of
X, and we let

EX = EΩ/Ker i∗

be the sheaf of smooth forms on X. We shall see that this definition is independent
of the embedding i. To begin with, two minimal embeddings are biholomorphically
equivalent and hence give rise to the same sheaf. If i is an arbitrary embedding of
X, then after possibly shrinking Ω one can factorize i as

X
j→ Ω̂ ι→ Ω̂× B = Ω

where j is a minimal embedding and B is a ball in CM . Since j∗ι∗ξ = (ι ◦ j)∗ξ, we
have a natural injective mapping

A : ι∗ : EΩ/Ker i∗ → E bΩKer j∗,
and it is enough to see that it is an isomorphism. Let π : Ω = Ω̂ × B → Ω̂ be the
natural projection. Then π ◦ ι is the identity on Ω̂ and hence ι∗π∗η = η. Thus A is
surjective, and hence an isomorphism. Clearly, the wedge product on EΩ induces a
wedge product on EX and, we have a mapping i∗ : EΩ → EX such that i∗ξ ∧ i∗ξ′ =
i∗(ξ ∧ ξ′).

We define the sheaf of currents, CX , as the dual of the compactly supported smooth
forms. This means concretely that the currents τ on X can be identified with the
currents τ ′ in Ω such that τ ′.ξ = 0 for all ξ in Ker i∗. It is natural to write τ ′ = i∗τ .
We say that τ has bidegree (p, q) if i∗τ has bidegree (N − n+ p,N − n+ q). Notice
in particular that

i∗1 = [X],

the Lelong current associated with X in Ω.

Remark 6.1. Notice that if µ is a current in Ω, then µ.ξ = 0 for all ξ such that i∗ξ = 0
if and only if η ∧ µ = 0 for all η such that i∗η = 0. �

Let X,Y be reduced analytic spaces and f : Y → X a proper holomorphic map-
ping. We than have the pullback f∗ : EX → EY and hence the push-forward f∗ : CY →
CX . We will frequently use the following simple lemma.

Lemma 6.2. If α is a smooth form, then

(6.1) α ∧ f∗τ = f∗(f∗α ∧ τ).
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Proof. By definition there are local embeddings i : X → Ω and j : Y → Ω′ such that
f extends to a mapping F : Ω′ → Ω, and i∗f∗τ = F∗j∗τ . It is therefore enough to
check (3.1) in case X,Y are smooth. Now

〈α ∧ f∗τ, ξ〉 = ±〈f∗τ, α∧〉ξ = ±〈τ, f∗(α ∧ ξ)〉 =

± 〈τ, f∗α ∧ f∗ξ〉 = 〈f∗α ∧ τ, f∗ξ〉 = 〈f∗(f∗α ∧ τ), ξ〉,
since f∗τ has odd degree if and only if τ has. �

7. Principalization of an ideal sheaf

LetX be a reduced analytic space, let J → X be an ideal sheaf and let π′ : X ′ → X
be the blow-up of X along J . Then the pullback of J to X ′ is principal, i.e., locally
generated by one single holomorphic function. More precisely, there is a line bundle
L′ → X ′ and a global section h of L′ that generates (π′)∗J . We say that the blow-up
is a principalization of J . The divisor defined by h is called the exceptional divisor.
In general X ′ is not normal, so it is convenient to let X ′ → X be the normalization
if the blow-up. In a normal space the singular locus has at least codimension 2, and
so for instance each divisor has a well-defined order.

If f1, . . . , fm is a tuple of holomorphic functions on X that generates J , then
it follows that (π′)∗fj = hf ′j , where f ′j is a section of L−1. Moreover, the tuple
f ′ = (f ′1, . . . , f

′
m) is non-vanishing (in fact, at a given point x ∈ X ′, f0f ′j define the

sheaf (π′)∗J , and by a standard fact for local rings the ideal must be generated by
one of them.)

The pullback of a principal ideal is certainly principal. Thus if we compose by the
normalization X ′′ → X ′ we get a normal principalization X ′′ → X of J . It is very
important since it is unique; however, in general X ′′ is not smooth, and in many
situations it is convenient with a smooth principalization.

By Hironaka’s theorem we can find a smooth modification X̃ → X ′ such that the
exceptional divisor D = α1D1 + · · · + ανDν has simple normal crossings, cf., ???,
above. The composed modification π : X̃ → X is called a log resolution for J . If f0

is a section of the line bundle LD → X̃ that defines π∗J then locally in X̃ one can
choose coordinates and a local frame such that f0 is a monomial. If J is generated
by f1, . . . , fm, then as before we have

π∗f = f0f ′

where f ′ is a non-vanishing tuple of sections of L−1
D .

8. The Koszul complex superstructures
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Chapter 2

Integral representation in domains in Cn

Integral representation of a holomorphic functions f means that f is expressed
as a superposition of other functions, preferably functions that are simple in some
sense. For instance, by the Cauchy integral formula in one variable a functions in a
domain D is written as a superposition of simple rational functions z 7→ 1/(z − ζ),
where ζ ∈ ∂D.

1. The one-variable case

For fixed z ∈ C,

ωζ−z =
1

2πi
dζ

ζ − z
is the Cauchy kernel with pole at z. It is holomorphic in C\{z} and locally integrable
in C. It is well-known that if φ is a C1-function in C with compact support, then we
have

(1.1)
∫
ωζ−z ∧ ∂̄φ = φ(0),

which can be rephrased as saying that

(1.2) ∂̄ωζ−z = [z]

in the current sense, where [z] denotes the (1, 1)-current point evaluation at z, see
Lemma 2.2 below. This equation leads to, or is more or less equivalent to, Cauchy-
Green’s formula.

Proposition 1.1 (Cauchy-Green’s formula). If f is C1 in Ω and D ⊂ Ω is bounded
and has smooth boundary (or at least some reasonable regularity, like piecewise C1)
then

(1.3) f(z) =
∫
∂D

ωζ−zf +
∫
D
ωζ−z ∧ ∂̄f, z ∈ D.

Notice that
ωζ−z ∧ ∂̄f =

1
2πi

∂f

∂z̄

dz ∧ dz̄
ζ − z

= − 1
π

∂f

∂z̄

dV (z)
ζ − z

,

where dV is the planar volume measure.

Proof. Notice that (1.3) is just (1.1) if f has compact support inD. Now suppose that
f vanishes identically in a neighborhood of the point z. Then d(ωζ−zf) = −ωζ−z∧∂̄f
and hence (1.3) follows from Stokes’ theorem. For the general case, let χ be a smooth
cutoff function that has compact support in D and is identically 1 in a neighborhood
of the point z. Then f = χf + (1− χ)f = f1 + f2 where f1 has compact support in
D and f2 vanishes in a neighborhood of z. Since (1.3) is linear in f , the general case
now follows. �

As an immediate corollary we have, for a holomorphic function f , the Cauchy
formula,

f(z) =
∫
∂D

f(ζ)ωζ−z, z ∈ D.

This formula is a corner stone in the theory of one complex variable and probably one
of the most remarkable formulas in analysis, with regard to beauty and importance.
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We will now consider multivariable analogues of this formula, whereas generalizations
of (1.3) are postponed to Section 7. We letD denote a bounded open with a boundary
regular enough so that Stokes’ theorem holds.

2. The Cauchy-Fantappiè-Leray formula

Let s = s1dζ1 + · · ·+ sndζn be a (1, 0)-form such that

(2.1) 2πi〈ζ, s〉 = 2πi(ζ1s1 + · · ·+ ζnsn) = 1.

Such a form s always exists outside 0; for instance one can take

(2.2) b =
∂|ζ|2

2πi|ζ|2
=
∑n

1 ζ̄jdζj
2πi|ζ|2

.

Lemma 2.1. If (2.1) holds in the open set V , then

d
(
s ∧ (∂̄s)n−1

)
= ∂̄

(
s ∧ (∂̄s)n−1

)
= 0

in V .

Proof. Since s∧ (∂̄s)n−1 has bidegree (n, n− 1), the first equality is immediate. It is
clear that

∂̄
(
s ∧ (∂̄s)n−1

)
= (∂̄s)n

so we have to verify that

(2.3) (∂̄s)n = 0.

From (2.1) we have that 0 = ∂̄(1/2πi) = ζ1∂̄s1 + · · · + ζn∂̄sn, so the 1-forms
∂̄s1, . . . , ∂̄sn are linearly dependent at each point in V and thus ∂̄s1∧∂̄s2∧. . .∧∂̄sn =
0. It follows that

(∂̄s)n =
( n∑

1

∂̄sj ∧ dζj
)n = n!∂̄s1 ∧ . . . ∧ ∂̄sn ∧ dζn ∧ . . . ∧ dζ1 = 0.

�

If n = 1, then the only possible choice of s that satisfies (2.1) is the Cauchy kernel
with pole at 0.

The form Bn,n−1 = b∧(∂̄b)n−1 is called the Bochner-Martinelli kernel. Notice that

(2.4) Bn,n−1 =
1

(2πi)n
∂|ζ|2

|ζ|2
∧
(
∂̄
∂|ζ|2

|ζ|2
)n−1

=
1

(2πi)n
∂|ζ|2 ∧ (∂̄∂|ζ|2)n−1

|ζ|2n
;

here we use the fact that ∂|ζ|2 ∧ ∂|ζ|2 = 0. Therefore, Bn,n−1 is O(|ζ|−2n+1) and
thus locally integrable. We have the following multivariable analog of (1.1).

Lemma 2.2. The Bochner-Martinelli kernel satifies

(2.5) dBn,n−1 = ∂̄Bn,n−1 = [0].

Proof. Let ξ be a test form (function). Outside the origin d(Bn,n−1ξ) = −Bn,n−1 ∧
dξ = −Bn,n−1 ∧ ∂̄ξ. By Stokes’ formula and Lemma 2.1,

−
∫
|ζ|>ε

Bn,n−1 ∧ ∂̄ξ =
∫
|ζ|=ε

ξ ∧Bn,n−1 =

1
(2πi)n

1
ε2n

∫
|ζ|=ε

ξ∂|ζ|2(∂̄∂|ζ|2)n−1 =
1

(2πi)n
1
ε2n

∫
|ζ|<ε

[
ξ(∂̄∂|ζ|2)n +O(|ζ|)

]
.
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In the second term, the sphere is considered as the boundary of the ε-ball. The right
hand side tends to ξ(0) when ε→ 0 since

(
i

2
∂∂̄|ζ|2)n =

( i
2

n∑
1

dζj ∧ dζ̄j
)n

=

n!
( i

2

)n
dζ1 ∧ dζ̄1 ∧ . . . ∧ dζn ∧ dζ̄n = n!dV (ζ)

and the volume of the unit ball is πn/n!, cf., Example 3.7. �

We have the following classical global formula.

Proposition 2.3 (The Cauchy-Fantappiè-Leray formula). Assume D ⊂⊂ Ω, and
that σ is a smooth (1, 0)-form on ∂D such that 2πi〈σ, ζ − z〉 = 1 for some z ∈ D.
Then

f(z) =
∫
∂D

σ ∧ (∂̄σ)n−1f, f ∈ O(Ω).

To interprete the integral, let σ denote any smooth extension to a neighborhood
of ∂D. Since σ ∧ (∂̄σ)n−1 = σ ∧ (dσ)n−1 for degree reasons, the pull-back to ∂D is
an intrinsically defined form.

Proof. With no loss of generality we may assume that z = 0. Let σ be a smooth
extension to a neighborhood of ∂D. By continuity 〈ζ, σ〉 6= 0 close to ∂D and if χ is
an appropriate cutoff function, then

s = (1− χ)
σ

2πi〈ζ, σ〉
+ χb

satisfies (2.1) outside the origin and is equal to b close to the origin. We claim that
then

(2.6) d
(
s ∧ (∂̄s)n−1

)
= [0].

In fact, outside the origin (2.6) follows from Lemma 2.1 and near the origin s∧(∂̄s)n−1

is equal to Bn,n−1 and so it follows from Lemma 2.2. Now the proposition follows
from (2.6) and Stokes’ theorem, noting that s ∧ (∂̄s)n−1 = σ ∧ (∂̄σ)n−1 as forms on
∂D. �

For any domain D and z ∈ D we can use σ(ζ) = b(ζ − z) and thus obtain a
representation formula for holomorphic functions, generalizing the Cauchy formula
for n = 1. When n > 1 unfortunately it will not depend holomorphically on the
variable z.

If there is a form s(ζ, z) for ζ ∈ ∂D depending holomorphically on z such that
〈s(ζ, z), ζ − z〉 = 1, such an s is called a holomorphic support function, then D must
be pseudoconvex. In general, though, pseudoconvexity is not sufficient, even if we
assume that D has smooth boundary. However, if D is strictly pseudoconvex one
can always find a holomorphic support function, cf., Example 8.5 below. It is also
true for a large class of weakly pseudoconvex domains, e.g., all convex domains, see
Example 2.5 below.

Example 2.4. Let B = {ζ; |ζ| < 1} be the unit ball. For z ∈ B we can take

σ =
∂|ζ|2

2πi(1− ζ̄ · z)
.
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By a similar argument as for the equality (2.4) we get

(2.7) f(z) =
∫
|ζ|=1

f(ζ)dν(ζ)
(1− ζ̄ · z)n

,

where

dν(ζ) =
1

(2πi)n
∂|ζ|2 ∧ (∂̄∂|ζ|2)n−1.

Since |ζ| is invariant under rotations of Cn, dν(ζ) is as well, and since furthermore
the integral of dν over the unit sphere is 1, just take f = 1 in (2.7), it follows that dν
is normalized surface measure. The representation formula (2.7) is called the Szegö
integral. �

Example 2.5. More generally, let D = {ρ < 0} be a convex domain in Cn with
defining function ρ, i.e, dρ 6= 0 on ∂D; it is not necessary to assume that ρ is a
convex function. Then for any z ∈ D,

(2.8) 2Re 〈∂ρ(ζ), ζ − z〉 > 0, ζ ∈ ∂D.

In fact, the left hand side is the real scalar product of the gradient of ρ and the vector
ζ−z, and by the convexity of D it must be strictly positive when z is an interior point.
We can thus use s(ζ, z) = ∂ρ(ζ)/〈∂ρ(ζ), ζ − z〉2πi and get the classical representation
formula

f(z) =
1

(2πi)n

∫
∂D

f(ζ)∂ρ ∧ (∂̄∂ρ)n−1

〈∂ρ(ζ), ζ − z〉n
, z ∈ D.

�

In the proof of (2.3) we used some multilinear algebra. There is an even slicker
argument: Let δζ−z : Ep,q(U)→ Ep−1,q(U) be contraction with the vector field

2πi
n∑
1

(ζk − zk)
∂

∂ζk
.

Then (2.1) precisely means that δζs = 1. Thus, cf., (3.1), δζ ∂̄s = −∂̄δζs = −∂̄1 = 0,
and therefore

(∂̄s)n = δζ
(
s ∧ (∂̄s)n

)
= 0,

since s ∧ (∂̄s)n vanishes for degree reasons. This type of arguments will permeate
this paper. It might be instructive at this stage to prove by straight-forward brutal
computation that the right hand side of (2.4) is closed. For the more complicated sit-
uations that we will encounter, the necessary computations are in practice impossible
to perform without multilinear algebra techniques.

3. A general Cauchy-Fantappiè-Leray formula

We have already seen that the Cauchy-Fantappiè-Leray formula formula is sort of
a substitute for the Cauchy formula in several variables. We shall now see that the
proper generalization of the Cauchy kernel is a representative of a certain cohomology
class.

For any integer m, let Lm(U) = ⊕nk=0Ck,k+m(U). For instance, u ∈ L−1(U) can
be written u = u1,0 + . . . + un,n−1, where the indices denote bidegree in dζ. We let
LmE (U) denote the subspace of smooth forms in Lm(U).
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Fix a point z ∈ Cn. Since δζ−z∂̄f = −∂̄δζ−zf , cf., (3.1), Ep,q is a double complex
with mappings ∂̄ and δζ−z. If ∇ζ−z = δζ−z − ∂̄, then ∇2

ζ−z = 0, and we have the
associated total complex

· · ·
∇ζ−z−→ Lm

∇ζ−z−→ Lm+1 ∇ζ−z−→ · · · .

The usual wedge product extends to a mapping Lm(U)×Lm′(U)→ Lm+m′(U), such
that g ∧ f = (−1)mm

′
f ∧ g, (assuming that one of the factors is smooth) and ∇ζ−z

satisfies the same formal rules as the usual exterior differentiation, i.e., ∇ζ−z is a
anti-derivation,

(3.1) ∇ζ−z(f ∧ g) = ∇ζ−zf ∧ g + (−1)mf ∧∇ζ−zg, f ∈ Lm(U).

In order to generalize Cauchy’s formula to higher dimensions we will look for
u ∈ L−1(U) such that

(3.2) ∇ζ−zu(ζ) = 1− [z].

If n = 1 the Cauchy kernel with pole at z, u(ζ) = dζ/2πi(ζ − z), is the only possible
solution. If n > 1, (3.2) means that

(3.3) δζ−zu1,0 = 1, δζ−zuk+1,k − ∂̄uk,k−1 = 0, 1 ≤ k ≤ n− 2, ∂̄un,n−1 = [z].

However, we first look for smooth u such that ∇ζ−zu = 1 outside z.

Example 3.1. Let s =
∑n

1 sjdzj be a (1, 0)-form in U such that δζ−zs = 2πi
∑

j sj(ζj−
zj) = 1. Then clearly z /∈ U . Since the component of zero degree of the form ∇ζ−zu
is nonvanishing, we can define the form

(3.4) u =
s

∇ζ−zs
,

and we claim that

(3.5) ∇ζ−zu = 1

in U . In fact, by the functional calculus for forms we have

∇ζ−zu =
∇ζ−zs
∇ζ−zs

− s

(∇ζ−zs)2
∇2
ζ−zs = 1

since ∇2
ζ−z = 0. More explicitly,

(3.6) u =
s

∇ζ−zs
=

s

1− ∂̄s
= s+ s ∧ ∂̄s+ s ∧ (∂̄s)2 + · · ·+ s ∧ (∂̄s)n−1.

The sceptical reader can of course verify that the right hand side of (3.6) fulfills
(3.5) by a straight-forward computation. However, in more involved situations the
compact formalism is indispensable. Notice that highest order term is precisely the
Cauchy-Fantappiè-Leray form in Proposition 2.3. �

Notice that (3.4) is unaffected if s is replaced by ξs for a nonvanishing function ξ,
since ∇(ξs) = ξ∇s− ∂̄ξ∧s, and that the last term here cannot give any contribution,
due to the factor s in the nominator. Therefore it is enough that δζ−zs 6= 0 in the
previous example, and then we get

u =
s

∇ζ−zs
=

s

δζ−zs
+

s ∧ ∂̄s
(δζ−zs)2

+ · · ·+ s ∧ (∂̄s)n−1

(δζ−zs)n
.
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Proposition 3.2. If b is the form in (2.2), then

B =
b

∇ζb
=

b

1− ∂̄b
= b ∧

n∑
1

(∂̄b)k−1,

is locally integrable in Cn \ {0} and satisfies (3.2) (with z = 0).

We will refer to B as the (full) Bochner-Martinelli form.

Proof. A simple computation yields

Bk,k−1 = b ∧ (∂̄b)k−1 =
∂|ζ|2 ∧ (∂̄∂|ζ|2)k−1

(2πi)k|ζ|2k
,

so Bk,k−1 = O(|ζ|−(2k−1)) and hence locally integrable. We already know that
∂̄Bn,n−1 = [0], so it remains to verify that

(3.7) −
∫
∂̄φ ∧Bk,k−1 =

∫
φ ∧ δζBk+1,k, φ ∈ Dn−k,n−k(Cn).

However,

−
∫
|ζ|>ε

∂̄φ ∧Bk,k−1 =
∫
|ζ|=ε

φ ∧Bk,k−1 +
∫
|ζ|>ε

φ ∧ δζBk+1,k.

Moreover, since k < n, Bk,k−1 = O(|ζ|−(2k−3)), and hence the boundary integral
tends to zero when ε→ 0. Thus (3.7) follows. �

Suppose that z /∈ U . If f is any form in U such that ∇ζ−zf = 0, then there
is a form w such that ∇ζ−zw = f . In fact, u(ζ) = B(ζ − z) is smooth in U and
∇ζ−zu = 1, and thus ∇ζ−z(u ∧ f) = f .

We are now ready to prove the main result of this section, stating that the proper
generalization of the Cauchy form from one variable is a certain cohomology class
ωζ−z.

Proposition 3.3. Suppose that z ∈ D and z /∈ U ⊃ ∂D. If u ∈ L−1
E (U) and

∇ζ−zu = 1, then ∂̄un,n−1 = 0. All such forms un,n−1 define the same Dolbeault
cohomology class ωζ−z in U and any representative for ωζ−z occurs in this way. For
any representative we have that

(3.8) φ(z) =
∫
∂D

φ(ζ)un,n−1, φ ∈ O(D).

Proof. If ∇ζ−au = 1 then ∂̄un = 0. If u′ is another solution then ∇ζ−a(u − u′) = 0
and since a /∈ U there is a solution to ∇ζ−aw = u − u′, and hence ∂̄wn,n−2 =
u′n,n−1−un,n−1. If u is a fixed solution and ψ is a (n, n−2) form, then u′ = u−∇ζ−aψ
is another solution, and u′n,n−1 = un,n−1 + ∂̄ψ.

If u′n,n−1 − un,n−1 = ∂̄wn,n−2 in U and φ is holomorphic, then

d(φwn,n−2) = φu′n,n−1 − φun,n−1.

Therefore, Stokes’ theorem, applied to the compact manifold ∂D, implies that the
integral in (3.8) is unchanged if un,n−1 is replaced by u′n,n−1. Since (3.8) holds for
ua(ζ) = B(ζ − a) it therefore holds for any u. �

With the choice of u from Example 3.1, (3.8) is just the Cauchy-Fantappiè-Leray
formula. However, there are other possibilities.



18

Example 3.4. If we have several (1, 0)-forms s1, . . . , sn such that δζ−zsj = 1 we
can get a solution u to ∇ζ−zu = 1 by letting u1 = s1, uk+1 = sk+1 ∧ ∂̄uk. Thus
sn ∧ ∂̄sn−1 ∧ . . . ∧ ∂̄s1 is a representative for ωζ−z. �

We have the following analogue of (3.8).

Proposition 3.5. With the same notation as in the Proposition 3.3, let u be a cur-
rent solution to ∇z−au = 1 in U . If χ is a cutoff function that is 1 in a neighborhood
of z and such that the support of ∂̄χ is contained in U , then

(3.9) φ(z) = −
∫
∂̄χ ∧ φun,n−1, φ ∈ O(U).

We leave the proof as an exercise for the reader.

Example 3.6. Let us define the current v = v1,0 + · · ·+ vn,n−1 in Cn by

v1 =
1

2πi
dζ1

ζ1 − z1
, vk =

1
(2πi)k

dζk
ζk − zk

∧ ∂̄vk−1.

The products are well-defined since they are just tensor products of distributions.
From Proposition 3.5 we get the representation formula

f(z) = −(2πi)−1

∫
ζn

∂̄ζnχ(. . . , zn−1, ζn) ∧ f(. . . , zn−1, ζn)
dζn

ζn − zn
.

Of course, this formula follows immediately from the one-variable Cauchy formula.
�

Example 3.7 (Volume of the unit ball). Let B be the (full) Bochner-Martinelli form
and let v be the current from the previous example. Let χ be a cutoff function that
is 1 in a neighborhood of 0. Then Bn,n−1− vn,n−1 = d(B ∧ v)n.n−2 on the support of
∂̄χ, and thus∫

∂B
Bn,n−1 =

∫
Bn,n−1 ∧ ∂̄χ =

∫
vn,n−1 ∧ ∂̄χ =

∫
χ∂̄vn,n−1 =

∫
[0] = 1.

It follows now from the proof of Lemma 2.2 that the volume of the unit ball is
πn/n!. �

If we have a solution to ∇ζ−zu = 1 in Ω \ {z} that has a current extension across
z it is natural to ask whether (3.2) holds.

Proposition 3.8. Suppose that u ∈ L−1
E (Ω \ {z}) solves ∇ζ−zu = 1 in Ω \ {z} and

that |uk| . |ζ − z|−(2k−1). Then u is locally integrable and (3.2) holds.

Proof. If u1 and u2 both satisfy the growth condition, then u1∧u2 = O(|ζ−z|−(2n−2))
and ∇ζ−a(u1∧u2) = u2−u1 pointwise outside a. Hence it holds in the current sense.
If (3.2) holds for one of them it thus holds for both; taking one of them as the
Bochner-Martinelli form, the proposition follows. �

Example 3.9. Let s(ζ) be a smooth (1, 0)-form in Ω such that |s(ζ)| ≤ C|ζ − z| and
|δζ−zs(ζ)| ≥ C|ζ − z|2. Then u = s/∇ζ−zs satisfies the hypothesis in Proposition 3.8
and therefore (3.2) holds. �
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4. Weighted representation formulas

We will now consider formulas that allow representation of functions with growth
at the boundary, unbounded domains, and, which is most important for us, provide
division with a tuple of functions, and interpolation. To this end we introduce so-
called weights. Let z be a fixed point in Ω ⊂ Cn. A smooth form g ∈ L0(Ω) such
that ∇ζ−zg = 0 and g0,0(z) = 1 is called a smooth weight with respect to z.

If g, g′ are weights, then g ∧ g′ is a weight as well. This follows from (3.1) and
the simple observation that (g ∧ g′)0,0(z) = g0,0(z)g′0,0(z) = 1. More generally, if
g1, . . . , gm are weights and G(λ1, . . . , λm) is a holomorphic function, defined on the
image of ζ 7→ (g1

0,0, . . . , g
m
0,0), and such that G(1, . . . , 1) = 1, then G(g1, . . . , gm) is a

weight. This follows from Proposition 1.2

Example 4.1. Let w be a smooth (1, 0)-form and assume that G(λ) is holomorphic
on the image of δζ−zw and that G(0) = 1. Then

G(∇ζ−zw) = G(〈w, ζ − z〉 − ∂̄w) =
n∑
0

G(k)(〈w, ζ − z〉)(−∂̄w)k

k!

is a weight in Ω. �

Proposition 4.2. If g is a smooth weight in Ω, z ∈ D ⊂⊂ Ω, and ∇ζ−zu = 1 in a
neighborhood U of ∂D, then

(4.1) φ(z) =
∫
D
gn,nφ+

∫
∂D

(g ∧ u)n,n−1φ, φ ∈ O(D).

Proof. Let us first assume that u′ is a form such that (3.2) holds. Then

∇ζ−z(u′ ∧ g) = (1− [z]) ∧ g = g − g0,0(z)[z] = g − [z]

for degree reasons. In particular we have that

d((u′ ∧ g)n,n−1φ) = ∂̄(u′ ∧ g)n,n−1φ = φ(z)[z]− gn,nφ

and so (4.1) follows by Stokes’ theorem but with u′ rather than u. Now ∇(u′ ∧ u) =
u− u′ and hence

d((u′ ∧ u)n,n−2φ) = ∂̄(u′ ∧ u)n,n−2φ = u′n,n−1φ− un,n−1φ.

Now (4.1) follows for u by Stokes’ theorem since ∂D hasno boundary. �

Alternatively one can proceed as in the proof of Proposition 2.3 above, and extend
u to a form that satisfies (3.2).

For instance, if D is the ball and we take u = σ/∇ζ−zσ, with the σ from Exam-
ple 2.4. Then u depends holomorphically on z. If g = 1 we get back (2.7).

As we have seen, the Cauchy-Fantappiè-Leray formula represents a holomorphic
function in a domain D in terms of its values on ∂D; provided of course that the
function has some reasonable boundary values. To admit representation for a larger
class of functions we can use an appropriate weight. Here we will exemplify with the
ball.

Example 4.3 (Weighted Bergman projections in the ball). Notice that

1 +∇ζ−z
∂|ζ|2

2πi(1− |ζ|2)
=

1− ζ̄ · z
1− |ζ|2

− 1
2πi

∂̄
∂|ζ|2

1− |ζ|2
.
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Therefore, as long as z, ζ ∈ B, for any complex α,

g =
(1− ζ̄ · z

1− |ζ|2
− 1

2πi
∂̄
∂|ζ|2

1− |ζ|2
)−α

,

is welldefined, and in fact a weight. If Reα is large (in fact > 1 is enough), then g
vanishes on ∂B (for fixed z of course) and is then a weight with compact support.
More specifically, if

ω =
i

2
∂
∂̄|ζ|2

1− |ζ|2
, ωk = ωk/k!,

then

gn,n = cα

( 1− |ζ|2

1− ζ̄ · z

)α+n
ωn,

where

cα = (−1)nn!
1
πn

Γ(−α+ 1)
Γ(n+ 1)Γ(−α− n+ 1)

.

Using that Γ(n+ 1) = n! and Γ(τ + 1) = τΓ(τ) we get

cα =
1
πn

Γ(n+ α)
Γ(α)

.

We claim that

(4.2) ωn =
dV (ζ)

(1− |ζ|2)n+1
.

To see this it is enough to see that both sides coincide after application by δ = δζ/2πi.
Notice that

δ∂∂̄|ζ|2 = ∂̄|ζ|2, δω =
i

2
∂̄|ζ|2

(1− |ζ|2)2
.

Thus

δωn = δω ∧ ωn−1 =
( i

2

)n ∂̄|ζ|2

(1− |ζ|2)2
∧ ∂ ∂̄|ζ|2

(1− |ζ|2)2
=
( i

2

)n ∂̄|ζ|2 ∧ (∂∂̄|ζ|2)n−1

(1− |ζ|2)n+1( i
2

)n
δ

(∂∂̄|ζ|2)n

(1− |ζ|2)n+1
= δ

dV

(1− |ζ|2)n+1
,

and thus (4.2) holds. It is clear that all terms in g will vanish on the boundary if
Reα is large. Summing up we get, for Reα large the representation

(4.3) φ(z) =
Γ(n+ α)
πnΓ(α)

∫
|ζ|<1

φ(ζ)dVα(ζ)
(1− ζ̄ · z)n+α

, φ ∈ O(B),

where
dVα = (1− |ζ|2)α−1dV.

However, (1−|ζ|2) = (1+ |ζ|)(1−|ζ|) ∼ 2(1−|ζ|), i.e., roughly speaking the distance
from ζ to the boundary, and hence the right hand side has meaning as a convergent
integral for all α with Reα > 0. Moreover, it depends holomorphically on α, and by
the uniqueness theorem the equality must hold for all α with Reα > 0.

One can verify that the integral in (4.3) converges for any φ ∈ L2(dVα). Since
the kernel is self-adjoint it follows that the integral operator Pα so defined must
be the orthogonal projection L2(dVα) → O(B) ∩ L2(dVα), the so-called Bergman
projection. �
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There is a similar formula in a strictly pseudoconvex domain, cf., Example 8.5.
Let us also mention a representation formula that works for polynomials.

Example 4.4. In Cn we can take the weight

g =
(

1−∇ζ−z
∂|ζ|2

2πi(1 + |ζ|2)

)m+n
=
(1 + ζ̄ · z

1 + |ζ|2
+

1
π

Ω
)m+n

for positive integers m, where

Ω =
i

2
∂∂̄ log(1 + |ζ|2).

We then get the representation

f(z) =
∫
f(ζ)

(m+ n)!
πnm!

(1 + ζ̄ · z
1 + |ζ|2

)m
Ωn,

where

Ωn = Ωn/n! =
dV

(1 + |ζ|2)n+1
,

for polynomials f of degree ≤ m. In fact, for fixed z and big R we have, in view of
(4.1), the equality

f(z) =
∫
|ζ|<R

f(ζ)
(m+ n)!
m!

(1 + ζ̄ · z
1 + |ζ|2

)m
Ωn +

∫
|ζ|=R

f(ζ)u ∧ g,

where u(ζ) = B(ζ − z) is the Bochner-Martinelli form with pole at z. It is not too
hard to check that the boundary integral tends to zero when R → ∞. As in the
previous example, the associated projection onto the polynomials is orthogonal. �

5. Singular weights

A main interest for us is formulas for division and interpolation. This leads us to
consider weights that are non-smooth.

Lemma 5.1. If g a smooth form in L0(Ω) such that ∇ζ−zg = 0, then g is a weight
with respect to z if and only if

(5.1)
∫
g ∧ g′ = 1

for each smooth weight g′ with respect to z with compact support in Ω.

It is in fact enough to check the condition for just one weight with compact support
as will be clear from the proof.

Proof. If g is a weight, then g ∧ g′ is a weight with compact support, and so (5.1)
follows from (4.1). Assume that h ∈ L0(Ω) has compact support and ∇ζ−zh = 0.
Then it follows from the proof of Proposition 4.2 that∫

h = h0,0.

If we know that ∇ζ−zg = 0 and g′ is aweight with compact support, therefore the
integral in (5.1) is equal to (g ∧ g′)0,0(z) = g0,0(z), and thus g0,0(z) = 1 so that g is
a weight. �
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If g is any current in L0(Ω) such that ∇ζ−zg = 0, then we say that g is a (singular)
weight with respect to z if (5.1) holds for any smooth weight with compact support.
In view of Lemma 5.1 this definition is consistent with the previous one when g is
smooth. For instance, [z] is a weight with respect to z.

Proposition 5.2. If g is a singular weight with respect to z with compact support
in Ω and φ is holomorphic, then

(5.2)
∫
gφ = φ(z).

More generally, if φ ∈ L0(Ω) and ∇ζ−zφ = 0, then

(5.3)
∫
g ∧ φ = φ0,0(z).

Proof. Let χ be a curoff function that is 1 in a neighborhood of z and let u be a form
that fulfills (3.2) and is smooth outside z. Then g′ = χ− ∂̄χ ∧ u is a smooth weight
with compact support, and so ∫

g ∧ g′ = 1.

Notice that w = (χ−1)u is smooth and ∇ζ−zw = g′−1. Thus ∇(g∧w) = g∧ g′− g.
Now (5.2) follows from Stokes’ theorem.

If φ0,0 = 1, then then g′ ∧ φ is a smooth weight with compact support, and
g ∧ φ = g ∧ g′ ∧ φ, so by definition (5.2) holds. If φ0,0(0) 6= 0 we apply the result to
φ/φ0,0(0). If φ0,0(0) = 0, we apply the same argument to φ+ 1. �

Notice that g′ = χD − ∂̄χD ∧ u is a singular weight with compact support. Thus
Proposition 4.2 follows from (5.2).

When we deal with singular weights we must avoid formulas like (4.1) with bound-
ary integrals. Instead we use smooth regularizations of χD. That is, we choose the
smooth weight

g′ = χ− ∂̄χ ∧ u
with compact support and get the representation

φ(z) =
∫
χgφ−

∫
∂̄χ ∧ uχgφ

as the analoge of (4.1). In general we also want a holomorphic dependence of z. Let
us first consider the ball again.

Example 5.3. Notice that if |z| < |ζ|, then

s =
1

2πi
∂|ζ|2

|ζ|2 − ζ̄ · z
is defined, and δζ−zs = 1. Let K be the closed unit ball and assume that χ is a
cutoff function the the ball B(0, R), R > 1, that is 1 in a neighborhood of K. Then
for each z in a neighborhood of K,

g′ = χ+ ∂̄χ ∧ s/∇ζ−zs
is a weight, with respect to z, with compact support in Ω, that depends holomorphi-
cally on z. If g is any weight with respect to z we thus have the representation

φ(z) =
∫
g′ ∧ gφ.
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Notice that

s

∇ζ−z
=

n∑
k=1

s ∧ (∂̄s)k−1 =
n∑
k=1

1
(2πi)k

∂|ζ|2 ∧ (∂̄∂|ζ|2)k−1

(|ζ|2 − ζ̄ · z)k
.

�

There is a similar weight for any Stein compact K.

Example 5.4. Let K ⊂⊂ Ω be a Stein compact and χ a cutoff function in Ω that
is 1 in a neighborhood of K. Then there is a (1, 0)-form s(·, z) on the support of
∂̄χ, depending holomorphically on z in a neighborhood of K, such that δζ−zs = 1.
In fact, to begin with can find, for a fixed ζ ′, a form a, depending holomorphically
on z, such that δζ−za = 1 at ζ = ζ ′ (since the tuple ζ ′j − zj is non-vanishing on the
Stein compact K there are holomorphic functions aj in a neighborhood of K such
that a1(ζ ′1 − z1) + · · · + an(ζ ′n − zn) = 1/2πi). Then for ζ close to ζ ′, s = a/δζ−za
is holomorphic in a neighborhood of K and δζ−zs = 1. By a partition of unity we
obtain the desired form. Now g = χ+ ∂̄χ∧s/∇ζ−zs is a weight with respect to each z
in a neighborhood of K, with compact support in Ω, and depending holomorphically
on z. �

Lemma 5.5. If w is any current in L−1(Ω), then

(5.4) g = 1 +∇ζ−zw
is a weight with respect to z.

Proof. In fact, if g′ is a smooth weight with compact support, then∫
g ∧ g′ =

∫
g′ +

∫
∇ζ−z(w ∧ g′) = 1

since the the last term in the expression in the middle vanishes by Stokes’ theorem.
�

Remark 5.6. In fact, any weight g has the form (5.4), and if g is smooth, then w can
be chosen to be smooth. Here is a sketch of a proof: Take h = g − 1. Assume that
z = 0 and write ∇ = ∇ζ . If ∇w′ = h in a neighborhood of 0 and ∇w′′ = h outside 0
and χ is a suitable cutoff function, then

w = χw′ + (1− χ)w′′ + ∂̄χ ∧ u ∧ (w′ − w′′)
solves ∇w = h globally. Outside 0 we can take w = u ∧ h. It is thus enough to
solve ∇w = h in a neighborhood of 0. By solving a sequence of ∂̄-equations in this
neighborhood, starting with ∂̄vn,n−1 = hn,n, we find that

h = α+∇v,
where α is holomorphic. The assumption∫

h ∧ g′ = 0

for smooth weights with compact support, implies that

0 =
∫
αg′ = α(0).

It is now possible to find a holomorphic β such that ∇β = δzβ = α. Thus w = v+ β
will do. �
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Remark 5.7. In view of the previous remark it is easy to check that if g ∈ L0(Ω) and
∇ζ−zg = 0, then g is a weight if and only if

∫
g ∧ g′ for some smooth weight with

compact support. �

Remark 5.8. Remark 5.6 can be put in a more general context. The first argument
shows that the cohomology of the ∇ζ−z-complex

∇ζ−z→ Lk(Ω)
∇ζ−z→ Lk+1(Ω)

∇ζ−z→

coincides with the cohomology of the germs at z, i.e., Hk(L•(Ω)) = Hk(L•z). Next no-
tice that L•z,∇ζ−z is the total complex associated with the double complex (M`,k.d

′, d′′) =
(Ck,−`, δζ−z, ∂̄). Since it is exact with respect to ∂̄ except at level 0, where the
(co)homology is O−`z , the module of germs of holomorphic −`-forms, it follows from
Lemma 5 that

Hk(L•z) = H−k(O•z).
It is well-known, cf., ???, that the right hand side vanishes except at k = 0, where it
is C. Precisely the same argument works for smooth forms.

Check details!!! �

6. A glimse of division-interpolation formulas

We shall now consider a simple example of a division-interpolation formula. Let f
be holomorphic in the ball B(0, R) and let h be a holomorphic (1, 0)-form such that
δζ−zH = f(z)− f .

Remark 6.1. Such a form h is called a Hefer form for f . It can be obtained elemen-
tarily in a convex domain like the ball. In fact,

f(z)− f(ζ) =
∫ 1

0
dtf(z + t(ζ − z)) =

n∑
1

(ζj − zj)
∫ 1

0

∂f

∂wj
(z + t(ζ − a))dt

so we can take h = h1(ζ, z)dζ1 + · · ·+ hn(ζ, z)dζn where

hj(ζ, z) =
∫ 1

0

∂f

∂wj
(z + t(ζ − a))dt.

�

Let us assume that f is not identically zero. From distribution theory it is known
that there is a distribution U such that such that fU = 1. Before long we will discuss
a canonical choice but for the moment any such U will do. Notice that R = ∂̄U is
a (0, 1)-current. We claim that if φ is holomorphic, then φ = fv for a holomorphic
function v if and only if φR = 0. In fact, φ = fv for a holomorhic v if and only if
φU = fvU = v is holomorhic, which holds if and only if ∂̄(φU) = φR = 0.

In view of Lemma 5.5, g′ = 1 +∇ζ−zhU is a weight with respect to z. A simple
computation reveals that

g′ = f(z)U + h ∧R.
Let g be a weight with compact support in B(0, R) and depending holomorphically
on z in a neighborhood of the closed unit ball K. If Φ ∈ O(B(0, R)) we thus have
the representation

(6.1) Φ(z) = f(z)
∫
UgΦ +

∫
h ∧R ∧ gΦ.
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Notice that the second term is holomorphic in a neighborhood of K. It is the
remainder when trying to divide Φ by f . If φ is any section of the quotient sheaf
O/(f) over B(0, R) it is the image of a global Φ (since the ball is Stein) or in other
words, Φ is an extension of φ. It follows from (6.1) that

Ψ(z) =
∫
h ∧R ∧ gφ

is a holomorphic extension of φ to a neighborhood of of K.

Remark 6.2. In this argument we relied on the a priori existence of a global extension
Φ of φ. One can prove directly that Ψ is an extension. To this end fix a point z0 and
let Φ be a local extension at z0. Choose a weight g̃ with support close to z0. Then
by the argument above

Φ̃(z) =
∫
h ∧R ∧ g ∧ g̃φ

is a local extentsion of φ. Now, 1−g̃ = ∇w where w is smooth, and∇(h∧R) = f(z)R,
so

H ∧R ∧ g ∧ (1− g̃)φ = ∇(h ∧R ∧ g ∧ (1− g̃)φ) + f(z)R ∧ g ∧ wφ.
By Stokes’ theorem we have, for z close to z0, that

Ψ(z)− Φ̃(z) =
∫
h ∧R ∧ g ∧ (1− g̃)φ = f(z)

∫
R ∧ g ∧ wφ.

We conclude that also Ψ is a local extension of φ at z0. �

Let now φ be a smooth function such that φ = fa where a is smooth. Then
∂α
ζ̄
φ = f∂α

ζ̄
a and hence

(6.2)
(
∂αζ̄ φ

)
R = 0

for all multiindices α. Indeed we have

Theorem 6.3. If f is holomorphic and φ is smooth, then φ = fa where a is smooth
if and only if (6.2) holds for all α.

First proof. Assume that (6.2) holds and let a := φU . Then fa = φfU = φ, so we
have to prove that a is smooth. The hypothesis implies that

(6.3) ∂αz̄ a = (∂αz̄ φ)U

for all α. Since R has some finite order N ′ it belongs to some Sobolev space W−N .
Moreover, if ∂̄ψ ∈W r then ψ ∈W r+1. From (6.3) we can thus conclude that a ∈W k

for all k, which implies that a is smooth. The last statement follows for instance from
the Fourier transform. �

We shall now give a proof based on integral representation that we shall generalize,
later on, to ideals generated by more than one function f . Since the statement is
local, assume we are in a ball X ⊂ Cn, identify X with the set {(ζ, ζ̄) ∈ C2n; ζ ∈ X}
and let X̃ be an open neighborhood of X in C2n

ζ,ω. Assume that φ is smooth in a
neighborhood of the closure of X and consider

(6.4) φ̃(ζ, ω) =
∑
α

(∂αζ̄ φ)(ζ)
(ω − ζ̄)α

α!
χ(λ|α|(ω − ζ̄)),
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where χ is a cutoff function in Cn which is 1 in a neighborhood of 0, and λk are
positive numbers. If λk →∞ fast enough, the series converges to a smooth function
in X̃ such that

φ̃(ζ, ζ̄) = φ(ζ),
and

∂̄φ̃(ζ, ω) = O(|ω − ζ̄|∞).

Such a function φ̃ is called an almost holomorphic extension of φ. If φ is realanalytic
one can take λk = 1 for all k and then φ̃ is the holomorphic extension of φ.

Lemma 6.4. Let vz denote the Bochner-Martinelli form in X̃ with respect to the
point (z, z̄), and let

Φz(ζ, ω) = φ̃(ζ, ω)− ∂̄φ̃ ∧ vz.
Then Φz is smooth in ζ, ω, z and ∇(ζ,ω)−(z,z̄)Φz = 0. Moreover, if (6.2) holds for all
α, then Φz ∧ (R⊗ 1) = 0.

Proof. Since

vz =
b

∇(ζ,ω)−(z,z̄)b
,

where b =
∑n

1 (ζj − zj)dζj +
∑n

1 (ωj − z̄j)dωj , we have that

Φz(ζ, ω) = φ̃(ζ, ω) +
2n∑
`=1

O(|ω − ζ̄|∞)
(|ζ − z|2 + |ω − z̄|2)`−1/2

,

if φ is smooth, and thus Φz is smooth. If (6.2) holds for all α, then also (∂α
ζ̄
∂̄φ)∧R = 0

for all α and therefore φ̃ ∧R⊗ 1 = 0 and ∂̄φ̃ ∧R⊗ 1 = 0. �

Second proof of Theorem 6.3. Notice that f ⊗ 1 · U ⊗ 1 = 1 in X̃. From Lemma 5.2
and Lemma 6.4 we have the representation

Φz
0,0(z, z̄) = f(z)

∫
eX U(ζ)g ∧ Φz(ζ, ω) +

∫
eX Φz(ζ, ω) ∧ h ∧R(ζ).

If now (6.2) holds for all α, then the second integral vanishes. The first integral
depends smoothly on z, and Φz

0,0 = φ̃(z, z̄) = φ(z) and so Theorem 6.3 is proved. �

7. Koppelman formulas in domains in Cn

If f = f1dζ is a smooth (0, 1)-form in D ⊂ C such that∫
D
|f1|dV <∞,

then
u(z) =

∫
D
ωζ−z ∧ f

is a smooth solution to ∂̄u = f in D; if f has compact support it follows from (4.2)
and (1.2), the general case follows by writing f = χf + (1 − χ)f . We shall now
consider multivariable analogues.

Let Bn,n−1(η) be the Bochner-Martinelli form and let η : Cn
ζ × Cn

z → Cn
η be the

mapping η(ζ, z) = ζ − z. We let Bn,n−1(ζ − z) := η∗Bn,n−1 in Cn
ζ × Cn

z . It is a
smooth form outside the diagonal ∆ in Cn×Cn that is locally integrable on Cn×Cn

in view of (2.4). Notice that η is minus the mapping ν in Section 4, but notice also
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that B(ζ− z) = B(z− ζ). Notice also that B(ζ− z) is locally integrable on Cn×Cn.
Since ∂̄Bn,n−1 = [0] it follows from (4.2) that

(7.1) ∂̄Bn,n−1(z − ζ) = [∆].

It is instructive, however, to give a direct argument.

Proof of (7.1). We have to check that

(7.2)
∫
ζ

∫
z
Bn,n−1(z − ζ) ∧ ∂̄ψ(ζ, z) =

∫
z
ψ(z, z)

for any form ψ(ζ, z) of total bidegree (n, n). Here ψ(z, z) means the pullback of ψ to
the diagonal ∆ = {(z, z); z ∈ Cn} ⊂ Cn×Cn, i.e., i∗ψ, where i : Cn → Cn×Cn, z 7→
(z, z). Notice that d = dζ + dz and ∂̄ = ∂̄ζ + ∂̄z. Since ∂̄ commutes with pullbacks of
holomorphic mappings, by a complex-linear change of variables on Cn×Cn, keeping in
mind that the orientation is preserved, and that Fubini’s theorem holds, the integral
on the left hand side of (7.2) becomes

−
∫
z

∫
ζ
∂̄ψ(ζ + z, ζ) ∧Bn,n−1(ζ) =∫

z

[ ∫
ζ
∂̄ηψ(ζ + z, z) ∧Bn,n−1(ζ)

]
+
∫
ζ

[ ∫
z
∂̄zψ(ζ + z, z)

]
∧Bn,n−1(ζ).

In the first inner integral, for degree reasons only components of ψ which have bide-
gree (0, 0) in ζ can give a contribution, and in view of (2.2) the inner integral therefore
becomes −ψ(z, z). In the inner integral in the second term for degree reasons one
can replace ∂̄z by dz, and then the integral vanishes by Stokes’ theorem. �

Proposition 7.1 (Koppelman’s formula). Let K be a form in Ω × Ω of bidegree
(n, n − 1) that is locally integrable and smooth outside the diagonal, and such that
∂̄K = [∆]. Let Kp,q be the component of bidegree (p, q) in z, and consequently
(n− p, n− q − 1) in ζ. If f is a smooth (p, q)-form, then

f(z) = ∂̄z

∫
D
Kp,q−1 ∧ f +

∫
D
Kp,q ∧ ∂̄f +

∫
∂D

Kp,q ∧ f, z ∈ D.

It is clear that if we can make the boundary integral disappear, then for each f
such that ∂̄f = 0, we get a solution to ∂̄u = f .

Proof. Let us first assume that f(ζ) has compact support and let ψ(z) be a test form
of bidegree (n− p, n− q). Now,∫

z
ψ(z) ∧ f(z) = −

∫ ∫
∂̄(ψ(z) ∧ f(ζ)) ∧K =

−
∫
z
∂̄zψ(z) ∧

∫
ζ
f ∧K − (−1)p+q

∫
z
ψ(z) ∧

∫
ζ
∂̄f ∧K.

In the first term we can integrate by parts in the z-integral. After moving f and ∂̄f
to the right in the ζ-integrals we then get the equality∫

ψ(z) ∧ f(z) =
∫
z
ψ(z) ∧ ∂̄z

∫
ζ
K ∧ f +

∫
z
ψ(z) ∧

∫
ζ
K ∧ ∂̄f

which is equivalent to the theorem in case f has compact support. The general case
can now be deduced, e.g., by replacing f by χkf where χk ↗ χD and take limits, or
by mimicking the proof of Proposition 1.1. �
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Certainly K = η∗B fulfills the hypothesis in this proposition. We will now look at
more interesting choices. Let b(ζ − z) = η∗b(ζ, z) =

∑n
1 η̄jdηj/2πi|η|2 and let

s(ζ, z) =
n∑
1

sj(ζ, z)d(ζj − zj)

be a form in Ω × Ω such that 2πi
∑
sj(ζj − zj) = 1 outside ∆ ⊂ Ω × Ω, and

s(ζ, z) = b(ζ − z) in a neighborhood of ∆. Let us temporarily call such a form
admissible. Thus 0 =

∑
j ηj ∂̄sj and precisely as in the proof of Lemma 2.1 we

conclude that
K = s ∧ (∂̄s)n−1

is ∂̄-closed outside ∆. Since K = Bn,n−1(z−ζ) in a neighborhood of ∆ we thus have,
cf., (7.1), that ∂̄K = [∆].

Lemma 7.2. If f is a smooth (p, q)-form, then∫
ζ∈D

Kp,q−1(ζ, z) ∧ f(ζ)

is a smooth (p, q − 1)-form in D.

Proof. Fix a point z0. If ω is a small enough neighborhood of z0, then s = b for
all ζ ∈ ω and z close to z0. Take a cutoff function χ in ω such that χ = 1 in a
neighborhood of z0, and consider the decomposition

u(z) =
∫
D

(1− χ)K ∧ f +
∫
χK ∧ f.

The first term is smooth in a neighborhood of z0 since there is no singularity in the
integral. On the other hand, for z close to z0 the second integral is∫

(χf)(ζ) ∧Bn,n−1(z − ζ) = (Bn,n−1 ∗ (χf))(z),

i.e., convolution of Bn,n−1 with a test form, and thus it is smooth. �

Example 7.3 (The Dolbeault-Grothendieck lemma). Assume that f is a smooth (p, q)-
form that is ∂̄-closed in a the unit ball B and q ≥ 1. Then there is a smooth
(p, q − 1)-form u in rB, r < 1, such that ∂̄u = f .

We will use the notation ζ̄ · d(ζ − z) for
∑n

1 ζ̄jd(ζj − zj), etc. Let χ be a cutoff
function in B that is identically 1 in a neighborhood of the closure of rB, r < 1. Then

s(ζ, z) = χ(ζ)b(ζ − z) + (1− χ(ζ))
ζ̄ · d(ζ − z)

2πi(|ζ|2 − ζ̄ · z)
is an admissible form for z in rB, and for ζ close to ∂B it is holomorphic in z. (One can
extend it to an admissible form for z ∈ B as well by taking χ̃(z)s+ (1− χ̃(z))b(ζ− z)
where χ̃ is identically 1 in a neighborhood of the support of χ; but this is immaterial
for us, since we just bother about z in rB.)

If q ≥ 1 it follows that Kp,q = 0 if z ∈ rB and ζ is close to ∂B, since then no dz̄
can occur. Therefore the boundary integral vanishes and we get

f(z) = ∂̄z

∫
B
Kp,q−1 ∧ f +

∫
B
Kp,q ∧ ∂̄f, z ∈ rB.

If in addition ∂̄f = 0 in B we thus get a solution in rB. �
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Remark 7.4. With the notation in Koppelman’s formula one can define the kernel
K as s ∧ (ds)n−1 instead. It is then still true that dK = 0 outside ∆. One can then
prove the slightly more general Koppelman formula

(7.3) f(z) = dz

∫
D
K ∧ f +

∫
D
K ∧ df +

∫
∂D

K ∧ f.

When restricting to the component K ′ of K that is (n, n−1) in dz, dζ we get back the
previous Koppelman formula, but (7.3) also contains other relations that sometimes
are useful. �

Example 7.5 (The Dolbeault-Grothendieck lemma for currents). Assume that f is
a ∂̄-closed (p, q)-current in the unit ball B. If q ≥ 1, then there is a current u in
rB such that ∂̄u = f . If q = 0, then f is holomorphic. Multiplying with a cutoff
function we may assume that f has compact support in B and is ∂̄-closed in r′B,
where r < r′ < 1. Let Bn,n−1 be the Bochner-Martinelli form so that ∂̄Bn,n−1 = [0].
Since f has compact support, thus ∂̄Bn,n−1 ∗f = f−Bn,n−1 ∗ ∂̄f by (4.2). Moreover,
since ∂̄f = 0 in r′B,

Bn,n−1 ∗ ∂̄f(z) =
∫
ζ
Bn,n−1(z − ζ) ∧ ∂̄f(ζ)

for z ∈ r′B and is smooth in z there. Furthermore, it is ∂̄-closed there since both the
other terms are. Thus we can solve ∂̄v = Bn,n−1 ∗ ∂̄f in rB, cf., Example 7.3, and
hence ∂̄(Bn,n−1 ∗ f + v) = f in rB. �

8. Weighted Koppelman formulas

Let Λ be the exterior algebra over the subbundle of T ∗(X×X) spanned by T ∗0,1(X×
X) and the differentials dη1, . . . , dηn. In this section all forms will take values in Λ.
We let δη denote formal interior multiplication with

2πi
n∑
1

ηj
∂

∂ηj
,

on this subbundle, i.e., such that (∂/∂ηj)dηk = δjk. Moreover, we let ∇η = δη − ∂̄.
Now ∂̄ acts on both variables ζ and z. Let

b =
η · dη

2πi|ζ|2
=

∑
j(ζ̄j − z̄j)dηj
2πi|ζ − z|2

=
∂|ζ − z|2

2πi|ζ − z|2
.

and consider the Bochner-Martinelli form

η∗B =
b

∇ηb
= b+ b ∧ (∂̄b) + · · ·+ b ∧ (∂̄b)n−1.

Notice that

η∗Bk,k−1 = b ∧ (∂̄b)k−1 =
1

(2πi)k
∂|η|2 ∧ (∂̄∂|η|2)k−1

|η|2k
so that

(8.1) Bk,k−1 = O(1/|η|2k−1).

Proposition 8.1. The form u = b/∇ηb is locally integrable in Cn × Cn and solves

(8.2) ∇ηu = 1− [∆].
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We already know that ∂̄un,n−1 = [∆]. The rest of the proof is completely analogous
to the proof of Proposition 3.2.

Proposition 8.2. If u is any smooth form in X × X \ ∆, with values in Λ, such
that ∇ηu = 1 and such that (8.1) holds locally at the diagonal. Then u is locally
integrable in X ×X and (8.2) holds.

This is verified precisely as Proposition 3.8.

Example 8.3. Assume that s(ζ, z) is a smooth form in X ×X such that

(8.3) |s| ≤ C|ζ|, |〈s, η〉| ≥ C|η|2

uniformly locally at the diagonal. Then

u =
s

∇ηs
=

s

2πi〈s, η〉
+ · · ·+ s ∧ (∂̄s)n−1

(2πi)n〈s, η〉n

fulfills the hypothesis in Proposition 8.2. �

We say that a (smooth) form g = g0,0 + · · · + gn,n in Ω × Ω with values in Λ is
a weight if ∇ηg = 0 and g0,0 = 1 on the diagonal ∆. As before, if g, g′ are weights,
then g∧g′ is a weight. If w = w1,0 + · · ·+wn,n−1 is a smooth form, then g = 1+∇ηw
is a weight.

If g is a weight and u is a locally integrable form that satisfies (8.2), then

∇η(g ∧ u) = g − [∆].

If we let K = (g ∧ u)n,n−1 and P = gn,n we thus have

∂̄K = [∆]− P
which leads to the weighted Koppelman formula

(8.4) f(z) = ∂̄

∫
D
Kp,q−1∧f+

∫
D
Kp,q∧∂̄f+

∫
∂D

Kp,q∧f+
∫
D
Pp,q∧f, f ∈ Ep,q(D),

cf., Proposition 7.1. Again Kp,q denotes the component of bidegree (p, q) in z and
hence (n− p, n− q − 1) in ζ.

In order to obtain a solution formula for ∂̄ we must get rid of the last two terms.
If g = G(∇ηw1,0), G(0) = 1 and w1,0 depends holomorphically on z, then Pp,q = 0
for q > 0, and so we get rid of the last term in the Koppelman formula. If in addition
the weight vanishes on the boundary, then also the boundary integral vanishes. Let
us consider a couple of examples.

Example 8.4. Let ρ be a convex function in Cn. A Taylor expansion at the point ζ
gives ρ(z) = ρ(ζ) + 2Re 〈∂ρ(ζ), z − ζ〉+Q2, where Q2 ≥ 0. Thus

(8.5) −2Re 〈∂ρ(ζ), η〉 ≤ ρ(z)− ρ(ζ).

Let H =
∑
∂ζjdηj/πi and form the weight

g = e−∇ηH = e−2〈∂ρ(ζ),η〉ei∂∂̄ρ.

Let u = η∗B be the Bochner-Martinelli form. If f is a smooth (0, q)-form in Cn such
that ∫

|f |e−ρ(i∂∂̄ρ)n−k <∞, k = 0, . . . , n− k,

then
v(z) =

∫
K0,q−1 ∧ f
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converges and is a solution to ∂̄v = f in Cn. In fact,

K0,q−1 ∧ f = e−2〈∂ρ(ζ),η〉
n−q∑
k=0

un−k,n−k−1 ∧ (i∂∂̄ρ)k ∧ f,

if un−k,n−k−1 here is the component of u that has bidegree (0, q−1) in z, and in view
of (8.5) thus

|K0,q−1 ∧ f | ≤ Ceρ(z)
n−q∑

0

1
|ζ − z|2(n−k−1)−1

(i∂∂̄ρ)k|f(ζ)|e−ρ(ζ).

It also follows that the solution v roughly speaking has a growth like exp(z). �

In a similar way one can use the weight in Example 4.4 and get solutions to ∂̄v = f
when f has polynomial growth in Cn.

Example 8.5 (Weighted Henkin-Ramirez formulas). Let D = {ρ < 0} be strictly
pseudoconvex with smooth boundary and assume that ρ is a defining function that
is strictly plurisubharmonic in a neighborhood of D. It follows from [?] that there is
a smooth n-tuple H(ζ, z) in a neighborhood of D ×D, holomorphic in z, such that

2Re 〈H(ζ, z), η〉 ≥ ρ(ζ)− ρ(z) + δ|η|2.

If
Φ(ζ, z) = 〈H(ζ, z), η〉 − ρ(ζ)

it follows that

(8.6) 2Re Φ ≤ −ρ(ζ)− ρ(z) + δ|η|2.

Let h = H · dη/2πi. We form the weight

g =
(

1−∇η
h

ρ

)−α
=
( Φ
−ρ

+ ∂̄
h

ρ

)−α
.

If we choose α > 0 we get, cf., Example 4.3, then P = gn,n behaves like (−ρ(ζ))α−1

for fixed z ∈ D. We get representation formulas, holomorphic in z that are very
similar to the ones on the ball.

Moreover, assume that f is smooth and ∂̄-closed in D and has a growth at the
boundary at most as a power of −ρ. For an appropriate choice of α > 0, and with
K = (g ∧ u)n,n−1, then

v =
∫
D
K0,q−1 ∧ f

is a solution to ∂̄v = f , since the boundary integral in Koppelman’s formula vanishes.
For optimal estimates of the solution, however, it turns out that one should replace

the Bochner-Martinelli form u by a form that is better adapted to the local geometry
at the boundary. Let M(ζ, z) = −H(z, ζ) and let

s = 〈M,η〉M · dη/2πi− ρ(z)|η|2.

Then s satisfies (8.3) and thus u = s/∇ηs will do just as well. Let us compute the
boundary values of the resuling solution when f is a (0, 1)-form. Notice that when
ρ(z) = 0, then s is parallell to M · η/Φ(z, ζ) = m/Φ(z, ζ), which is holomorphic in ζ,
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and hence this term itself is the only contribution to K0,0 from u. Thus we just get
the term gn−1,n−1 from the weight g, which is, cf., the computaion in Example 4.3,

cα
(−ρ

Φ

)n+α−1(
∂̄
h

−ρ

)n−1
.

The second factor is( ∂̄h
−ρ

+
∂̄ρ ∧ h
(−ρ)2

)n−1
=
−ρ(∂̄h)n−1 + (n− 1)(∂̄h)n−2 ∧ ∂̄ρ ∧ h

(−ρ)n
.

Thus

v(z) =
∫
D

(−ρ)α−1m ∧ (ρ∂̄h− (n− 1)∂̄ρ ∧ h) ∧ (∂̄h)n−2 ∧ f
Φ(ζ, z)α+n−1Φ(z, ζ)

.

One can check that |Φ(z, ζ)| ∼ |Φ(ζ, z)|. If z is a fixed point at the boundary, then
{ζ; |Φ(ζ, z)| < ε} is a so-called Koranyi tent with center at ζ. It has length ∼

√
ε in

the complex-tangential directions, and ∼ ε in the last to ones, so that the volume is
like εn+1. One can also check that∫

z∈∂D

1
|Φ|n+γ

∼ 1
(−ρ(ζ))γ

if γ > 0. Notice morover that m = h on the diagonal so that |m ∧ h| ≤ C|η|. From
(8.6) we have that |η| ≤

√
|Φ|. Combining, if α > 1/2, we get the estimate∫

∂D
|v| ≤ C

∫
D
|f |+ (1/

√
−ρ)|∂̄φ ∧ f |.

It was proved independently by Henkin and Skoda, and it was the first triumph
of weighted integral solution formulas. The previously known solution formula, the
Henkin-Ramirez formula, roughly speaking a formula corresponding to α = 0, does
not admit this estimate. �

Beskriv i remark hurman far HR formel.

Remark 8.6. The statements about Φ follows from the fact that−dζΦ|ζ=z = dzΦ|z=ζ =
∂ρ(z) so that

dζRe Φ|ζ=z = −dρ, dζIm Φ|ζ=z = cdcρ,

and similarily for dz, where the constant c depends on the normalization of dc. Notice
that in any case the annihilator of dρ and dcρ is the complex tangent space at ζ.
If we choose real coordinates s1, . . . , s2n such that ds1 = dρ and ds2 = dcρ, then
|Φ| ∼ |s1|+ |s2|+

∑
j≥3 s

2
j . �

Example 8.7. Notice that in the ball,

Φ(ζ, z) = 1− ζ̄ · z
and

〈s, η〉 = |1− ζ̄ · z|2 − (1− |ζ|2)(1− |z|2).
�
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Chapter 2

Multivariable residue currents

1. The one-variable case

Given a holomorphic function f in an open domain X in the complex plane, not
vanishing identically, we want to define the principal value current (distribution)

(1.1)
〈[ 1
f

]
, ξdz ∧ dz̄

〉
= lim

ε→0

∫
|f |>ε

1
f
ξdz ∧ dz̄.

Given that this limit exists, clearly f [1/f ] = 1 in X. We then also have residue
current

(1.2)
〈
∂̄
[ 1
f

]
, ξdz

〉
= lim

ε→0

∫
|f |=ε

1
f
ξdz.

However, the zero set of f is discrete and the attempted definition of [1/f ] is local
so we may assume that z = 0 is the only zero on X.

Remark 1.1. If the test form ξdz is holomorphic, the integrals in the right hand
side of (1.2) are all equal for small ε by Cauchy’s theorem and we interpret this
number as the residue at 0 (times 2πi) of the meromorphic form ξdz/f . If we fix the
holomorphic coordinate z we get the classical notion of residue

Res z=0
ξ

f
:=

1
2πi

∫
|z|=ε

ξ

f
dz.

�

Notice that f(z) = zmg(z) where g is nonvanishing, so locally f(z) = (zφ(z))m,
and we can take w = zφ(z) as a new holomorphic coordinate. Thus it is enough to
consider f(z) = zm. The following proposition is fundamental for residue theory.

Proposition 1.2. For each integer m and test function ξ ∈ D(C) the limit

(1.3)
〈[ 1
zm

]
, ξdz ∧ dz̄

〉
= lim

ε→0

∫
|z|2>ε

ξdz ∧ dz̄
zm

exists and defines a current. We have the following equalities:

(1.4) z
[ 1
zm+1

]
=
[ 1
zm

]
,

(1.5)
∂

∂z

[ 1
zm

]
= −m

[ 1
zm+1

]
, m ≥ 1,

(1.6)
〈
∂̄
[ 1
zm

]
, ξdz

〉
= lim

ε→0

∫
|z|2=ε

ξdz

zm
=

2πi
(m− 1)!

∂m−1

∂zm−1
ξ(0), m ≥ 1,

(1.7) z̄∂̄
[ 1
zm

]
= 0, dz̄ ∧ ∂̄

[ 1
zm

]
= 0, m ≥ 1.

(1.8) ∂
[ 1
zm

]
= −m

[ 1
zm+1

]
dz, ∂∂̄

[ 1
zm

]
= m∂̄

[ 1
zm+1

]
∧ dz, m ≥ 1

(1.9) ∂̄
[ 1
zm

]
∧ dz

m

2πi
= m[0].
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Here, as before, [0] denotes the (1, 1)-current evaluation 0, i.e., 〈[0], ξ〉 = ξ(0) for
test functions ξ, cf., (1.2).

Proof. If m = 1, then 1/z is locally integrable and (1.3) holds by dominated conver-
gence. By Taylor’s formula,

ξ(z) = pmξ(z) + rmξ(z),

where pmξ(z) is a polynomial of degree m− 1 and rmξ(z) = O(|z|m). Consider

I =
∫
ε<|z|2<1

z`z̄kdz ∧ dz̄
zm

.

By the change of variables z 7→ λz with |λ| = 1 we find that I = λ`−k−mI, and hence
I = 0 if `+ k < m. We may assume that ξ has support in the unit disk. Then∫

|z|2>ε

ξ(z)dz ∧ dz̄
zm

=
∫
ε<|z|2<1

ξ(z)dz ∧ dz̄
zm

=
∫
ε<|z|2<1

rmξ(z)dz ∧ dz̄
zm

.

Since rmξ(z) = O(|z|m), we see that the limit in (1.3) exists and that

(1.10)
〈[ 1
zm

]
, ξdz ∧ dz̄

〉
=
∫
|z|<1

rmξ(z)dz ∧ dz̄
zm

.

It is clear from the definition that (1.4) holds. By Stokes’ theorem we have that

m

∫
|z|2>ε

ξdz ∧ dz̄
zm+1

=
∫
|z|2>ε

(∂ξ/∂z)dz ∧ dz̄
zm

±
∫
|z|2=ε

ξdz̄

zm
.

In the last integral we can replace ξ by rmξ for similar symmetry reasons as above,
and then it becomes clear that it is O(ε). Now (1.5) follows. The first equality in
(1.6) follows by Stokes’ formula (notice the orientation!). When m = 1, the second
equality holds because then the integral is just the mean value of ξ (times 2πi) over
the circle with radius ε. When m > 1 we can replace ξ by pmξ and for symmetry
reasons again only the zm−1-term gives a contribution. Its coefficient is precisely
∂m−1ξ/∂zm−1(0)/(m − 1)!, so the equality follows from the case m = 1. The first
equality in (1.7) follows, e.g., from (1.6), whereas the second one is obvious for degree
reasons. Finally, (1.8) follows from (1.6) and (1.7), and (1.9) follows from (1.4) and
(1.6). �

It is often conceptually convenient to treat currents as (generalized) differential
forms and write ∫

z

ξdz ∧ dz̄
zm

rather than 〈[ 1
zm

]
, ξdz ∧ dz̄

〉
.

In particular we identify the principal value current with the associated semi-meromorphic
form.

Corollary 1.3. For a function φ that is holomorphic in a neighborhood of 0 the
following are equivalent:

(i) φ ∈ (zm),

(i) φ∂̄
[

1
zm

]
= 0,
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(iii) ∂`φ
∂z`

(0) = 0, ` = 0, . . . ,m− 1.

Notice that (ii) means that the current φ∂̄[1/zm] vanishes, not to be mixed up
with current acting on a test form! Thus we can represent the ideal (zm) either by
a generator zm, as the annihilator of a residue current, or by so-called Noetherian
differential operators.

Proof. If (i) holds, then φ = ψzm where ψ is holomorphic, and so

φ∂̄
[ 1
zm

]
= ψ∂̄zm

[ 1
zm

]
= ψ∂̄1 = 0,

according to (1.4), and thus (ii) holds. If 〈∂̄[1/zm], φξdz〉 = 0 for all test forms ξdz,
then in view of (1.6), (iii) must hold. Thus (ii) implies (iii). Finally (iii) implies (i)
by Taylor’s formula. �

In the several variable case we will often rely on another way to define the currents
[1/zm] and ∂̄[1/zm]:

Lemma 1.4. Let ξ be a test function in C and m a positive integer. Then

λ 7→
∫
|z|2λξ(z)dz ∧ dz̄

zm

and
λ 7→

∫
∂̄|z|2λ ∧ ξ(z) dz

zm
,

a priori defined when Reλ � 0, both have analytic continuations to Reλ > −1/2,
and the values at λ = 0 are 〈[1/zm], ξdz ∧ dz̄〉 and 〈∂̄[1/zm], ξdz〉, respectively.

Proof. We may assume again that ξ has support in the unit disk. With the same
notation as in the proof of Proposition 1.2 we write ξ = pmξ + rmξ. If Reλ � 0,
then for similar symmetry reasons as before, we have

(1.11)
∫
|z|2λ ξdz ∧ dz̄

zm
=
∫
|z|<1

|z|2λξdz ∧ dz̄
zm

=
∫
|z|<1

|z|2λrmξ(z)dz ∧ dz̄
zm

.

Hence the proposed analytic continuation to Reλ > −1/2 exists and when λ = 0 it
is equal to 〈[1/zm], ξdz ∧ dz̄〉 in view of (1.10). The second integral in the lemma is〈

∂̄|z|2λ/zm, ξdz
〉

=
〈
−|z|2λ/zm, ∂̄ξ ∧ dz

〉
for large Reλ, and from the first part of the lemma and the uniqueness of analytic
continuation, the value at λ = 0 is 〈−[1/zm], ∂̄ξ ∧ dz〉 = 〈∂̄[1/zm], ξdz〉. �

It is often convenient to suppress the test form and say: The functions λ 7→
|z|2λvλ/zm and ∂̄(|z|2λvλ)/zm, a priori just defined for Reλ� 0 have current-valued
analytic continuations to Reλ > −1/2, and the values at λ = 0 are precisely the
principal value current 1/zm and the residue current ∂̄(1/zm), respectively. Thus[ 1

zm

]
= lim

ε→0
χ|z|2>ε

1
zm

=
|z|2λ

zm
∣∣
λ=0

.

Remark 1.5. Notice that∫
|z|2λ

[ 1
zm

]
ξdz ∧ dz̄ =

∫
|z|2µ

zm
|z|2λξdz ∧ dz̄

∣∣∣
µ=0

=
∫
|z|2λ 1

zm
ξdz ∧ dz̄,

if Reλ� 0. By the uniqueness of analytic continuation it must hold in general, i.e.,
|z|2λ[1/zm]|λ=0 = [1/zm], cf., also Proposition 4.1 below. �
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2. Tensor products

We will now consider tensor products of one-variable principal-value currents.

Definition 1. Given strictly positive integers m1, . . . ,mr, r ≤ n, we define the
current [ 1

zm

]
=
[ 1
zm1

1 · · · zmrr

]
in Cn as the tensor product of the currents [1/zm1

1 ], . . . , [1/zmrr ].

It follows from Proposition 1.2 that

(2.1)
〈[ 1
zm1

1 · · · zmrr

]
, ξdz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n

〉
=

lim
ε1→0

· · · lim
εr→0

∫
|z1|2>ε1,...,|zr|2>εr

ξdz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n
zm1

1 · · · zmrr

if ξ is a test form in Cn. We shall now consider other ways to represent this principal
value current.

We say that a function χ on the real line is a smooth approximand of the character-
istic function χ[1,∞) of the interval [1,∞) if χ is smooth, equal to 0 in a neighborhood
of 0 and 1 in a neighborhood of ∞. In the sequel the notation

χ ∼ χ[1,∞)

means that χ is either χ[1,∞) or a smooth approximand.

Let a1, . . . , aρ be strictly positive integers, r ≤ ρ ≤ n, and let us write za =
za1

1 · · · z
aρ
ρ and zm = zm1

1 · · · zmrr . Moreover, let dz ∧ dz̄ = dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n

Lemma 2.1. Let v be a smooth strictly positive function and let χ ∼ χ[1,∞). For
any test function ξ,

(2.2) lim
ε→0

∫
χ(|za|2v/ε)ξdz ∧ dz̄

zm
=
〈[ 1
zm

]
, ξdz ∧ dz̄

〉
.

Moreover,

λ 7→
∫
|za|2λvλ ξdz ∧ dz̄

zm
,

a priori defined for Reλ� 0, has an analytic continuation to Reλ > −ε and

(2.3)
∫
|za|2λvλ ξdz ∧ dz̄

zm

∣∣∣
λ=0

=
〈[ 1
zm

]
, ξdz ∧ dz̄

〉
.

Proof. We first consider the case v = 1. Notice that

(λ1, . . . , λρ) 7→ ϕ(λ1, . . . , λρ) =
∏̀
j=1

|zajj |
2λj

1
z
mj
j

,

with mj = 0 for j > r, is holomorphic in the product set {Re 2ajλj > −1}. In
particular, λ 7→ ϕ(λ, . . . , λ) is holomorphic for Reλ > −ε. Now (2.3) follows from
Lemma 1.4.
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Recall that Taylor’s formula with remainder term of order m for a function ψ of
one complex variable w can be written

ψ(w) =
m−1∑
k=0

1
k!

∑
j+`=k

wjw̄`
∂kψ

∂wj∂w̄`
(0)+

∑
j+`=m

wjw̄`
1

(m− 1)!

∫ 1

0

∂mψ

∂wj∂w̄`
(tw)(1− t)m−1dt.

Let us first apply it to z1 7→ ξ(z1, . . . , zn) with remainder term of order m1. Then
we apply the same formula to

z2 7→
∂mξ

∂zj1∂z̄
`
1

(tz1, z2, . . . , zn)

with remainder term of order m2 and plug the result into the first formula. Proceed-
ing in this way we end up with a smooth decomposition

ξ = pmξ + rmξ,

where rmξ = O(|z1|m1 · · · |zr|mr) and pmξ has the following property: For each term
τ` in pmξ there is an index j = j(`) such that τ` is a monomial in zj of degree at
most mj − 1, for each fixed value of the other variables. By a symmetry argument
as in the proof of Proposition 1.2 it follows that

(2.4)
∫
|zj |<1

|zajj |
2λ τ`dzj ∧ dz̄j

z
mj
j

= 0

if Reλ� 0.
We may assume that ξ has support in the unit polydisk ∆n = {|zj | < 1}. For

Reλ� 0 we now have, in view of (2.4) and Fubini’s theorem, that∫
|za|2λ ξdz ∧ dz̄

zm
=
∫

∆n

|za|2λ ξdz ∧ dz̄
zm

=
∫

∆n

|za|2λ rmξdz ∧ dz̄
zm

.

In the last integral, the integrand is bounded, so by (2.3) we get

(2.5)
〈 1
zm

, ξdz ∧ dz̄
〉

=
∫

∆n

rmξdz ∧ dz̄
zm

.

In the same way,∫
χ(|za|2/ε)ξdz ∧ dz̄

zm
=
∫

∆n

χ(|za|2/ε)ξdz ∧ dz̄
zm

=
∫

∆n

χ(|za|2/ε)rmξdz ∧ dz̄
zm

.

Therefore,

(2.6) lim
ε→0

∫
χ(|za|2/ε)ξdz ∧ dz̄

zm
=
∫

∆n

rmξdz ∧ dz̄
zm

.

Combining (2.5) and (2.6) we get (2.2) in case v = 1.
Now suppose that v is smooth and strictly positive. Notice that pm(vµξ) and

hence also rm(vµξ) are entire functions of µ. It follows that

(λ, µ) 7→
∫
|za|2λvµ ξdz ∧ dz̄

zm
=
∫

∆n

|za|2λ rm(vµξ)dz ∧ dz̄
zm

is holomorphic in the set {Reλ > −ε} × Cµ, and taking λ = µ = 0 we get (2.3).
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Close to 0 we can make the smooth non-holomorphic change of coordinates w1 =
v1/2m1z1, wj = zj , j = 2, . . . , n. After scaling we may assume that this works in the
unit polydisk. Then

(2.7)
∫
χ(|za|2v/ε)ξdz ∧ dz̄

zm
=
∫
χ(|wa|2/ε) ξ̃(w)dw ∧ dw̄

wm

for a certain smooth function ξ̃(w). From (2.2) with v = 1 we know that

(2.8) lim
ε→0

∫
χ(|wa|2/ε) ξ̃(w)dw ∧ dw̄

wm
=
〈 1
wm

, ξ̃dw ∧ dw̄
〉
.

However, we also have that∫
|za|2λvλ ξ(z)dz ∧ dz̄

zm
=
∫
w
|wa|2λ ξ̃(w)dw ∧ dw̄

wm
,

and in view of (2.3) we conclude that

〈[1/zm], ξdz ∧ dz̄〉 = 〈[1/wm], ξ̃dw ∧ dw̄〉.
The general case follows from this equality in combination with (2.8) and (2.7). �

3. The principal value current [1/f ]

Let f be a holomorphic function on the analytic space X. We are now going to
define the principal value current 1/f .

Recall that a proper holomorphic mapping π : X̃ → X is a modification if there
is an analytic subset V ⊂ X such that the restriction of π to X̃ \ π−1V is a biholo-
morphism onto X \ V . By Hironaka’s theorem there is modification (resolution of
singularities) π : X̃ → X such that the zero set of π∗f has normal crossings. This
means that in a neighborhood of each point in X̃ one can choose local coordinates
in which π∗f is a monomial.

Let v be a smooth strictly positive function and consider, for λ such that Reλ� 0,

(3.1)
∫
X

|f |2λvλξ
f

=
∫

eX
|π∗f |2λπ∗vλπ∗ξ

π∗f
.

Since π is proper and ξ has compact support, π∗ξ has compact support in X̃. Thus
we have a finite open cover Uk such that π∗f is a monomial in each Uk for appropriate
local coordinates. If ρk is a partition of unity ρk subordinate to Uk we have∫

X

|f |2λvλξ
f

=
∑
k

∫
|π∗f |2λπ∗vλπ∗ξ

π∗f
ρk.

Fix a k and assume that π∗f = sm1
1 · · · smrr =: sm in Uk. Thus

(3.2)
∫
|π∗f |2λπ∗vλπ∗ξ

π∗f
ρk =

∫
s
|sm|2λvλ α

sm
,

where α is a smooth form with compact support. It now follows from Lemma 2.1
that the analytic continuation to Reλ > −ε exists, and that the value at λ = 0 is
independent of v.

Definition 2. We define 〈[ 1
f

]
, ξ
〉

:=
∫
X

|f |2λvλξ
f

∣∣∣
λ=0

.
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Remark 3.1. If follows now from (3.1) and the definition that〈[ 1
f

]
, ξ
〉

=
〈[ 1
π∗f

]
, π∗ξ

〉
which means that [ 1

f

]
= π∗

([ 1
π∗f

])
.

�

Example 3.2. Notice that if a is a non-vanishing holomorphic function, then

a
[ 1
af

]
=
[ 1
f

]
.

�

Example 3.3. If f is a holomorphic section of a Hermitian line bundle L→ X, then
in a local frame |f |2L = |f |2v for some smooth strictly positive function v. It follows
that [ 1

f

]
:=
|f |2λL
f

∣∣
λ=0

is a well-defined L−1-valued current. �

With the same notation as before we have, if χ ∼ χ[1,∞),∫
χ(|f |2v/ε) ξ

f
=
∫
χ(|π∗f |2π∗v/ε)π

∗ξ

π∗f
=
∑
k

∫
χ(|π∗f |2π∗v/ε)π

∗ξ

π∗f
ρk.

Moreover, ∫
χ(|π∗f |2π∗v/ε)π

∗ξ

π∗f
ρk =

∫
χ(|sm|2π∗v/ε) α

sm
.

From Lemma 2.1 we conclude that the limit when ε→ 0 exists and is equal to (2.7).
Thus we have proved

Proposition 3.4. Assume that v is smooth and strictly positive on X and that
χ ∼ χ[1,∞). Then [ 1

f

]
= lim

ε→0
χ(|f |2v/ε) 1

f
.

We shall now see that one can replace χ(|f |2v/ε) by more general regularizations.

Lemma 3.5. Let ψ be a smooth function on [0,∞] such that ψ(∞) = 1 and ψ(0) = 0.
Then (d/dt)ψ(t/ε)→ δ0 as measures on [0,∞).

Here “smooth at ∞” means that ψ̃(s) = ψ(1/s) is smooth at 0.

Proof. First notice that ψ̃′(s) = −ψ′(1/s)/s2, and thus ψ′(t) = O(1/t2) as t → ∞.
If φ is continuous with compact support on [0,∞), therefore

|φ(εt)ψ′(t)| ≤ C

(1 + t)2

where C is independent of ε. By the dominated convergence theorem we have∫ ∞
0

d

dt
ψ(t/ε)φ(t)dt =

∫ ∞
0

d

dτ
ψ(τ)φ(ετ)dτ → φ(0)

∫ ∞
0

d

dτ
ψ(τ)dτ = φ(0).

�
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Proposition 3.6. Let ψ be as in the lemma and let f be a holomorphic function on
X and v smooth and strictly positive. Then for any k ≥ 1,

lim
ε→0

∫
ψ(|f |2v/ε)k ξ

f
=
〈 1
fk
, ξ
〉
, ξ ∈ Dn,n(X).

Proof. On the set Ω = {(z, t) ∈ Cn × (0,∞); |f(ζ)|2v > t} we have, for each fixed ε,
that ∣∣∣ 1

f
ξ
d

dt
ψ(t/ε)k

∣∣∣ ≤ C 1√
t
.

Hence we have an integrable singularity on Ω and by Fubini’s theorem we get∫ ∞
0

d

dt
ψ(t/ε)k

∫
|f |2v>t

ξ

fk
dt =

∫
ξ

fk

∫ |f |2v
0

d

dt
ψ(t/ε)kdt =

∫
ψ(|f |2v/ε)kξ

fk
.

However,

J(t) =
∫
|f |2v>t

ξ

fk

is a continuous function with compact support on [0,∞) such that J(0) = 〈1/fk, ξ〉
according to Proposition 3.4, with χ = χ[1,∞), and so Proposition 3.6 follows from
Lemma 3.5 applied to ψk instead of ψ. �

Proposition 3.6 is more general than Proposition 3.4 and for instance allows us to
take ψ(t) = t/(1 + t).

Example 3.7. If v is smooth and strictly positive and k ≥ 1, then

lim
ε→0

( vf̄

v|f |2 + ε

)k
=
[ 1
fk

]
.

�

Example 3.8. Even if ft(z) belongs holomorphically on a parameter t it is not true
that [1/ft] and thus neither ∂̄[1/ft] are necessarily even continuous in t. Take ft(z) =
z2 − t2. Since

1
z2 − t2

=
1
2t

( 1
z − t

− 1
z + t

)
it follows that 〈

∂̄
[ 1
z2 − t2

]
, ξdz

〉
=
ξ(t)− ξ(−t)

2t
for t 6= 0, and if for instance ξ(z) = z̄ in a neighborhood of 0, then the limit when
t→ 0 does not exist. �

4. Elementary pseudomeromorphic currents

It turns out that many of the currents that appear in multivariable residue the-
ory are pseudomeromorphic. These currents have several geometric features. For
instance, a pseudomeromorphic current µ of bidegree (∗, p) must vanish if its sup-
port is contained in a variety with codimension larger than p. In the next sections
we will see that if µ has support on the variety V with codimension p and ∂̄µ = 0,
then µ must be a so-called Coleff-Herrera current3. We shall also see that if V is a

3Notice the analogy with normal currents. If a normal (p, p)-current µ has support on V and
codimV > p then µ = 0. If codimV = p, then µ is (the Lelong current associated with) an analytic
cycle with support on V , see, e.g., [58, ???].



41

subvariety of X, then the restriction of a pseudomeromorphic current µ to the open
set X \ V has a natural extension as a pseudomeromorphic current on X. To begin
with we discuss elementary pseudomeromorphic currents.

Let tj be coordinates in Cn and let α be a smooth form with compact support.
We know that

(4.1) τ = α ∧ 1
tm1
1

· · · 1
tmkk

∂̄
1

t
mk+1

k+1

∧ . . . ∧ ∂̄ 1
tmrr

is a well-defined current, since it is the tensor product of one-variable currents (times
α). We say that τ is an elementary pseudomeromorphic current, and we refer to
1/tmjj and ∂̄(1/tm`` ) as its principal value factors and residue factors, respectively. It
is clear that (4.1) is commuting in the principal value factors and anti-commuting in
the residue factors. We say the the affine set {tk+1 = · · · = tr = 0} is its elementary
support. Clearly the support of τ is contained in the intersection of the elementary
support and the support of α.

It is readily shown that if τ is elementary as in (4.1), then

(4.2)

∂̄τ =
k∑
j=1

(−1)degαα ∧ 1
tm1
1

· · · 1
t
mj−1

j−1

1
t
mj+1

j+1

· · · 1
tmkk

∂̄
1
t
mj
j

∧ ∂̄ 1
t
mk+1

k+1

∧ . . . ∧ ∂̄ 1
tmrr

+

∂̄α ∧ 1
tm1
1

· · · 1
tmkk

∂̄
1

t
mk+1

k+1

∧ . . . ∧ ∂̄ 1
tmrr

,

and thus a finite sum of elementary pseudomeromorphic currents. In the same way
we see, cf., (1.8), that ∂τ is a finite sum of elementary pseudomeromorphic currents.
It is clear that γ ∧ τ is elementary if γ is a smooth form.

Lemma 4.1. If k+ 1 ≤ ` ≤ p, i.e., ` corresponds to any of the residue factors, then

(4.3) t̄`τ = 0, dt̄` ∧ τ = 0.

If ta is any monomial, v is smooth and strictly positive, and χ ∼ χ[1,∞), then the
analytic continuation

|ta|2λvλτ |λ=0

and the the limit
lim
ε→0

χ(|ta|2v/ε)τ

both exist. If ta contains a coordinate corresponding to any of the residue factors in
τ , then they both vanish, and otherwise they are both equal to τ .

It follows from the proof that χ(|ta|2v/ε)τ is a well-defined current even if χ =
χ[1,∞) if ε > 0 is small enough. If χ is smooth this problem does not appear.

Proof. The equalities in (4.3) follow immediately from (1.7). If ta contains a factor
tj that corresponds to a residue factor in τ , i.e., k + 1 ≤ j ≤ p, then χ(|ta|2v/ε)
vanishes in a neighborhood of the support of τ so χ(|ta|2v/ε)τ = 0 for all ε > 0.
Moreover, ta vanishes on the support of τ so |ta|2λvλτ = 0 if Reλ � 0. Thus the
analytic continuation trivially exists and is 0.

Now assume that ta has no factor corresponding to any residue factor; say ta

consists of the variables t1, . . . , tν , ν ≤ k. In short hand notation

τ = α ∧ 1
tm′

1
tm′′

∂̄
1
tm′′′

,
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where tm
′

= tm1
1 · · · tmνν , tm

′′
= t

mν+1

ν+1 · · · t
mk
k , and

∂̄
1
tm′′′

= ∂̄
1

t
mk+1

k+1

∧ . . . ∧ ∂̄ 1
tmrr

.

If η is a test form, then

(4.4) 〈|ta|2λvµτ, η〉 =
〈
|ta|2λ 1

tm′
1
tm′′

∂̄
1
tm′′′

, vµα ∧ η
〉

;

thus a tensor products of currents acting on the test form vµα ∧ η. It now follows
from (the proof of) Lemma 2.1 that (4.4) is holomorphic for Reλ > −ε, µ ∈ C, and
that the value at λ = 0 is〈 1

tm′
1
tm′′

∂̄
1
tm′′′

, vµα ∧ η
〉

= 〈vµτ, η〉.

Letting µ = 0 we get 〈τ, η〉.
Notice now that

(4.5) 〈χ(|ta|2v/ε)τ, η〉 =
〈
χ(|ta|2v/ε) 1

tm′
1
tm′′

∂̄
1
tm′′′

, α ∧ η
〉
.

If v = 1 we have again a tensor product of currents acting on the test form α ∧ η,
and by Lemma 2.1, χ(|ta|2/ε)(1/tm′)→ 1/tm

′
, so (4.5) tends to 〈τ, η〉 as claimed. If

v is arbitrary, we first make a non-holomorphic change of variables in (4.5) as in the
proof of Lemma 2.1, and then we are back to the case v = 1. �

Notice also that

∂̄(|ta|2λvλ) ∧ τ |λ=0

and the the limit

lim
ε→0

∂̄χ(|ta|2v/ε) ∧ τ

both exist and are equal to a certain sum of elementary pseudomeromorphic currents.
This follows from the equality

∂̄|ta|2λvλ ∧ τ = ∂̄
(
|ta|2λvλτ

)
− |ta|2λvλ ∧ ∂̄τ,

the analogous one for ∂̄χ(|ta|2v/ε) ∧ τ), the proposition, and (4.2).

Assume now that tb is a monomial with the same coordinate factors as ta. It
follows that

(4.6)
[ 1
tb

]
τ :=

|ta|2λ

tb
vλτ |λ=0

exists and defines an elementary pseudomeromorphic current. In fact, if ta contains
one of the residue factors, then we get 0; otherwise we get

α ∧ 1
tm′+a

1
tm′′

∂̄
1
tm′′′

,

with the notation from the proof of the lemma. Again we also have

(4.7)
[ 1
tb

]
τ = lim

ε→0
χ(|ta|2v/ε) 1

tb
τ
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5. The sheaf of pseudomeromorphic currents

Fix a point x ∈ X. We say that a germ µ of a current at x is pseudomeromorphic
at x, µ ∈ PMx, if it is a finite sum of currents of the form π∗τ = π1

∗ · · ·πm∗ τ , where
U is a neighborhood of x,

(5.1) Um
πm−→ · · · π2

−→ U1
π1

−→ U0 = U ,

each πj : Uj → Uj−1 is either a modification, a simple projection Uj−1 × Z → Uj−1,
or an open inclusion (i.e., Uj is an open subset of Uj−1), and τ is elementary on Um.

By definition the union PM = ∪xPMx is an open subset of the sheaf C = CX
and hence it is a subsheaf, the sheaf of pseudomeromorphic currents, of C. A section
µ of PM over an open set V ⊂ X, µ ∈ PM(V), is then a locally finite sum

(5.2) µ =
∑

(π`)∗τ`,

where each π` is a composition of mappings as in (5.1) (with U ⊂ V) and τ` is
elementary. For simplicity we will often suppress the subscript ` in π`.

If ξ is a smooth form, then, cf., Section 6, ξ ∧ π∗τ = π∗
(
π∗ξ ∧ τ

)
. Thus PM

is closed under exterior multiplication by smooth forms. Since ∂̄ commutes with
push-forwards it follows, in view of (4.2), that PM is closed under ∂̄.

Lemma 5.1. Assume that p : Y → X ⊂⊂ Cn is a modification and τ is an elemen-
tary pseudomeromorphic current in X (with respect to the standard coordinates in
Cn). Then there is a modification p̃ : Ỹ → Y such that

τ = p∗p̃∗
∑
`

τ`,

where the sum is finite and each τ` is elementary with respect to some local coordinates
in Ỹ . If h is holomorphic in Y we may assume as well that p̃∗h is a monomial times
a nonvanishing factor with respect to the same local coordinate systems.

Proof. Let us first assume that p is a modification and that τ is elementary with
respect to the coordinates tj in X, say of the form (4.1). Notice that p∗tj are global
holomorphic functions in Y . There is a smooth modification p̃ : Ỹ → Y and an open
cover U` of Ỹ such that, for each `, all the functions p̃∗p∗tj are monomials (with
respect to the same local coordinates s) times a nonvanishing holomorphic factor in
U`. Take a partition of unity χ` subordinate to U`. If

τλ := τλ1,...,λr :=
∂̄|t1|2λ1

ta1
1

∧ . . . ∧ ∂̄|tk|
2λr

takk
∧ α |tk+1|2λk+1

t
ak+1

k+1

· · · |tr|
2λr

tarr
,

where r ≤ n, then
τ = τλ1,...,λr |λr=0 · · · |λ1=0.

Let π = p̃ ◦ p. For λ� 0 we have that

π∗τλ =
∑
`

χ`π
∗τλ.

By repeated applications of Lemma 4.1 it follows, for each `, that

(5.3) χ`π
∗τλ|λN=0 · · · |λ1=0
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exists and is a finite sum τ̃` of elementary currents in U`. Since τλ = π∗π
∗τλ when

Reλ� 0, we conclude that

τ = π∗
∑
`

τ̃` = p∗p̃∗
∑
`

τ̃`.

The last statement about h follows from the proof. �

Proposition 5.2. Assume that µ ∈ PM has support on the zero set V of the
holomorphic function h. Then h̄µ = dh̄ ∧ µ = 0.

This intuitively means that the current τ only involves holomorphic derivatives of
test forms.

Proof. Starting with any representation (5.2) of µ, by repeated use of Lemma 5.1 we
can obtain a new representation (5.2) such that π∗h is a monomial for each `. Let
us take such a representation and decompose it as

µ =
∑
`

π∗τ
′
` +

∑
`

π∗τ
′′
` ,

where τ ′` are those elementary pseudomeromorphic currents that have a residue fac-
tor corresponding to a coordinate factor in π∗h. In other words, those τ` whose
elementary supports are contained in π−1V . Since h vanishes on the support of µ,

0 = χ(|h|2/ε)µ =
∑
`

π∗
(
χ(|π∗h|2/ε)τ ′`

)
+
∑
`

π∗
(
χ(|π∗h|2/ε)τ ′′`

)
for ε > 0. It follows from Proposition 4.1 that the limit of the right hand side is
equal to ∑

`

π∗τ
′′
`

so we can conclude that
µ =

∑
`

π∗τ
′
`.

Now
h̄µ =

∑
`

π∗
(
π∗hτ ′`

)
, dh̄ ∧ µ =

∑
`

π∗
(
dπ∗h ∧ τ ′`

)
,

and from Proposition 4.1 we have that π∗hτ ′` = dπ∗h∧ τ ′` = 0. Thus Proposition 5.2
follows. �

Remark 5.3. In this proof it was advantegous to use the regularization with ε rather
than λ since it is obvious that χ(|h|2/ε)µ = 0 if µ has support on the zero set of h.
A posteriori it is clear that also |h|2λµ = 0. This can also be concluded directly from
[?, Theorem 2.3.11], since V is Whitney regular. �

We now get

Theorem 5.4 (Dimension principle). If µ ∈ PM has bidegree (k, p) and support on
a variety V with codimV > p, then µ = 0.

Proof. Locally Vreg is on the form {w1 = . . . = wp+` = 0} for some ` ≥ 1 and suitable
coordinates (z1, . . . , zn−p−`, w1, . . . , wp+`). From Proposition 5.2 we have that

(5.4) dw̄j ∧ µ = 0, j = 1, . . . , p+ `.
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However, if (5.4) holds, then µ must be of the form

µ = µ′ ∧ dw̄1 ∧ . . . ∧ dw̄p+`.

Since ` ≥ 1 therefore µ = 0. We can conclude that µ = 0 on Vreg so the support must
be contained in V \ Vreg which has codimension at least p + 2. By finite induction
we find that µ = 0. �

Proposition 5.5. If p : X ′ → X is a modification, then

p∗ : PM(X ′)→ PM(X)

is surjective.

Proof. Assume that µ = π∗τ , where π is a composed mapping as in (5.1) and τ is
elementary in Um. It is enough to see that µ = p∗µ

′ for some µ′ ∈ PM(V) where
V = p−1U . The proposition then follows since a general global section is a locally
finite sum of such µ and p is proper.

We claim that (5.1) can be extended to a commutative diagram

(5.5)
Ṽ = Vm

π̃m−→ · · · π̃2−→ V1
π̃1−→ V0 = V

↓pm ↓p1 ↓p
Ũ = Um

πm−→ · · · π2−→ U1
π1

−→ U0 = U
so that each vertical map is a modification and each π̃j is either a modification, a
simple projection, or an open inclusion. To see this, assume that this is done up to
level k. It is well-known that if πk+1 : Uk+1 → Uk is a modification, then there are
modifications π̃k+1 : Vk+1 → Vk and pk+1 : Vk+1 → Uk+1 such that

Vk+1
π̃k+1−→ Vk

↓pk+1 ↓pk
Uk+1

πk+1

−→ Uk
commutes. If instead Uk+1 = Uk ×Z then we simply take Vk+1 = Vk ×Z. Finally, if
i : Uk+1 → Uk is an open inclusion, then we take Vk+1 = p−1

k Uk+1.
By Lemma 5.1 there is a pseudomeromorphic current τ̃ with compact support in

Vm such that pmτ̃ = τ . If π̃ is the composed mapping in the upper line, it follows
that µ′ = π̃∗τ̃ is pseudomeromorphic in V such that p∗µ′ = µ.

�

6. Restrictions of pseudomeromorphic currents

Assume that µ is pseudomeromorphic and V is a subvariety. We shall now see
that the restriction of µ to the open set X \ V has a natural pseudomeromorphic
extension 1X\V µ to X.

Lemma 6.1. Let µ be pseudomeromorphic, h a holomorphic function, and v a
smooth strictly positive function. The function λ 7→ |h|2λvλµ (a priori defined for
Reλ � 0) has a current-valued analytic continuation to Reλ > −ε. If χ ∼ χ[1,∞),
then

(6.1) 1X\V µ = lim
δ→0+

χ(|h|/δ)µ

exists and is equal to |h|2λvλµ|λ=0.
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It follows from the proof that currents in the limit exist for small enough ε > 0
even if χ = χ[1,∞).

Proof. With the setup and notation from the proof of Proposition 5.2 it follows, in
view of Lemma 4.1, that both the limit and the analytic continuation exist, and both
are equal to

∑
π∗τ

′′
` . �

In particular, we see that the limit only depends on the zero set of h and not on
the particular choice of h.

Let V be the germ of a subvariety at x and choose a tuple f of holomorphic
functions whose common zero set is precisely V . We claim that for each germ of a
pseudomeromorphic current µ at x,

1X\V := |f |2λµ|λ=0

exists and is independent of the choice of f . In fact, X ne a suitable neighborhood
of x and let p : X ′ → X be a principalization so that p∗f = f0f ′ as above. If
µ = p∗µ

′, then = |f |2λµ = p∗(|f0|2λ|f ′|2λµ′) an so it follows from Lemma 6.1 that
the analytic continuation exists. If g is another such tuple, then we can find a
common principalization, and it follows from the lemma that the value at λ = 0 only
depends on the set p−1V , and so it only depends on V . It also follows that we also
have

1X\V µ = lim
δ→0

χ(|f |/δ)µ.

It is clear that 1X\V coincides with µ in the open set X \ V , and hence

1V µ := µ− 1X\V µ

is pseudomeromorphic and has support on V . In particular, 1V µ = µ if µ has support
on V .

Notice that if p : X ′ → X is any composition of modifications, simple projections,
and open inclusions, and µ = p∗µ

′, then |f |2λµ = p∗(|p∗f |2λµ′), and hence

(6.2) 1V µ = p∗(1p−1V µ
′).

Moreover, notice that if α is a smooth form, then

(6.3) 1V (α ∧ µ) = α ∧ 1V µ.

Let µ = π∗τ where τ is elementary. If the elementary support H of τ is contained
in π−1V , then 1π−1V τ = τ . Notice that H is a linear subspace. If H has codimension
q, then τ = α∧τ ′, where α is smooth and τ ′ has bidegree (0, q). If H is not contained
in π−1V , then, since H is irreducible, H ∩ π−1V has codimension at least q + 1. By
(6.3) and the dimension principle we now have that 1π−1V τ = α∧1π−1V τ

′ = 0. Thus

Lemma 6.2. If µ has the form (5.2) then

1V µ =
∑

π∗τ
′
`,

where τ ′` are those elementary pseudomeromorphic currents whose elementary sup-
ports are contained in π−1V .

As an immediate consequence we get

Lemma 6.3. If V,W are analytic sets, then

(6.4) 1V 1Wµ = 1V ∩Wµ = 1W1V µ.
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Later on we will see that the mapping (V, µ) 7→ 1V µ extends to all constructible
sets V , i.e., all sets in the Boolean algebra generated by the analytic sets.

Remark 6.4. We can now strengthen Proposition 5.2: If α is a holomorphic form
that vanishes on V and the support of the pseudomeromorphic current µ is contained
in V , then ᾱ ∧ µ = 0. In fact, we know that we can write µ on the from (5.2) where
all τ` have their elementary support contained in π−1V . Now

ᾱ ∧ µ =
∑

π∗
(
π∗ᾱ ∧ τ`

)
=
∑

π∗
(
π∗α ∧ τ`

)
,

and π∗ᾱ is an anti-holomorphic form that vanishes on π−1V . Thus it is enough to
prove that γ̄ ∧ τ = 0 if γ is a holomorphic form that vanishes on the elementary
support H of τ . However, if H = {s1 = · · · = sr = 0}, then such a γ must have
the form4 s1γ1 + · · ·+ srγr + ds1 ∧ γ′1 + · · ·+ dsr ∧ dsr, and so γ̄ ∧ τ = 0 in view of
Lemma 4.1. �

7. Another basic operation on PMX

We now consider another fundamental operation on PMX . Given a holomorphic
function h we define

(7.1)
[1
h

]
T :=

|h|2λ

h
T
∣∣∣
λ=0

, ∂̄
[1
h

]
∧ T :=

∂̄|h|2λ

h
∧ T

∣∣∣
λ=0

.

The existence of the necessary analytic continuations, and that the result is pseu-
domeromorphic, follows as in the first part of the proof of Proposition 5.2 in combi-
nation with (4.6). Notice that the support of the second current in (7.1) is contained
in the intersection of the support of T and V (h).

Lemma 7.1. The formal Leibniz rules

(7.2) ∂̄
(1
h
T
)

= ∂̄
1
h
∧ T +

1
h
∂̄T, ∂̄

(
∂̄

1
h
∧ T

)
= −∂̄ 1

h
∧ ∂̄T

hold. If α is a smooth form, then

(7.3) α ∧ 1
h
T =

1
h
α ∧ T, α ∧ ∂̄ 1

h
∧ T = (−1)degα∂̄

1
h
∧ α ∧ T.

Proof. If Reλ� 0, then

∂̄
( |h|2λ

h
T
)

=
∂̄|h|2λ

h
∧ T +

|h|2λ

h
∂̄T, ∂̄

( ∂̄|h|2λ
h
∧ T

)
= − ∂̄|h|

2λ

h
∧ ∂̄T.

Now (7.2) follows by the uniqueness of analytic continuation. In a similar way,

α ∧ |h|
2λ

h
T =

|h|2λ

h
α ∧ T, α ∧ ∂̄|h|

2λ

h
∧ T =

∂̄|h|2λ

h
∧ α ∧ T,

so (7.3) follows as well. �

Example 7.2. Let f a be meromorphic (k, 0)-form on X, i.e., (locally) f = g/h
where h is a holomorphic function that does not vanish identically on any irreducible
component of X and g is a holomorphic (k, 0)-form (i.e., given a local embedding of
X in a smooth Ω, g is obtained from a holomorphic (k.0)-form G in Ω). By definition

4First write γ = γ′ + γ′′ where γ′′ has no factor dsj , j ≤ r. Since sr+1, . . . , sn is a coordinate
system on H, the various dsI in γ′′ are independent, so all coefficients aI must vanish on H, and
thus of the form s1α1 + · · ·+ srαr.
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f = g′/h′ if and only if g′h − gh′ vanishes outside a set V of positive codimension.
In that case

(7.4) g
[1
h

]
= g′

[ 1
h′

]
outside V ∪V (h)∪V (h′) which has positive codimension. By the dimension principle,
thus (7.4) holds as currents. Thus there is a well-defined principal value current
associated with f , and this current is pseudomeromorphic. �

Example 7.3. If f and g are any two holomorphic functions it follows that
1
g

1
f

=
1
f

1
g

by the dimension principle. By Leibniz’ rule we conclude that

∂̄
1
g
· 1
f

+
1
g
∂̄

1
f

= ∂̄
1
f
· 1
g

+
1
f
· ∂̄ 1
g
.

However, it is not true in general that

∂̄
1
g
· 1
f

=
1
f
· ∂̄ 1
g

as the next example shows. �

Example 7.4. Let z be the standard coordinate in C and let a, b be positive integers.
It follows directly from the definition that

1
za
∂̄

1
zb

= 0,

whereas
∂̄

1
zb
· 1
za

= ∂̄
1

zb+a
.

�

Example 7.5. Assume that f, g are holomorphic and codim {f = g = 0} is at least 2.
Then [ 1

f

]
∂̄
[1
g

]
= ∂̄

[1
g

]
·
[ 1
f

]
by the dimension principle, and by Leibniz rule hence

∂̄
[1
g

]
∧ ∂̄
[ 1
f

]
= −∂̄

[ 1
f

]
∧ ∂̄
[1
g

]
.

�

Formally one should think of T 7→ (1/h)T and T 7→ ∂̄(1/h) ∧ T as operators on
PM. Notice also that

h
1
h
T = 1X\V (h)T

which in general is not equal to T 5.
From (the proof of) Proposition ?? and (4.7) it follows that we can replace the

analytic continuation with a limit with cutoff functions. That is, if χ ∼ χ[1,∞) we
have

(7.5) 1X\V T = lim
ε→0

χ(|h|2v/ε)T

5We have not even excluded the possibility that h is identically 0 on some (or all) irreducible
components of X
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if V (h) = V . ε > 0 is small enough. In the same way,

1
h
T = lim

ε→0

χ(|h|2v/ε)
h

T, ∂̄
1
h
∧ T = lim

ε→0

∂̄χ(|h|2v/ε)
h

∧ T,

although in the second equality one should let χ be smooth, in order to avoid unnec-
essary interpretation problems, cf., also Example 7.6 below.

In most cases it is a matter of taste if one use the analytic continuation or the
limit with cutoff functions. In most situations we stick to the analytic continuation
since we find it more practical. However, at a few occasions, as in the proof of ????
above, it is convenient to have smooth approximands, like the smooth regularization
∂̄χ(|h|2v/ε)/h of ∂̄(1/h).

Example 7.6. Let V be a subvarity of an open set X ⊂ Cn of pure codimension p,
and let f, h be holomorphic in X, such that V (f) ⊃ V (h) ∪ Vsing, but f does not
vanish identically on any irreducible component of V .

It is proved in Section ?? below that the Lelong current [V ] is pseudomeromor-
phic. Thus (1/h)[V ] is a well-defined pseudomermorphic current. By the dimension
principle we have that 1V (f)(1/h)[V ] = 0 and thus

1
h

[V ] = 1X\V (f)
1
h

[V ] = lim
ε→0

χ(|f |2/ε) 1
h

[V ]

according to (7.5). Since χ(|f |2/ε)(1/h) has support outside Vsing, we have that〈1
h

[V ], ξ
〉

= lim
ε→0

∫
V
χ(|f |2/ε) 1

h
∧ ξ,

for test forms ξ. Taking ∂̄ we get〈
∂̄

1
h
∧ [V ], ξ

〉
= lim

ε→0

∫
V
∂̄χ(|f |2/ε) ∧ 1

h
∧ ξ,

as long as χ is smooth. If χ = χ[1,∞), then for almost all small ε > 0 we can apply
Stokes’ theorem, and so we get〈

∂̄
1
h
∧ [V ], ξ

〉
= lim

ε→0

∫
V ∩{|f |2=ε}

1
h
∧ ξ.

�

Example 7.7. The currents log |z|2 and µ := dz̄/z̄ = ∂̄ log |z|2 are not pseudomero-
morphic. In fact, if µ is pseudomeromorphic , then we can form τ = (dz/z) ∧ µ
and then τ is equal to dz ∧ dz̄/|z|2 outside the origin. In view of (7.5) the limit
limχ(|z|2/δ)τ would exist, but this is certainly not true. �

Example 7.8 (The Poincaré-Leray residue formula). Let g be a holomorphic function
in X ⊂ Cn such that dg 6= 0 on Vreg, where V = V (g). We claim that there is a
unique meromorphic (n− 1, 0)-form ω on V , cf., Example 7.2 above, such that

(7.6) i∗ω = ∂̄
[1
g

]
∧ dz

if ω here denotes the associated principal value current, cf., Example 7.2. The form
ω is called the Poincaré-Leray residue of the meromorphic form dz/g in Ω.
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Clearly ω (or equivalently, the associated principal value current) is unique if
it exists since i∗ is injective. Given a point x ∈ V we can find a form ω′ in a
neighborhood in Ω such that

(7.7) dg ∧ ω′ = 2πi.

In fact, for some j,

(7.8) ω′ =
1

∂g/∂zj
d̂zj

will do at x. Then∫
Ω
i∗i
∗ω′∧ξ =

∫
V
i∗ω′∧i∗ξ =

∫
Ω

[V ]∧ω′∧ξ =
∫

Ω
∂̄
[1
g

]
∧ dg

2πi
∧ω′∧ξ =

∫
Ω
∂̄
[1
g

]
∧dz∧ξ

so (7.6) holds for ω = i∗ω′. Here we have used the Poincaré-Lelong formula, cf.,
Example 0.16, ∂̄(1/g)∧dg/2πi = [V ]. Possibly after a linear change of coordinates we
may assume that ∂g/∂zj is generically nonvanishing on each irreducible component
of V . Thus ω = i∗ω′ is in fact a meromorphic form on V and so it defines a
pseudomeromorphic current that we also denote by ω, cf., Example 7.2. Since (7.8)
holds outside Vreg it must hold across Vsing by the dimension principle, since both
sides are pseudomeromorphic.

Let h be any tuple such that V (h) contains Vsing but no irreducible component of
V . Then ω = limχ(|h|/δ)ω. If h = ∂g/∂zj as above and χ = χ[1,∞) we get〈

∂̄
1
g
∧ dz, ξ

〉
= lim

ε→0

∫
V ∩{|∂g/∂z1|2>ε}

2πidz2 ∧ . . . ∧ dzn ∧ ξ
∂g/∂z1

.

We can also take h = (∂g/∂z1, . . . , ∂g/∂zn). Since Since also

ω′ =
2πi

∑
j (∂g/∂zj)d̂zj
|dg|2

satisfies (7.7) outside Vsing we get the formula〈
∂̄

1
g
∧ dz, ξ

〉
= lim

ε→0

∫
V ∩{|dg|2>ε}

2πi
∑

j (∂g/∂zj)d̂zj ∧ ξ
|dg|2

.

�

The form ω on V and analogues for general varieties we be of basic importance in
Section ??.

8. Comments to Chapter ??

The definition here is from [10] and it is in turn a slight elaboration of the definition
introduced in [13].

9. The standard extension property, SEP

Let Z be a pure-dimensional subvariety of X. We say that a pseudomeromorphic
current µ on X with support on Z has the standard extension property, SEP, on Z
if 1V µ = 0 for each V ⊂ Z of positive codimension on Z. We let WX

Z denote the
subsheaf of PMX of currents with the SEP on Z. Instead ofWX

X we just writeWX .
We shall first discuss a special case of global pseudomeromorphic currents with the
SEP on X.
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10. Almost semi-meromorphic currents

Recall that a current is semi-meromorphic if is a principal value current of the
form α/f , where α is a smooth form and f is a holomorphic function. We shall now
discuss a far-reaching generalization of the operation τ 7→ (1/f) ∧ τ .

Let X be a puredimensional analytic space. We say that a current a is almost
semi-meromorphic in X, a ∈ ASM(X), if there is a modification π : X ′ → X such
that

(10.1) a = π∗(ω/f),

where f is a holomorphic section of a line bundle L→ X ′, not vanishing identically
on any irreducible component of X ′, and ω is a smooth section of L. We say that a
is almost smooth in X, a ∈ AS(X), if one can choose f = 1.

We can assume that X ′ is smooth because otherwise we take a smooth modification
π′ : X ′′ → X ′ and consider the pullback of f and ω to X ′′. If nothing else is said we
always tacitly assume that X ′ is smooth.

Assume that a ∈ ASM(X) and that V has positive codimension in X. Since
π−1V has positive codimension in X ′ we have that 1V a = π∗(1π−1V (ω/f)) = 0.
Thus ASM(X) is a subspace of W(X).

Example 10.1. Let b = ∂|z|2/2π|z|2 in Cn and let π : X → Cn be the blow-up at
0. Then b = α/s where s is a section that defines the exceptional divisor and α is
smooth. Now

∂̄b = π∗

( ∂̄α
s

)
+ π∗

(
∂̄

1
s
∧ α
)

= π∗

( ∂̄α
s

)
,

since the second term must vanish by the dimension principle. It follows that

b ∧ (∂̄b)k−1 = π∗

(α ∧ (∂̄α)k−1

sk

)
are almost semimeromorphic for k ≤ n. �

Remark 10.2. One can of course introduce a notion of locally almost semimeromor-
phic currents and consider the associated sheaf. However, will have no immediate
need for this notion. �

Given two modifications X1 → X and X2 → X there is a modification π : X ′ → X
that factorizes over both X1 and X2, i.e., we have X ′ → Xj → X for j = 1, 2.
Therefore, given a1, a2 ∈ ASM(X) we can assume that aj = π∗(ωj/fj), j = 1, 2. It
follows that

a1 + a2 = π∗

(ω1

f1
+
ω2

f2

)
= π∗

f2ω1 + f2ω2

f1f2
,

so that a1 + a2 is in ASM(X) as well. Moreover, A := π∗(ω1 ∧ω2/f1f2) is an almost
semimeromorphic current that coincides with a1 ∧ a2 outside the set π(sing (π) ∪
πV (f1) ∪ V (f2). If we had two other representations of aj we would get an almost
semimeromorphic A′ that coincides generically with a1 ∧ a2 on X. Because of the
SEP thus A = A′. Thus we can define a1 ∧ a2 as A. It is readily verified that

a2 ∧ a1 = (−1)deg a1deg a2a1 ∧ a2

as usual.
Let sing (π) be the (analytic) set where π is not a biholomorphism. By definition

of modification it has positive codimension. Let Z ⊂ X ′ be the zero set of f .
By assumption also Z has positive codimension. Notice that a is smooth outside



52

π(Z ∪ sing (π)) which has positive codimension in X. It follows that the smallest
Zariski-closed set V = ZSS(a) such that a is smooth outside V , the Zariski-singular
support of a, has positive codimension in X.

Example 10.3. Notice that if Z is empty, then a is almost smooth, and ZSS(a) ⊂
π(sing (π)). However, this inclusion may be strict. Notice that if a is smooth, i.e.,
ZSS(a) is empty, then ω = π∗a outside sing (π). Since both sides are smooth across
sing (π), by continuity also the equality must hold everywhere in X ′. �

Lemma 10.4. If a is almost semi-meromorphic in X, then it has a representation
(10.1) such that f is non-vanishing in X ′ \ π−1ZSS(a), and ω = fπ∗a there.

Proof. Let V = ZSS(a) and let us assume that we have a representation (10.1) and
that X ′ is smooth. Let Z ′ be an irreducible component of Z = Z(f) such that Z ′ is
not fully contained in π−1V . Since X ′ is smooth, Z ′ is a Cartier divisor, and so there
is a section s of a line bundle L′ → X ′ that defines Z ′. Since Z ′ is irreducible, f has
a fixed order r along Z ′ and it follows that f = f ′g where f ′ = sr and g holomorphic
and non-vanishing on Z ′ ∩Zreg. Outside sing (π)∪Z = sing (π)∪Z ∪ π−1V we have
that ω = fπ∗a and hence

(10.2) ω = fπ∗a = f ′gπ∗a

there. By continuity it follows that (10.2) must hold in X ′ \ π−1V since both sides
are smooth there.

We now claim that ω/f ′ is smooth in X ′. Taking this for granted, the lemma now
follows by a finite induction over the number of irreducible components of Z not fully
contained in π∗a. Thus we have to prove the claim.

It is a local statement in X ′ so given a point in X ′ we can choose local coordinates
s in a neighborhood U of that point and consider each coefficient of the form ω with
respect to these coordinates. Thus we may assume that ω is a function. Then still
ω = f ′γ where γ is smooth. For all multiindices α we thus have that

(10.3)
∂αω

∂t̄α
∂̄

1
f ′

= 0

in X ′ \ π−1V . By assumption Z ′ ∩ π−1V has positive codimension on Z ′. By the
dimension principle it follows that (10.3) holds in X ′ for all α. From Theorem 6.3
we conclude that ω/f ′ is smooth in U . It follows that it is smooth in X ′ �

Theorem 10.5. Assume that a ∈ ASM(X). For each τ ∈ PM(X), there is a
unique pseudomeromorphic current Aτ in X that coincides with a∧ τ in X \ZSS(a)
and such that 1ZSS(a)Aτ = 0.

Let h be a tuple (locally) such that Z(h) = V := ZSS(a). If the extension Aτ
exists, then Aτ = 1X\V and thus

(10.4) Aτ = lim
ε→0

χ(|h|/ε)a ∧ τ.

In particular, the extension must be unique. It is natural to denote this extension
by a ∧ τ as well.

Conversely, if the limit in (10.4) exists as a pseudomeromorphic current in X, then
Aτ must coincide with a ∧ τ in X \ V . Moreover, χ(|h|/ε)Aτ = χ(|h|/ε)a ∧ τ and
hence 1X\ZSS(a)Aτ = Aτ , i.e., 1VAτ = 0. To prove the theorem it is thus enough to
verify the the limit in (10.4) exists as a pseudomeromorphic current.



53

Proof. In view of Lemma 10.4 we may assume that a has the form (10.1), where
Z = Z(f) is contained in π−1V and that ω/f = π∗a in X ′ \π−1V . Let χε = χ(|h|/ε),
so that π∗χε = χ(|π∗h|/ε).

By proposition 4.10 there is τ ′ ∈ PM(X ′) such that π∗τ ′ = τ . Thus

χεa ∧ τ = χεa ∧ π∗τ ′ = π∗
(
π∗χεπ

∗a ∧ τ ′
)

= π∗
(
π∗χε

ω

f
∧ τ ′

)
.

Notice that
π∗χε

ω

f
∧ τ ′ → 1X′\π−1V

ω

f
∧ τ ′

when ε → 0. In particular, this is a pseudomeromorphic current. Thus the limit in
(10.4) exists and is pseudomeromorphic. �

Notice that if W is any analytic set, then

(10.5) 1W (a ∧ τ) = a ∧ 1W τ.

In fact, the equality holds in the open set X \ZSS(a) since a is smooth there. On the
other hand are both sides zero on ZSS(a) since 1ZSS(a)1W (a ∧ τ) = 1W1ZSS(a)(a ∧
τ) = 0.

Assume now that X is smooth, z is a coordinate system and let dz := dz1∧. . .∧dzn.

Lemma 10.6. If µ∧dz is almost semi-meromorphic then µ is almost semi-meromorphic
as well.

Proof. Assume that µ∧ dz = π∗(ω/f). If f is a section of L→ X ′, then ω must be a
section of L⊗KX′ . Now g = π∗dz is a genericallynon-vanishing section of KX′ . Thus
µ′ = π∗(ω/fg) is almost semimeromorphic inX, and µ′∧dz = ±π∗(gω/fg) = ±µ∧dz.
It follows that µ = ±µ′ and thus µ is in ASM(X). �

Lemma 10.7. If a is an almost semi-meromorphic (p, ∗)-current on a smooth X
and z is a coordinate system, then (∂a/∂z`)µ is almost semi-meromorphic as well.

Proof. Assume that
a =

∑
|I|=p

aI ∧ dzI .

Fix a multiindex J and let Jc be the complementary index. Then

a ∧ dzJc = ±aI ∧ dz.
Un view of Lemma 10.6 thus aI is in ASM(X). Moreover,

∂a

∂z1
=
∑
|I|=p

∂aI
∂z1
∧ dzI .

Therefore it is enough to consider the case when a has bidegree (0, q). Assume that
a = π∗(ω/f). Let D = D′ + ∂̄ be a Chern connection on L. Then

∂a = π∗(∂
ω

f
) = π∗

D′ω · f − ωD′f
f2

which is thus in ASM(X). Therefore ∂a/∂z1∧dz = ∂a∧dz2∧ . . . dzn is in ASM(X).
From Lemma10.6 we conclude that ∂a/∂z1 is in ASM(X). �

Notice that if a1, a2 are almost smooth, then a1 ∧ a2 is almost smooth. Moreover,
∂̄aj are almost smooth and ∂̄(a1 ∧ a2) = ∂̄a1 ∧ a2 + (−1)deg a1a1 ∧ ∂̄a2.

Ar det sant att ∂a/∂z1 ar almost smooth ???
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Example 10.8. Let W be a hypersurface in X. We claim that if α ∈ PMk,0(X) and
the restriction α′ to X \W is holomorphic, then α is meromorphic on X. In fact, by
assumption, α′ has a current extension to X, so if we have an embedding i : X↪→Ω,
then the current i∗α′, a priori defined in Ω \W , has a current extension to Ω. By
[23, Theorem 1], α′ has a meromorphic extension α̃ to X, and since both α and α̃
are in PMX

k,0, α = α̃ by the dimension principle.
Let a be a meromorphic form in Ω such that α = i∗a. Then i∗α = a ∧ [X], where

[X] is the Lelong current associated with X in Ω, so ∂̄α = 0 on X precisely means
that ∂̄(a∧ [X]) = 0 in Ω. This in turn by the definition in [23] means that α is in the
sheaf (that we denote) BXk of Barlet-Henkin-Passare holomorphic (k, 0)-forms. We
conclude that BXk is the subsheaf of ∂̄-closed currents in PMX

k,0. �

11. Some further properties of PM and W

Notice that if τ is an elementary pseudomeromorphic current in Cn
z and zα is a

monomial, then there is an elementary current τ ′ such that zατ ′ = τ . In fact, by
induction it is enough to assume that the monomial is z1. If z1 is a residue factor
or a principal value factor in τ then we just raise the power of z1 in that factor one
unit. Otherwise we take τ ′ = (1/z1)τ .

We shall now see that this observation holds in more generality.

Proposition 11.1. Assume that µ ∈ PMx where x ∈ X and X is smooth.
(i) If h ∈ Ox is not identically zero, then there is µ′ ∈ PMx such that hµ′ = µ.

(ii) If

µ =
′∑

|I|=p

µI ∧ dzI ,

then each µI is in PMx.

(iii) (∂/∂z`)¬µ is in PMx

(iv) (∂/∂z`)µ (Lie derivative) is in PMx.

The same statement holds with WX
x instead of PMX

x .

By a partition of unity we get a global µ′ such that hµ′ = µ. Also (ii) and (iv)
hold globally if, say, ∂/∂/z` is replaced by a global holomorphic vector field.

Notice that (i) is not true if h is anti-holomorphic. In fact, if z̄µ′ = 1, then
(1/z)µ′ is equal to 1/|z|2 outside 0. Thus limχ(|z|2/δ)µ′ does not exist, and hence
µ′ cannot be pseudomeromorphic. Moreover, neither (iii) or (iv) is true for ∂/∂z̄`.
For example, the current

τ =
∂

∂z

1
z

=
∂

∂z
¬∂̄ 1

z

is nonzero but with support at 0 so, in view of the dimension principle, it cannot be
pseudomeromorphic.

Proof. We know that there is a modification π : X̃ → X such that

µ =
∑
`

τ`,
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where τ` are elementary and π∗h is locally a monomial in X̃, cf., Lemma 5.1. As
noted above we can find elementary τ ′` such that π∗hτ ′` = τ`. Thus

µ = π∗
∑
`

π∗hτ ′` = π∗
(
π∗h

∑
τ ′`
)

= hπ∗
∑

τ ′` =: hµ′.

Thus (i) is proved.
We now consider (ii). We first assume that µ has bidegree (n, ∗) so that µ = µ̂∧dz

and show that µ̂ is pseudomeromorphic. We may assume that µ = π∗(τ ∧ds) where τ
is elementary. Since π is generically surjective, we may assume, at least locally in X̃,
that s = (s′, s′′) where h = det(∂π/∂s′) = det(∂z/∂s′) is not vanishing identically.
Let us assume that this holds on the support of τ ; ortherwise we use a partition of
unity in X̃. By (i) there is τ ′ such that hτ ′ = τ in X̃. Now

µ̂∧ dz = π∗(τ ∧ ds) = π∗(τ ′ ∧ hds′ ∧ ds′′) = π∗(τ ′ ∧ π∗dz ∧ ds′′) = ±π∗(τ ′ ∧ ds′′)∧ dz.
Thus µ̂ = ±π∗(τ ′ ∧ ds′′) is pseudomeromorphic.

In general, µI ∧ dz = ±µ ∧ dzIc , where Ic is the complementary multiindex of I.
It follows that µI is pseudomeromorphic. Thus (ii) is proved.

Now (iii) immediately follows. It is enough to prove (iv) for µ of bidegree (0, ∗).
We notice that

∂

∂z`
µ =

∂

∂z`
¬∂µ

and thus (iv) follows from (iii) since ∂µ is pseudomeromorphic.
Let us now consider the case with W. If µ ∈ W, then f [1/h]µ = 1X\V (h)µ = µ so

(i) follows. To see (ii) just notice that

1V µ =
′∑

|I|=p

(1V µI) ∧ dzI ,

and hence µ has the SEP if and only if each µI has. Now (iii) follows directly. For
(iv) we need the following simple but useful lemma.

Lemma 11.2. A current µ ∈ PMx is in Wx if and only if it has a representation

µ =
∑
`

π∗τ`

where no τ` has elementary support contained in any set π−1V , where V has positive
codimension in Xx.

This lemma is a simple consequence of Lemma 6.2 above. Now (iv) follows for
µ ∈ Wx just noting that if the elementary support cannot decrease under the action
of ∂. �

12. Tensor products and direct images under simple projections

Lemma 12.1. If T ∈ PMX and T ′ ∈ PMX′, then T ⊗ T ′ ∈ PM(X ×X ′).

Proof. It is enough to consider T = π∗τ and T ′ = π′∗τ
′, where τ and τ ′ are elementary

and π and π are as in (3.2). However, the mapping π⊗π′ : Ũ × Ũ ′ is a composition of
modifications, simple projections, and open inclusions. To see this, just notice that
if p : Y → X is a modification, a simple projection, or an open inclusion, then the
same holds for p ⊗ I : Y × Z → X × Z. Now τ ⊗ τ ′ is elementary in Ũ × Ũ ′ and
T ⊗ T ′ = (π ⊗ π′)∗τ ⊗ τ ′. �
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It is easy to verify that

(12.1) 1V×V ′T ⊗ T ′ = 1V T ⊗ 1V ′T ′.

Lemma 12.2. Assume that p : Z×W → Z is a simple projection. If µ is in PMZ×W

and p−1K ∩ suppµ is compact for each compact set K ⊂ Z, then p∗µ is in PMZ .

Proof. Since being pseudomeromorphic is a local property, multiplying µ if necessary
by a suitable cutoff function we can assume that µ has compact support. By com-
pactness and a partition of unity we then have a finite representation µ =

∑
` π∗τ`.

Now the lemma follows from the very definition of PM. �

Example 12.3. If p is a simple projection X ×X ′ → X, we can take any test form χ
in X ′ with total integral 1. Then the tensor product τ ⊗ χ is en elementary current
in X ×X ′ such that p∗(τ ⊗ χ) = τ . �

It follows from Example 10.1, tensorizing with 1, and a linear change of coordinates
that b∧(∂̄b)k−1 is almost semi-meromorphic in Cn×Cn if b = ∂|ζ−z|2/2πi|ζ−z|2. If
X is a domain in Cn then weighted integral kernel like K = (g∧u)n,n−1 in as in Ch?.
Section ?? is almost semi-meromorphic in X×X. Now let µ be pseudomeromorphic
with compact support in a domain X ⊂ Cn. Then µ ⊗ 1 is pseudomeromorphic in
X×X and thus K∧µ := K∧(µ⊗1) is pseudomeromorphic in X×X. Notice that this
product is unproblematic since, after a linear change of variables locally, it is a tensor
product. Since K is almost semimeromorphic it is the limit of χ(|ζ − z|/ε)K and
hence the product K ∧µ considered as a tensor product coincides with it considered
as product of an almost semi-meromorphic current and a pseudomeromorphic current
in X ×X as in Theorem ??.

It follows that we can apply the simple projection p : Xζ × Xz → Zz and get a
pseudomeromorphic current Kµ that is precisely the bla from Section ???. We thus
have the Koppelman formula

µ = ∂̄Kµ+K∂̄µ+ Pµ,

and that all terms are pseudomeromorphic.
In particular it follows, cf., the proof of ??? (the case with general currents) that

0→ O → PM0,0
∂̄→ PM0,1 →

is a fine resolution of OX when X is smooth.

Easy to see that can “divide” by h: Say more: Kµ is in W.

Proposition 12.4. The integral operators K,P map pseudomeromorphic currents
with compact support into W and any pseudomeromorphic into W if K,P have com-
pact support with respect to ζ.

Proof. Assume that µ ∈ PM has compact support and that V has positive codi-
mension. In view of (10.5) and (12.1) we have

1VKµ = 1V p∗(K ∧ µ⊗ 1) = p∗(1Cn×V (K ∧ µ⊗ 1)) =

p∗(K ∧ 1Cn×V (µ⊗ 1)) = p∗(K ∧ 1Cnµ⊗ 1V 1) = 0,

since 1V 1 = 0. The argument for P is even simpler. �

We can now provide a completely different proof of Proposition 11.1.
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A new proof of Proposition 11.1. (This proof is not elaborated in detail!) First as-
sume that µ is inW. As in the previous proof we then have that h[1/h]µ = µ. Notice
also that h∂̄[1/h]µ = ∂̄h[1/h]µ = ∂̄µ so (i) is proved for τ = ∂̄µ where µ isin W. In
the general case we may assume that µ has compact support in Cn. Let K be the
Bochner-Martinelli integral operator. Then

µ = ∂̄Kµ+K∂̄µ.

Now (i) follows in view of Proposition 12.4.

Notice that if µ is pseudomeromorphic and µ ∧ dz is in W then µ is in W. Now
take a general µ in PM0,∗ with compact support and apply Koppelman’s formula
again. It is not hard to verify that

K(µ ∧ dz) = Kµ ∧ dz

if K is the Bochner-Martinelli integral operator and µ is any current with compact
support. If now µ ∧ dz is in PM, then ∂̄(µ ∧ dz)) = ∂̄µ ∧ dz is in PM and hence
K(∂̄(µ ∧ dz)) = K(∂̄µ) ∧ dz is in W and in particular in PM. In the same way,
K(µ ∧ dz) = Kµ ∧ dz is in W and hence Kµ is in W. We conclude that if µ ∧ dz is
in PM, then µ is in PM.

man fixar sedan allmanna fallet emd dzI och (iii)

(iv) follows as before from (ii). However we want to give a completely different
proof:

(iv) Let τ be any current on X and consider the current

τ ′ = τ ⊗ ∂̄ dw

2πiw2

on the manifold X ′ = X × Cw. Clearly τ ′ has support on X and we claim that it
has the SEP with respect to X. In fact, τ ′ = 1Xτ ′ so that if π is the projection
(z, w) 7→ z, then

1V τ ′ = 1π−1V ∩Xτ
′ = 1π−1V 1Xτ ′ = 1π−1V τ

′.

Moreover, if h(z) cuts out V in X, then
(12.2)

1V×Cwτ
′ = lim(1− χ(|h(z)|/ε)τ ′ = lim(1− χ(|h(z)|/ε)τ ⊗ ∂̄ dw

w2
= 1V τ ⊗ ∂̄

dw

w2
= 0.

Now let us make the change of variables

z1 = ζ1 − w, zj = ζj , j = 2, . . . , n, w = ω,

and let p be the natural projection (ζ, ω) 7→ ζ. Since

∂̄
dw

2πiw2
.ξ(w) =

∂ξ

∂w
(0)

it is readily verified that p∗τ ′ = ∂τ/ζ1. Now,

1V (∂τ/ζ1) = 1V p∗τ ′ = p∗(1p−1V τ
′)) = p∗0 = 0,

cf., (12.2), and thus ∂τ/ζ1 is in WX .
�



58

13. Local representation of WX
Z

Assume that X is smooth. Let Z ⊂ X be a smooth submanifold of codimension p
and let us choose local coordinates (z, w) such that Z = {w1 = · · · = wp = 0}.

Lemma 13.1. Each µ ∈ PMX
Z of bidegree (0, k) has a unique representation as a

finite sum

(13.1) µ =
∑
|α|=p

µα ⊗ ∂̄
1

wα+1

where µα are in PMZ
0,k−p. Moreover, µ ∈ WX

Z if and only if each µα is in WZ .

Here

∂̄
1

wα+1
= ∂̄

1
wα1+1

1

∧ . . . ∧ ∂̄ 1

w
αp+1
p

.

Proof. ???
�

14. Pseudomeromorphic currents on reduced subvarieties

Theorem 14.1. Assume that i : X → Y is an embedding of a reduced pure-dimensional
space X into a smooth manifold Y .

(i) If τ is in PMX , then i∗τ is in PMY , and if τ is in WX then i∗τ is in WY
X .

(ii) If τ is in CX and i∗τ is in PMY , and in addition,

(14.1) 1Xsing i∗τ = 0,

then τ is in PMX . If i∗τ is in WY
X , then τ is in WX .

That is, we have the natural mappings

i∗ : PMX → PMY , i∗ : WX →WY
X .

Notice that the condition (14.1) in (ii) is automatically fulfilled if i∗τ is in WY
X .

As already mentioned the proof of Theorem 14.1 relies on the existence of a strong
desingularization, see, e.g., [?] and the refererences given there. This means that there
is a smooth modification p : Ỹ → Y that is a biholomorphism outside Xsing and such
that the strict transform X̃ of X is a smooth submanifold of Ỹ and the restriction p′

of p to X̃ is a modification p′ : X̃ → X of X. Thus we have a commutative diagram

(14.2)
X̃

ĩ−→ Ỹ
↓p′ ↓p
X

i−→ Y

.

Proof of Theorem 14.1. First assume that X is a smooth submanifold. The state-
ment (i) is local so we may assume that Y = Xz × Cr and i(z) = (z, 0). It is easily
checked that i∗τ is equal to the tensor product

(14.3) µ := τ ∧ [w = 0]
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where [w = 0] means the point evalutation at 0 ∈ Cr. In view of Lemma ?? it is then
pseudomeromorphic since [w = 0] = ∂̄ 1

w ∧ dw(2πi)−r is. For a test form ξ = ξ(z, w),
we can write ξ = ξ′ + ξ′′, where ξ′ contains no occurrences of dwj or dw̄j . Then

i∗τ.ξ = τ.i∗ξ = τ.i∗ξ′ = τ.ξ′(·, 0) = µ.ξ,

cf., (14.3), and hence i∗τ = µ is pseudomeromorphic in Y . Now assume that i : X →
Y is arbitrary and consider (14.2). Any τ ∈ PM(X) can be written p′∗τ̃ for some
τ̃ ∈ PM(X̃) according to Proposition 4.10. By the first part we now that ĩ∗τ̃ is
pseudomeromorphic in Ỹ . Thus i∗τ = i∗p

′
∗τ̃ = p∗ĩ∗τ̃ is pseudomeromorphic in Y ,

and so the first part of (i) is proved.
Assume that V ⊂ X has positive codimension. Since i−1V = V we have, cf., (??),

that 1V i∗τ = i∗1V τ . Thus i∗τ is in WY
X if (and only if) τ is in WX , and so the

second part of (i) follows.
We now consider (ii). Again assume first that X is smooth. Again the statement is

local so we may assume that Y = Xz×Cr
w. Let π : Y → Xz be the projection (z, w) 7→

z. Since i∗τ is pseudomeromorphic by assumption also p∗i∗τ is pseudomeromorphic.
Now,

p∗i∗τ.i
∗ξ = i∗τ.p

∗i∗ξ = i∗τ.ξ
′(·, 0) = τ.i∗ξ,

for all test forms ξ, and hence p∗i∗τ . We conclude that τ is in PMX . Thus (ii) holds
in case X ⊂ Y is smooth.

Now assume that i : X → Y is general, µ := i∗τ ∈ PM(Y ), and consider (14.2).
We claim that µ = p∗µ̃, where µ̃ ∈ PM(Ỹ ), µ̃ has support on X̃, and 1p−1Xsing µ̃ = 0.
To begin with µ = p∗µ̂ for some µ̂ ∈ PM(Ỹ ) according to Proposition 4.10. Since

0 = 1Y \Xp∗µ̂ = p∗(1eY \p−1X
µ̂),

cf., (??), we have that µ = p∗µ
′ where µ′ := 1p−1X µ̂ has support on p−1X. Notice

that this set is in general much larger than the strict transform X̃ of X. Now

µ′ = 1p−1Xsingµ
′ + 1p−1(X\Xsing)µ

′

and, by assumption (14.1), 0 = 1Xsingµ = p∗1p−1Xsingµ
′, and thus µ = p∗µ̃ where

µ̃ := 1p−1(X\Xsing)µ
′

has support on the closure of p−1(X \ Xsing) which is (contained in) X̃. Thus the
claim is proved.

Next we claim that µ̃ = ĩ∗τ̃ for a current τ̃ on X̃. In fact, let ξ is a test form
on Ỹ such that ĩ∗ξ = 0. Since p is a biholomorphism outside p−1Xsing, ξ ∧ µ̃ = 0
there since µ = i∗τ there. Since µ̃ has support on X̃ it follows that ξ ∧ µ̃ = 0 outside
X̃ ∩ p−1Xsing, and hence ξ ∧ µ̃ = 0 by continuity. Thus the claim follows.

From the smooth case we know that τ̃ is pseudomeromorphic and therefore p′∗τ̃
is pseudomeromorphic as well. Finally, i∗p′∗τ̃ = p∗ĩ∗τ̃ = p∗µ̃ = µ = i∗τ and thus
p′∗τ̃ = τ . Thus τ is pseudomeromorphic. The second part of (ii) is verified as the
second part of (i). �

15. Comments to Section ??

Repeated limits very similar to Coleff-Herrera’s original definition.
Eller att detta i en remark.
Can prove that indeed coincide, see Larkang-Samuelsson
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The sheaves BXk were defined in this way in [23] but introduced earlier by Barlet,
[15], in a different way, see [23, Remark 5].
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Chapter 3

Coleff-Herrera currents
We shall now consider an important sheaf of residue currents whose annihilator

ideals
The prototype is the CH product which is a
We shall now generalize Example ???.

0.1. The Coleff-Herrera product. We say that the tuple f = (f1, . . . , fm) of
holomorphic functions on X is a complete intersection on X if codimV (f) = m,
where

V (f) = {fm = · · · = f1 = 0}.
If f is defined in a neighborhood of x ∈ X we say that it is a complete intesection
at x if the germ of V (f) at x has codimension m. This holds if and only if fk is a
regular sequence in the local ring Ox. If fk is a complete intersection at x, then also
each subset of fj is a complete intersection (a regular sequence in Ox). Notice that
fj is a complete intersection on X if and only if it is a complete intersection at each
point x ∈ V (f).

Theorem 0.1. Assume that (f1, . . . , fm) is a complete intersection at x. Then

(0.1) µfm,...,f1 := ∂̄
1
fm
∧ . . . ∧ ∂̄ 1

f1

is ∂̄-closed, has support on V (f) and is anti-commuting in fj. Moreover,

(0.2) fm
1
fm

∂̄
1

fm−1
∧ · · · ∧ ∂̄ 1

f1
= ∂̄

1
fm−1

∧ · · · ∧ ∂̄ 1
f1

and

(0.3) fm∂̄
1
fm
∧ ∂̄ 1

fm−1
∧ · · · ∧ ∂̄ 1

f1
= 0.

The (germ of a) current µf is called the Coleff-Herrera product defined by the
tuple (f1, . . . , fm) at x.

Proof. Since each subset of fj is a complete intersection at x we can proceed by
induction over the number m of factors. The theorem is clearly true if m = 1.
Suppose it is proved for k and consider

T =
1

fk+1
∂̄

1
fk
∧ . . . ∧ ∂̄ 1

f1
− ∂̄ 1

fk
∧ . . . ∧ ∂̄ 1

f1
· 1
fk+1

.

By the induction hypothesis µf1,...,fk has support on V (f1, . . . , fk). In view of (7.3),
the pseudomeromorphic current T must have support on V (fk+1, f1, . . . , fk). Since
this set has codimension k+1 and T has bidegree (0, k) it follows from the dimension
principle that T = 0. By Leibniz’ rule (7.2) we get

µfk+1,fk...,f1 = (−1)kµfk,...,f1,fk+1 .

It follows now (using the induction hypothesis again) that µfk+1,fk,...,f1 is anti-commuting
in fj . Notice that

µfk,...,f1 − fk+1
1

fk+1
µfk,...,f1 = 1V (fk+1)µ

fk,...,f1
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has bidegree (0, k) and support on V (fk+1, fk, . . . , f1) so again by the dimension
principle it must vanish, i.e., (0.2) holds. Finally we get (0.3) from (0.2) and Leibniz’
rule. �

One can define µf in almost any reasonable way if one just avoids limits by cutoff
functions χ[1,∞), see the discussion in Section ?? below.

0.2. The Koszul complex. Let f = (f1, . . . , fm) be a tuple of holomorphic func-
tions on X. Let E be a trivial vector bundle of rank m with global frame e1, . . . , em
and let e∗j be its dual frame for the dual bundle E∗. If we consider f =

∑
j fje

∗
j as

a section of E∗, it induces a mapping δf on the exterior algebra ΛE. We will also
consider differential forms and currents with values in Λ. For instance E0,k(Λ`E) is
the sheaf of smooth (0, k)-forms with values in Λ`E which we consider as a subsheaf
of the sheaf of the bundle Λ(E ⊕ T ∗(X)). Thus a section v of E0,k(Λ`E) is just a
formal expression

v =
′∑
|I|=`

vI ∧ eI ,

where vI are smooth (0, k)-forms, and with the convention that dz̄j ∧ ej = −ej ∧ dz̄j
etc. In the same way we have the sheaf Cq,k(Λ`E) of Λ`E-valued (q, k)-currents, etc.
Notice that both ∂̄ and δf act as anti-derivations on these sheaves, i.e.,

∂̄(v ∧ w) = ∂̄v ∧ w + (−1)deg vv ∧ ∂̄w
if at least one of v and w is smooth, and similarly for δf . Moreover, it is straight
forward to check that

(0.4) δf ∂̄ = −∂̄δf .
If we let

∇f := δf − ∂̄.
it follows from (0.4) that

(0.5) ∇2
f = 0.

Notice that ∇f is also an anti-derivation. If

Lk := ⊕jC0,j+k(ΛjE),

we get the complex
∇f→ Lk−1 ∇f→ Lk

∇f→ Lk+1 ∇f→ .

For instance, a section of L−1 is of the form v = v1 + · · ·+vm, where vk is a (0, k−1)-
current with values in ΛkE. More formally, (0.4) means that C0,k(Λ`E) is so-called
double complex, and Lk with the mappings ∇f is the associated total complex.

The Dolbeault-Grothendieck lemma for currents means that

(0.6) 0→ O → C0,0 ∂̄→ C0,1 ∂̄→
is exact. Thus the double complex C0,k(Λ`E) is exact in the k-direction except at
k = 0, where we have the cohomology sheaves O(Λ`E). By standard homological
algebra it follows that the natural mapping

(0.7)
Ker (O(Λ`E)

δf→ O(Λ`−1E))

Im (O(Λ`+1E)
δf→ O(Λ`E))

' Ker (L−`
∇f→ L`+1)

Im (L−`−1
∇f→ L−`)
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is an isomorphism, cf., ???? Ch.0. We can just as well replace C by E . In particular,
the case k = 0 has the following two useful implications; let e = e1 ∧ . . . ∧ em, and
let J = J (f) be the ideal sheaf generated by fj , i.e., the image of δf : O(E)→ O.

Lemma 0.2. (i) If there is a current v in L−1 such that ∇fv = φ, then φ belongs
to J .
(ii) If µ ∧ e ∈ C0,p(ΛpE) and ∇f (µ ∧ e) = 0, then there is a function ψ ∈ O, unique
in O/J , and a current v in L−1 such that ∇fv = ψ − µ ∧ e.

For the reader’s convenience, and for further reference, we supply a direct proof
of the lemma.

Proof. Let v = v1 + . . .+vm, where vk ∈ C0,k−1(ΛkE). Then ∂̄vm = 0 and since (0.6)
is exact we can solve ∂̄wm = nm locally. Now, ∂̄[vm−1 + δfwm] = ∂̄vm−1 − δf ∂̄wm =
∂̄vm−1 − δfvm = 0 and so we can solve ∂̄wm−1 = vm−1 + δfwm. Continuing in this
way we finally get that ψ = v1 + δfw2 is a holomorphic solution to δfψ = φ. The
second statement is verified in a similar way. �

Let σ =
∑

j(f̄j/|f |2)ej in X \ V (f) and notice that δfσ = 1 there. Since

(0.8) ∇fσ = 1− ∂̄σ

has even degree and the scalar term is nonvanishing, cf., Ch 0 ???, we can form

(0.9) u =
σ

∇fσ
and by the functional calculus, using (0.5), we have that

(0.10) ∇fu = 1

in X \ V (f). From (0.8) we get the more explicit representation

u = σ + σ ∧ ∂̄σ + σ ∧ (∂̄σ)2 + · · ·+ σ ∧ (∂̄σ)m−1,

so one can verify (0.10) directly as well. This form u in L−1 will be of fundamental
importance later on.

0.3. Duality theorem for the Coleff-Herrera product. Assume now that f =
(f1, . . . , fm) is a complete intersection at x and let µf be the associated Coleff-Herrera
product. It follows from Theorem 0.1 that fjµf = 0, i.e., φµf = 0 for all φ in the
ideal J (f)x. On the other hand it is clear that the annihilator annµf , i.e., the set
of functions in Ox such that the current φµf vanishes at x, is an ideal in the local
ring Ox. We shall now see that this ideal is in fact equal to J (f)x.

Consider the current

(0.11) v =
1
f1
e1 +

1
f2
∂̄

1
f1
∧ e1 ∧ e2 +

1
f3
∂̄

1
f2
∧ ∂̄ 1

f1
∧ e1 ∧ e2 ∧ e3 + · · · =

e1

f1
+
e2

f2
∧ ∂̄ e1

f1
+
e3

f3
∧ ∂̄ e2

f2
∧ ∂̄ e1

f1
+ · · · .

A simple computation, using Theorem 0.1, yields that

(0.12) ∇fv = 1− µf ∧ e.

Proposition 0.3. Let f be a complete intersection at x and assume that there is a
current U such that ∇fU = 1− µ ∧ e. Then annµ = J (f)x at x.
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Proof. If φ ∈ annµ, then∇fUφ = φ−φµ∧e = φ and hence φ ∈ J (f)x by Lemma 0.2.
Conversely, if φ ∈ J (f)x, then there is a holomorphic ψ such that φ = δfψ = ∇fψ
and hence φµ = ∇fψ ∧ µ = ∇f (ψ ∧ µ) = 0. �

In view of (0.12) we get

Theorem 0.4 (Duality theorem). If f is a complete intersection at x, then annµf =
J (f)x.

Example 0.5. We also get a simple proof of the well-known fact that if f is a complete
intersection on X, then the sheaf complex

0→ O(ΛmE)
δf→ O(Λm−1E)

δf→ . . .
δf→ O(Λ1E)

δf→ O → O/J → 0

is exact.
In fact, if x ∈ V (f), then f is a complete intersection there. Let φ be a section of

O(ΛkE), k ≥ 1, such that δfφ = 0. If v is the current in (0.12), then

∇f (v ∧ φ) = (1− µf ∧ e) ∧ φ = φ,

since e∧φ = 0 for degree reasons. By (0.7) we get a holomorphic solution to δfψ = φ.
On the other hand, if x is outside V (f), then fj 6= 0 for some fj . Given φ such that
δfφ = 0 we can then take ψ = ej ∧ φ/fj . �

0.4. Coleff-Herrera currents. The Coleff-Herrera product is the model for a slightly
more general kind of currents called Coleff-Herrera currents.

Definition 3. Let V be an analytic variety in X of pure codimension p. A (0, p)-
current µ with support on V is a Coleff-Herrera current on V , µ ∈ CHV , if it is
∂̄-closed,

(0.13) ĪV µ = 0,

and it has the following property: For any holomorphic function h that does not
vanish identically on any irreducible component of V ,

(0.14) lim
ε→0

χ(|h|2/ε)µ = µ

if χ ∼ χ[1,∞).

It is clear that CHV is a sheaf of O-modules. The property (0.13) means that h̄µ =
0 for any holomorphic h that vanishes on V . The last property is called the standard
extension property, SEP, (with respect to V ) and means that µ is determined by its
values on V \Y for any hypersurface Y not containing any irreducible component of
V .

Example 0.6. If µ ∈ PM0,p has support on V , then 1V (h)µ = 0 by the dimension
principle, which can be expressed as (0.14), cf., (7.5). Moreover, from Proposition 5.2
it follows that (0.13) is fulfilled. If in addition ∂̄µ = 0 therefore µ is in CHV . In
particular, if f is a p-tuple such that V (f) has codimension p and is contained in V ,
then the Coleff-Herrera product µf is in CHV . �

The sheaf CHV is important for several reasons. For instance, each element in
the local (moderate) cohomology sheaves Hp[V ] has a unique representative in CHV ,
i.e., the natural mapping CHV → Hp[V ] is an isomorphism, see Section 4.11 below.
Another reason is that there is a close connection between Coleff-Herrera currents
and Noetherian differential operators. This will be discussed in Section 0.6.



65

0.5. Basic properties of Coleff-Herrera currents.

Lemma 0.7. If µ is in CHV and for each neighborhood ω of V there is a current w
with support in ω such that ∂̄w = µ, then µ = 0.

The proof will also provide a description of µ locally on Vreg. Later on we will see
that a similar description holds even across the singular part.

Proof. Locally on Vreg we can choose coordinates (z, w) such that V = {w = 0}. We
claim that there is a natural number M such that

(0.15) µ =
∑

|α|≤M−p

aα(z)∂̄
1

wα1+1
1

∧ . . . ∧ ∂̄ 1

w
αp+1
p

,

where aα are the push-forwards of µ∧wαdw/(2πi)p under the projection (z, w) 7→ z.
In fact, since w̄jµ = 0 and ∂̄µ = 0 it follows that dw̄j ∧ µ = 0, j = 1, . . . , p, and
hence µ = µ0dw̄1 ∧ . . . ∧ dw̄p. Therefore it is enough to check (0.15) for test forms
of the form ξ(z, w)dw ∧ dz̄ ∧ dz. Since w̄jµ = 0 we have by a Taylor expansion in w
(the sum is finite since µ has finite order), cf., (1.6), that∫

z,w
µ ∧ ξdw ∧ dz̄ ∧ dz =

∑
α

∫
z,w

µ ∧ ∂αξ

∂wα
(z, 0)

wα

α!
dw ∧ dz̄ ∧ dz =

∑
α

∫
z
aα(z)

∂αξ

∂wα
(z, 0)

1
α!
dw ∧ dz̄ ∧ dz(2πi)p =

∑
α

∫
z
aα(z)

∫
w
∂̄

1
wα+1

∧ ξ(z, w)dw ∧ dz̄ ∧ dz.

Since µ is ∂̄-closed it follows that aα are holomorphic. It follows from Corollary 1.9
that

∂̄
1

w
βp
p

∧ . . . ∧ ∂̄ 1

wβ1
1

∧ dwβ1
1 ∧ . . . ∧ dw

βp
p /(2πi)p = β1 · · ·βp[w = 0],

where [w = 0] denote the current of integration over Vreg.
Now assume that ∂̄γ = µ and γ has support close to V . We have, for |β| = M ,

that
∂̄(γ ∧ dwβ) = (2πi)paβ−1(z)β1 · · ·βp[w = 0].

If ν is the component of γ ∧ dwβ of bidegree (p, p− 1) in w, thus

dwν = ∂̄wν = (2πi)paβ−1β1 · · ·βp[w = 0].

Integrating with respect to w we get that aβ−1(z) = 0. By finite induction we can
conclude that µ = 0 locally on Vreg. Thus µ vanishes on Vreg and by the SEP it
follows that µ = 0. �

We have the following uniqueness theorem:

Theorem 0.8. Let f = (f1, . . . , fp) be a complete intersection at x. If there is a
current solution v ∈ L−1 to ∇fv = τ ∧ e and τ ∈ CHV (f), then τ = 0.

Proof. Let ω be any neighborhood of V and take a cutoff function χ that is 1 in
a neighborhood of V and with support on ω. Let u be the smooth form (0.9) in
X \ V (f) such that ∇fu = 1 there. Then

g = χ− ∂̄χ ∧ u
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is a smooth form in ω and ∇fg = 0. Moreover, g0 = 1 and gk = 0, k ≥ 1, in a
neighborhood of V . Therefore,

∇f (g ∧ v) = g0τ ∧ e = τ ∧ e,

and thus w = −(g ∧ v)p−1 is a current solution to ∂̄w = τ with support in ω. From
Lemma 0.7 we conclude that τ = 0. �

Corollary 0.9. Let f be a complete intersection at x. If ∇fU = 1 − µ ∧ e and
µ ∈ CHV (f), then µ is equal to the Coleff-Herrera product µf .

Proof. Take v as in (0.11) such that ∇fv = 1−µf ∧e. Then ∇f (v−U) = (µ−µf )∧e,
and by Theorem 0.8 thus µ = µf . �

Corollary 0.10. Let f be a complete intersection at x. If µ ∈ CHV (f) and J (f)µ =
0, then there is a holomorphic function ψ, unique in O/J (f), such that µ = ψµf .

Proof. From the assumptions it follows that ∇fµ ∧ e = 0. In view of Lemma 0.2
there is a function ψ, unique in O/J (f), such that ψ−µ∧e = ∇fU for some current
U ∈ L−1

x . Now take v ∈ L−1
x such that ∇fv = 1−µf ∧e. Then ∇f (ψv) = ψ−ψµf ∧e.

It then follows from Corollary 0.9 that µ = ψµf at x. �

The corollary can be expressed more algebraically as saying that the mapping
φ 7→ φµf ∧ e induces an isomorphism

O/J (f) ' HomO(O/J (f), CHV (f)(Λ
pE))

at x, where CHV (f)(ΛpE) denotes the sheaf of currents in CHV (f) with values in the
vector bundle ΛpE.

This isomorphism only depends on the section f of E, and not on the choice of
frame, i.e., the current µf ∧ e is independent of the frame. In fact, let e′j be another
frame of E, let (e′j)

∗ be its dual frame, and let f ′j be the corresponding functions so
that

f ′1(e′1)∗ + · · ·+ f ′p(e
′
p)
∗ = f1e

∗
1 + · · ·+ fpe

∗
p

and let µf
′

denote the associated Coleff-Herrera product ∂̄(1/f ′1) ∧ . . . ∧ ∂̄(1/f ′p).
Then since δf is an invariant operation on ΛE, we have a current solution to ∇fV ′ =
1− µf ′ ∧ e′ if e′ := e′1 ∧ . . . ∧ e′p. By Corollary 0.9 we conclude that

(0.16) µf ∧ e = µf
′ ∧ e′.

This equality can be rephrased as the so-called transformation law for the Coleff-
Herrera product:

Corollary 0.11 (Transformation law). Assume that fj is a complete intersection at
x. If g is a holomorphic invertible p× p matrix and f ′ = gf , then

(0.17) ∂̄
1
f ′p
∧ . . . ∧ ∂̄ 1

f ′1
= det g∂̄

1
fp
∧ . . . ∧ ∂̄ 1

f1
.

We will see later on that the same formula holds for any g such that also f ′ is a
complete intersection.

Proof. Let e′ be the frame such that e∗f = (e′)∗gf . Then e′ = egT and thus e′1 ∧
. . . ∧ e′p = det gT e1 ∧ . . . ∧ ep. Now (0.17) follows from (0.16). �
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We can just as well consider the sheaf

CHkV := CHV (ΛkT ∗1,0(X))

of (k, p)-currents in CHV . If µ ∈ CHkV and J (f)µ = 0, then in view of Corollary 4.3
there is then a holomorphic (k, 0)-form ψ such that µ = µfψ.

Example 0.12. We claim that the Lelong current [V ] is a section of CHpV . In fact,
it is a (p, p)-current that has support on V and is even d-closed. Moreover, it is
clearly annihilated by ĪV . To see the SEP, let h be a holomorphic function that does
not vanish identically on (any irreducible component of) V , and let π : Ṽ → V be a
smooth modification. Then∫

V
χ(|h|2/ε)ξ =

∫
Ṽ
χ(|π∗h|2/ε)π∗ξ →

∫
Ṽ
π∗ξ =

∫
V
ξ

for test forms ξ, by the dominated convergence theorem since the zero set of π∗h is
a set of measure zero on Ṽ .

If z are local coordinates at x we thus have that

[V ] =
′∑

|I|=p

τI ∧ dzI ,

where τI are in CHV at x. Since certainly J (f)[V ] = 0 it follows from Corollary ??
that there are holomorphic functions aI such that τI = aIµ

f , i.e.,

[V ] = µf ∧A = µf ∧
′∑

|I|=p

aIdzI .

We will see later on that one can choose

A = αdf1 ∧ . . . ∧ dfp,
where α is a suitable holomorphic function, that is constant on each irreducible
component V` of V at x. �

We have the following structure result for Coleff-Herrera currents.

Corollary 0.13 (Structure theorem for CHV ). Let V be any variety of pure codimen-
sion p. Any µ ∈ CHkV is locally of the form ψ ∧ µg where g is complete intersection
and ψ is a holomorphic (k, 0)-form.

Proof. Any V of pure codimension p is locally a subset of V (f) for a complete
intersection f = (f1, . . . , fp); this follows from the local parametrization theorem
structure ?????. For sufficiently large M , g = (fM1 , . . . , fMp ) will annihilate µ ∈ CHV
and hence µ = ψµg according to Corollary 4.3. �

Corollary 0.14. If µ is a Coleff-Herrera current, then its annihilator sheaf annµ is
coherent.

Proof. Locally we have that annµ is the ideal of φ in O such that φψ is in the ideal
J (g). Since O/J (g) is coherent it follows that annµ is coherent. �

It follows from Corollary 0.13 that any Coleff-Herrera current is pseudomeromor-
phic. In view of Example 0.6 we therefore have

Corollary 0.15 (Characterization of CHV ). The sheaf CHV is precisely the subsheaf
of µ ∈ W∗,pV such that ∂̄µ = 0.
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In particular, in view of Example 0.12, all Lelong currents [V ] are pseudomero-
morphic.

Example 0.16 (Poincaré-Lelong’s formula). Let g be a holomorphic function in X
with multiplicity α` on the irreducible component V` of V = V (g). Then

(0.18) ∂̄
1
g
∧ dg/2πi =

∑
`

α`[V`].

In fact, in a neighborhood Ω ⊂ X of any point on V`\Vsing we can choose holomorphic
coordintes z such that g = zα`1 . Noting that [z1 = 0] considered as a current in Cn is
the tensor product of the current [z1 = 0] in C and the function 1 in Cn−1, we now
have from the one-variable case Prop ?? ??????? (SKA jmf med beviset av lma 5.2
har!!) that

∂̄
1
g
∧ dg/2πi = ∂̄

1
zα`1

∧ dzα`1 /2πi = α`[z1 = 0]

in Ω. Thus (0.18) holds in X \ Vsing. However, since both sides are pseudomero-
morphic (p, p)-currents, and Vsing has codimension at least p+ 1, it follows from the
dimension principle that (0.18) holds in X. �

Corollary 0.17. Suppose that V has pure codimension p and V ′ is a subvariety of
V of the same dimension, i.e., a union of irreducible components of V . Then CHV ′
is precisely the currents in CHV that have support on V ′.

Let A be a hypersurface such that V ∩A has positive codimension and let CHV (A)
denote the sheaf of Coleff-Herrera currents on V with possible poles at A. This means
that µ ∈ CHV (A) if and only if there is a holomorphic function h with V (h)∩V ⊂ A
such that µ̃ = hµ is in CHV . Notice then that

(0.19) µ =
1
h
µ̃.

In fact, (0.19) holds outside A, and hence it holds across by the dimension principle.
It follows that

∂̄µ = ∂̄
1
h
∧ µ̃

is a ∂̄-closed current in PM∗,p+1 with support on V ∩A and thus it is in CHV ∩A in
view of ???.

Proposition 0.18. The operator ∂̄ re is a well-defined mapping

∂̄ : CHV (A)→ CHV ∩A.

0.6. Noetherian differential operators. Ev flytta allt om BM-strommar till sec-
tion 6 ????

Let µ ∈ CHV , x and let J = annµ, i.e., J/Ox is the ideal of all φ such that φµ = 0.
We shall now see that J is described by so-called Noetherian differential operators.

Theorem 0.19 (Björk). Let V be a germ of an analytic variety of pure codimension
p at 0 ∈ Cn. There is a neighborhood Ω of 0 such that for each µ ∈ CHV (E∗0) in
Ω, there are holomorphic differential operators L1, . . . ,Lν in Ω such that for any
φ ∈ O(E0), µφ = 0 if and only if

(0.20) L1φ = · · · = Lνφ = 0 on V.
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Proof. It follows from the local normalization parametrization?? theorem that one
can find holomorphic functions f1, . . . , fp in an open neighborhood Ω, forming a
complete intersection, such that V is a union of irreducible components of V (f) =
{f = 0}, and such that

df1 ∧ . . . ∧ dfp 6= 0
on V \W where W is a hypersurface not containing any component of Vf . By a
suitable choice of coordinates (ζ, ω) ∈ Cn−p ×Cp we may assume that W is the zero
set of

h = det
∂f

∂ω
.

Let
z = ζ, w = f(ζ, ω).

Since
d(z, w)
d(ζ, ω)

= det
[

I 0
∂f/∂ζ ∂f/∂ω

]
= det

∂f

∂ω
,

locally outside W , (z, w) is a local holomorphic coordinate system. Take µ ∈ O(E∗0).
From Corollary 4.3 we know that there is an M and a holomorphic function A such
that

µ = A∂̄
1

fM+1
1

∧ . . . ∂̄ 1
fM+1
p

.

Since (z, w) are coordinates locally in Ω \W , by a Taylor expansion of w 7→ A(z, w)
we see that

µ =
∫
w=0

∑
0≤α≤M

∂M−αA(z, 0)
∂wM−α

1
(M − α)!

∂̄
1
w
αp
p
∧ . . . ∧ ∂̄ 1

w
αp
1

there. In view of (1.6) therefore

(0.21) 〈µ, ξ̂dz ∧ dw ∧ dw̄〉 =
∫
w=0

∑
0≤α≤M

cα
∂M−αA(z, 0)
∂wM−α

∂αξ̂

∂wα
.

Notice now that φµ = 0 in Ω \W if and only if for all ξ̂ with support in Ω \W ,

(0.22) 0 = 〈φµ, ξ̂dz ∧ dw ∧ dŵ〉 =
∫
w=0

∑
0≤`≤M

Q`φ
∂`ξ̂

∂w`
,

where

Q` =
∑

`≤α≤M

∂M−αA

∂wM−α
∂α−`

∂wα−`
.

However, by applying to ξ = wαη for appropriate α (induction downwards) it follows
that (0.22) holds for all ξ ∈ D(Ω \W ) if and only if Q`φ = 0 on V ∩ (Ω \W ) for all
` ≤M .

Notice now that[
∂ζ
∂z

∂ζ
∂w

∂ω
∂z

∂ω
∂w

]
=
[
I 0
∂f
∂ζ

∂f
∂ω

]−1

=

[
I 0

−
( ∂f
∂ω

)−1 ∂f
∂ζ

( ∂f
∂ω

)−1

]
and hence

∂ω

∂w
=
(∂f
∂ω

)−1 =
1
h
γ,



70

where γ is a holomorphic matrix. It follows that

(0.23)
∂

∂wj
=
∑
k

∂ωk
∂wj

∂

∂ωk
=

1
h

∑
k

γjk
∂

∂ωk
.

It follows from (0.23) that Q` are (semi-)global differential operators of the form
Q` = L`/hN , where L` are holomorphic. Now, φµ = 0 if and only if φµ = 0 on
X \W by the SEP, and this holds as we have seen if and only if L`φ = 0 on V \W
which by continuity holds if and only if L`φ = 0 on V . Thus the proposition is
proved. �

Notice that if
∂

∂w
=

∂

∂w1
∧ . . . ∧ ∂

∂wp
,

Q =
∑

0≤α≤M
cα
∂M−αA

∂wM−α
∂α

∂wα
,

and ξ is any test form of bidegree (n, n − p) with support in Ω \W , we have from
(0.21) that

〈µ, ξ〉 =
∫
w=0

Q((∂/∂w)¬ξ).

It follows from the proof that

Q =
∑
α≤M

cα
∂M−αA

∂wM−α
∂α

∂wα
,

a priori defined in Ω\W is equal to Q = L′/hN for some N where L′ is a holomorphic
differential operator in Ω. Moreover,

∂

∂w
=

1
hp
τ,

where τ is a holomorphic section of ΛpT1,0(Ω) in Ω. Notice that there is a holomorphic
differential operator L such that L′(h−pη) = h−MLη. We now have

Proposition 0.20 (Björk). Given µ ∈ CHV,x there is a neighborhood Ω of x, a holo-
morphic differential operator L, a holomorphic function h not vanishing identically
on any irreducible component of V , and a holomorphic (p, 0)- vector field τ such that

(0.24) 〈µ, ξ〉 =
∫
V

1
hM
L(τ¬ξ), ξ ∈ Dn,n−p(Ω).

The right hand side here is defined as a principal value integral.

Proof. With the notation in the preceding proof and discussion we know that (0.24)
holds for ξ with support in Ω\W . In view of the dimensional principle it is therefore
enoughto see that the right hand side defines a pseudomeromorphic current in Ω.

Let L∗ be the formal adjoint of L in Ω. Then the right hand side is ± the action
of the current

τ¬L∗
(
h−M [V ]

)
on ξ, and this current is pseudomeromorphic according to Proposition 11.1. �

It follows that there is a holomorphic differential operator N such that

µ = τ¬
(
h−MN [V ]

)
.
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1. Vanishing of Coleff-Herrera currents

If µ ∈ CHV (X) and X Stein, then we can solve ∂̄v = µ in X. Notice that such a
solution v defines a Dolbeault cohomology class ωµ in X \V that only depends on µ.
We shall see now that µ = 0 if and only if ωµ = 0. In particular this implies that the
annihilator annµ is the ideal of holomorphic functions φ in X such that φωµ = 0.

Theorem 1.1. Assume that X is Stein and V ⊂ X has pure codimension p. If
µ ∈ CHV (X) and ∂̄v = µ in X, then the following are equivalent:

(i) µ = 0.
(ii) For all ψ ∈ Dn,n−p−1(X \V ) such that ∂̄ψ = 0 in some nbh of V we have that∫

v ∧ ∂̄ψ = 0.

(iii) There is a solution to ∂̄w = v in X \ V .
(iv) For each neighborhood ω of V there is a solution to ∂̄u = v in X \ ω.

Proof. It is readily checked that (i) implies all the other conditions. Assume that (ii)
holds. We can mimick the proof of Lemma 0.7 above: Locally on Vreg = {w = 0} we
have (0.15), and by choosing ξ(z, w) = ψ(z)χ(w)dwβ ∧ sz ∧ dz̄ for a suitable cutoff
function χ and test functions ψ, we can conclude successively from (ii) that all the
coefficients aα vanish, so that µ = 0 there. It follows by the SEP that µ = 0 globally.

Clearly (iii) implies (iv). Finally assume that (iv) holds. Given ψ in (ii) we can
choose ω such that ∂̄ψ vanishes in a neighborhood of ω̄. Then∫

V ∧ ∂̄ψ =
∫
d(w ∧ ∂̄ψ) = 0

by Stokes’ theorem, so (ii) holds. Alternatively, given ω ⊃ V choose ω′ ⊂⊂ ω and
a solution to ∂̄w = V in X \ ω′. If we extend w arbitrarily across ω′ the form
U = V − ∂̄w is a solution to ∂̄U = µ with support in ω. In view of Lemma 0.7 thus
µ = 0. �

Corollary 1.2. Assume that f defines a complete intersection at x and V = V (f)
and assume that ∂̄v = µf in X \ V , where X is a small Sein neighborhood of x in
X. Then φ ∈ Ox is in J (f)x if and only if∫

φv ∧ ∂̄ψ = 0

for all ψ ∈ Dn,n−p−1(X) such that ∂̄ψ = 0 on V .
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Chapter 4

Bochner-Martinelli type residues
Again let f = f1e

∗
1 + · · · + fpe

∗
p be a holomorphic section of the dual E∗ of a

trivial vector bundle E → X. For the moment we also assume that fj form a
complete intersection at some given point x. We have seen that the ΛpE-valued
current µf ∧ e is invariantly defined. However, the current v in (0.11) such that
∇fv = 1 − µf ∧ e certainly depends on the choice of frame ej . Moreover, although
the residue current is only singular on the set V (f), the current v is singular on
the hypersurface f1f2 · · · fp = 0. Let us try to find a somewhat more invariant such
current by taking mean values in the following way. Let α = (α1, . . . , αp) be a p-tuple
of elements in Cp and consider the current

vα =
α1 · e
α1 · f

+
α2 · e
α2 · f

∧ ∂̄ α
1 · e

α1 · f
+ · · · ,

where α` · e = α`1e1 + ·+α`pep and α` · f = α`1e1 + ·+α`pfp. As long as αj are linearly
independent, this is just the current corresponding to the new frame e′j = αj · e,
j = 1, . . . , p, and hence ∇fvα = 1− µf ∧ e. Notice that vα actually depends only on
[α] = ([α1], . . . , [αp]) ∈ (Pp−1)p.

Lemma 0.3. If a ∈ (Cp)∗ and a 6= 0, then∫
[β]∈Pp−1

β · e
β · a

dτ(β) =
ā · e
|a|2

,

where dτ is the (normalized) Fubini-Study metric on Pp−1.

Proof. It will follow from the argument below that the integrand in the lemma is
integrable so the integral exists. It is clear that∫

[β]∈Pp−1

β · e
β · a

dτ(β) =
∫
|β|=1

β · e
β · a

dS(β),

where dS is normalized surface measure on the unit sphere in Cp. By obvious homo-
geneity it is enough to assume that |a| = 1. First assume even that a = (1, 0, . . . , 0).
Then the integral is ∫

|β|=1

β1e1 + β2e2 + · · ·
β1

dS(β),

so the integrand is integrable, and the integral is in in fact equal to e1 for symmetry
reasons. Thus the lemma holds for this particular a. If |a| = 1, take a unitary
mapping A such that Aa = (1, 0, . . . , 0). Then

ā · e = ā ·A∗Ae = Aa ·Ae =
∫
|β|=1

β ·Ae
β ·Aa

dS =
∫
|β|=1

Atβ · e
Atβ · a

dS =
∫
|β|=1

β · e
β · a

dS,

by the rotational invariance of dS. �

Outside V (f) we thus have that∫
[α]∈(Pp−1)p

vα = σ + σ ∧ ∂̄σ + σ ∧ (∂̄σ)2 + · · · =: u,
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where

σ =
f̄ · e
|f |2

.

It is thus reasonable to guess that if we can extend this smooth form u across V (f)
to a current U , then ∇fU = 1 − µf ∧ e. This is indeed the case as we shall see
now. However, we shall consider slightly more general currents u corresponding to
an arbitrary Hermitian metric on E.

0.1. Bochner-Martinelli type residues. Let now E → X be any Hermitian vec-
tor bundle of rank m and let f be a global holomorphic section if the dual bundle
E∗ → X. Locally we can choose a holomorphic frame e1, . . . , em so that f =

∑
fje
∗
j .

To begin with we do not assume that f is a complete intersection. If E is trivial we
can fix a global frame ej and choose the metric on E so that ej is orthonormal. Let

σ =
∑
j

σjej

be the pointwise minimal solution to fσ = 1 in X \ V . If the metric on E∗ is given
by the Hermitian positively definite matrix hjk, so that

|f |2 =
∑
jk

fj f̄khjk,

then it is easily checked that

σj =
∑
k

f̄khjk
|f |2

.

In X \ V we define

u =
σ

∇fσ
= σ + σ ∧ ∂̄σ + . . .+ σ ∧ (∂̄σ)m−1.

It follows immediately that
∇fu = 1

in X \ V .

Theorem 0.4. The function λ 7→ |f |2λu has a current-valued analytic continuation
to Reλ > −ε. The value at λ = 0,

U = |f |2λu|λ=0,

is a PM-current in X that coincides with u on X \ V , and

∇fU = 1−R,

where
R = ∂̄|f |2λ ∧ u|λ=0

is a current with support on V .

Since R is pseudomeromorphic and has support on V (f) it follows that it is anni-
hilated by h̄ and dh̄ for h ∈ IV . By the dimension principle we hav that

R = RcodimV + · · ·+Rm.
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Proof. If f = f0f
′ = f0(f ′1, . . . , f

′
p), where f ′ 6= 0, then

σ =
1
f0
σ′

where σ′ is smooth across V . In fact, f̄k = f̄0f̄
′
k and |f |2 = |f0|2|f ′|2 so that σj =∑

k f̄
′
khjk/f0. Thus

(0.1) uk = σ ∧ (∂̄σ)k−1 =
α

fk0
,

where α is smooth.
Both the definition and the statement is clearly local and therefore we can assume

that the bundle E is trivial in U ⊂ X.
With a smooth principalization π : X̃ → X as in Section ?? above, we have∫
U
|f |2λuk ∧ ξ =

∫
Ũ

∑
j

|π∗f |2λ(π∗uk)ρj ∧ π∗ξ =

∑
jk

∫
Ũj
|(πj)∗π∗f |(πj)∗π∗uk ∧ (πj)∗π∗ξ.

If we for each j choose a suitable partition of unity ρjk we have a local coordinate
system t in a neighborhood of the support of In view of (0.1) each terms is like∫

|f0|2λ|f ′|2λ
αj

fk0
∧ (πj)∗π∗ξ,

and thus the proposed analytic continuation exists.
there, where f0 is a monomial in t and f ′ is non-vanishing. In view of ??? it is

now clear that the analytic continuation exists and moreover, that∫
U
|f |2λuk ∧ φ|λ=0 =

∑
`

τ` ∧ (πj)∗π∗φ,

where each τ` has the form
τ =

α

ta1
1 · · · t

ar
r

in suitable local coordinates t, where α has compact support. Thus we have that

(0.2) Uk =
∑
`

π∗π
`
∗τ`.

Moreover,

τ = ∂̄
1
ta1
1

∧ α

ta2
2 · · · t

ar
r

Since

(0.3) ∇(|f |2λu) = |f |2λ − ∂̄|f |2λ ∧ u
and clearly |f |2λ has a continuation to Reλ > −ε which is 1 for λ = 0, the desired
continuation of the last term follows, and if we define the currents U and Rf as
the values of the corresponding terms at λ = 0, then (1.4) follows from (0.3). In
particular, it follows that Rf has support on Y .

FIXA TILL !!!!
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Thus we have that

(0.4) Rk =
∑
`

π∗π
`
∗τ`.

τ = ∂̄
1
ta1
1

∧ α

ta2
2 · · · t

ar
r

It now follows that

�

Corollary 0.5. If φ ∈ O and φR = 0, then φ ∈ (f).

The algebraic meaning and generalizations will be discussed in ???? Let us just
see that this leads to a simple proof of the

Theorem 0.6 (Briançon-Skoda). Suppose that f = (f1, . . . , fm) and φ are germs at
0 such that |φ| ≤ |f |min(m,n). Then φ ∈ (f).

Notice that if f is a complete intersection, i.e., V = V (f) has codimension p, then
R = Rp and ∂̄R = 0. Thus R = Rp = µ ∧ e where µ ∈ CHV . In view of ??? and
Theorem ?? we thus have

Theorem 0.7. If f is a complete intersection then

R = Rp = µf ∧ e1 . . . ∧ ep,

where µf is the Coleff-Herrera product (??).

Let us point out a direct proof of this remarkable theorem.

A direct proof of Theorem 0.7. Let v be the current from ??? so that ∇fv = 1−µf ∧
e. Notice that ∂̄Ufp = Rf and ∂̄vp = µf ∧ e. If Reλ � 0, then |f |2λUf is smooth
and hence

∇f (|f |2λUf ∧ v) = |f |2λv − |f |2λU − ∂̄|f |2λ ∧ U ∧ v.

since |f |2λµf = 0. Now

|f |2λV |λ=0 = v

since the difference is 1Zv, that vanishes in view of the dimension principle, since v
has degree at most (0, p− 1). Moreover,

∂̄|f |2λ ∧ U ∧ v|λ=0 = 0

since again this is a pseudomeromorphic current of bidegree of a most (0, p−1). Thus
we have ∇A = v − U and in particular, −∂̄Ap = Up − vp so that 0 = ∂̄vp − ∂̄Up =
µf ∧ e−Rf . �

Corollary 0.8. Assume that f defines a complete intersection at x and V = V (f).
Then φ ∈ Ox is in (f) if and only if∫

φuf ∧ ∂̄ψ = 0

for all ψ ∈ Dn,n−p−1(X) such that ∂̄ψ = 0 on V .
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We have already seen that if µ ∈ CHV , then it can be factorized as µ = ψµf , where
ψ is holomorphic and f is a complete intersection (Corollary ??). The disadvantage
is that µf in general must have support on a larger set than V .

However, we shall now see (with basically the same argument) that if we choose
a tuple f with common zero set V such that J (f)µ = 0, then we can write, p =
codimV ,

µ =
′∑

|I|=p

ξIR
f
I ,

where ξI are holomorphic and

Rfp =
′∑

|I|=p

RfI ∧ eI .

Theorem 0.9. Let f = (f1, . . . , fm) be an arbitrary tuple in Ox. Assume that
V = V (f) has codimension p and let V ′ be the components of pure codimension p.
Assume that µ ∈ CHV ′ and that J (f)µ = 0. Then there is ξ ∈ Ox(Λm−pE), with
δfξ = 0, such that

(0.5) µ ∧ e = Rfp ∧ ξ.

Notice that if ξ ∈ Ox(Λm−pE), with δfξ = 0, then Rfp ∧ ξ is a ∂̄-closed (0, p)-
current with support on V ′ (by the dimension principle) , and hence an element in
CHV ′(ΛmE).

In fact,
∂̄
(
Rfp ∧ ξ

)
= δfR

f
p+1 ∧ ξ = δf

(
Rfp+1 ∧ ξ

)
= 0,

where the last equality holds since Rfp+1 ∧ ξ = 0 for degree reasons.

Proof. Since ∇f (µ∧e) = 0, by (0.7) there is ξ ∈ O(Λm−pE) (with δfξ = 0) such that
∇fv = ξ − µ ∧ e for some current v. On the other hand, ∇f (U ∧ ξ) = ξ − Rf ∧ ξ =
ξ − Rfp ∧ ξ for degree reasons. It follows that there is a current w in Lp−m−1 such
that

∇f ∂̄w = Rfp ∧ ξ − µ ∧ e.
Now (0.5) follows from a slight modification of (the proof of) Theorem 0.8. �

0.2. A more geometric point of view. Again arbitrary f section of E∗ → X and
assume that π : X̃ → X is a smooth modification such that π∗f = f0f ′, where f0 is
a section of a line bundle L→ X̃ and f ′ is a section of L−1 ⊗ π∗E∗.

Notice that the zero set |D| of f0 is precisely π−1V (f). here D denotes the divisor
of F 0. Will ne imortant later on. Over X̃ we thus have, suppressing π∗ on vector
bundles for simplicity in notation, that

(0.6) E
f→ C

factorizes as

E
f ′→ L−1 f0

→ C,
and we have a pointwise exact sequence

(0.7) 0→ S
i→ E

f ′→ L−1 → 0,
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Notice that the holomorphic vector bundle S → X̃ coincides with the kernel of (0.6)
over X̃ \ π−1V (f).

Since E and S already have got a Hermitian metric, we equip L−1 = E/S with the
quotient metric. Let σ′ be the minimal inverse of f ′, i.e., so that σ′ξ is the element
in E with minimal norm such that f ′σξ = ξ. Then by definition of quotient metric
|ξ|L = |σ′ξ|E . We claim that

π∗σ = σ′/f0

on X̃ \ |D|. In fact, orthogonal to Ker f that is the same as Ker f ′ on this set.
Over X̃ \ |D| we thus have that globally, cf., the proof of ??? in Section ????,

π∗uk = π∗(σ ∧ (∂̄σ)k−1) =
1

(f0)k
σ′ ∧ (∂̄σ′)k−1.

It is clear now that uk admits an obvious (unique) semi-meromorphic extension across
|D| in X̃ as the principal value current 1/(f0)k times the smooth form σ′ ∧ (∂̄σ′)k−1.
Moreover, since this current is the value at λ = 0 of

|f0f ′|2λ/(f0)kσ′ ∧ (∂̄σ′)k−1 = π∗|f |2λuk
we conclude, cf., ????, that Uk is the direct image under π∗ of the (natural extension
across |D|) of the current π∗uk. It follows then that

Rk = π∗

(
∂̄

1
(f0)k

∧ σ′ ∧ (∂̄σ′)k−1
)
, k ≥ 1,

and
R0 = π∗1|D|.

Notice that 1/f0 is a meromorphic section of L−1. Thus

|1/f0|L−1 = |σ′(1/f0)|E = |σ · 1|E = 1/|f |E∗ ,
since

|σ|E = 1/|f |E∗ .
?????????????????

We conclude that
|f0|L = |f |E∗ .

0.3. Another regularization of Bochner-Martinelli currents. Although the
approximands Uf,λ = |f |2λUf and Rf,λ = ∂̄|f |2λ ∧ Uf of Uf and Rf are arbitrarily
smooth if Reλ is large enough, if is sometimes desirable to have infinitley smooth
approximations, just as for the case when f is one single function.

Recall that α := |f |2σ is smooth in X. For ε > 0 let

σε :=
α

|f |2 + ε

and let us introduce the smooth forms

(0.8) Uf,ε :=
σε

1− ∂̄σε
= σε + σε ∧ ∂̄ ∧ σε + σε ∧ (∂̄σε)2 + · · · ,

and

(0.9) Rf,ε =
n∑
k=0

ε

|f |2 + ε

( ∂̄α

|f |2 + ε

)k
.
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Proposition 0.10. We have that

(0.10) ∇fUf,ε = 1−Rf,ε,

(0.11) lim
ε→0

Uf,ε = Uf

and

(0.12) lim
ε→0

Rf,ε = Rf .

Proof. We use the notation from ???. Recall that

Uk = π∗

( 1
(f0)k

∧ σ′ ∧ (∂̄σ′)k−1
)

where π∗σ = (1/f0)σ′. Since

σε =
|f |2

|f |2 + ε
σ

we have that

π∗
(
σε ∧ (∂̄σε)k−1

)
=
( |f0|2|f ′|2

|f0|2|f ′|2 + ε

)k 1
(f0)k

σ′ ∧ (∂̄σ′)k−1

which tends to
1

(f0)k
∧ σ′ ∧ (∂̄σ′)k−1

in view of Example ??. It follows that

Uf,ε = π∗(π∗Uf,ε)→ Uf

so that (0.11) is settled.
Since δfσ = 1 we have that δfα = |f |2. Thus

Uf,ε =
α

|f |2 + ε− ∂̄α
=

α

ε+∇α
.

Thus
∇fU ε =

∇α
ε+∇α

= 1− ε

ε+∇α
.

Moreover,
ε

ε+∇α
=

ε

ε+ |f |2 − ∂̄α
=

ε

|f |2 + ε

1

1− ∂̄α
|f |2+ε

,

and developing the right most factor we get (0.10) Now (0.12) follows from ???. �

Remark 0.11 (Resolutions and dimension of subvarieties). In a resolution π : X̃ → X,
the inverse image Ỹ of a variety Y in X is (usually) a hypersurface in X̃ so any
assumption about big codimension, e.g., an assumption about complete intersection,
will necessarily be destroyed. However, it will be reflected on the pullback of a
test form in the following way. Any smooth (0, q)-form ψ can locally be written
ψ =

∑
ν ψν ω̄ν , where ων are holomorphic (0, q)-forms and ψν are smooth. Now

assume that the complex dimension of Y is smaller than q, so that (the pullback of)
ψ vanishes of Y for degree reasons. Moreover, assune that s is a local coordinate
function in X̃ such that {s = 0} ⊂ Ỹ . Then π∗ων is holomorphic and vanishes on
the hyperplane {s = 0} and therefore it is a sum of terms, each of which is either
divisible by s or by ds. It follows that ψ̃ is a sum of terms each of which is a smooth
form times s̄ or a smooth form times ds̄. �
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Example 0.12. Let X = C2
z,w and Y = {0} and let X̃ be the blow-up at 0, and

assume that z = s, w = st, so that Ỹ = {s = 0}. Then π∗dw̄ = d̄t̄ + s̄dt̄, so both
kind of terms may appear. �

1. Multivariable Poincare-Lelong
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Chapter 5

Residue currents of generically exact complexes

1. Residue currents of generically exact complexes

Let E,Q be Hermitian holomorphic vector bundles over a connected manifold X
and let f : E → Q be a holomorphic morphism. If f has optimal rank ρ then the
rank is precisely ρ outside the analytic set Z = {F = 0}, where F = detρ f is a
section of ΛρE∗ ⊗ ΛρQ. Let σ : Q → E be the minimal inverse in X \ Z, i.e., σξ is
the minimal solution to fη = ξ if ξ is in the image of f and σξ = 0 if ξ is orthogonal
to Im f . Then clearly σ is smooth outside Z, and following the proof of Lemma 4.1
in [45] we get

Lemma 1.1. If F = F 0F ′ in X, where F 0 is a holomorphic function and F ′ is
non-vanishing, then F 0σ is smooth across Z.

Let

(1.1) 0→ EN
fN−→ EN−1

fN−1−→ . . .
f−M+2−→ E−M+1

f−M+1−→ E−M → 0

be a holomorphic complex of Hermitian vector bundles over the n-dimensional com-
plex manifold X, and assume that it is pointwise exact outside the analytic set Z of
positive codimension. Then for each k, rank fk is constant in X \ Z and equal to

(1.2) ρk = dimEk − dimEk+1 + · · · ± dimEN .

The bundle E = ⊕Ek has a natural superbundle structure, i.e., a Z2-grading, E =
E+ ⊕ E−, E+ and E− being the subspaces of even and odd elements, respectively,
by letting E+ = ⊕2kEk and E− = ⊕2k+1Ek, see [75] and, e.g., [46], for details. The
mappings f =

∑
fj and ∂̄ are then odd mappings on D′•(E) and they anticommute so

that ∇2 = 0, where ∇ = f − ∂̄ is (minus) the (0, 1)-part of Quillen’s superconnection
D−∂̄. Moreover, ∇ extends to an odd mapping∇End on D′•(EndE) and∇2

End = 0. In
X\Z let σk : Ek−1 → Ek be the minimal inverses of fk. If σ = σ−M+1+· · ·+σN : E →
E and I denotes the identity endomorphism on E, then fσ + σf = I. Moreover,
σσ = 0 and thus

(1.3) σ(∂̄σ) = (∂̄σ)σ.

Since σ is odd, ∇Endσ = ∇ ◦ σ + σ ◦ ∇ = fσ + σf − (∂̄ ◦ σ + σ ◦ ∂̄), so we get

(1.4) ∇Endσ = I − ∂̄σ.
Notice that ∂̄σ has even degree. In X \Z we define the EndE-valued form, cf., (1.4),

(1.5) u = σ(∇Endσ)−1 = σ(I − ∂̄σ)−1 = σ + σ(∂̄σ) + σ(∂̄σ)2 + . . . .

Now, ∇Endu = ∇Endσ(∇Endσ)−1 − σ∇End(∇Endσ)−1, and since ∇2
End = 0 we thus

have

(1.6) ∇Endu = I.

Notice that
u =

∑
`

∑
k≥`+1

u`k

where
u`k = σk(∂̄σk−1) · · · (∂̄σ`+1)
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is in E0,k−`−1(Hom (E`, Ek)) over X \ Z. In view of (1.3) we also have

(1.7) u`k = (∂̄σk)(∂̄σk−1) · · · (∂̄σ`+2)σ`+1.

Let
u` =

∑
k≥`+1

u`k,

be u composed with the projection E → E`. We can make a current extension
of u across Z following [74] and the proof of Theorem 1.1 in [42]. In fact, after a
sequence of suitable resolutions we may assume that the sections Fj = detρj fj of
ΛρjE∗j ⊗ ΛρjEj−1 are of the form Fj = F 0

j F
′
j , where F 0

j is a monomial and F ′j are
non-vanishing. If F is a holomorphic function that vanishes on Z, in the same way we
may assume that F = F 0F ′. By Lemma 1.1, σj = αj/F

0
j , where αj is smooth across

Z. Since αj+1αj = 0 outside the set {F 0
j+1F

0
j = 0}, thus αj+1αj = 0 everywhere.

Therefore, cf., (1.7), it is easy to see that

(1.8) u``+k =
(∂̄α`+k)(∂̄α`+k−1) · · · (∂̄α`+2)α`+1

F 0
`+k · · ·F 0

`+1

.

Since Fj only vanish on Z and F vanishes there, F 0 must contain each coordinate
factor that occurs in any F 0

j . It follows now that λ 7→ |F |2λu has a current-valued
analytic continuation to Reλ > −ε, and that U = |F |2λu|λ=0 is a current extension
of u.

In the same way we can now define the residue current R = R(E•) associated to
(1.1) as

R = ∂̄|F |2λ ∧ u|λ=0.

It clearly has its support on Z. If R`k = ∂̄|F |2λ∧u`k|λ=0 and R` is defined analogously,
then

R =
∑
`

R` =
∑
`

∑
k≥`+1

R`k.

Notice that R`k is a Hom (E`, Ek)-valued (0, k − `)-current. The currents U ` and U `k
are defined analogously. Notice that U has odd degree and R has even degree. In
analogy with Theorems 1.1 and 1.2 in [42] we have:

Proposition 1.2. If U and R are the currents associated to the complex (1.1) then

(1.9) ∇EndU = I −R, ∇EndR = 0.

Moreover, R`k vanishes if k − ` < codimZ, and ξ̄R = dξ̄ ∧R = 0 if ξ is holomorphic
and vanishes on Z.

The residue current R = R(E•) is related to the (lack of) exactness of the sheaf
complex associated to (1.1) in the following way.

Proposition 1.3. Let R = R(E•) be the residue current associated with (1.1) and
let φ be a holomorphic section of E`.
(i) If f`φ = 0 and R`φ = 0, then locally there is a holomorphic section ψ of E`+1

such that f`+1ψ = φ.
(ii) If moreover R`+1 = 0, then the existence of such a local solution ψ implies that
R`φ = 0.
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Proof. Let U be the associated current such that (1.9) holds. Then ∇(Uφ) = φ −
U(∇φ) − Rφ. Since Uφ = U `φ, Rφ = R`φ, and ∇φ = f`φ − ∂̄φ, it follows from
the assumptions of φ that ∇(U `φ) = φ. Now (i) follows by solving a sequence of
∂̄-equations locally. For the second part, assume that f`+1ψ = φ. Then by (1.9),
R`φ = Rφ = R(∇ψ) = ∇(Rψ) = ∇(R`+1ψ) = 0. �

If now (??) is a generically exact holomorphic complex of Hermitian bundles, since
rank f1 is generically constant, we can define σ1 in an unambiguous way in X \ Z,
and therefore the currents R` for ` ≥ 0 can be defined as above, and we have:

Corollary 1.4. If R = R(E•) is the residue current associated to (??), then Propo-
sition 1.3 holds (for ` ≥ 0), provided that f0φ = 0 is interpreted as φ belonging
generically (outside Z) to the image of f1.

If f1 is generically surjective, in particular if rankE0 = 1 and f1 is not identically
0, then this latter condition is of course automatically fulfilled.

Proof. The corollary actually follows just from a careful inspection of the arguments
in the proof of Proposition 1.3. Another way is to extend (??) to a generically exact
complex (1.1) and then refer directly to Proposition 1.3, noting that the definition of
R` for ` ≥ 0 as well as the condition f0φ = 0 are independent of such an extension. �

2. Residue currents with prescribed annihilators

The exactness of (??) is characterized by the current R associated with (??).

Theorem 2.1. Assume that (??) is generically exact, let R be the associated residue
current, and let (??) be the associated complex of sheaves. Then R` = 0 for all ` ≥ 1
if and only if (??) is exact.

For the proof we will use the following characterization of exactness due to Buchsbaum-
Eisenbud, see [62] Theorem 20.9: The complex (??) is exact if and only if

(2.1) codimZj ≥ j
for all j, where, cf., (1.2),

Zj = {z; rank fj < ρj}.

Remark 2.2. To be precise we will only use the “only if”-direction. The other direc-
tion is actually a consequence of Corollary 1.4 and (the proof of) Theorem 2.1. �

Proof. From Corollary 1.4 it follows that (??) is exact if R` = 0 for ` ≥ 1. For the
converse, let us now assume that (??) is exact; by the Buchsbaum-Eisenbud theorem
then (2.1) holds. We will prove that R1 = 0; the case when ` > 1 is handled in the
same way. The idea in the proof is based on the somewhat vague principle that a
residue current of bidegree (0, q) cannot be supported on a variety of codimension
q + 1. Taking this for granted, we notice to begin with that R1

2 = ∂̄|F |2λ ∧ σ2|λ=0 is
a (0, 1)-current and has its support on Z2, which has codimension at least 2. Hence
R1

2 must vanish according to the vague principle. Now, σ3 is smooth outside Z3, and
hence R1

3 = ∂̄σ3 ∧R1
2 = 0 outside Z3; thus R1

3 is supported on Z3 and again, by the
same principle, R1

3 must vanish etc. To make this into a strict argument we will use
the following simple lemma which follows from a Taylor expansion.

Lemma 2.3. Suppose that γ(s, τ) is smooth in C× Cr and that moreover γ(s, τ)/s̄
is smooth where τ1 · · · τk 6= 0. Then γ(s, τ)/s̄ is smooth everywhere.
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After a sequence of resolutions of singularities the action of R1
k on a test form ξ is

a finite sum of integrals of the form∫
∂̄|F 0|2λ ∧ (∂̄αk)(∂̄αk−1) · · · (∂̄α3)α2

F 0
kF

0
k−1 · · ·F 0

3F
0
2

∧ ξ̃
∣∣∣
λ=0

where F 0, F 0
i and αi are as (1.8) above, and where ξ̃ is the pullback of ξ. To

be precise, there are also cutoff functions involved that we suppress for simplicity.
Observe that ∂̄|F 0|2λ is a finite sum of terms like aλ|F 0|2λds̄/s̄, where a is a positive
integer and s is just one of the coordinate functions that divide F 0. We need to show
that all the corresponding integrals vanish when λ = 0, and to this end it is enough
to show, see, e.g., Lemma 2.1 in [42], that

η =
ds̄

s̄
∧ (∂̄αk)(∂̄αk−1) · · · (∂̄α3)α2 ∧ ξ̃

is smooth ((ds̄/s̄) ∧ β being smooth for a smooth β, means that each term of β
contains a factor s̄ or ds̄).

Let ` be the largest index among 2, . . . , k such that s is a factor in F 0
` (possibly

there is no such index at all; then ` below is to be interpreted as 1) and let τ1, . . . , τr
denote the coordinates that divide F 0

k · · ·F 0
`+1. We claim that, outside τ1 · · · τr = 0,

the form
ds̄

s̄
∧ (∂̄αk) · · · (∂̄α`+1)

F 0
k · · ·F 0

`+1

∧ ξ̃

is smooth. This follows by standard arguments, see, e.g., the proof of Lemma 2.2
in [74] or the proof of Theorem 1.1 in [42]; in fact, outside Zk ∩ . . . ∩ Z`+1 the
(n, n− `+1)-form (∂̄σk) . . . (∂̄σ`+1)∧ξ is smooth and it must vanish on Z` for degree
reasons, since Z` has codimension at least `. Thus the form

η̃ =
ds̄

s̄
∧ (∂̄αk) · · · (∂̄α`+1) ∧ ξ̃

is smooth outside τ1 · · · τr = 0. By Lemma 2.3, applied to

γ = ds̄ ∧ (∂̄αk) · · · (∂̄α`+1) ∧ ξ̃,
η̃ is smooth everywhere, and therefore η is smooth. �

If (??) is exact, then, with no ambiguity, we can write Rk rather than R0
k.

Proof of Theorem ??. Since a free resolution of a free sheaf is pointwise exact, it
follows that ZN ⊂ · · · ⊂ Z1 = Z. Therefore u0 is smooth outside Z and thus the
support of R must be contained in Z. By Theorem 2.1, R1 = 0, and so the second
assertion, the Noetherian property of R = R0, follows from Corollary 1.4. �

Given any coherent sheaf F in a Stein manifold X and compact subset K ⊂ X,
one can always find a resolution

(2.2) · · · → O⊕r2 → O⊕r1 → O⊕r0

of F in a neighborhood of K, e.g., by iterated use of Theorem 7.2.1 in [66]. The
key stone in the proof of Theorem 2.1, the Buchsbaum-Eisenbud theorem, in general
requires that the resolution (2.2) starts with 0 somewhere on the left. However, by
the Syzygy theorem and Oka’s lemma, Ker (O⊕r` → O⊕r`−1) is (locally) free for large
`, so we can replace such a module O⊕r` with this kernel and 0 before that. Therefore
Theorem 2.1 holds and we have
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Proposition 2.4. Let J be a coherent subsheaf of O⊕r0 in a Stein manifold X. For
each compact subset K ⊂ X there is a residue current R defined in a neighborhood
of K such that annR = J .

The degree of explicitness of the Noetherian residue current R in Theorem ?? is
of course directly depending on the degree of explicitness of the resolution.

Example 2.5 (The Koszul complex). Let H be a Hermitian bundle over X of rank
m and let h be a non-trivial holomorphic section of the dual bundle H∗. Then h can
be considered as a morphism H → C ×X, and we get a generically exact complex
(??) by taking Ek = ΛkH and let all the mappings fk be interior multiplication with
f . If η is the section of E over X \ Z of minimal norm such that f · η = 1, then
σkξ = η ∧ ξ for sections ξ of Ek−1, and hence u`k = η ∧ (∂̄η)k−`−1, acting on Λ`H via
wedge multiplication. Thus R`k = ∂̄|h|2λ∧ξ∧(∂̄ξ)k−`−1|λ=0 are precisely the currents
considered in [42]. If h is a complete intersection and h = h1e

∗
1 + · · ·+hme

∗
m in some

local holomorphic frame e∗j for H∗, then R is precisely the Coleff-Herrera product
(??) times e1 ∧ . . . ∧ em, where ej is the dual frame, see [42]. �

We now consider a simple example of a non-complete intersection ideal.

Example 2.6. Consider the ideal J = (z2
1 , z1z2) in C2 with zero variety {z1 = 0}. It

is easy to see that

(2.3) 0→ O f2−→ O⊕2 f1−→ O,

where

f1 =
[
z2

1 z1z2

]
and f2 =

[
z2

−z1

]
,

is a (minimal) resolution of O/J . We equip the corresponding vector bundles with
the trivial Hermitian metrics. Since Z has codimension 1, R consists of the two parts
R2 = ∂̄|F |2λ ∧ u0

2|λ=0 and R1 = ∂̄|F |2λ ∧ u0
1|λ=0, where u0

2 = σ2∂̄σ1 and u0
1 = σ1,

respectively. To compute R it is enough to make a simple blow-up at the origin, and
one gets, cf., [78] and [77], that

R2 = ∂̄

[
1
z2

1

]
∧ ∂̄
[

1
z2

]
and R1 =

[
0
1

] [ 1
z2

]
∂̄
[ 1
z1

]
.

We see that annR2 = (z2
1 , z2) and annR1 = (z1), and hence annR = (z2

1 , z2)∩ (z1) =
J as expected. Notice that the Koszul complex associated with the ideal J is like
(2.3) but with an extra factor z1 in the mapping f2. Then the current R0

1 is of course
the same as before, but

R0
2 =

1
2
∂̄
[ 1
z3

1

]
∧ ∂̄
[ 1
z2

]
.

In this case annR0 = annR0
2 ∩ annR0

1 = (z3
1 , z2)∩ (z1) which is strictly smaller than

J . Roughly speaking, the annihilator of R0
2 is too small, since the singularity of σ2

and hence of u0
2 is too big, due to the extra factor z1 in f2. �

There has recently been a lot of work done on finding free resolutions of monomial
ideals, see for example [69], [48] or [50]. For more involved explicit computations of
residue currents for monomial ideals, see [78]. We conclude with a simple example
where ann (O(E0)/J) = 0.
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Example 2.7. Consider the submodule J of O⊕2 generated by f1 = [z1z2 − z2
1 ]T

and the resolution 0→ O f1−→ O⊕2, which is easily seen to be minimal. Notice that
Z = {z1 = 0} is the associated set where O⊕2/J is not locally free, or equivalently
where f1 is not locally constant. Moreover, notice that ann (O⊕2/J) = 0. The
associated residue current is

R = R1 =
[ 1
z2

]
∂̄
[ 1
z1

] [
0 1

]
.

If we extend the complex with the mapping f0 = [z1 z1] the new complex is still exact
outside Z. Observe that annR is generated by z1[1 1]T and moreover that Ker f0 is
generated by [z2 − z1]T . Thus Ker f0 ∩ annR = J as expected. �

3. Division and interpolation formulas

To obtain formulas for division and interpolation that involve our currents R and
U we will use the general scheme developed in [46]. Let z be a fixed point in Cn, let
δζ−z denote interior multiplication by the vector field 2πi

∑n
1 (ζj − zj)(∂/∂ζj), and

let ∇ζ−z = δζ−z− ∂̄. Let g = g0,0 + · · ·+ gn,n be a smooth form such that ∇ζ−zg = 0
and g0,0(z) = 1 (here lower indices denote bidegree); such a form will be called a
weight with respect to the point z. If g has compact support then

(3.1) φ(z) =
∫
gφ

for φ that are holomorphic in a neighborhood of the support of g, [46].
Let D be a ball with center at the origin in Cn and let χ be a cutoff function that

is 1 in a neighborhood of D. Then for each z ∈ D,

(3.2) g = χ− ∂̄χ ∧ s

∇ζ−zs
= χ− ∂̄χ ∧ [s+ s ∧ ∂̄s+ · · ·+ s ∧ (∂̄s)n−1]

is a weight, and it depends holomorphically on z. Assume that (1.1) is a complex
of (trivial) bundles over a neighborhood of D and let J = Im f1. Let us also fix
global frames for the bundles Ek. Then Ek ' CrankEk and the morphisms fk are
just matrices of holomorphic functions. One can find (see [46] for explicit choices)
(k − `, 0)-form-valued holomorphic Hefer morphisms, i.e., matrices, H`

k : Ek → E`
depending holomorphically on z and ζ, such that H`

k = 0 for k < `, H`
` = IE` , and

in general,

(3.3) δζ−zH
`
k = H`

k−1fk − f`+1(z)H`+1
k ;

here f stands for f(ζ). Let

HU =
∑
`

H`+1U =
∑
`k

H`+1
k U `k, HR =

∑
`

H`R =
∑
`k

H`
kR

`
k.

Then g′ = f(z)HU + HUf + HR maps a section of E` depending on ζ into a
(current-valued) section of E` depending on both ζ and z. Moreover, ∇ζ−zg′ =
0 and g′0,0 = IE . If g is weight with compact support, cf., Proposition 5.4 in [46],
we therefore have the representation

(3.4) φ(z) = fk+1(z)
∫
ζ
Hk+1Uφ ∧ g +

∫
ζ
HkUfkφ ∧ g +

∫
ζ
HkRφ ∧ g,

z ∈ D, for φ ∈ O(D,Ek). Thus we get an explicit realization (in terms of U) of to
fk+1ψ = φ, if fkφ = 0 and Rφ = 0, and thus an explicit proof of Proposition 1.3 (i).
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If we have a complex (??) over a neighborhood of D, and either f1 is generically
surjective or we have an extension to a generically exact complex ending at E−1,
then (4.6) still holds for k = 0. If R is Noetherian, then the last two terms vanish if
and only if φ is in J . We thus obtain an explicit realization of the membership of
J .

In the same way as in [43] one can extend these formulas slightly, to obtain a
characterization of the module EJ of smooth tuples of functions generated by J , i.e.,
the set of all φ = f1ψ for smooth ψ. For simplicity we assume that O(E0)/J has
positive codimension so that f0 = 0. Let R be a Noetherian current for J . First
notice that if φ = f1ψ, then, cf., Proposition 1.2, Rφ = R0φ = R0f1ψ − R1∂̄ψ =
R∇ψ = ∇R1ψ = 0, so that Rφ = 0. Since each partial derivative ∂/∂z̄j commutes
with f1, we get that

(3.5) R(∂αφ/∂z̄α) = 0

for all multiindices α. The converse can be proved by integral formulas precisely as
in [43], and thus we have

Theorem 3.1. Assume that J ⊂ O⊕r0 is a coherent subsheaf such that O⊕r0/J has
positive codimension, and let R be a Noetherian residue current for J . Then an
r0-tuple φ ∈ E⊕r0 of smooth functions is in EJ if and only if (3.5) holds for all α.

Let J be a coherent Cohen-Macaulay ideal sheaf of codimension p over some
pseudoconvex set X and let µ be an analytic functional that annihilates J . In [60]
was proved (Theorem 4.4) that µ can be represented by an (n, n)-current µ̃ with
compact support of the form µ̃ = α ∧ R, where α is a smooth (n, n − p)-form with
compact support and R is the Coleff-Herrera product of a complete intersection
ideal contained in J . In particular, µ̃ vanishes on EJ . As another application of our
integral formulas we prove the following more general result.

Theorem 3.2. Let X be a pseudoconvex set in Cn and let J be a coherent subsheaf
of O(E0) ' O⊕r0 such that O(E0)/J has positive codimension. If µ ∈ O′(X,E∗0)
is an analytic functional that vanishes on J , then there is an (n, n)-current µ̃ with
compact support that represents µ, i.e.,

(3.6) µ.ξ = µ̃.ξ, ξ ∈ O(X,E0),

and such that µ̃ vanishes on EJ . More precisely we can choose µ̃ of the form

µ̃ =
∑
k

αkRk,

where R is a Noetherian residue current for J and αk ∈ Dn,n−k(X,E∗k).

Here Ek refers to the trivial vector bundles associated to a free resolution of
O(E0)/J .

Proof. Assume that µ is carried by the O(X)-convex compact subset K ⊂ X and let
V be an open neighborhood of K. For each z ∈ V we can choose a weight gz with
respect to z, such that z 7→ gz is holomorphic in V and all gz have support in some
compact K̃ ⊂ X, see Example 10 in [42]. Let R be a residue current for J , associated
to a free resolution of O(E0)/J in a neighborhood of K̃, cf, Proposition 2.4. Now
consider the corresponding decomposition (4.6) (with k = 0) that holds for z ∈ V ,
with g = gz; notice that f0 = 0 by the assumption on J . The analytic functional
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µ has a continuous extension to O(K,E0) and since O(X) is dense in O(K) µ will
vanish on the first term on the right hand side in (4.6). If we define the (n, n)-current

µ̃ = µz(gz ∧H0)R =
∑
k

µz(gzn−k,n−k ∧H0
k)Rk =

∑
k

αkRk,

then αk have compact support and (3.6) holds. Since R is Noetherian, µ̃ annihilates
EJ . �

4. nalle

Recall that F has pure codimension p if the associated prime ideals (of each stalk)
all have codimension p. The starting point in this paper is the following result that
follows from [13] (see also Section ?? below); as we will see later on it is in a way
equivalent to Roos’ characterization of purity.

Theorem 4.1. The sheaf F = O(E0)/I has pure codimension p if and only if I is
equal to the annihilator of Rp, i.e.,

I = {φ ∈ O(E0); Rpφ = 0}.

If F is Cohen-Macaulay we can choose a resolution (??) with N = p, and then
R = Rp is a matrix of CHZ-currents which thus solves our problem. However, in
general Rp is not ∂̄-closed even if F has pure codimension. Let

(4.1) 0→ O(E∗0)
f∗1−→ O(E∗1)

f∗2−→ . . .
f∗p−1−→ O(E∗p−1)

f∗p−→ O(E∗p)
f∗p+1−→

be the dual complex of (??) and let

(4.2) Hk(O(E∗•)) =
Ker f∗k+1

O(E∗k)

f∗kO(E∗k−1)

be the associated cohomology sheaves. It turns out that for each choice of ξ ∈ O(E∗p)
such that f∗p+1ξ = 0, the current ξRp is in CHZ(E∗0), and we have in fact a bilinear
(over O) pairing

(4.3) Hp(O(E∗•))×F → CHZ , (ξ, φ) 7→ ξRpφ.

Moreover, (4.3) is independent of the choice of Hermitian metrics on Ek. It is well-
known that the sheaves in (4.2) represent the intrinsic sheaves Ext kO(F ,O). (If Z
does not have pure codimension p then we define CHZ as CHZ′ , where Z ′ is the union
of irreducible components of codimension p; this is reasonable, in view of the SEP.)

Theorem 4.2. Assume that F has codimension p > 0. The pairing (4.3) induces
an intrinsic pairing

(4.4) Ext pO(F ,O)×F → CHZ .
If F has pure codimension, then the pairing is non-degenerate.

Notice that Hom (F , CHZ) is the subsheaf of Hom (O(E0), CHZ) = CHZ(E∗0)
consisting of all Coleff-Herrera currents µ with values in E∗0 such that µφ = 0 for all
φ ∈ I. It follows that we have the equality

(4.5) I = {φ ∈ O(E0); µφ = 0 for all µ ∈ Hom (F , CHZ)}
if F is pure. The sheaf Hp(O(E∗•)) is coherent and thus locally finitely generated.
Therefore we have now a solution to our problem:
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Corollary 4.3. Assume that F has pure codimension. If ξ1, . . . , ξν ∈ O(E∗p) generate
Hp(O(E∗•)), then µj = ξjRp are in Hom (F , CHZ) and

(4.6) I = ∩νj=1annµj .

Remark 4.4. If I is not pure, one obtains a decomposition (4.6) after a preliminary
decomposition I = ∩Iν , where each Iν has pure codimension. �

In case of a complete intersection, Ext p(F ,O) is isomorphic to F itself. If F =
O(E0)/I is a sheaf of Cohen-Macaulay modules there is also a certain symmetry: If
(??) is a resolution with N = p, then it is well-known, cf., also Example 4.12 below,
that the dual complex (4.1) is a resolution of O(E∗p)/I∗, where I∗ = f∗pO(E∗p−1) ⊂
O(E∗p), and we have

Corollary 4.5. If O(E0)/I is Cohen-Macaulay, then O(E∗p)/I∗ is Cohen-Macaulay
as well and we have a non-degenerate pairing

O(E0)/I × O(E∗p)/I∗ → CHZ , (ξ, φ) 7→ ξRpφ.

Remark 4.6. Assume that F has codimension p = 0, or equivalently, annF = 0. If
it is pure, i.e., (0) is the only associated prime ideal, then there is a homomorphism
f0 : O(E0)→ O(E−1) such that I = Ker f0. It is natural to consider f0 as a Coleff-
Herrera current µ associated with the zero-codimensional “variety” X. Then I =
annµ and thus analogues of Theorem 4.1 and Corollary 4.3 still hold. �

The duality discussed here leads to a generalization of the Dickenstein-Sessa de-
composition that we now will describe. It was proved by Malgrange, see, e.g., [56],
that the analytic sheaf of distributions C is stalkwise injective. Thus the double
complex

(4.7) HomO(O(E`), C0,k) = C0,k(E∗` ),

with differentials ∂̄ and f∗, is exact except at k = 0 and ` = 0, where we have the co-
homology sheaves O(E∗` ) and Hom (F , C0,•), respectively. By standard homological
algebra, we therefore have natural isomorphisms

(4.8) Hk(O(E∗•),O) ' Hk(Hom (F , C0,•)).

The residue calculus also gives

Theorem 4.7. Assume that codimF = p > 0. Both mappings

(4.9) Hp(O(E∗•))
Ψ' Hom (F , CHZ) ' Hp(Hom (F , C0,•))

are isomorphisms, and the composed mapping coincides with the isomorphism (4.8).

These isomorphisms seem to be known as “folklore” since long ago, cf., Section ??
below. Our contribution should be the proof by residue calculus, and especially, the
realization of the mapping Ψ as ξ 7→ ξRp.

Example 4.8. If µ ∈ CHZ is annihilated by I it follows that we have the factorization
µ = ξRp. There are analogous isomorphisms where O is replaced by Ωr, the sheaf
of holomorphic (r, 0)-forms, and Coleff-Herrera currents of bidegree (r, p), CHrZ =
CHZ ⊗O Ωr. For instance it follows that there is a factorization

[Z] = ξRp,

where [Z] is the Lelong current, and ξ is in Ωp(E∗p) with f∗p+1ξ = 0. �
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Example 4.9. We can rephrase the second isomorphism in (4.9) as the decomposition

(4.10) Ker
(
Hom (F , C0,p) ∂̄→ (Hom (F , C0,p+1)

)
=

= Hom (F , CHZ)⊕ ∂̄Hom (F , C0,p−1).

For a given ∂̄-closed (0, p)-current µ (with values in E∗0 and annihilated by I), its
canonical projection in Hom (F , CHZ) is given by ξRp, where ξ is obtained from µ
via the isomorphism (4.8). �

Example 4.10. Assume that Z has pure codimension p and let C0,k
Z denote the sheaf

of (0, k)-currents with support on Z. If F has support on Z, then Hom (F , C0,k) =
Hom (F , C0,k

Z ). Since any current with support on Z must be annihilated by some
power of IZ , (4.10) implies the decomposition

(4.11) Ker
(
C0,p
Z

∂̄→ C0,p+1
Z

)
= CHZ ⊕ ∂̄C0,p−1

Z

that was first proved in [59] by Dickenstein and Sessa (in the case of a complete
intersection; see [56] for the general case). �

Since (??) is generically exact, so is its dual complex

(4.12) 0→ E∗−M
f∗−M+1−→ · · ·

f∗N−→ E∗N → 0

of Hermitian vector bundles, and we have the corresponding dual complex of locally
free sheaves

(4.13) 0→ O(E∗−M )
f∗−M+1−→ · · ·

f∗N−→ O(E∗N )→ 0.

Using the induced metrics, we get a residue current

R∗ =
∑
k

(R∗)k =
∑
k,`

(R∗)k` ,

where (R∗)k` takes values in Hom (E∗k , E
∗
` ).

Proposition 4.11. Using the natural isomorphisms Hom (E∗k , E
∗
` ) = Hom (E`, Ek)

we have that (R∗)k` = R`k.

Proof. It is readily verified that the adjoint σ∗ : E∗ → E∗ of σ : E → E over X \ Z
is the minimal inverse of f∗. Therefore,

u∗ = (σ + σ(∂̄σ) + σ(∂̄σ)2 + · · · )∗ = σ∗ + σ∗(∂̄σ∗) + σ∗(∂̄σ∗)2 + · · · ,
since, see [12], σ∗∂̄σ∗ = (∂̄σ∗)σ∗. Now the proposition follows. �

If ξ ∈ O(E∗k) and φ ∈ O(E`) we write

ξR`kφ = φ(R∗)k` ξ.

Assume that F is a coherent sheaf of positive codimension p, and let (??) be a
(locally) free resolution of F = O(E0)/I. Moreover, assume that f1 is generically
surjective so that the corresponding vector bundle complex

(4.14) 0→ EN
fN−→ . . .

f3−→ E2
f2−→ E1

f1−→ E0 → 0

is generically exact. It follows from Proposition ?? that

R0 = R0
p +R0

p+1 + · · · .
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By Theorem 3.1 in [12], R`k = 0 for each ` ≥ 1, i.e., R = R0, and combining with
Proposition ?? above we find that a φ ∈ O(E0) is in I if and only if Rφ = 0. It
is proved in Section 5 of [13] that F has pure codimension p if and only if annR =
annRp, i.e., Theorem 4.1 holds.

Proof of Theorem 4.2. It follows from (??) that

(4.15) ∂̄Rk = fk+1Rk+1

for each k. If ξ ∈ O(E∗k) and f∗k+1ξ = 0 we therefore have

∂̄(ξRk) = ±ξ∂̄Rk = ±ξfk+1Rk+1 = ±(f∗k+1ξ)Rk+1 = 0.

Thus ξRp is ∂̄-closed and since it is also pseudomeromorphic, cf., Proposition ??, it
is in CHZ . Moreover, if ξ = f∗p η, then

ξRp = (f∗p η)Rp = ηfpRp = η∂̄Rp−1 = 0

since Rk = 0 for k < p. Thus ξRp only depends on the cohomology class of ξ in
Hp(O(E∗•)). We now choose another Hermitian metric on E and let R̃ denote the
current associated with the new metric. It is showed in [12] (see the proof of Theorem
4.4) that then

Rp − R̃p = fp+1M
0
p+1

for a certain residue current M . Thus ξRp = ξR̃p. It follows that the mapping (4.3)
is well-defined and independent of the Hermitian metric on E.

It is enough to prove the invariance at a fixed point x, so we consider stalks of the
sheaves at x. It is well-known that then our resolution Ox(E•), f• can be written

Ox(E′• ⊕ E′′• ) ' Ox(E′•)⊕Ox(E′′• ), f• = f ′• ⊕ f ′′• ,
where Ox(E′•) is a resolution of Fx and (since we assume that E0 has minimal rank)
Ox(E′′k ), k ≥ 1, is a resolution of Ox(E′′0 ) = 0. It follows that the natural mapping
Hp(Ox((E′•)

∗) → Hp(Ox((E•)∗)), ξ′ 7→ (ξ′, 0), is an isomorphism. Moreover, if we
choose a metric on Ek = E′k ⊕ E′′k that respects the direct sum, then the resulting
current R is R′⊕0, where R′ is the current associated with Ox(E′•). Since all minimal
resolutions are isomorphic, the mapping (4.4) is therefore well-defined.

It remains to check that (4.4) is non-degenerate. If ξ ∈ O(E∗p) with f∗p+1ξ = 0 and
ξRpφ = 0 for all φ ∈ O(E0), then clearly ξRp = 0. Since R = R0

p, by Proposition 4.11
therefore (R∗)p`ξ = 0 for all `, and now it follows from Proposition ?? that ξ = f∗p η
for some η. Thus (the class of) ξ is zero in Hp(O(E∗•)).

Now, assume that ξRpφ = 0 for all ξ such that f∗p+1ξ = 0. If F is Cohen-Macaulay
and N = p, then f∗p+1 = 0 so the assumption implies that Rpφ = 0, and thus
φ ∈ I. However, generically on Z, F is Cohen-Macaulay, and hence for an arbitrary
resolution we must have that Rpφ = 0 outside a variety of codimension ≥ p + 1.
Since Rpφ is pseudomeromorphic with bidegree (0, p) it follows from Proposition ??
that Rpφ vanishes identically. If we in addition assume that F has pure codimension
it follows from Theorem 4.1 that φ ∈ I. Thus the pairing is non-degenerate. �

Example 4.12 (The Cohen-Macaulay case). It is well-known, see, e.g., [62], that F
is Cohen-Macaulay if and only if it admits resolutions of length p = codimZ. If
(??) is a resolution with N = p, then R = R0

p, and hence R∗ = (R∗)0
p. It follows

from Proposition ??, applied to R∗, that the dual complex (4.1) is a resolution of
O(E∗0)/I∗ and, in particular, that O(E∗0)/I∗ is Cohen-Macaulay. �
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Proof of Theorem 4.7. Let
Lν =

∑
`+k=ν

C0,k(E∗` )

be the total complex with differential ∇∗ = f∗ − ∂̄, associated with the double
complex (4.7). We thus have natural isomorphisms

(4.16) Hk(O(E∗•)) ' Hk(L) =def
Ker∇∗Lk

∇∗Lk−1
' Hk(Hom (F , C0,•)).

The naturality means that the ismorphisms are induced by the natural mappings
O(E∗k) → Lk and Hom (F , C0,`) → Lk, respectively, and that ξ ∈ O(E∗k) such that
f∗k+1ξ = 0 defines the same class as µ ∈ Hom (F , C0,k) with ∂̄µ = 0 if and only if
there is W ∈ Lk−1 such that ∇∗W = ξ − µ.

If now ξ ∈ O(E∗k) and f∗k+1ξ = 0, then ∇∗ξ = 0, and hence

(4.17) ∇∗(U∗)kξ = ξ − (R∗)kξ = ξ − ξRk,
cf., (??) and Proposition 4.11 above. Therefore the composed mapping in (4.9) coin-
cides with the isomorphisms in (4.8). It is readily verified that the second mapping
in (4.9) is injective, see, e.g., Lemma 3.3 in [?], and hence both mappings must be
isomorphisms. Thus Theorem 4.7 is proved. �

We think it may be enlightening with a proof of the first isomorphism in (4.9) that
does not rely on Malgrange’s theorem. We already know from Theorem 4.2 that this
mapping is injective, so we have to prove the surjectivity. The proof is based on the
following lemma.

Lemma 4.13. If there is a current W ∈ Lp−1 such that ∇∗W = µ ∈ CHZ(E∗0), then
µ = 0.

Proof. Let u be a smooth form u such that ∇∗Endu = IE∗ in X \ Z. For a given
neighborhood ω of Z, take a cutoff function χ with support in ω and equal to 1 in
some neighborhood of Z. Then g = χIE∗ − ∂̄χ ∧ u is smooth with compact support
in ω, equal to IE∗ in a neighborhood of Z, and moreover ∇∗g = 0. Therefore,
∇∗(gW ) = gµ = µ and hence, for degree reasons, we have a solution ∂̄w = µ
with support in ω. Since ω ⊃ Z is arbitrary it follows, cf., Lemma 3.3 in [?], that
µ = 0. �

Since (4.7) is exact in k except at k = 0, the first equivalence in (4.16) holds. Take
µ ∈ Hom (F , CHZ). Then ∇∗µ = (f∗1 − ∂̄)µ = 0 so by (4.16) (with k = p) there is
ξ ∈ O(E∗p) such that ∇∗W = ξ − µ has a current solution W ∈ Lp−1. In view of
(4.17) it now follows from Lemma 4.13 that µ = ξR0

p.

5. Cohen-Macaulay ideals and modules

Let Fx be a Orx-module. The minimal length νx of a resolution of Fx is precisely
n − depthFx, and depthFx ≤ dimFx, so the length of the resolution is at least
equal to codimFx. Recall that the Fx is Cohen-Macaulay if depthFx = dimFx,
or equivalently, νx = codimFx, see [62]. As usual we say that an ideal Jx ⊂ Ox is
Cohen-Macaulay if Fx = Ox/Jx is a Cohen-Macaulay module.

A coherent analytic sheaf F is Cohen-Macaulay if Fx is Cohen-Macaulay for each
x. If we have any locally free resolution of F and codimF = p, then at each point
Ker (O(Ep−1)→ O(Ep−2)) is free by the uniqueness theorem, see below, so by Oka’s
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lemma the kernel is locally free; hence we can modify the given resolution to a locally
free resolution of minimal length p. Notice that the residue current associated with a
resolution of minimal length p just consists of the single term R = R0

p, which locally
is a rp × r0-matrix of currents.

Theorem 5.1. Suppose that F is a coherent analytic sheaf with codimension p > 0
that is Cohen-Macaulay, and assume that

(5.1) 0→ O(Ep)→ · · · → O(E1)→ O(E0)

is a locally free resolution of F of minimal length p. Then the associated Noetherian
current is independent of the Hermitian metric.

Proof. Assume that u and u′ are the forms in X \ Z constructed by means of two
different choices of metrics on E. Then ∇Endu = I and ∇Endu

′ = I in X \ Z, and
hence

∇End(uu′) = (∇Endu)u′ − u∇Endu
′ = u′ − u,

where the minus sign occurs since u has odd order. For large Reλ we thus have, cf.,
the proof of Proposition 1.2,

∇End

(
|F |2λuu′

)
= |F |2λu′ − |F |2λu− ∂̄|F |2λ ∧ uu′.

As before one can verify that each term admits an analytic continuation to Reλ > −ε,
and evaluating at λ = 0 we get ∇EndW = U ′ − U −M, where W = |F |2λuu′|λ=0,
and M is the residue current

(5.2) M = ∂̄|F |2λ ∧ uu′|λ=0.

Since ∇2
End = 0, by Proposition 1.2 we therefore get

(5.3) R−R′ = ∇EndM.

However, since the complex ends up at p, each term in uu′ has at most bidegree
(0, p−2) and hence the current M has at most bidegree (0, p−1). Since it is supported
on Z with codimension p, it must vanish, cf., the proof of Proposition 1.2. �

When F = O(E0)/J is Cohen-Macaulay we can also define a cohomological
residue that characterizes the module sheaf J = Im (O(E1)→ O(E0)) locally. Sup-
pose that we have a fixed resolution (5.1) of minimal length and let us assume that
p > 1. If u is any solution to ∇Endu = I in X \Z, then u0

p is a ∂̄-closed Hom (E0, Ep)-
valued (0, p − 1)-form. Moreover if u′ is another solution, then it follows from the
preceding proof that ∂̄(uu′)0

p = u0
p − u′0p . Therefore u0

p defines a Dolbeault cohomol-
ogy class ω ∈ H0,p−1(X \Z,Hom (E0, Ep)). If φ is a holomorphic section of E0 then
ωφ = [u0

pφ] is an element in H0,p−1(X \Z,Ep). Moreover, if v is any solution in X \Z
to ∇v = φ, then vp defines the class ωφ. In fact, ∇(uv) = v − uφ = v − u0φ so that
∂̄(uv)p = u0

pφ − vp. Precisely as for a complete intersection, [59] and [72], we have
the following cohomological duality principle.

Theorem 5.2. Let X be a Stein manifold and let (5.1) be a resolution of minimal
length p of the Cohen-Macaulay sheaf O(E0)/J over X, and assume that p > 1.
Moreover, let ω be the associated class in H0,p−1(X \ Z,Hom (E0, Ep)). For a holo-
morphic section φ of E0 the following conditions are equivalent:

(i) φ is a global section of J .
(ii) The class ωφ in X \ Z vanishes.
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(iii)
∫
ωφ ∧ ∂̄ξ = 0 for all ξ ∈ Dn,n−p(X,E∗p) such that ∂̄ξ = 0 in a neighborhood

of Z.

Notice that if R is the associated Noetherian current, then ∂̄U0
p = Rp, so by Stokes’

theorem, (iii) is equivalent to that
∫
Rpφ∧ ξ = 0 for all ξ ∈ Dn,n−p(X,E∗p) such that

∂̄ξ = 0 in a neighborhood of Z.
If p = 1, then f1 is an isomorphism outside Z, so its inverse ω = σ1 is a holomorphic

(0, 0)-form in X \ Z. Thus a holomorphic section φ of E0 belongs to J if and only
if ωφ has a holomorphic extension across Z.

Proof. If (i) holds, then φ = f1ψ for some holomorphic ψ; thus ∇ψ = φ. However,
since p > 1, ψ has no component in Ep, and hence by definition the class ωφ vanishes.
The implication (ii)→ (iii) follows from Stokes’ theorem.

Let us now assume that (iii) holds, and choose a point x on Z. Let vk = u0
kφ.

If X ′ is an appropriate small neighborhood of x, then, since Z has codimension p
and vp is a ∂̄-closed (0, p)-current, one can verify that the condition (iii) ensures
that ∂̄wp = vp has a solution in X ′ \ W , where W is a small neighborhood of Z
in X ′. Then, successively, all the lower degree equations ∂̄wk = vk + fk+1wk+1,
k ≥ 2, can be solved in similar domains. Finally, we get a holomorphic solution
ψ = v1 + f2w2 to f1ψ = φ, in such a domain. By Hartogs’ theorem ψ extends across
Z in X ′. Alternatively, one can obtain such a local holomorphic solution ψ, using
the decomposition formula (4.6) below and mimicking the proof of the corresponding
statement for a complete intersection in [72]; cf., also the proof of Proposition 7.1
in [46]. Since X is Stein, one can piece together to a global holomorphic solution to
f1ψ = φ, and hence φ is a section of J . �

Example 5.3. Let J be an ideal in O0 of dimension zero. Then it is Cohen-Macaulay
and for each germ φ in O0, ωφ defines a functional on O0(E∗n) ' Orn0 . If J is defined
by a complete intersection, then we may assume that (5.1) is the Koszul complex.
Then rn = 1, and in view of the Dolbeault isomorphism, see, e.g., Proposition 3.2.1
in [72], ωφ is just the classical Grothendieck residue. �

For the rest of this section we will restrict our attention to modules over the
local ring O0, and we let O(Ek) denote the free O0-module of germs of holomorphic
sections at 0 of the vector bundle Ek. Given a free resolution (??) of a module F0

over O0 and given metrics on Ek we thus get a germ R of a Noetherian residue
current at 0. Recall that the resolution (??) is minimal if for each k, fk maps a
basis of O(Ek) to a minimal set of generators of Im fk. The uniqueness theorem,
see, e.g., Theorem 20.2 in [62], states that any two minimal (free) resolutions are
equivalent, and moreover, that any (free) resolution has a minimal resolution as a
direct summand.

For a Cohen-Macaulay module F0 over O0 we have the following uniqueness.

Proposition 5.4. Let F0 be a Cohen-Macaulay module over O0 of codimension p.
If we have two minimal free resolutions O(E•) and O(E′•) of F0, then there are
holomorphic invertible matrices gp and g0 (local holomorphic isomorphism gp : E′p '
Ep and g0 : E′0 ' E0) such that R = gpR

′g−1
0 .

Since minimal resolutions have minimal length p, the currents are independent of
the metrics, in view of Proposition 5.1.
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Proof. By the uniqueness theorem there are holomorphic local isomorphisms gk : E′k →
Ek such that

0 → O(E′p)
f ′p−→ · · ·

f ′2−→ O(E′1)
f ′1−→ O(E′0)

gp ↓ g1 ↓ g0 ↓
0 → O(Ep)

fp−→ · · · f2−→ O(E1)
f1−→ O(E0)

commutes. Let g denote the induced isomorphism E → E′. Choose any metric on
E and equip E′ with the induced metric, i.e., such that |ξ| = |g−1ξ| for a section ξ
of E′. If σ : E → E and σ′ : E′ → E′ are the associated endomorphisms over X \ Z,
cf., Section 1, then σ′ = gσg−1 in X \ Z, and therefore

u′ = σ′ + (∂̄σ′)σ′ + · · · = g(σ + (∂̄σ)σ + · · · )g−1 = gug−1.

Therefore, (u′)0
p = gpu

0
pg
−1
0 , and hence the statement follows since R = Rp = R0

p. �

We shall now consider the residue current associated to a general free resolution.

Theorem 5.5. Let F0 be a Cohen-Macaulay module over O0 of codimension p. If
R is the residue current associated to an arbitrary free resolution (??) (and given

metrics on Ek) and R′ = R′p is associated to a minimal resolution 0 → O(E′p)
f ′p−→

· · ·
f ′2−→ O(E′1)

f ′1−→ O(E′0), then

(5.4) Rp = hpR
′
pβ0,

where β0 : E0 → E′0 is a local holomorphic pointwise surjective morphism and hp is a
local smooth pointwise injective morphism hp : E′p → Ep. Moreover, for each ` > 0,

Rp+` = α`Rp,

where α` is a smooth Hom (Ep, Ep+`)-valued (0, `)-form.

Proof. By the uniqueness theorem for resolutions, the resolution E′• is isomorphic to
a direct summand in E•, and in view of the preceding proposition, we may assume
that

O(Ek) = O(E′k ⊕ E′′k ) = O(E′k)⊕O(E′′k )

and fk = f ′k ⊕ f ′′k , so that

0 → O(E′p)
f ′p−→ · · ·

f ′2−→ O(E′1)
f ′1−→ O(E′0)

ip+1 ↓ ip ↓ i1 ↓ i0 ↓
→ O(Ep+1)

fp+1−→ O(Ep)
fp−→ · · · f2−→ O(E1)

f1−→ O(E0),

where ik : E′k → E′k ⊕ E′′k are the natural injections, and

→ O(E′′p+1)
f ′′p+1−→ O(E′′p )

f ′′p−→ · · ·
f ′′2−→ O(E′′1 )

f ′′1−→ O(E′′0 )

is a resolution of 0. In particular,

→ Ep+1

f ′′p+1−→ E′′p
f ′′p−→ · · ·

f ′′2−→ E′′1
f ′′1−→ E′′0 → 0

is a pointwise exact sequence of vector bundles, and therefore the set Zk where rank fk
is not optimal coincides with the set Z ′k where rank f ′k is not optimal. In particular,
Zk = ∅ for k > p. If we choose, to begin with, Hermitian metrics on Ek that respect
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this direct sum, and let σk, σ′k, and σ′′k be the corresponding minimal inverses, then
σk = σ′k ⊕ σ′′k and hence

u0
k = (∂̄σ′k ⊕ ∂̄σ′′k)(∂̄σ′k−1 ⊕ ∂̄σ′′k−1) · · · (∂̄σ′2 ⊕ ∂̄σ′′2)(σ′1 ⊕ σ′′1) = (u′)0

k ⊕ (u′′)0
k

for all k. However, (u′′)0
k is smooth, and hence

Rp = R′p ⊕ 0, Rk = 0 for k 6= p.

For this particular choice of metric thus (5.4) holds with hp as the natural injection
ip : E′p → Ep and β0 as the natural projection.

Without any risk of confusion we can therefore from now on let R′p denote the
residue current with respect to this particular metric on E, and moreover let σ′

denote the minimal inverse of f with respect to this metric etc. We now choose
other metrics on Ek and let Rk from now on denote the residue current associated
with this new metric. Following the notation in the proof of Proposition 5.1 we again
have (5.3), and for degree reasons still M0

p = 0; here M `
k denotes the component of

M that takes values in Hom (E`, Ek). Thus

Rp −R′p = fp+1M
0
p+1.

Moreover, if we expand uu′, we get

M0
p+1 = ∂̄|F |2λ ∧

[
σp+1σ

′
p(∂̄σ

′
p−1) · · · (∂̄σ′1)+

σp+1(∂̄σp)σ′p−1(∂̄σ′p−2) · · · (∂̄σ′1) + · · ·
]
|λ=0.

However, σp+1(∂̄σp) = (∂̄σp+1)σp and σp+1 is smooth since Zp+1 is empty, so

M0
p+1 = −σp+1R

′
p + (∂̄σp+1)M0

p = −σp+1R
′
p.

Thus,
Rp = R′p − fp+1σp+1R

′
p = (IEp − fp+1σp+1)R′p.

Since fp+1 has constant rank, H = Im fp+1 is a smooth subbundle of Ep. Notice
that Π = IEp − fp+1σp+1 is the orthogonal projection of Ep onto the orthogonal
complement of H with respect to the new metric. In this case therefore h in (5.4)
becomes the natural injection ip : E′p → Ep composed by Π, and since E′p ∩H = 0, h
is pointwise injective.

Since Zk is empty for k > p, σk is smooth for k > p and hence for ` > p,

R` = ∂̄|F |2λ ∧ (∂̄σ`) · · · (∂̄σp+1)u0
p = (∂̄σ`) · · · (∂̄σp+1)∂̄|F |2λ ∧ u0

p = α`Rp

where α` = (∂̄σ`) · · · (∂̄σp+1). �

6. The notion of structure form ω on X

To begin with, let i : X↪→Ω be a (reduced) hypersurface in a pseudoconvex domain
Ω ⊂ Cn+1, i.e., X = {f = 0} where f is holomorphic in Ω and df 6= 0 on Xreg. If ω′

is a meromorphic (n, 0)-form in Ω (or in a small neighborhood of X in Ω) such that

(6.1) (df/2πi) ∧ ω′ = dζ1 ∧ . . . ∧ dζn+1

on X, then ω := i∗ω′ is a meromorphic form on X that is independent of the choice
of ω′, and the classical Leray residue formula states that for test forms ψ of bidegree
(0, n− 1), the principle value integral∫

X
ω ∧ i∗ψ
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is equal to the action of the residue current ∂̄(1/f) on the test form ψdζ1∧. . .∧dζn+1.
This equality can be rephrased as

(6.2) i∗ω = ∂̄
1
f
∧ dζ1 ∧ . . . ∧ dζn+1.

If ∂f/∂ζn+1 is not vanishing identically on (any irreducible component of) X, one
can take, e.g., ω′ = 1/(∂f/∂ζn+1)dζ1 ∧ . . . ∧ dζn. Notice that under this assumption
on f , any meromorphic form on X can be written hdζ1 ∧ . . . ∧ dζn for a unique
meromorphic function h. It follows from (6.2) that ∂̄ω = 0 so ω is in Bn(X), cf.,
Example 10.8. The form ω also has the following two properties:
(i) If φ is a meromorphic function on X, then φ is in OX if (and only if) ∂̄(φω) = 0.
(ii) If α is in BXn then α = hω for some h in OX .
Since any meromorphic (n, 0)-form α is hω for a unique meromorphic function h, (i)
and (ii) are in fact equivalent; for a proof of (i), see, e.g., [23, Remark 3] or below.

For the rest of this section let i : X ↪→ Ω ⊂ CN be a pure n-dimensional subvariety
of the pseudoconvex domain Ω, and let p := N − n be its codimension. We will
introduce an almost semimeromorphic form ω on X, that satisfies an analogue of
(6.2). In a reasonable sense it will also fulfill (i) and (ii). It can be noted that ω
plays a central role in [11]. To begin with we look for an adequate generalization of
the residue current ∂̄(1/f).

If f is any holomorphic function, then a holomorphic function φ is in the ideal (f)
generated by f if and only if φ∂̄(1/f) = 0. Given any ideal sheaf J in Ω, in [12] was
constructed a residue current R such that

(6.3) φ ∈ J if and only if φR = 0

if φ ∈ OΩ. It is thus reasonable to consider R when J = JX is the radical ideal sheaf
J = JX associated with X, so let us first recall its definition. In a slightly smaller
set, still denoted Ω, there is a free resolution

(6.4) 0→ O(Em)
fm−→ · · · f3−→ O(E2)

f2−→ O(E1)
f1−→ O(E0)

of the sheaf OΩ/JX ; here Ek are trivial vector bundles over Ω and E0 ' C × Ω is
the trivial line bundle. This resolution induces a complex of vector bundles

(6.5) 0→ Em
fm−→ · · · f3−→ E2

f2−→ E1
f1−→ E0

that is pointwise exact outside X. Let Xk be the set where fk does not have optimal
rank. Then

· · · ⊂ Xk+1 ⊂ Xk ⊂ · · · ⊂ Xp+1 ⊂ Xsing ⊂ Xp = · · · = X1 = X;

these sets are independent of the choice of resolution and thus invariants of the sheaf
F := OΩ/JX . Since F has pure codimension p (i.e., no embedded prime ideals),

(6.6) codimXk ≥ k + 1, for k ≥ p+ 1,

see Corollary 20.14 in [19]. There is a free resolution (6.4) if and only if Xk = ∅ for
k > m. Thus we can always have m ≤ N − 1. The variety is Cohen-Macaulay, i.e.,
the sheaf F is Cohen-Macaulay, if and only if Xk = ∅ for k ≥ p+ 1. In this case we
can thus choose a resolution (6.4) with m = p. If we define

(6.7) X0 = Xsing, Xr = Xp+r, r ≥ 1,
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then
Xn−1 ⊂ · · · ⊂ X1 ⊂ X0 ⊂ X, codimXk ≥ k + 1.

The sets Xk are independent of the choice of embedding, see [14, Lemma 4.2], and
are thus intrinsic subvarieties of the complex space X and reflect the complexity of
the singularities of X.

Let us now choose Hermitian metrics on the bundles Ek. We then refer to (6.4) as a
Hermitian free resolution of OX/JX in Ω. In Ω \Xk we have a well-defined vector
bundle morphism σk+1 : Ek → Ek+1, if we require that σk+1 vanishes on (Im fk+1)⊥,
takes values in (Ker fk+1)⊥ and that fk+1σk+1 is the identity on Im fk+1. Following
[12] we define the smooth Ek-valued forms

(6.8) uk = (∂̄σk) · · · (∂̄σ2)σ1 = σk(∂̄σk−1) · · · (∂̄σ1)

in Ω \X; for the second equality, see [12, (2.3)]. We have that

f1u1 = 1, fk+1uk+1 − ∂̄uk = 0, k ≥ 1,

in Ω\X. If f := ⊕fk and u :=
∑
uk, then these relations can be written economically

as ∇fu = 1 where ∇f := f − ∂̄. To make the algebraic machinery work properly
one has to introduce a superstructure on the bundle E =: ⊕Ek so that vectors in
E2k are even and vectors in E2k+1 are odd, and hence f , σ := ⊕σk, and u :=

∑
uk

are odd. For details, see [12]. It turns out that u has a (necessarily unique) almost
semi-meromorphic extension U to Ω, and the current R is defined by the relation

∇fU = 1−R.
If F is any holomorphic tuple that vanishes on X, then

(6.9) U = |F |2λu|λ=0, R = ∂̄|F |2λ ∧ u|λ=0.

Thus R has support on X and is a sum
∑
Rk, where Rk is a pseudomeromorphic

Ek-valued current of bidegree (0, k). It follows from the dimension principle that
R = Rp + Rp+1 + · · · + RN . Since we can always choose a resolution that ends at
level N − 1, cf., (6.6), we may assume that RN = 0. If X is Cohen-Macaulay and
m = p in (6.4), then R = Rp is ∂̄-closed; in general, R is ∇f -closed.

Remark 6.1. If J is an arbitrary ideal sheaf and R is defined in the same way as
above, then (6.3) holds, [12]. In case J is Cohen-Macaulay, one can express this
duality in a way that only involves the smooth form u in Ω \X, where X is the zero
set of J , see [12, Theorem 4.2]. This result was recently proved algebraically in [28]
with no reference to residue calculus and resolution of singularities. �

Remark 6.2. In case J is generated by the single function f , then we have the free
resolution 0→ O f→ O → O/(f)→ 0; thus U is just the principal value current 1/f
and R = ∂̄(1/f). �

Notice that (6.4) gives rise to the dual Hermitian complex

(6.10) 0→ O(E∗0)
f∗1→ · · · → O(E∗p−1)

f∗p→ O(E∗p)
f∗p+1−→ · · · .

Since the sheaf Ker (O(E∗p)
f∗p+1→ O(E∗p+1)) is coherent, there is a (trivial) Hermitian

vector bundle F in Ω and a holomorphic morphism g : Ep → F such that

(6.11) O(F ∗)
g∗→ O(E∗p)

f∗p+1→ O(E∗p+1)
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is exact. Since fp+1 has constant rank outside Xp+1, also f∗p+1 has, and it follows
that g has as well. Outside Xp+1 we can thus define the mapping σF : F → Ep such
that σF = 0 on (Im g)⊥ ⊂ F , σF g = Id on (Ker g)⊥ = (Im fp+1)⊥ and ImσF is
orthogonal to Ker g. If m = p, then we can take F = Ep and g = Id.

Let dζ := dζ1 ∧ . . . ∧ dζN . We also introduce the notation

Er := Ep+r|X , f r := fp+r|X
so that f r becomes a holomorphic section of Hom (Er, Er−1). Notice that for k ≥ 1,
αk := i∗∂̄σp+k are smooth in X \Xk.

Proposition 6.3. Let (6.4) be a Hermitian free resolution of OΩ/JX in Ω and let R
be the associated residue current. Then there is a unique almost semi-meromorphic
current

ω = ω0 + ω1 + · · ·+ ωn−1

on X, where ωr has bidegree (n, r) and takes values in Er, such that

(6.12) i∗ω = R ∧ dζ.
Moreover,

(6.13) f0ω0 = 0, f rωr = ∂̄ωr−1, r ≥ 1, on X,

and

(6.14) |ω| = O(δ−M )

for some M > 0, where δ is the distance to Xsing.
Assume that (6.11) is exact. The forms αk, 1 ≤ k ≤ n−1, defined and smooth out-

side Xk, and σF , defined and smooth outside X1, extend to almost semimermorphic
currents on X. There is an F -valued section ϑ of BXn such that

(6.15) ω0 = σFϑ.

Moreover,

(6.16) ωr = αrωr−1, r ≥ 1, on X.

We say that ω so obtained is a structure form on X. The products in (6.15) and
(6.16) are well-defined by Proposition ??. Notice that if X is Cohen-Macaulay and
m = p, then ω0 is an E0-valued section of BXn .

Proof. Let x be an arbitrary point on Xreg. Since the ideal sheaf JX is generated by
the functions f j1 that constitute the map f1, cf. (6.4), we can extract holomorphic
functions a1 . . . , ap from the f j1 ’s such that da1 ∧ · · · ∧ dap 6= 0 at x. Possibly
after a re-ordering of the variables ζ in the ambient space, we may assume that
ζ = (ζ ′, ζ ′′) = (ζ ′, ζ ′′1 , . . . , ζ

′′
p ) and that A := det(∂a/∂ζ ′′) 6= 0 at x. We also note that

dζ ′ ∧ da1 ∧ · · · ∧ dap = Adζ ′ ∧ dζ ′′ = Adζ close to x.
Now, JX is generated by a = (a1, . . . , ap) at x and so the Koszul complex generated

by the aj provides a minimal resolution of OΩ/JX there. The associated residue
current Ra = Rap is just the Coleff-Herrera product formed from the tuple a, cf.,
Section 12. The original resolution (6.4) contains the Koszul complex as a direct
summand in a neighborhood of x and so it follows from Theorem 4.4 in [12] that

(6.17) Rp = α ∂̄
1
ap
∧ · · · ∧ ∂̄ 1

a1
,
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where α is a smooth section of Ep close to x. By the Poincaré-Lelong formula thus

Rp ∧ dζ = ±α ∂̄ 1
ap
∧ · · · ∧ ∂̄ 1

a1
∧ da1 ∧ · · · ∧ dap ∧

dζ ′

A
(6.18)

= ±(2πi)pα
dζ ′

A
∧ [X]

close to x. If ω0 is the pullback of ±(2πi)pαdζ ′/A to Xreg, then the preceding
equation means that

(6.19) Rp ∧ dζ. ψ =
∫
X
ω0 ∧ i∗ψ,

where ψ is a test form with support close to x. Thus ω0 is determined by Rp and
so it extends to a global Ep-valued (n, 0)-form on Xreg, still denoted ω0. Since
σp+1up = 0 outside Xp+1, cf., (6.8), we find that Rp and hence ω0 takes values in
(Im fp+1)⊥ ⊂ Ep, cf., (6.9) and (6.19). Thus ω0 = σF gω0 = σFϑ where ϑ := gω0.
On Xreg we have

i∗∂̄ϑ = −i∗g∂̄ω0 = −g∂̄i∗ω0 = −g∂̄Rp ∧ dζ = −gfp+1Rp+1 ∧ dζ = 0

since gfp+1 = 0. Thus ∂̄ϑ = 0 and from Example 10.8 we conclude that ϑ is a section
of BXn .

Let aF be the Fitting ideal of g, restricted to X, i.e., the ideal (on X) generated by
the r×r-minors of g, where r is the generic rank of g; notice that g has rank r on X \
X1. Let ak be the Fitting ideals of fk, k = 1, . . . , n−1. By Hironaka’s theorem there
is a smooth modification τ : X̃ → X such that all the ideals τ∗aF , τ∗a1, . . . , τ

∗an−1

are principal on X̃. This means that there are holomorphic sections sF , s1, . . . , sn−1

of line bundles on X̃ that generate these ideals. It follows from [12, Lemma 2.1]
that τ∗σF = βF /sF and τ∗σk = βk/sk, k ≥ 1, where βF and βk are smooth. Hence,
τ∗αk = ∂̄βk/sk. We conclude that σF as well as αk are almost semi-meromorphic on
X.

Let us now define ωr inductively by (6.16). We claim that

(6.20) i∗ωk = Rp+k ∧ dζ, k ≥ 0.

If k = 0 it is just (6.19). Assume (6.20) is proved for k− 1. It follows from (6.8) and
(6.9) that Rp+k = αp+kRp+k−1 in Ω \Xp+k+1. In this set we thus have that

i∗ωk = i∗α
kωk−1 = αp+ki∗ωk−1 = αp+kRk−1 ∧ dζ.

Let χδ = χ(|h|/δ), where h is a holomorphic tuple that cuts out Xp+k, cf., (6.1). Then
i∗(i∗χδωk) = χδRk ∧ dζ. Now χδRp+k → Rp+k in view of (6.6) and the dimension
principle, and i∗χδωk → ωk, and hence (6.20) holds in Ω.

The estimate (6.14) follows since it holds for Θ, being a tuple of meromorphic forms
on X that are holomorphic on Xreg, and for each of i∗σF , α1, . . . , αn−1. Finally, (6.13)
follows since (f − ∂̄)R = ∇fR = 0. �

Let Θ be an F -valued meromorphic form in Ω such that i∗Θ = ϑ. Notice that

Θ = γΘydζ1 ∧ . . . ∧ dζN
for a (unique) meromorphic section of F ⊗ ΛpT 1,0(Ω). If γ := σFγΘ + α1σFγΘ +
α2α1σFγΘ + · · · and ω′ := γydζ, thus ω = i∗ω′. Since [X]∧ γydζ = [X]∧ω′ = i∗ω =
R ∧ dζ, and [X] ∧ γydζ = (−1)pγy[X] ∧ dζ we have

(6.21) R = (−1)pγy[X], i∗ω = [X] ∧ ω′ =: [X] ∧ ω.
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—

We will now discuss generalizations of (i) and (ii) above. It is proved in [7] that
if Φ is meromorphic in Ω, then φ := i∗Φ is in OX if and only if ∇f (ΦR) = 0 in Ω.
Combining with Proposition 6.3 we get:

(i)′ If φ is a meromorphic function on X, then φ is in OX if and only if ∇f (φω) = 0
on X.

Let Ωk denote the sheaf O(ΛkT ∗1,0(Ω)). Let ξdζ be a section of the sheaf

HomO(O(Ep), ΩN ) ' O(E∗p)⊗O ΩN

such that f∗p+1ξ = 0. Then ∂̄(ξ · ω0) = −ξ · ∂̄ω0 = −ξ · fp+1ω1 = f∗p+1ξ · ω1 = 0, so
that ξ ·ω0 is in BXn . The minus signs appear since f is an odd mapping with respect
to the superstrucure. Moreover, if ξ = f∗p η for η ∈ O(E∗p−1), then ξ · ω0 = f∗p η · ω0 =
−η · fpω0 = 0. We thus have a sheaf mapping

(6.22) Hp(Hom (O(E•), ΩN ))→ BXn , ξdζ 7→ ξ · ω0.

Proposition 6.4. The mapping (6.22) is an isomorphism, and it is independent of
the specific choice of resolution, hence establishing an isomorphism

Ext p(OΩ/JX , ΩN ) ' BXn .

This isomorphism is well-known, cf., [23, Remark 5]. Our contribution is the
realization (6.22). Thus BXn is coherent and we have:

(ii)′ If ξ1, . . . , ξν are generators of Hp(Hom (O(E∗•))), then η` := ξ` ·ω0, ` = 1, . . . , ν,
generate the OX-module BXn .

Proof of Proposition 6.4. If h ∈ BXn , then i∗h = h ∧ [X] is a so-called Coleff-Herrera
current with respect toX (taking values in the holomorphic vector bundle ΛNT ∗1,0(Ω))
that is annihilated by JX , cf., [8]. Thus we have mappings

(6.23) Hp(Hom (O(E•), ΩN ))→ BXn → Hom (OΩ/JX , CHX)⊗O ΩN ,

defined by ξdζ 7→ ξ · ω0 and h 7→ i∗h. The latter mapping is certainly injec-
tive. The composed mapping is an isomorphism according to [8, Theorem 1.5].
It follows that both mappings are isomorphisms. From [8, Theorem 1.5] we also
know that the composed mapping is independent of the particular Hermitian res-
olution, and choice of dζ, and thus induces an isomorphism Ext p(OΩ/JX , ΩN ) '
Hom (OΩ/JX , CHX)⊗O ΩN . Hence the proposition follows. �

We conclude with a lemma that roughly speaking says that one can “divide” by
ω.

Lemma 6.5. If φ is a smooth (n, q)-form on X, then there is a smooth (0, q)-form
φ′ on X with values in (E0)∗ such that φ = ω0 ∧ φ′.

Proof. Let Φ be a smooth extension of φ to Ω. Since [X] is a Coleff-Herrera current
(with values in ΛpT ∗1,0(Ω)), it follows from [8, Theorem 1.5 and Example 1] that
locally there is a holomorphic E∗p -valued (p, 0)-form a such that Rp ∧ a = [X].

By a partition of unity we can find a global smooth ã such that Rp ∧ ã = [X] in
Ω. Since ã∧Φ has bidegree (N, q), there is an E∗p -valued smooth (0, q)-form Φ′ in Ω
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such that ã ∧ Φ = dζ ∧ Φ′. For every test form Ψ in Ω we now get∫
X
φ ∧ i∗Ψ = [X].(Φ ∧Ψ) = Rp ∧ ã. (Φ ∧Ψ) = Rp ∧ dζ. (Φ′ ∧Ψ)

=
∫
X
ω0 ∧ φ′ ∧ i∗Ψ,

where φ′ = i∗Φ′. Hence, φ = ω0 ∧ φ′ on X. �

An algebraic counterpart of the factorization Rp∧a = [X] appeared in [27] in case
X is Cohen-Macaulay; then one can take a = df1df2 · · · dfp.

7. The strong ∂̄-operator on X

Let ω be a structure form on X, and let χδ := χ(|h|/δ), where χ is a smooth
approximand of the characteristic function of [1,∞), and h is a holomorphic tuple
such that Xsing = {h = 0}. Notice that if α ∈ W(X), then

(7.1) 1Xsing∇fα = 0 ⇐⇒ 1Xsing ∂̄α = 0 ⇐⇒ ∂̄χδ ∧ α→ 0, δ → 0.

In fact, since 1Xsingα = 0 and f is smooth we have that 1Xsingfα = 0; hence the
first equivalence follows. For the second one, consider the equality

∂̄(χδα) = χδ∂̄α+ ∂̄χδ ∧ α.
Since χδα→ α it follows that 1Xsing ∂̄α = lim(1−χδ)∂̄α = 0 if and only if ∂̄χδ∧α→ 0.

Lemma 7.1. Assume that µ ∈ W(X).
(i) If there is τ ∈ W(X) such that

(7.2) −∇f (µ ∧ ω) = τ ∧ ω,
then ∂̄µ = τ and

(7.3) ∂̄χδ ∧ µ ∧ ω → 0, δ → 0.

(ii) If ∂̄µ ∈ W(Xreg) and (7.3) holds, then there is τ ∈ W(X) such that (7.2)
holds.

From Proposition ?? we know that µ ∧ ω is a well-defined current in W(X).

Proof. Assume that (7.2) holds. Then −1Xsing∇f (µ ∧ ω) = 1Xsingτ ∧ ω = 0, since
τ ∧ω is in W(X). Thus (7.3) holds, in view of (7.1). Since ω is smooth on Xreg and
∇fω = 0, (7.2) implies that ∂̄µ∧ω0 = τ∧ω0 on Xreg. It follows from Lemma 6.5 that
∂̄µ = τ on Xreg. Moreover, from (7.3) and Lemma 6.5 we find that ∂̄χδ ∧ µ→ 0, so
that, cf., (7.1), 1Xsing ∂̄µ = 0. It follows that ∂̄µ = 1Xreg∂̄µ = τ . Thus (i) is proved.

If ∂̄µ has the SEP on Xreg, then τ := 1Xreg ∂̄µ has the SEP on X and hence is in
W(X). Since ω is smooth on Xreg, −∇f (µ ∧ ω) = τ ∧ ω there. In view of (7.3) and
(7.1), 1Xsing∇f (µ∧ω) = 0, and since ∇f (µ∧ω) has the SEP on Xreg it follows that
it has the SEP on X, i.e., is in W(X). Since ω is smooth on Xreg, (7.2) holds on
Xreg. Since both sides have the SEP, the equality must hold on X. �

Let x be a point in an arbitrary complex space X. By choosing local embed-
dings X ↪→ Ω ⊂ CN at x and Hermitian free resolutions of OΩ/JX (and choice of
coordinates on Ω, cf., (6.12)) we get the collection Sx of all structure forms ω at x.

Given µ, τ ∈ WX
0,∗,x we say that ∂̄Xµ = τ at x if (7.2) holds at x for all ω ∈ Sx.

It follows from Lemma 7.1 that ∂̄Xµ = τ if and only if ∂̄µ = τ and the “boundary
condition” (7.3) holds for every ω ∈ Sx.
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Definition 4 (The sheaves Domq ∂̄X). We say that a (0, q)-current µ is a section of
Domq ∂̄X in the open set U ⊂ X if µ ∈ W0,q(U) and there is τ ∈ W0,q+1(U) such that
∂̄Xµ = τ in U , i.e., ∂̄Xµ = τ at each point x ∈ U .

If µ ∈ W(X) is smooth on Xreg, then it follows from Lemma 7.1 that µ ∈ Domq ∂̄X
if and only if (7.3) holds at each x ∈ X for each ω ∈ Sx. If µ is smooth on X, then
∂̄(µ ∧ ω) has the SEP, and so (7.3) holds for each ω. Thus EX0,q is a subsheaf of
Domq ∂̄X .

Proposition 7.2. The sheaves Dom∗ ∂̄X are EX0,∗-modules and

(7.4) 0→ OX ↪→ Dom0 ∂̄X
∂̄−→ Dom1 ∂̄X

∂̄−→ · · ·
is a complex. Moreover, the kernel of ∂̄ in Dom0 ∂̄X is OX .

When dimX = 1 the complex (7.4) is exact, i.e., a fine resolution of OX , see
Section 13 below. We do not know whether this is true if dimX > 1.

Proof. Assume that µ is in Dom ∂̄X and that ω ∈ Sx. In view of Lemma 7.1, µ
and ∂̄µ are both in WX and (7.3) holds. Since ω is smooth on Xreg and ∇fω = 0,
∇f (∂̄χδ ∧ µ ∧ ω) = −∂̄χδ ∧ ∂̄µ ∧ ω. Therefore (7.3), with µ replaced by ∂̄µ, holds as
well and it follows from Lemma 7.1 that ∂̄µ ∈ Dom ∂̄X . Moreover, if ξ is smooth it
is clear that (7.3) holds with µ replaced by ξ ∧ µ. Since ∂̄(∂̄µ) = 0 and ∂̄(ξ ∧ µ) is in
WX we conclude that ξ ∧ µ ∈ Dom ∂̄X .

Now assume µ ∈ WX
0,0 and (7.2) holds with τ = 0. Then ∂̄µ = 0 by Lemma 7.1

and hence µ is holomorphic on Xreg, and has a meromorphic extension to X, cf.,
Example 10.8. Thus µ ∈ OX in view of (i)′ above. �

If (7.2) holds at x for a given ω ∈ Sx, then in particular, ∂̄(µ ∧ ω0)± µfp+1ω1 =
τ ∧ ω0. Applying various ξ ∈ O(E∗p) with f∗p+1ξ = 0 to this equality we conclude, by
Proposition 6.4, that

(7.5) ∂̄(µ ∧ θ) = τ ∧ θ, θ ∈ BXx .
If X is Cohen-Macaulay, and (7.2) holds for one ω, then it holds for all ω ∈ Sx.

In fact we have:

Proposition 7.3. If X is Cohen-Macaulay, then µ ∈ W(X) is in Dom ∂̄X and
∂̄Xµ = τ if and only if (locally) (7.5) holds.

Proof. It follows from Proposition 6.3 that if X is Cohen-Macaulay at x ∈ X, and
thus X1 = ∅, any ω ∈ Sx has the form aϑ where ϑ is (a vector-valued) section of BX
and a is smooth. If τ ∈ W(X) and (7.5) holds, then

∂̄(µ ∧ ω) = ±∂̄(aµ ∧ ϑ) = ±∂̄a ∧ µ ∧ ϑ∓ a∂̄(µ ∧ ϑ) = ±∂̄a ∧ µ ∧ ϑ∓ aτ ∧ ϑ.
It follows that 1Xsing ∂̄(µ ∧ ω) = 0 and hence µ is in Dom ∂̄X . �

Notice that WX
0,n = Domn ∂̄X . Assume now that

(7.6) codimXr ≥ r + `, r ≥ 0.

We claim that if q ≤ ` − 2, µ ∈ WX
0,q and ∂̄µ ∈ WX

0,q+1, then µ ∈ Domq ∂̄X . To
see this, we have to verify that 1Xsing ∂̄(µ ∧ ωk) = 0 for each k ≥ 0. For k = 0 it
follows directly by the dimension principle since 1Xsing ∂̄(µ ∧ ω0) has bidegree (at
most) (n, ` − 1) and support on X0 that has codimension `. Now, ω1 = α1ω0 and
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α1 is smooth outside X1, so 1Xsing ∂̄(µ ∧ ω1) = ±α11Xsing ∂̄(µ ∧ ω0) = 0 outside
X1. Thus 1Xsing ∂̄(µ ∧ ω1) has support on X1 and hence must vanish by (7.6) and
the dimension principle. The claim follows in this way by induction. It follows in
particular that X is normal if (7.6) holds for ` = 2. One can verify that (7.6) with
` = 2 is a way to formulate Serre’s conditions R1 and S2 for normality.

8. The injectivity of the analytic sheaf C

Here is a proof of Malgrange’s theorem by residue calculus. Let F be any module
over the local ring O0 and let (??) be a resolution of F . We have to prove that then
the complex

(8.1) 0→ Hom (O0(E0), C)
f∗1−→ Hom (O0(E1), C)

f∗2−→

is exact except at k = 0. Fix a natural number N . Given a smooth function φ in
X ⊂ Cn, let φ̃ be the function

φ̃(ζ, ω) =
∑
|α|<N

∂αζ̄ φ(ζ)(ω − ζ̄)α/α!,

in X̃ = {(ζ, ζ̄) ∈ C2n; ζ ∈ X}. Then

φ̃(ζ, ζ̄) = φ(ζ), ∂̄φ̃ = O(|ω − ζ̄|N ).

Moreover, if f is holomorphic then f̃φ = fφ̃. Combining the formulas in [46] with
the construction in [43], we get

φ̃(z, z̄) =
∫
ζ,ω

(fk+1(z)HkUk +HkRk +HkUk−1fk) ∧ (φ̃+ ∂̄φ̃ ∧ vz) ∧ g,

where g is a suitable form in C2n with compact support and vz is the Bochner-
Martinelli form in C2n with pole at (z, z̄), and H` are holomorphic forms. Since
Rk = 0 for k ≥ 1 when (??) is a resolution, we have the homotopy formula

φ = fk+1Tk+1φ+ Tk(fkφ), k ≥ 1,

where

Tkφ(z) =
∫
ζ,ω

HkU(φ̃+ ∂̄φ̃ ∧ vz) ∧ gz.

Moreover, as in [43] one can verify that Tkφ is of class CM if N is large enough. If
now µ has order at most M , then we have

µ = T ∗k+1f
∗
k+1µ+ f∗kT

∗
kµ,

so if f∗k+1µ = 0, then µ = f∗kγ if γ = T ∗kµ. Thus (8.1) is exact at k.

9. Koppelman formulas on X ⊂ Ω (the embedded context)

We first recall the construction of integral formulas in [5] on an open set Ω ⊂ CN .
Let η = (η1, . . . , ηN ) be a holomorphic tuple in Ωζ × Ωz that generates the ideal
associated with the diagonal ∆ ⊂ Ωζ × Ωz. For instance one can take η = ζ − z.
Following the last section in [5] we consider forms in Ωζ × Ωz with values in the
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exterior algebra Λη spanned by T ∗0,1(Ω × Ω) and the (1, 0)-forms dη1, . . . , dηn. On
such forms interior multiplication δη with

η = 2πi
N∑
1

ηj
∂

∂ηj

is defined. Let ∇η = δη − ∂̄. A smooth section g = g0 + · · · + gN of Λη, defined
for z ∈ Ω′ b Ω and ζ ∈ Ω, such that ∇ηg = 0 and g0|∆ = 1, lower indices denote
degree in dη, will be called a weight with respect to z ∈ Ω′. Notice that if g and g′

are weights, then g ∧ g′ is again a weight. We will use one weight that has compact
support in Ω and one weight which gives a division-interpolation type formula (for
z ∈ Ω′) for the ideal sheaf JX associated with a subvariety X ↪→ Ω. We first discuss
weights with compact support.

Example 9.1 (Weights with compact support). If Ω is pseudoconvex and K is a
holomorphically convex compact subset, then one can find a weight with respect to
z in some neighborhood Ω′ b Ω of K, depending holomorphically on z ∈ Ω′, that
has compact support in Ω, see, e.g., Example 2 in [6]. Here is an explicit choice
when Ω is a neighborhood of the closed unit ball B, K = B, and η = ζ − z: Let
σ = ζ̄ · dη/(2πi(|ζ|2 − ζ̄ · z)). Then δησ = 1 for ζ 6= z and

σ ∧ (∂̄σ)k−1 =
1

(2πi)k
(ζ̄ · dη) ∧ (dζ̄ · dη)k−1

(|ζ|2 − ζ̄ · z)k
.

If χ = χ(ζ) is a cutoff function that is 1 in a slightly larger ball Ω′, then

g = χ− ∂̄χ ∧ σ

∇ησ
= χ− ∂̄χ ∧

( N∑
k=1

σ ∧ (∂̄σ)k−1
)
.

is a weight with respect to z ∈ Ω′ with compact support in Ω. � �

Let s be a smooth (1, 0)-form in Λη such that |s| . |η| and |η|2 . |δηs|; such an
s is called admissible. Then B := s/∇ηs =

∑
k s ∧ (∂̄s)k−1 satisfies ∇ηB = 1− [∆],

where [∆] is the (N,N)-current of integration over ∆. If η = ζ − z, then s = ∂|η|2
will do and we refer to the resulting B as the Bochner-Martinelli form. If g is any
weight, we have ∇η(g ∧ B) = g − [∆], and identifying terms of bidegree (N,N − 1)
we see that

(9.1) ∂̄(g ∧B)N = [∆]− gN ,

which is equivalent to a weighted Koppelman formula in Ω.
—

We now turn our attention to construction of weights for division-interpolation with
respect to the ideal JX . For the rest of this section we assume that Ω ⊂ CN

is pseudoconvex and that X ↪→ Ω is a subvariety. Let us fix global holomorphic
frames for the bundles Ek in (6.5) over Ω. Then Ek ' CrankEk × Ω, and the
morphisms fk are just matrices of holomorphic functions. One can find, see [6] for
explicit choices, (k− `, 0)-form-valued Hefer morphisms, i.e., matrices H`

k : Ek → E`,
depending holomorphically on z and ζ, such that Hk

k = IEk and

δηH
`
k = H`

k−1fk − f`+1(z)H`+1
k , k > `,
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where IEk is the identity operator on Ek and f stands for f(ζ). For Re λ � 0 we
put Uλ = |F |2λu, see Section 6 for the notation, and

Rλ =
N∑
k=0

Rλk = 1−∇fUλ = 1− |F |2λ + ∂̄|F |2λ ∧ u.

Then

gλ := 1−∇η
N∑
k=1

H0
kU

λ
k =

N∑
k=0

H0
kR

λ
k + f1(z)

N∑
k=1

H1
kU

λ
k

= HRλ + f1(z)HUλ

is a weight that is as smooth as we want if Re λ is large enough. Let g be any smooth
weight with respect to Ω′ b Ω (but not necessarily holomorphic in z) with compact
support in Ωζ . Then (9.1) holds with g replaced by gλ∧g. Since R(z) is ∇f(z)-closed
we thus get

−∇f(z)

(
R(z) ∧ dz ∧ (gλ ∧ g ∧B)N

)
= R(z) ∧ dz ∧ [∆]−
− R(z) ∧ dz ∧ (gλ ∧ g)N .

Notice that the products of currents are well-defined; they are just tensor products
since z and η are independent variables in Ω×Ω. Moreover, since R(z)f1(z) = 0 we
have

−∇f(z)

(
R(z) ∧ dz ∧ (HRλ ∧ g ∧B)N

)
= R(z) ∧ dz ∧ [∆]−
− R(z) ∧ dz ∧ (HRλ ∧ g)N .(9.2)

It follows from (6.12) that (recall that ∆ ⊂ Ω× Ω is the diagonal)

(9.3) R(z) ∧ dz ∧ [∆] = ι∗ω,

where ι : ∆X ↪→ Ω × Ω is the inclusion of the diagonal ∆X ⊂ X ×X ⊂ Ω × Ω. We
notice that the analytic continuation to λ = 0 of the last term on the right hand side
of (9.2) exists and yields the well-defined current R(z)∧ dz ∧ (HR∧ g)N in Ωζ ×Ω′z.
The existence of the analytic continuation to λ = 0 of the left hand side of (9.2)
follows from Proposition 2.1 in [13] since R(z) ∧B is pseudomoromorphic in Ω×Ω.
Our Koppelman formulas will follow by letting λ = 0 in (9.2).

To begin with, let us consider (9.2) for λ = 0 in (Ω \Xsing)× (Ω′ \Xsing). In this
set we have, by (6.12) and (6.21), that

(9.4) R(z) ∧ dz ∧ (HR ∧ g)N = ±ω(z) ∧ [Xz] ∧
(
H(γ(ζ)y[Xζ ]) ∧ g

)
N

= ±ω(z) ∧ [Xz] ∧ [Xζ ] ∧ γ(ζ)y(H ∧ g)N = ω(z) ∧ [Xz ×Xζ ] ∧ p(ζ, z),
where

(9.5) p(ζ, z) := ±(γ(ζ)y(H ∧ g)N )(n)

is the term of ±γ(ζ)y(H ∧g)N of degree n in dζ; this is the only term of ±γ(ζ)y(H ∧
g)N that can contribute in (9.4) since ω(z) ∧ [Xz] has full degree in the dzj . Notice
that p(ζ, z) is almost semi-meromorphic on X × X ′ (X ′ = X ∩ Ω′) and smooth on
Xreg × Ω′z; if g is holomorphic in z then z 7→ p(ζ, z) is holomorphic in Ω′.

Lemma 9.2. In (Ωζ \Xsing)× (Ω′z \Xsing) we have

(9.6) R(z) ∧ dz ∧ (HRλ ∧ g ∧B)N |λ=0 = R(z) ∧ dz ∧ (HR ∧ g ∧ |η|2λB)N |λ=0.
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Proof. Recall from Section 6 that in Ω \Xsing, R is a smooth form times Rp. Notice
that

Tjk := Rp(z) ∧Rλk ∧Bj−k|λ=0 −Rp(z) ∧Rk ∧ |η|2λBj−k|λ=0, j ≤ N.
is a pseudomeromorphic current in Ω × Ω of bidegree (j − k, p + k + j − k − 1) =
(j− k, p+ j− 1) that clearly vanishes outside Xz. It also vanishes outside ∆ since B
is smooth there. Thus Tjk has support contained in ∆X ' X, which has codimension
2N − n = p + N in Ω × Ω. Since p + N > p + j − 1 for j ≤ N , it follows from the
dimension principle that Tjk must vanish; in particular, Rp(z)∧Rλk∧Bj−k|λ=0 = 0 for
k < p since Rk = 0 for k < p. We conclude that (9.6) holds in (Ω\Xsing)×(Ω′\Xsing)
since Tjk = 0 there. �

Notice that the right hand side of (9.6) only involves Bj with j ≤ n since all terms
in HR have degree at least p in dη. If Reλ � 0 we may replace g by g ∧ |η|2λB in
(9.4) and combining with Lemma 9.2 we get

(9.7) R(z) ∧ dz ∧ (HRλ ∧ g ∧B)N
∣∣
λ=0

= R(z) ∧ dz ∧ (HR ∧ g ∧ |η|2λB)N
∣∣
λ=0

= ω(z) ∧ [X ×X] ∧
(
γ(ζ)y(H ∧ g ∧ |η|2λB)

)
N

∣∣
λ=0

= ω(z) ∧ [X ×X] ∧
(
γ(ζ)y

n∑
j=1

(H ∧ g)N−j ∧ |η|2λBj
)∣∣
λ=0

in (Ω \ Xsing) × (Ω′ \ Xsing). Since Bj = O(|η|−2j+1), we see that Bj is locally
integrable on Xreg ×Xreg for j ≤ n. It is thus innocuous to put λ = 0 in the right
hand side of (9.7) as long as we restrict our attention to Xreg × X ′reg. Notice that
the integral kernel

(9.8) k(ζ, z) := ±
(
γ(ζ)y

n∑
j=1

(H ∧ g)N−j ∧Bj
)

(n)

is almost semi-meromorphic on X ×X ′ and locally integrable on Xreg ×X ′reg.
In view of (9.2), (9.3), (9.4), (9.7), and (9.8) we have that

(9.9) −∇f(z)

(
ω(z) ∧ k(ζ, z)

)
= ω ∧ [∆X ]− ω(z) ∧ p(ζ, z)

in the current sense on Xreg ×X ′reg. Combined with Lemma 6.5 this gives

Lemma 9.3. With k(ζ, z) and p(ζ, z) defined by (9.8) and (9.5) respectively, we
have

∂̄k(ζ, z) = [∆X ]− p(ζ, z)
in the current sense on Xreg ×X ′reg.

We can write our integral kernels p(ζ, z) and k(ζ, z) in terms of the structure
form ω as follows: Let F be a trivial vector bundle over Ω × Ω with basis elements
ε1, . . . , εN . Now replace each occurrence of dηj in H and g by εj and let Ĥ and ĝ be
the forms so obtained. Then

(H ∧ g)N = ε∗N ∧ · · · ∧ ε∗1y
(
dη1 ∧ · · · ∧ dηN ∧ (Ĥ ∧ ĝ)N

)
,

where {ε∗j} is the dual basis and the lower index N on the right hand side means the
term with degree N in the εj . If C = C(ζ, z) is the invertible holomorphic function
defined by dη = Cdζ + · · · , we thus have, cf., (6.21),

(9.10) p(ζ, z)± Cε∗N ∧ · · · ∧ ε∗1y(Ĥ ∧ ĝ)N ∧ ω(ζ).
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Similarly, we get that

(9.11) k(ζ, z) = ±Cε∗N ∧ · · · ∧ ε∗1y
n∑
j=1

(Ĥ ∧ ĝ)N−j ∧ B̂j ∧ ω(ζ).

10. Koppelman formulas on X (in the intrinsic context)

Let X be a reduced complex space of pure dimension n. Locally, X can be embed-
ded as a subvariety of a pseudoconvex domain in some CN , so let us, for notational
convenience, assume that X can be embedded, X ↪→ Ω, in a pseudoconvex domain
Ω ⊂ CN . Then, following the previous section, for any Ω′ b Ω we can construct
integral kernels k(ζ, z) and p(ζ, z) which are almost semi-meromorphic on X ×X ′,
where X ′ = X ∩ Ω′, such that (9.9) and Lemma 9.3 hold. Moreover, k(ζ, z) and
p(ζ, z) are locally integrable on Xreg ×X ′reg and smooth on Xreg × Ω′ respectively.

Now assume that µ(ζ) ∈ W0,q(X). Since k(ζ, z) and p(ζ, z) are almost semi-
meromorphic, the products k(ζ, z)∧µ(ζ) and p(ζ, z)∧µ(ζ) are well-defined currents
in W(Xζ ×X ′z) in view of Proposition ??. Let π : Xζ ×Xz → Xz be the projection
and put Kµ(z) = π∗(k(ζ, z) ∧ µ(ζ)) and Pµ(z) = π∗(p(ζ, z) ∧ µ(ζ)). Since k and
p have compact support in ζ ∈ Ω, Kµ and Pµ are well-defined currents in W(X ′z),
and in fact, Pµ(z) is a smooth function in Ω′ since p(ζ, z) is smooth in z ∈ Ω′; if we
choose the weight g to be holomorphic in z, then Pµ(z) is holomorphic in Ω′. It is
of course natural to write

(10.1) Kµ(z) =
∫
Xζ

k(ζ, z) ∧ µ(ζ), Pµ(z) =
∫
Xζ

p(ζ, z) ∧ µ(ζ).

Lemma 10.1. Let µ ∈ W0,q(X).
(i) If µ is smooth in a neighborhood of a given point x ∈ X ′reg, then Kµ(z) is

smooth in a neighborhood of x.
(ii) If µ vanishes in a neighborhood of x ∈ X ′, then Kµ(z) is smooth close to x.

Proof. Since k(ζ, z) is smooth in z close to x if ζ avoids a neighborhood of x, (ii)
follows. To see (i) it is enough to assume that µ is smooth and has compact support
close to x ∈ Xreg. Close to the point (x, x) X × X is a smooth manifold, ω(ζ) is
smooth, and B̂j ∼ |ζ − z|−2j+1. Thus, (i) follows from the following lemma, cf., the
definition (9.8) and (9.11) of k(ζ, z). �

Lemma 10.2. Let Φ be a non-negative function on Rd
x ×Rd

y such that Φ2 is smooth
and Φ ∼ |x−y|. For each integer m ≥ 0, let ϕm denote an arbitrary smooth function
that is O(|x − y|m), and let Eν denote a finite sum

∑
m≥0 ϕm/Φ

ν+m. If ν ≤ d − 1
and ξ ∈ Ckc (Rd), then

Tξ(x) =
∫

Rdy
Eν(x, y)ξ(y)dy

is in Ck(Rd).

This lemma should be well-known, but for the reader’s convenience we sketch a
proof.

Sketch of proof. Let Lj = ∂/∂xj + ∂/∂yj . It is readily checked (e.g., by Taylor
expanding) that Ljϕm = ϕm from which we conclude that LjEν = Eν . Let

T λξ(x) =
∫

Rdy
|x− y|2λEν(x, y)ξ(y)dy.
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For Re λ > −1/2, it is clear that T λξ is an analytic C0(Rd)-valued function. More-
over, for Re λ > 0, one easily checks by using LjEν = Eν that all distributional
derivatives of order ≤ k of T λξ are continuous and analytic in λ for Re λ > −1/2.
It follows that Tξ = T 0ξ ∈ Ck(Rd). �

Proposition 10.3. If µ is a section of Domq ∂̄X over X, then ∂̄µ ∈ W0,q+1(X) and
the current equation

(10.2) µ = ∂̄Kµ+K(∂̄µ) + Pµ

holds on X ′reg = Xreg ∩ Ω′.

Proof. From Proposition 7.2 it follows that ∂̄µ ∈ W0,q+1(X) and so K(∂̄µ) is a well-
defined current in W(X ′). Moreover, from Lemma 9.3 it follows that if φ(z) is a test
form on X ′reg, then

(10.3) φ(ζ) =
∫
Xz

k(ζ, z) ∧ ∂̄φ(z) + ∂̄ζ

∫
Xz

k(ζ, z) ∧ φ(z) +
∫
Xz

p(ζ, z) ∧ φ(z)

for ζ ∈ Xreg. We also see from Lemma 10.1 that all terms in (10.3) are smooth on
X. If µ has compact support in Xreg, then the proposition follows by duality.

For the general case, let χδ = χ(|h|/δ), where h = h(ζ) is a holomorphic tuple
cutting out Xsing. Then the proposition holds for χδµ. Since k(ζ, z) ∧ µ(ζ) and
p(ζ, z) ∧ µ(ζ) has the SEP on X × X ′, we have that K(χδµ) → Kµ and P(χδµ) →
Pµ. Moreover, ∂̄µ ∈ W0,q+1(X) so k(ζ, z) ∧ ∂̄µ(ζ) has the SEP, which implies that
K(χδ∂̄µ)→ K(∂̄µ). Hence,

lim
δ→0+

K(∂̄(χδµ)) = K(∂̄µ) + lim
δ→0+

K(∂̄χδ ∧ µ).

The singularities of k(ζ, z) only come from the structure form ω(ζ) when z and ζ “far
apart”, e.g., for z in a compact subset of X ′reg and ζ close to Xsing. From Lemma 7.1
we have that ∂̄χδ ∧ µ∧ω → 0 and so limδ→0+ K(∂̄χδ ∧ µ) = 0 for z in X ′reg; thus the
proposition follows. �

Notice that Pµ in general is smooth. If the weight g is holomorphic in z, then Pµ
is holomorphic in Ω′ for q = 0 and 0 for q ≥ 1. In this case, Proposition 10.3 thus
is a homotopy formula for ∂̄ on X ′reg in the sense that if µ is in Domq ∂̄X on X and
∂̄µ = 0, then µ is holomorphic in Ω′ for q = 0 and µ = ∂̄Kµ on X ′reg for q ≥ 1.

Proof of Proposition ??. We know that Kφ is defined and in WX if φ ∈ WX . By
choosing the weight g to be holomorphic in z, we get that Pφ is in OX . Moreover,
from Proposition 10.3 we have that the Koppelman formulas (??) and (??) hold on
X ′reg if, in addition, φ is in Dom ∂̄X .

�

We do not know whether ∂̄Kµ is inWX or not, still less whether Kµ is in Dom ∂̄X
or not in general. However, we shall now see that this is true if µ is smooth, and
more generally if µ is obtained by a finite number of applications of K’s. Notice
that Kµ is only defined in the slightly smaller set X ′. Therefore, when we in the
following lemma consider products of kernels ∧jkj(zj , zj+1), where (z1, . . . , zm) are
coordinates on X×· · ·×X, we will assume that zj+1 7→ kj+1(zj+1, zj+2) has compact
support where zj+1 7→ kj(zj , zj+1) is defined.
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Lemma 10.4 (Main lemma). Let kj denote kernels (9.8) obtained via local embed-
dings and arbitrary Hermitian free resolutions of OΩ/JX . Let (z1, . . . , zm) be coordi-
nates on X × · · · ×X and assume that zj+1 7→ kj+1(zj+1, zj+2) has compact support
where zj+1 7→ kj(zj , zj+1) is defined. Then, for any xm ∈ X and any ω ∈ Sxm, we
have

(10.4) lim
δ→0+

∂̄χ(|h(zm)|/δ) ∧ ω(zm) ∧
m−1∧
j=1

kj(zj , zj+1) = 0

in the current sense in a neighborhood of {xm} ×X × · · · ×X.

Proof. We proceed by induction over m. Every ω ∈ Sxm is in WX , so χδω → ω and
hence

−∂̄χδ ∧ ω = ∇f (χδω)→ ∇fω = 0.
Thus the lemma holds for m = 1 (i.e., when there are no k-kernels). Now consider
the case m+ 1. Recall that the limit in (10.4) is a pseudomeromorphic current T in
a neighborhood of {xm+1}×X×· · ·×X. When z1 6= z2, then k1(z1, z2) is a smooth
form times ω(z1), cf., (9.11). Thus, outside z1 = z2, T is a smooth form times the
tensor product of ω(z1) and a current of the form (10.4) in the variables zm+1, · · · , z2;
the support of T is thus contained in {z1 = z2} by the induction hypothesis. For a
similar reason the support of T must be contained in {zk = zk+1} and we see that T
must have support contained in the diagonal ∆ = {zm+1 = · · · = z1 = 0}. Moreover,
the support of T is clearly also contained in Xsing ×X × · · · ×X. Thus, the support
of T is contained in (∆X)sing ⊂ ∆, which has dimension (at most) n− 1 and hence
codimension (at least) (m+ 1)n− (n− 1) = mn+ 1.

Now let T 0 be the component of T obtained from the component ω0(zm+1). Then
T 0 has bidegree (mn,m(n− 1) + 1) since each kj has bidegree (n, n− 1). However,
since m ≥ 1, we have m(n − 1) + 1 < mn + 1 and so T 0 = 0 by the dimension
principle. Let T 1 be the component of T obtained from ω1(zm+1). Since ω1 = α1ω0

and α1 is smooth outside X1, it follows from what we have just proved that T 1 has
support contained in (X1 × X × · · · × X) ∩ ∆ ' X1. This set has codimension at
least mn + 1 + 1 and T 1 has bidegree (∗,m(n − 1) + 1 + 1) so also T 1 = 0 by the
dimension principle. Proceeding in this way we conclude that T = 0. �

We can now show that Lemma 9.3 holds on X ×X ′.

Proposition 10.5. We have that

−∇f(z)

(
ω(z) ∧ k(ζ, z)

)
= ω ∧ [∆X ]− ω(z) ∧ p(ζ, z)

in the current sense on X ×X ′.

Proof. Let χδ = χ(|h(ζ)|/δ) and χε = χ(|h(z)|/ε), where h as before cuts out Xsing.
From Lemma 9.3 we have that

−∇f(z)

(
χδχεω(z) ∧ k(ζ, z)

)
= χδχεω ∧ [∆X ]− χδχεω(z) ∧ p(ζ, z) + V (δ, ε),

where
V (δ, ε) = ∂̄χδ ∧ χεω(z) ∧ k(ζ, z) + χδ∂̄χε ∧ ω(z) ∧ k(ζ, z).

Since ω, k, p, as well as the products ω(z) ∧ k(ζ, z) and ω(z) ∧ p(ζ, z) all are in
W(X ×X), it is enough to see that limε→0 limδ→0 V (δ, ε) = 0. We have

(10.5) lim
δ→0

V (δ, ε) = lim
δ→0

∂̄χδ ∧ χεω(z) ∧ k(ζ, z) + ∂̄χε ∧ ω(z) ∧ k(ζ, z).
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Since χεω(z) is smooth and vanishing in a neighborhood of Xsing, k(ζ, z) is a smooth
form times ω(ζ), cf., (9.11), on the support of ∂̄χδ if δ is small enough. Therefore,
the first term on the right hand side of (10.5) is 0 by Lemma 10.4 with m = 1.
The second term on the right hand side of (10.5) tends to 0 as ε → 0, again by
Lemma 10.4. �

11. The ad hoc sheaf AX

We are now ready to define the sheaf AX ; it is indeed an ad hoc definition with
respect to the Koppelman formulas in the intrinsic context. From the previous two
sections we know that we locally (and semi-globally) on X can construct integral
kernels k(ζ, z) and p(ζ, z), cf., (9.11) and (9.10), and corresponding integral operators
K and P such that Proposition 10.3 holds.

Definition 5. We say that a (0, q)-current φ on an open set U ⊂ X is a section of
AX over U , φ ∈ Aq(U), if, for every x ∈ U , the germ φx can be written as a finite
sum of terms

ξν ∧ Kν(· · · ξ2 ∧ K2(ξ1 ∧ K1(ξ0)) · · · ),
where Kj are integral operators with kernels kj(ζ, z) at x of the form defined in
Section 9 and ξj are smooth (0, ∗)-forms at x such that ξj has compact support in
the set where z 7→ kj(ζ, z) is defined.

Recall from Section 10 that if φ ∈ W(U) and K is an integral operator, as defined
above, with kernel k(ζ, z), where z 7→ k(ζ, z) is defined in U ′ b U , then Kφ ∈ W(U ′).
Therefore, AX is a subsheaf ofWX and from Lemma 10.1 it follows that the currents
in AX are smooth on Xreg. In view of Lemmas 10.4 and 7.1 we see that AX is in
fact a subsheaf of Dom ∂̄X . We also note that if φ ∈ Aq(U), then Kφ ∈ Aq−1(U ′).

Proof of Theorem ??. It is clear that AXq ⊃ EX0,q are fine sheaves satisfying (i) of
Theorem ?? and we have just noted that also (ii) holds.

We must check condition (iii). We have already seen in Proposition 7.2 that the
kernel of ∂̄ in Dom0 ∂̄X is OX . Let φ be a section of AXq , q ≥ 1, in a neighborhood
of an arbitrary point x ∈ X, and assume that ∂̄φ = 0. Since AX ⊂ Dom ∂̄X we also
have ∂̄Xφ = 0. For some neighborhood U of x, by Proposition 10.3, we can find an
operator K such that

(11.1) ∂̄Kφ = φ

in Ureg; here K corresponds to a weight that is holomorphic in z. Since φ is a section
of AXq we know that Kφ is a section of AXq−1 and since AX ⊂ Dom ∂̄X it follows from
Proposition 7.2 that ∂̄Kφ is in WX . Both sides of (11.1) thus have the SEP and we
conclude that (11.1) in fact holds on U .

It remains to prove that ∂̄ is a map from AX to AX . It is sufficient to show that

(11.2) ∂̄
(
ξν ∧ Kν(· · · ξ2 ∧ K2(ξ1 ∧ K1(ξ0)) · · · )

)
∈ AX ,

for any operators Kj (not necessarily corresponding to weights that are holomorphic
in z) and smooth (0, ∗)-forms ξj with compact support where Kj(ξj−1) is defined.
We prove (11.2) by induction over ν. The case ν = 0 is clear. Assume that (11.2)
holds for ν = `−1. Let Kj , j = 1, . . . , ` be any integral operators and ξj , j = 0, . . . , `,
smooth forms with compact support where Kj(ξj−1) are defined. Put φ`−1 = ξ`−1 ∧
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K`−1(· · · ξ1 ∧ K1(ξ0) · · · ) and let U be a sufficiently small neighborhood of supp ξ`.
By Proposition 10.3 we have that

(11.3) φ`−1 = K`(∂̄φ`−1) + ∂̄K`φ`−1 + P`φ`−1

in Ureg; notice that P`φ`−1 is smooth. From the induction hypothesis we have that
∂̄φ`−1 is in AX . Moreover, any K maps AX to AX and since AX ⊂ Dom ∂̄X , all
terms in (11.3) have the SEP. Hence, (11.3) holds on U and it follows that ∂̄K`φ`−1

is in A(U). Thus, (11.2) holds for ν = ` and the proof is complete.
�

Proof of Theorem 7. From Section 10 we have integral operators K and P such that
Pϕ is holomorphic in Ω′ if ϕ ∈ W0,0(X) and 0 if ϕ ∈ W0,q(X), q ≥ 1. Moreover, we
noted above that K : Aq+1(X)→ Aq(X ′) and that AX is a subsheaf of Dom ∂̄X . Let
φ ∈ Aq(X), q ≥ 1. By Proposition 10.3 we have that

(11.4) φ = ∂̄Kφ+K(∂̄φ) + Pφ

on X ′reg. Since φ and ∂̄φ are in AX , all terms in (11.4) have the SEP, cf., the previous
proof. Hence (11.4) holds on X ′ and so Theorem 7 follows. �

12. Example with a reduced complete intersection

Let a1, . . . , ap ∈ O(B), where B ⊂ Cn is the unit ball, and assume that X = {a1 =
· · · = ap = 0}∩B is a reduced complete intersection, i.e., that X has pure codimension
p and da1∧· · ·∧dap 6= 0 on Xreg. Let e1, . . . , ep be a holomorphic frame for the trivial
bundle A and let a be the section a = a1e

∗
1 + · · ·+ ape

∗
p of the dual bundle A∗, where

{e∗j} is the dual frame. Put Ek = ΛkA and let δa : O(E•+1) → O(E•) be interior
multiplication with a. The Koszul complex (O(E•), δa) is then a free resolution of
OΩ/JX , cf., (6.4). It is clear that sa :=

∑
j ājej/|a|2 is the solution to δasa = 1,

outside X, with pointwise minimal norm (with respect to the trivial metric on A).
If we consider all forms as sections of the bundle Λ(T ∗(Ω) ⊕ A), then we can write
(6.8) as uk = sa ∧ (∂̄sa)k−1. Following [12], cf., (6.9), we get that

(12.1) R = Rp = ∂̄|a|2λ ∧ up
∣∣
λ=0

= ∂̄
1
ap
∧ · · · ∧ ∂̄ 1

a1
∧ e1 ∧ · · · ∧ ep,

i.e., R is the classical Coleff-Herrera product (times e1∧· · ·∧ep). Let ω′ be a smooth
Ep-valued form in Ω \ Xsing such that da1 ∧ · · · ∧ dap ∧ ω′/(2πi)p = e ∧ dζ where
e = e1 ∧ · · · ∧ ep and dζ = dζ1 ∧ · · · ∧ dζN . Then the pullback i∗ω′, where i : X↪→B,
is unique and meromorphic on X. By the Leray residue formula we get that

R ∧ dζ = ∂̄
1
ap
∧ · · · ∧ ∂̄ 1

a1
∧ e ∧ dζ = ω′ ∧ [X],

and so, cf., (6.12) and (6.21), the structure form associated to R is ω := i∗ω′. If we
choose coordinates ζ = (ζ ′, ζ ′′) so that det(∂a/∂ζ ′) is generically non-vanishing on
Xreg, then we can take ω′ = (−2πi)p e ∧ dζ ′′/ det(∂a/∂ζ ′) and the structure form is
explicitly given as

ω = i∗
(
(−2πi)p e ∧ dζ ′′/ det(∂a/∂ζ ′)

)
.

If we let

γ =
(−2πi)p

det(∂a/∂ζ ′)
e ∧ ∂

∂ζp
∧ · · · ∧ ∂

∂ζ1
,

then we have R = (−1)pγy[X], cf., (6.21).
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Let µ ∈ W0,q(X) and assume that µ is smooth on Xreg. Then, cf., Section 7, µ is
a section of Dom ∂̄X if and only if ∂̄χδ ∧ µ∧ i∗(dζ ′′/det(∂a/∂ζ ′))→ 0 in the current
sense as δ → 0; here χδ = χ(|h|/δ), χ is a smooth approximand of the characteristic
function of [1,∞) and h cuts out Xsing.

To construct integral kernels, cf., Section 9, let hj be (1, 0)-forms so that δηhj =
aj(ζ)− aj(z), where η = ζ − z. We then have Hefer morphisms H`

k given as interior
multiplication with (

∑
hj ∧ e∗j )k−`/(k − `)!. Let g be the weight from Example 9.1

and let B be the Bochner-Martinelli form. Then (HR∧ g ∧B)N = H0
pRp ∧ (g ∧B)n

since R = Rp and a straight forward computation shows that

HR = H0
pRp = ∂̄

1
ap
∧ · · · ∧ ∂̄ 1

a1
∧ h1 ∧ · · · ∧ hp.

There is a k̃(ζ, z) = O(|η|−2n+1) such that

h1 ∧ · · · ∧ hp ∧ (g ∧B)n = (2πi)−pdη ∧ k̃(ζ, z)

and so from (9.8) we see that our solution kernel for ∂̄ on X is

k(ζ, z) = ±
(
γyH0

p ∧ (g ∧B)n
)

(n)
= ±k̃(ζ, z) ∧ dζ ′′

det(∂a/∂ζ ′)
.

Similarly, there is a smooth form p̃(ζ, z), depending holomorphically on z if g does,
such that

h1 ∧ · · · ∧ hp ∧ (ζ̄ · dη) ∧ (dζ̄ · dη)n−1 = (2πi)−pdη ∧ p̃(ζ, z)
and we can compute p(ζ, z) from (9.5) using p̃(ζ, z). We get the representation
formula

(12.2) φ(z) =
∫
X
∂̄χ(ζ) ∧ dζ ′′

det(∂a/∂ζ ′)
∧ p̃(ζ, z)

(|ζ|2 − z · ζ̄)n
φ(ζ)

for (strongly) holomorphic functions φ on X. If X intersects ∂B properly and Xsing

avoids ∂B then we may let χ tend to the characteristic function for B. The integral
(12.2) then becomes an integral over X∩∂B and the resulting representation formula
coincides with a formula of Stout [41] and Hatziafratis [22].

Let us consider the cusp X = {a(z) = zr1 − zs2 = 0} ⊂ B ⊂ C2, where 2 ≤ r < s
are relatively prime integers, in more detail. In this case the structure form is the
pullback of −2πi e1 ∧ dζ2/(rζr−1

1 ) to X and we can take γ(ζ) = (−2πi/rζr−1
1 ) · e1 ∧

(∂/∂ζ1). The Hefer form is given by

h = h1dη1 + h2dη2 =
1

2πi
(ζr1 − zr1
ζ1 − z1

dη1 +
ζs2 − zs2
ζ2 − z2

dη2

)
and we get

(12.3) h ∧ (g ∧B)1 = h ∧ χ(ζ)
∂|η|2

2πi|η|2
= (2πi)−1dη1 ∧ dη2 k̃(ζ, z)

for a certain function k̃(ζ, z). The restriction of this function to X × X can be
computed by applying δη to (12.3) and noting that δηh = a(ζ)− a(z) = 0 on X ×X.
One gets that k̃(ζ, z) = χ(ζ)h1/η2 on X ×X and so our solution kernel for ∂̄ on the
cusp is

k(ζ, z) =
dζ2

rζr−1
1

k̃(ζ, z) =
χ(ζ)
2πi

ζr1 − zr1
(ζ1 − z1)(ζ2 − z2)

dζ2

rζr−1
1

.
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Expressed in the parametrization τ 7→ (τ s, τ r) = (ζ1, ζ2) our solution operator for
(0, 1)-forms thus becomes

Kφ (t) =
1

2πi

∫
τ
χ(τ)

τ rs − trs

(τ s − ts)(τ r − tr)
dτ

τ (s−1)(r−1)
∧ φ(τ).

One similarly shows that the projection operator P looks the same but with χ re-
placed by ∂̄χ, i.e., the kernel is the same but the solid integral is replaced by a
boundary integral.

13. The one-dimensional case

In the case when X is a complex curve we have some further results. In particular,
we have a stronger version of Proposition 7.2.

Proposition 13.1. Let X be a reduced complex curve.

(i) If the complex 0→ OX ↪→ EX0,0
∂̄−→ EX0,1 → 0 is exact, then AX∗ = EX0,∗.

(ii) The complex 0→ OX ↪→ Dom0 ∂̄X
∂̄−→ Dom1 ∂̄X → 0 is exact.

Proof. To prove (i), according to Definition 5, it is enough to show that Kξ is smooth
for every K if ξ is a smooth (0, 1)-form. If ξ is a smooth (0, 1)-form, there is (locally)
a smooth function ψ such that ∂̄ψ = ξ. Smooth forms are in AX and so, cf., the
proof of Theorem 7, we get that

Kξ = K(∂̄ψ) = ψ − Pψ

on X. Since Pψ is smooth, Kξ is indeed smooth on X.

From Proposition 7.2 we have that the kernel of ∂̄ in Dom0 ∂̄X is OX so to prove
(ii) it remains to see that ∂̄ : Dom0 ∂̄X → Dom1 ∂̄X = WX

0,1 is surjective. We take a
minimal local embedding X ↪→ CN so that Xsing = {0} and we let µ be a section
of WX

0,1 in a neighborhood of 0. We choose a Hermitian minimal free resolution of
OX and we get the structure form ω = ω0; notice that OX is Cohen-Macaulay since
dimX = 1. Let K and P be integral operators as in Section 10 associated with a
weight g which is holomorphic in z. From Proposition 10.3 we have that u1 := Kµ
is in WX

0,0 and solves ∂̄u1 = µ outside 0; we will modify this solution to a solution in
Dom ∂̄X .

Let π : X̃ → X be the normalization of X. Then ω̃ := π∗ω is a meromorphic
(1, 0)-form and from (5.5) we see that there is ũ1 in WX̃

0,0 such that π∗ũ1 = u1. Let
h be a holomorphic tuple such that {h = 0} = {0} and put χδ = χ(|h|/δ). Then
ν := limδ→0+ ∂̄χδ ∧ ũ1ω̃ is a pseudomeromorphic (1, 1)-current on X̃ with support in
the finite set of points π−1(0). Let us for simplicity assume that X is irreducible at
0 so that X̃ is connected and π−1(0) is just one point t = 0 for some holomorphic
coordinate t on X̃. Then ν has support at t = 0 and hence equals a finite linear
combination of derivatives of the Dirac mass, δ0, at t = 0. Moreover, since ν is
pseudomeromorphic, only holomorphic derivatives occur, cf., the first part of the
proof of Proposition ??, and so we have

ν =
∑̀

0

c′j
∂j

∂tj
δ0 =

∑̀
0

cj ∂̄
( 1
tj+1

)
∧ dt, c′j , cj ∈ C.
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Also, since ω̃ is meromorphic, ω̃ = f(t)dt/tk for some k ≥ 0 and some holomorphic
function f with f(0) 6= 0. The current

ũ2 :=
∑̀
j=0

cj
tk−j−1

f(t)
.

is holomorphic for t 6= 0 and by construction, ν = ∂̄(ũ2ω̃). If ũ := ũ1 − ũ2, it is then
straightforward to verify that ∂̄χδ ∧ ũω̃ → 0 on X̃. Hence, u := π∗ũ = u1 − π∗ũ2 is
in Dom0 ∂̄X and solves ∂̄u = µ. �

Notice that once we know that ∂̄ : Dom0 ∂̄X → Dom1 ∂̄X = WX
0,1 is surjective, it

is easy to show, using an argument similar to the proof of statement (i) above, that
our solution operators for ∂̄ indeed produce solutions in Dom0 ∂̄X .

Also notice that, in view of Proposition 7.2, it follows from (ii) of Proposition 13.1
that if H1(X,OX) = 0 and φ ∈ W0,1(X) = Dom1 ∂̄X , then there is a ψ ∈ W0,0(X)
such that ∂̄Xψ = φ on X.
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[40] K. Spallek: Über Singularitäten analytischer Mengen. Math. Ann., 172 (1967), 249–268.
[41] E. L. Stout: An integral formula for holomorphic functions on strictly pseudoconvex hy-

persurfaces. Duke Math. J., 42 (1975), 347–356.
[42] M. Andersson: Residue currents and ideals of holomorphic functions, Bull. Sci. Math., 128,

(2004), 481–512.
[43] M. Andersson: Ideals of smooth functions and residue currents, J. Functional Anal. 212

(2004), no. 1, 76–88.
[44] M. Andersson: The membership problem for polynomial ideals in terms of residue currents,

Ann. Inst. Fourier 56 (2006), 101-119.
[45] M. Andersson: Residue currents of holomorphic morphisms, J. Reine Angew. Math. 596

(2006), 215–234.
[46] M. Andersson: Integral representation with weights II, division and interpolation formulas,

Math. Z. 254 (2006), 315–332.



116

[47] D. Bayer & D. Mumford: What can be computed in algebraic geometry?, Computational
algebraic geometry and commutative algebra (Cortona, 1991), 1–48, Sympos. Math., XXXIV,
Cambridge Univ. Press, Cambridge, 1993..

[48] D. Bayer & I. Peeva & B. Sturmfels: Monomial resolutions, Math. Res. Lett. 5 (1998),
no. 1-2, 31–46.

[49] D. Bayer & M. Stillman: A criterion for detecting m-regularity, Invent. Math. 87, (1987),
1–11.

[50] D. Bayer & B. Sturmfels: Cellular resolutions of monomial modules, J. Reine Angew.
Math. 502 (1998), 123–140.

[51] C. Berenstein & A. Yger: About L. Ehrenpreis fundamental principle, Geometrical and
algebraical aspects in several complex variables (Cetraro, 1989), 47–61, Sem. Conf., 8, EditEl,
Rende, 1991.

[52] C. Berenstein & A. Yger: Effective Bezout identities in Q[z1, · · · , zn], Acta Math. 166
(1991), 69–120.

[53] C. Berenstein & R. Gay & A. Vidras & A. Yger: Residue Currents and Bézout Identities,
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