Introduction

The objective of this book is to give a detailed account of some aspects of the
multivariable residue theory that was initiated by the works of Liebermann, Coleff,
and Herrera in the mid seventies. The core is to study various questions of ideals of
analytic functions, polynomials, etc, by representating ideal sheaves as annahilators
of so-called residue currents, and the O-equation on nonsmooth analytic spaces.

Currents are analytic objects that in many aspects behave like differential forms,
S0, e.g., they may fit inte integral formulas. On the other hand currents also have a
geometric nature. For instance, closed positive, and more generally normal, currents
are natural generalizations of Lelong currents, that can be identified by analytic
varieties. Most of the currents that occur in residue theory are pseudomeromorphic.
Such currents can be seen as generalizations of, possibly non-reduced, varieties, and
they share important geometric properties with the normal currents, such as the
dimension principle, see below.

In one variable, the local theory is quite simple; in fact, each local ideal is principal,
so deciding whether a given function belongs to the local ideal or not at a given point
just amounts to checking its vanishing order at the point. Therefore, residue theory
in one variable is mainly used for global questions, e.g., to find the value of an
integral by summing up all residues of a meromorphic form in an open set. In the
several variable case already the local residue theory is challenging; nevertheless as
soon as it is accessible, many global questions can be handled as well. For instance,
membership problems for polynomial ideals, existence of sections of vector bundles,
etc, are discussed. The residue theory also extends to singular spaces, and in that
case the local theory is non-trivial already in the one-dimensional case.

Residue theory is intimately related to integral formulas, and indeed, integral
formulas plays an important role in this book. For instance, membership in an ideal
can often be expressed by an integral formula. There are are, however, a lot of
important aspects that are not at all touched upon. For instance there is a deep and
close connection to D-module theory that is not discussed.

No previous knowledge of residue theory or integral representation is assumed.
However, we use the books of Demailly, [58], Eisenbud, [62, 63], Lazarsfeld, [?],
Hormander, [?, 67] (complex analys, distribution), Circa, [?], and Gunning-Rossi,
[65], 77, Griffiths-Harris, ngn med upplosningar, as general references. Only at a few
occasions we include a proof that can be found in some of these books; it is only
when some idea in the proof will be referred to later on.

1. A GLIMSE OF MULTIVARIABLE RESIDUE CALCULUS

Let J = Jo be an ideal in the local ring O = Oy(C™). We can always find a
finite number of generators, i.e., (germs of) functions f1,..., fp, such that ¢ € J if
and only if ¢ = Y1 f1 +--- + 1, fp for some ¥; € O. However, for many purposes
such a representation of an ideal in terms of a set of generators is not useful. For
example, the fact that J is topologically closed in O is not at all obvious from
this representation; whereas it is immediate if 7 is represented as the kernel of a
continuous mapping.



Assume that J is generated by one single function f (not vanishing identically).
From the classical theory there is a Schwartz distribution U such that

(1.1) fU=1.

Then R = OU is a (0,1)-current, and since U = 1/f outside the sero set Z = Z(f)
of f, it follows that R has support on Z; we say that R is a residue current. It has
the following important property:
If p € O, then ¢ € T if and only if R = 0.

In fact, by (1.1) we have that ¢R = ¢0U = 9(pU) so that ¢R = 0 if and only if
h := ¢U is holomorphic, and in view of (1.1) this holds if and only if fh = ¢ for a
holomorphic h. Thus we have expressed J as the annihilator of the current R. It is
now clear that J is closed. Notice that U is neither unique nor explicit. However
one can define the principal-value current [1/f] as
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The existence of this limit is highly non-trivial; the proof relies on the possibility
to resolve singularities, Hironaka’s theorem. Given the existence it is however clear
that f(1/f) =1 and so J will be the annihilator of 9(1/f). Notice that

<5[l}a€>:hm §7 §€Dupn-1,
! =0 Jp2=c [ ’

where the limit is taken over all regular values of | f|2. If g is another generator of 7,
then g = af, where a is non-vanishing, and it turns out, although not at all obvious,
that ad(1/g) = O(1/f); thus this current associated to J is essentially canonical. As
we will see the definition of the principal value current 1/ f is robust in the sense that
any reasonable limit procedure will do. For instance if x is any smooth approximand
of the characteristic function for the interval [1,00), and v is any smooth strictly
positive function, then

(3[7).€) =t [xtwls/0%, €€ Duner

For this reason we can unambiguously denote this current simply by 1/f, and this
step to consider it as an object in its own without referring to a particular limit
procedure 2, has great notational as well as conceptual advantages and will be of
fundamental importance in this book.

If n = 1, then the condition ¢d(1/f) = 0 means that

[
=0 Jipp=e |

vanishes for all smooth h. If we restrict to holomorphic A, then by Cauchy’s theorem
we can omit the limit since all the intergrals coincide (as soon as € is small enough),
and the meaning then is that

Reso(¢phdz/f) =0

for each h € O. Already this weaker condition on ¢ implies that ¢/f is holomorphic,
ie., that ¢ € J. A similar weaker formulation exists in the several variable case.

1Observe that ¢R is the current R multiplied by the smooth function ¢.
2This is called reification in mathematics education.
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However, it turns out that for many purposes it is much more convenient to work
with the robust current d(1/f) rather than the one whose action is only determined
on a subspace of all test forms.

A main theme in this book is to discuss analogues for ideals that are not principal.
If J is generated by fi,..., f, as before, and Z = Z(J) has codimension p, then one
can form the so-called Coleff-Herrera product

I *[l *i].
w=0 fp Aol af 117

for various definitions and historical remarks, see Ch 3, Section ??7. This current has
support on Z and we again have that ¢u/ = 0 if and only if ¢ € J. It turns out that
also pf is canonical, i.e., up to a non-vanishing holomorphic function it only depends
onthe ideal J. For a general ideal J we will associate a (vector-valued) current R
that has support on Z(7) and whose annihilator ideal coincides with J. This current
R’ is also explicit, in the sense that it is obtained from generators of the ideal and
all its syzygies by a limit procedure. Moreover, it fits into integral formulas. Most
important are interpolation-division formulas like

(1.2) o(z) = f(2) /< A(C2)b(0) + /< B(¢,2)R (O)(0),

where A and B are kernels that are holomorphic in z; for convenience we here make
use of the analytic side of currents and write integrals in (1.2) although formally it is
actually currents acting on test forms. In particular, if ¢ is in the ideal [, then the
second term vanishes so (1.2) indeed provides a realization of the membership. In a
sense that will be made precise in Ch 4 the current R7 is also essentially unique.

In many situations it is convenient to consider a residue current Rf obtained from
the generators f; of J whose annihilator ideal is at least contained in J and with
the advantage that it is much simpler and more explicit than R”. In such a case we
still have a representation like (1.2).

As suggested above, in the multivariable residue theory much attention is paid
to the question to decide whether a given current p (like ¢R7) vanishes, which is
a purely local question. To this end we have some basic tools: Most currents that
occur are pseudomeromorphic. The sheaf PM of pseudomeromorphic currents has
several useful properties. It is closed under 9; if V is a subvariety of X and p is psu-
domeromorphic, then the natural restriction of y to the open set X \ V' has a natural
extension to X that we denote 1x\y-p and this current is again pseudomeromorphic.
It follows that

lyi=p—=1x\vpu
has support on V. In this way p can be put into pieces, and the vanishing of © can
be proved in different ways on different pieces. The geometric nature of pseudomero-

morphic currents is reflected by the dimension principle (a similar principle holds for
positive closed (or normal) (g, ¢)-currents):

If u is pseudomeromorphic has bidegree (x,q) is pseudomeromorphic and has support
on an analytic subvariety of codimension larger than q, then p = 0.

Multiplication by 1y should be considered as an operatation p +— 1y on the
sheaf PM and 1ylywp = lyawp = 1lywlypu. We also have some other important
operatations on PM: Given a pseudomeromorphic current g and a holomorphic
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function f we define new pseudomeromorphic currents

[HM = ‘ff/\ A ] y_o» 8[}] A= 5|§|2A AV

of course the existence of the necessary analytic continuations is part of a theorem,
and then the Leibniz rules
o([7)) =ol7] nt [Flom 0([7] nu) =-o[7] no
7 M 7 K 7 Hs 7 M 7 s

hold. Again, as in the case for the simple principal value current 1/f above, any
reasonable limit procedure can be used here, so these operations are robust.

Although we write the expressions in (1.3) as multiplications, and sometimes think
of them in this way, formally they are operators acting on u. Thus if f and g are
two holomorphic functions then in general
(1.4) EH 5H

g f

will change (by more than a minus sign) if f and g are interchanged. For instance,
one can verify that

(1.3)

yATY z
wheras e i 1 o
o|; nal o] =0 ] nal ] #0

If f and g form a complete intersection, i.e., codim{f = g = 0} is 2, then (1.4)
just changes sign when f and g are interchanged. Let us prove this and at the same
time illustrate the usefulness of the dimension principle: It is not hard to see that
ad[1/f] = 0[1/f] - a if a is a smooth function. Therefore the pseudomeromorphic

oo o= (Y2 -a4] [

vanishes outside the zero set of g. However, u s certainly has support on the zero
set of f, so its support is in fact contained in a variety of codimension 2. By the
dimension principle therefore p = 0. Applying Leibniz’ rules we find that
=11 =11 =11 =Tl
o= na|]+al5| nal-] =0
g f f g

2. SUMMARY OF CONTENT

In Ch.1 we discuss integral representation in general, but specifically focused on
constructions for applications in later chapters.

In Ch.2 we discuss basic limit procedures in residue theory. We introduce the
sheaf PM of pseudomeromorphic currents. We discuss the Coleff-Herrera product,
the somewhat more general notion of Coleff-Herrera currents, a certain uniqueness
property. The chapter contains a quite long discussion about the history and various
definitions of the Coleff-Herrera product.

For the construction of more general currents we need the concept of super struc-
ture. Chapter 3 contains ...... fundamental principle, etc etc etc

Ch 4 Division problems (and interpolation).

Ch 5 Interpolation-division integral formulas.

Ch 6 The 0-equation on a reduced analytic space.



Chapter 1

Some prerequisites

In this chapter we collect some results that will be used throughout this book and
which are not so easily accessible in the literature.

1. FUNCTIONAL CALCULUS FOR FORMS OF EVEN DEGREE

Let E be an m-dimensional vector space and recall that A*E consists of all alter-
nating multilinear forms on the dual space E*. If v € E* we define contraction (or
interior multiplication) with v, §,: A¥'E — A*E, by

(Opw)(ut, ..., ux) = w(v,ug,...,ug).

It is readily checked that this is an alternating form and therefore an element in A*E.
Clearly 9, is complex-linear in v.

To get a more hands-on idea how d,, acts, let us choose a basis e; for E, with dual
basis €}, such that v = ej. Then d,(e1 Aey) =eyif 1 ¢ J. Thus

(1.1) So(a A B) = dpa A B+ (—1)%82% A 5,3,

if « = ey and § = ex. By linearity, then (1.1) holds for arbitrary forms. One says
that d, is an anti-derivation.

Now let wy,...,wm be even forms, i.e., in A% E, and let wj = w; + w;’ be the
decomposition in components of degree zero and positive degree, respectively. Notice
that A is commutative for even forms. Thus if p(z) = > caz® = >, caz]’ - - 200
is a polynomial, then we have a natural definition of p(w) as the form ) cowi™ A
... Awgm. However, it is often convenient to use more general holomorphic functions.

Now w’' = (w],...,w),) is a point in C™ and for f holomorphic in some neighbor-
hood of w’ we define
(1.2) Fw) =D f W)W

(0%
where we use the convention that

wit AL AW
Wo =

()41!-~-04m!

Thus f(w) = f(w' + w"”) is defined as the formal power series expansion at the point
w'. Since the sum is finite, f(w) is a well-defined form, and if w depends continuously
(smoothly, holomorphically) on some parameter(s), f(w) will do as well.

If f(2) — g(z) = O((z — w)M) for a large enough M, then f(w) = g(w).

Lemma 1.1. Suppose that fr, — f in a neighborhood of w' € C™ and that wy, — w.
Then fr(wg) — f(w).

Proof. In fact, by the Cauchy estimates, fk(:a) — (@) uniformly for each o in a slightly
smaller neighborhood . Therefore, f,ga) (wh) — (@) (w)) for each o Tt follows that

fe(wr) — f(w) = fulwr) — flwr) + flwr) = flw) =0

since only a finite number of derivatives come into play. U



Clearly
(af +bg)(w) = af(w) +bg(w), a,beC,
and moreover we have

Proposition 1.2. If p is a polynomial, then the definition above of p(w) coincides
with the natural one. If f,g are holomorphic in a neighborhood of W', then

(1.3) (f9)(w) = fw) Ag(w).
If f is holomorphic in a neighborhood of W' (possibly C"-valued) and h is holomorpic
in a neighborhood of f(w'), then

(1.4) (ho f)(w) =h(f(w)).

If v is in E*, then

(1.5) Opf(w :iaf ) A ypwy,
1

and if w depends on a parameter, then

(1.6) Z 82]

Proof. For the first statement, with no loss of generality, we may assume that w’ = 0,
and p(z) = 2%. Then p(®(0)(w”)® vanishes for a # B and equals (w")? for a = §.
By linearity the first statement follows.

Now (1.3) clearly holds for polynomials, and since we can approximate f,g with
polynomials fi, gr in O({0}), the general case follows from Lemma 1.1. One can
obtain (1.4) in a similar way, noting that if 7, = fi(w) and hy — h in a neighborhood
of f(u'), then hy(1x) — h(7) = h(f(w)), and hg(m%) = (hg o fx)(w) — (ho f)(w).

The remaining statements also clearly hold for polynomials and hence in general.

O

Example 1.3. Since
1
—— =1+z+2+

1—-=2
in a the unit disk, if w is an even form and |w'| < 1, we have
1 .
——=ltwt?+E
1-w

and (1 —w)[1/(1 —w)] = 1. In fact, the partial sums Sy converge in a neighborhood
of . If in addition w’ = 0 we have

1
— =14 wt+B W™
1—w

Ezample 1.4. If w1 and ws are even forms, then
(1.7) e¥ITw2 — W1 A g2,

In fact, if f(21,22) = 21 + 22, 7j(21, 22) = %, then (expof) = (expm)(expmz). By
(1.3) and (1.4) hence

ewitwz — €Xp(f(w1aw2)) = (eXp Of)(wl’WQ) =

exp 1 (w1, w2) A exp ma(wi,wz) = €1 A e*?,
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since (clearly) 7; (w1, w2) = wj. O

Of course, in both examples one can easily check the statements directly as well.

2. INTEGRAL OPERATORS

Let a((, z) be any form of on C" x C™ with compact support in . We define

(2.1) /C (¢, 2)

as the form in z such that

LM@A1M4@=L£M@AMQ@

for test forms forms ¢. The right hand side is well-defined since C™ has even real
dimension so the orientation (volume form) on C" x C™ is unambiguously defined. A
moment of thought reveals that in practice the definition means that one first moves
all differentials of ¢ to the right (or to the left) and then perform the integration with
respect to (. For instance, if ¢((, z) is a function, then

/Cw(g,z)dg AdzAdC = — [/gl/}((,z)dg“ A dq dz.

Clearly, only components of a that have bidegree (n,n) in ¢ can give any contribution
n (2.1). We have the Fubini theorem

(2.2) leca—ALma@

if @ has bidegree (2n,2n).

3. INTERIOR MULTIPLICATION BY A HOLOMORPHIC VECTOR FIELD

Let
0 n 0
a<1 8Cn
be a holomorphic vector field, and let J¢ denote interior multiplication (contraction)
by &, cf., Section 1 above, so that d¢ is a mapping

O0c: Epg = Ep190 Cpg = Cp1g:
Recall that d¢ is an anti-derivation, cf., (1.1). We claim that
(3.1) 60f = —00¢ f.

In fact, by linearity it is enough to check for f of the form f = ¢v, where ¢ is a
function and v = dzy Adz;. We have 96 f = 0(¢pd7y) = 0¢ A by since d¢y is O-closed,
and 0¢0f = 6¢(0p N y) = —0¢ N b¢7y, since 0¢ is a (0,1)-form.



4. CONVOLUTION OF FORMS AND CURRENTS IN C"

Let v: C¢ x C7 — C" be the mapping v((,z) = z—C. If f(v) is a form in C", then
v*f is a form in C7 x (Cg that we simple write as f(z — (). In practice this means
that each occurence of v; in B(v) shall be replaced by z; — (;, each ocurrence of dv;
shall be replaced by d(z; — ;) etc.

Given forms f, g in the Schwartz class S = S(C") (i.e., their coefficients when
expressed in the standard coordinates are in S) we can define the convolution

(f+9)(2 /fz— &) A g(Q).

In principle this definition is real; however we will profit from the fact that our
underlaying space C™ has even real dimension, and leave it to the interested reader
to find out what happens in the odd-dimensional case. Since the convolution is just
(up to a sign) the ordinary convolution of certain components of f and g, it follows
that f g is again a form with coefficients in S. Notice that if ¢ is in S, then

(4.1) /Z(f*g //f A 9(0) Az +0);

this is seen by making the change of coordinates ¢’ = ¢, 2z’ = z — ¢ on C?", and as
in the usual case we can take (4.1) as the definion of f * g when they are currents,
and one of them has compact support. The following facts are easily verified:

(42) degfxg=degf+degg—2n,
if feSyqand g€ Sy, then f*xg€ Spipyngrg—n,
frg=(-1)kldBig.
(fxg)xh=fx(gxh),
f10] =/,
d(f *g) = df x g+ (=1)*%/ f x dg,
O(f*g)=0f g+ (~1)"/ f x dg.
Let us just verify the last three of them: If f = [0], then in view of (4.1) we have

that
Jursmeave = [ 1) / Ao+ 0 = [ 1) nuea

for any form 1) in S. The next to last equality follows in the following way:

/d(f CO) A= (~ >”degf+degg/f*gAdw _

//f /\g Ad¢(+z // /\Q/J—
| [ @@ ng@nus - degf//f ) Adg(C) At =

/df*g/\¢+ degf/f*dgmzj

The last equality follows by identifying terms of relevant bidegree.
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Ezample 4.1 (Approximate identity). Let ¢ be a (n,n)-form with compact support
such that [ ¢ =1, and let ¢¢(z) = ¢(z/€). Then ¢ — [0] in the current sense. [

5. DOUBLE COMPLEXES

The following special case of a general spectral sequence will be encountered over
and over in this book 7777. We refer to any basic text on homological algebra for
proofs.

Let M j, be modules over a ring R and assume that for each fixed k have a complex

(5.1) e My S My S My S
and for each fixed ¢ have a complex

(5.2) e B My B My S Mgy S
such that d'd” = —d"d’. We then have a double complex. If

(5.3) M;j = ®ptr=j My
and d = d’ + d”, then

d d d d

is a complex, called the total complex associated with My ;. The double complex
My 1, is bounded if for each j only a finite number of My with k4 ¢ = j are nonzero,
i.e., all the sums (5.3) are finite.

Lemma 5.1. Assume that My, is bounded and that, for each k, the complex (5.1)
is exact except at £ = 0 where we have the cohomology group (module)
- Ker (M()’k — Ml,k)

A, = .
" Im (M_yx — Moy)

Then we get induced mappings d”: A; — Aj1 so that

d// d// d// d/
c = Ap = A = Agpr —

1s a complex, and moreover, the natural mappings
(5.4) H*(A,) — H*(M,)
are isomorphisms.

In particular, if (5.1) is exact for each k, then Ay = 0 and hence H*(M,) = 0.

Let us describe the mapping (5.4). If ¢ € HI(A,), then it is represented by an
element ¢g, € Moy, such that d"¢o = d'¢_1 g+1 for some ¢_j 11 € M_q441. By
the anti-commutativity, d'd"¢_1 41 = —d"d'¢_; 11 = 0 and hence by the exactness,
d"¢_1 j+1 = d'¢_g 42 for some ¢p_g j19, etc. By the boundedness, this procedure will
terminate, and thus we get an element ¢ = G0k + -1 k1 + P2yt FO_N RN
such that d(ﬁ = 0. Thus & defines an element in H* (M,). The lemma states that
this procedure induces a well-defined mapping (5.4) that is an an isomorphism.

In many cases we will meet, My, = 0 for £ < 0 and then A, = Ker (Mg — My ).
In such a case, the mapping (5.4) is much simpler, since then ¢ € H¥(A,) is just
represented by (507k.
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If in addition (5.2) is exact for each ¢ except at k = 0, and the cohomology there
is By, then we have natural isomorphisms

H*(B,) ~ H*(M,) ~ M*(A,).

6. FORMS AND CURRENTS ON A REDUCED ANALYTIC SPACE

Let X be a reduced analytic space of pure dimension n. Locally there is an
embedding

i: X - Qcch.
We say i*¢ = 0 for a smooth form ¢ € £ if i*¢ vanishes on the regular part Xyeg of
X, and we let

EX = &%/Keri*

be the sheaf of smooth forms on X. We shall see that this definition is independent
of the embedding . To begin with, two minimal embeddings are biholomorphically
equivalent and hence give rise to the same sheaf. If ¢ is an arbitrary embedding of
X, then after possibly shrinking ) one can factorize ¢ as

XL050xB=0

where j is a minimal embedding and B is a ball in C™. Since j*1*¢ = (10 5)*¢, we
have a natural injective mapping

A:*: Y Keri* — EﬁlCerj*,

and it is enough to see that it is an isomorphism. Let 7: ) = Q x B — Q be the
natural projection. Then 7 o ¢ is the identity on O and hence r*n =mn. Thus A is
surjective, and hence an isomorphism. Clearly, the wedge product on £ induces a
wedge product on £X and, we have a mapping i*: £? — £X such that i*¢ A "¢ =
F(ENE).

We define the sheaf of currents, C¥, as the dual of the compactly supported smooth
forms. This means concretely that the currents 7 on X can be identified with the
currents 7/ in € such that 7/.£ = 0 for all £ in Ker ¢*. It is natural to write 7/ = 4,7.
We say that 7 has bidegree (p, q) if i.7 has bidegree (N —n + p, N —n + ¢). Notice
in particular that

i1 = [X],
the Lelong current associated with X in €.

Remark 6.1. Notice that if y is a current in €2, then p.£ = 0 for all £ such that i*¢ =0
if and only if n A = 0 for all n such that ¢*n = 0. O

Let X,Y be reduced analytic spaces and f: Y — X a proper holomorphic map-
ping. We than have the pullback f*: £X — €Y and hence the push-forward f,: C¥ —
CX. We will frequently use the following simple lemma.

Lemma 6.2. If « is a smooth form, then

(6.1) al for = fu(ffanT).
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Proof. By definition there are local embeddings i: X — Q and j: Y — Q' such that
f extends to a mapping F': Q' — Q, and i, f.7 = F.j.7. It is therefore enough to
check (3.1) in case X,Y are smooth. Now

(@A fur, &) = £(fum, aN)§ = (7, fH(a N ) =
== <va*a/\f*€> = <f*a/\7—’f*£> = <f*(f*a/\7—)7£>a
since f,7 has odd degree if and only if 7 has. O

7. PRINCIPALIZATION OF AN IDEAL SHEAF

Let X be a reduced analytic space, let 7 — X be an ideal sheaf and let 7’: X’ — X
be the blow-up of X along J. Then the pullback of 7 to X’ is principal, i.e., locally
generated by one single holomorphic function. More precisely, there is a line bundle
L’ — X’ and a global section h of L’ that generates (7')*J. We say that the blow-up
is a principalization of J. The divisor defined by h is called the exceptional divisor.
In general X’ is not normal, so it is convenient to let X’ — X be the normalization
if the blow-up. In a normal space the singular locus has at least codimension 2, and
so for instance each divisor has a well-defined order.

If fi,..., fm is a tuple of holomorphic functions on X that generates J, then
it follows that (7')"f; = hfj, where f] is a section of L~!. Moreover, the tuple
= (f1,---, f},) is non-vanishing (in fact, at a given point z € X', fof]’- define the
sheaf (7')*J, and by a standard fact for local rings the ideal must be generated by
one of them.)

The pullback of a principal ideal is certainly principal. Thus if we compose by the
normalization X” — X’ we get a normal principalization X” — X of J. It is very
important since it is unique; however, in general X” is not smooth, and in many
situations it is convenient with a smooth principalization. B

By Hironaka’s theorem we can find a smooth modification X — X’ such that the
exceptional divisor D = a1 Dy + --- + a, D, has simple normal crossings, cf., 777,
above. The composed modification 7r:~)~( — X is called a log resolution for J. If 10
is a section of the line bundle Lp — X that defines 7*J then locally in X one can
choose coordinates and a local frame such that f° is a monomial. If 7 is generated
by fi,-.., fm, then as before we have

7_[_*](» — fOf/
. L. - -1
where f’ is a non-vanishing tuple of sections of L};".

8. THE KOSZUL COMPLEX SUPERSTRUCTURES



Chapter 2

Integral representation in domains in C”

Integral representation of a holomorphic functions f means that f is expressed
as a superposition of other functions, preferably functions that are simple in some
sense. For instance, by the Cauchy integral formula in one variable a functions in a
domain D is written as a superposition of simple rational functions z — 1/(z — (),
where ( € 0D.

1. THE ONE-VARIABLE CASE

For fixed z € C,

1A

2l — 2

is the Cauchy kernel with pole at z. It is holomorphic in C\ {z} and locally integrable
in C. It is well-known that if ¢ is a C'-function in C with compact support, then we
have

We—z

(1) [ nd6= 000),
which can be rephrased as saying that
(1.2) Buc_. = [¢]

in the current sense, where [z] denotes the (1,1)-current point evaluation at z, see
Lemma 2.2 below. This equation leads to, or is more or less equivalent to, Cauchy-
Green’s formula.

Proposition 1.1 (Cauchy-Green’s formula). If f is C' in Q and D C Q is bounded
and has smooth boundary (or at least some reasonable reqularity, like piecewise C*)
then

(1.3) f(z):/aDwC_Zf—l—/ch_Z/\éf, z e D.

Notice that 1 9f do Ads Lot dv
wg_z/\gfzf.*{ z z:_iij_” (Z),
2mi 0z (—z m0zZ (— =z

where dV is the planar volume measure.

Proof. Notice that (1.3) is just (1.1) if f has compact support in D. Now suppose that
f vanishes identically in a neighborhood of the point z. Then d(w¢—. f) = —w¢— A0S
and hence (1.3) follows from Stokes’ theorem. For the general case, let x be a smooth
cutoff function that has compact support in D and is identically 1 in a neighborhood
of the point z. Then f = xf+ (1 — x)f = fi1 + f2 where f; has compact support in
D and f5 vanishes in a neighborhood of z. Since (1.3) is linear in f, the general case
now follows. (|

As an immediate corollary we have, for a holomorphic function f, the Cauchy
formula,

f(z) = f(Qwe—zy, z€D.
oD

This formula is a corner stone in the theory of one complex variable and probably one
of the most remarkable formulas in analysis, with regard to beauty and importance.
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We will now consider multivariable analogues of this formula, whereas generalizations
of (1.3) are postponed to Section 7. We let D denote a bounded open with a boundary
regular enough so that Stokes’ theorem holds.
2. THE CAUCHY-FANTAPPIE-LERAY FORMULA

Let s = s1d¢i + - - - + spd(, be a (1,0)-form such that
(2.1) 27Ti<<,8> 227Ti(C181 —i—--'—l—CnSn) =1.
Such a form s always exists outside 0; for instance one can take
_ O oIe? GG

273 |C|2 2mi|C)2
Lemma 2.1. If (2.1) holds in the open set V, then

d(s A (9s)" 1) =0(s A (9s)" 1) =0

(2.2)

mV.

Proof. Since s A (9s)"~! has bidegree (n,n — 1), the first equality is immediate. It is
clear that

d(s A (58)"_1) = (0s)"
so we have to verify that
(2.3) (9s)" = 0.

From (2.1) we have that 0 = 9(1/27wi) = (19s1 + -+ + (u0sp, so the 1-forms
0s1,...,0s, are linearly dependent at each point in V' and thus 0s; AOsaA...AJs, =
0. It follows that

@s)" = (D _9s; Ad¢)" =nldsi A... ADsy N A ... NdGy = 0.
1

O

If n = 1, then the only possible choice of s that satisfies (2.1) is the Cauchy kernel
with pole at 0.

The form By, ,—1 = bA(9b)" ! is called the Bochner-Martinelli kernel. Notice that

L a|<|2A(58|4|2>n—1_ L OICP A (90"

B0 B = i i M) -

(2mi)" 1S54 ’

here we use the fact that 9|C|? A 9|¢|? = 0. Therefore, By, n—1 is O(|¢|72"*1) and
thus locally integrable. We have the following multivariable analog of (1.1).

Lemma 2.2. The Bochner-Martinelli kernel satifies
(2.5) dBpn—1 = 0By ,—1 = [0].

Proof. Let £ be a test form (function). Outside the origin d(By, n-1§) = —Bnn-1 A
d¢ = — By n—1 N 0§. By Stokes’ formula and Lemma 2.1,

- / Bn,n—l A 5§ = § A Bn,n—l =
[¢>e [¢|=€

1 1
(2mi)™ e2n

2(9 2\n—1 __ L = 2nm
/q:e&a\d (00[¢I)" = @ni) /|<|<e [€(D0IC1)™ + O(1¢])].
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In the second term, the sphere is considered as the boundary of the e-ball. The right
hand side tends to £(0) when € — 0 since

gy — (2N g gf )" —
(GO9I = (5 30des ndGy)" =
iyn _ )
n! (5) At AdC A .. A dCa A dCn = nldV (C)
and the volume of the unit ball is 7" /n!, cf., Example 3.7. O

We have the following classical global formula.

Proposition 2.3 (The Cauchy-Fantappie-Leray formula). Assume D CC €, and
that o is a smooth (1,0)-form on 0D such that 2mi(c,( — z) = 1 for some z € D.
Then

f(z):/aDa/\(aa)”lf, feom).

To interprete the integral, let o denote any smooth extension to a neighborhood
of D. Since o A (00)" ! = o A (do)"~! for degree reasons, the pull-back to 9D is
an intrinsically defined form.

Proof. With no loss of generality we may assume that z = 0. Let o be a smooth
extension to a neighborhood of dD. By continuity (¢, o) # 0 close to 9D and if y is
an appropriate cutoff function, then
o
=1-x)—F—— b
satisfies (2.1) outside the origin and is equal to b close to the origin. We claim that
then

(2.6) d(s A (9s)"1) = [0].

In fact, outside the origin (2.6) follows from Lemma 2.1 and near the origin sA(9s)" !
is equal to By n—1 and so it follows from Lemma 2.2. Now the proposition follows
from (2.6) and Stokes’ theorem, noting that s A (0s)"~! = o A (0c)"~! as forms on
oD. U

For any domain D and z € D we can use o(¢) = b(¢ — z) and thus obtain a
representation formula for holomorphic functions, generalizing the Cauchy formula
for n = 1. When n > 1 unfortunately it will not depend holomorphically on the
variable z.

If there is a form s((, z) for ¢ € D depending holomorphically on z such that
(s(¢,2),¢ — z) =1, such an s is called a holomorphic support function, then D must
be pseudoconvex. In general, though, pseudoconvexity is not sufficient, even if we
assume that D has smooth boundary. However, if D is strictly pseudoconvex one
can always find a holomorphic support function, cf., Example 8.5 below. It is also
true for a large class of weakly pseudoconvex domains, e.g., all convex domains, see
Example 2.5 below.

Ezxample 2.4. Let B = {(; |¢| < 1} be the unit ball. For z € B we can take

> 9|¢l?
2mi(1 — (- 2)
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By a similar argument as for the equality (2.4) we get

[ Q)
(2.7 1= Gorae

where .
dv(¢) = (2mi)™

Since |(| is invariant under rotations of C", dv(() is as well, and since furthermore
the integral of dv over the unit sphere is 1, just take f = 1 in (2.7), it follows that dv
is normalized surface measure. The representation formula (2.7) is called the Szegd
integral. O

AI¢I* A (90]¢I?)

Ezample 2.5. More generally, let D = {p < 0} be a convex domain in C" with
defining function p, i.e, dp # 0 on 0D; it is not necessary to assume that p is a
convex function. Then for any z € D,

(2.8) 2Re (9p(¢),( — 2z) >0, (€ 0D.

In fact, the left hand side is the real scalar product of the gradient of p and the vector
(—z, and by the convexity of D it must be strictly positive when z is an interior point.
We can thus use s(¢, z) = 9p(€)/(0p(¢), ¢ — z)2mi and get the classical representation
formula B

1 F(©)dp A (90p)" !
2mi)" Jop  (9p(C), ¢ — 2)"

f(z) = , z€D.

O

In the proof of (2.3) we used some multilinear algebra. There is an even slicker
argument: Let §c_.: &, 4(U) — £,—1,4(U) be contraction with the vector field

9
i

Then (2.1) precisely means that §cs = 1. Thus, cf., (3.1), §;0s = —96:s = —91 = 0,
and therefore

2mi Y (G — 2)
1

(9s)" = bc(s A (9s)") =0,

since s A (0s)" vanishes for degree reasons. This type of arguments will permeate
this paper. It might be instructive at this stage to prove by straight-forward brutal
computation that the right hand side of (2.4) is closed. For the more complicated sit-
uations that we will encounter, the necessary computations are in practice impossible
to perform without multilinear algebra techniques.

3. A GENERAL CAUCHY-FANTAPPIE-LERAY FORMULA

We have already seen that the Cauchy-Fantappie-Leray formula formula is sort of
a substitute for the Cauchy formula in several variables. We shall now see that the
proper generalization of the Cauchy kernel is a representative of a certain cohomology
class.

For any integer m, let £L™(U) = &}_Ckk+m(U). For instance, u € L71(U) can
be written v = u1 9 + ... + uppn—1, where the indices denote bidegree in d(. We let
LF(U) denote the subspace of smooth forms in £L™(U).
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Fix a point 2z € C". Since Se_.0f = —(E)éc,zf_, cf., (3.1), &4 is a double complex
with mappings 0 and 6.—.. If V_, = d,—. — 9, then Vg_z = 0, and we have the
associated total complex

Ve pm Ve pmt Veor

The usual wedge product extends to a mapping £ (U) X oy (U) — L' (U7 ), such
that g A f = (—1)™™ f A g, (assuming that one of the factors is smooth) and Ve
satisfies the same formal rules as the usual exterior differentiation, i.e., Vo_, is a
anti-derivation,

(3.1) vC—z(f ANg) = vC—zf ANg+ (=" A Ve_z9, felm™U).

In order to generalize Cauchy’s formula to higher dimensions we will look for
u € L7YU) such that

(3.2) Veau(Q) =1 - [2].

If n = 1 the Cauchy kernel with pole at z, u(¢) = d{/2mi({ — z), is the only possible
solution. If n > 1, (3.2) means that

(33)  Sesuro=1, OSc_stupirr—Oupr—1=0, 1<k<n-—2, Ouyn_1 =]z
However, we first look for smooth u such that V._,u = 1 outside z.

Ezample 3.1. Let s = > 7 s;jdz; bea (1,0)-form in U such that d¢c—.s = 2mi >~ 5;((—
zj) = 1. Then clearly z ¢ U. Since the component of zero degree of the form V¢_,u
is nonvanishing, we can define the form

s
3.4 — ,
(3.4) u=g
and we claim that

(3.5) Vesu=1

in U. In fact, by the functional calculus for forms we have
VC_ZS S
VC,ZS (V(:,ZS)

Vi_u= QVE,ZS =1
since Vg_ , = 0. More explicitly,
s s

- Vi.s 1-0s
The sceptical reader can of course verify that the right hand side of (3.6) fulfills
(3.5) by a straight-forward computation. However, in more involved situations the

compact formalism is indispensable. Notice that highest order term is precisely the
Cauchy-Fantappie-Leray form in Proposition 2.3. (]

(3.6) u =s5+5NDs+sNA(Ds)>+---+sA(Ds)" L.

Notice that (3.4) is unaffected if s is replaced by {s for a nonvanishing function &,
since V(£s) = €Vs—0& A s, and that the last term here cannot give any contribution,
due to the factor s in the nominator. Therefore it is enough that d._.s # 0 in the
previous example, and then we get

s s s A 0Os s A (0s)" !
Vezs  Oczs (0¢—29) (O¢—z8)"

u
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Proposition 3.2. If b is the form in (2.2), then

b b L
B=o5=-—==bA> ()"
Veb 106 ;( S

is locally integrable in C™ \ {0} and satisfies (3.2) (with z =10).

We will refer to B as the (full) Bochner-Martinelli form.

Proof. A simple computation yields
_ OI¢P A (99¢P)M !
INCZOL

S0 Bpg-1 = O(|¢|=*=1) and hence locally integrable. We already know that
0By n—1 = [0], so it remains to verify that

(3.7) —/5¢ A By -1 = /¢ NO¢Brsik, @€ Dppn—i(C").

However,

Bij1 =bA (Ob)F!

- / ¢ N B j—1 = ¢ N Brg-1+ & NO¢Bry1 k-
[¢I>e ¢|=¢ [¢|>e
Moreover, since k < n, By p—1 = O(\C\_(%_?’)), and hence the boundary integral
tends to zero when € — 0. Thus (3.7) follows. O

Suppose that z ¢ U. If f is any form in U such that Vi _.f = 0, then there
is a form w such that Vi_,w = f. In fact, u(¢) = B(¢ — z) is smooth in U and
Ve_,u=1, and thus Ve_,(u A f) = f.

We are now ready to prove the main result of this section, stating that the proper
generalization of the Cauchy form from one variable is a certain cohomology class

We—z-

Proposition 3.3. Suppose that = € D and z ¢ U D 9D. Ifu € L' (U) and
Ve_.u =1, then 5un7n_1 = 0. All such forms uyn—1 define the same Dolbeault
cohomology class w¢_, in U and any representative for we_, occurs in this way. For
any representative we have that

(3.9 6 = [ 6QOunn1, 00D

oD
Proof. If V¢_qu = 1 then du,, = 0. If v’ is another solution then V¢_q(u —u/) = 0
and since a ¢ U there is a solution to Ve_,w = u — v/, and hence dwy -2 =
Uy, 1 —Unpn—1. If wis a fixed solution and 1 is a (n,n—2) form, then v’ = u—V¢_41

is another solution, and_u;%n_l = Upn_1+ Y.
If u;lm_l — Uppn—1 = Owp pn—2 in U and ¢ is holomorphic, then

d(gbwn,n_g) = QSU;L,TL*I - (z)un,n—l-

Therefore, Stokes’ theorem, applied to the compact manifold 0D, implies that the
integral in (3.8) is unchanged if uy 1 is replaced by w;, ,, ;. Since (3.8) holds for
u®(¢) = B(¢ — a) it therefore holds for any wu. O

With the choice of u from Example 3.1, (3.8) is just the Cauchy-Fantappie-Leray
formula. However, there are other possibilities.
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1 n

Ezample 3.4. If we have several (1,0)-forms s!,...,s" such that §._,s’ = 1 we

can get a solution u to Ve_,u = 1 by letting uy = s', upyy = sP1 A Oug. Thus
s" ANOs" VAL A Os! is a representative for We—z- O

We have the following analogue of (3.8).

Proposition 3.5. With the same notation as in the Proposition 3.3, let u be a cur-
rent solution to V,_qu =11 U. If x is a cutoff function that is 1 in a neighborhood
of z and such that the support of Ox is contained in U, then

(3.9) o) == [x Ao e OQ).
We leave the proof as an exercise for the reader.

Ezample 3.6. Let us define the current v =v1 9+ --- + v, ,—1 in C" by
1 d¢ 1 dCy,

"= 2mi (L — 21 vk (2mi)* (o — 2

A ('%k_l.

The products are well-defined since they are just tensor products of distributions.
From Proposition 3.5 we get the representation formula

dGn
Cn — 2n .

f(z)= —(2772')1/< 5¢nx(. v Zn—1,C) A f(oooy zn—1,Gr)

Of course, this formula follows immediately from the one-variable Cauchy formula.

O

Ezample 3.7 (Volume of the unit ball). Let B be the (full) Bochner-Martinelli form
and let v be the current from the previous example. Let x be a cutoff function that
is 1 in a neighborhood of 0. Then B, ;,—1 — vy n—1 = d(B Av)y.n—2 on the support of
0x, and thus

/ Bn,n—l = /Bn,n—l A 5){ = /Un,n—l A 5){ = /Xavn,n—l = /[0] =1
oB

It follows now from the proof of Lemma 2.2 that the volume of the unit ball is
" /nl. O

If we have a solution to Vi_,u =1 in Q\ {2z} that has a current extension across
z it is natural to ask whether (3.2) holds.

Proposition 3.8. Suppose that u € Lz (Q\ {z}) solves V_,u =1 in Q\ {z} and
that Jug| < |¢ — 2|~ %=, Then u is locally integrable and (3.2) holds.

Proof. If u! and u? both satisfy the growth condition, then u' Au? = O(|¢—z|~(?7—2))
and V¢_q(u! Au?) = u? —u! pointwise outside a. Hence it holds in the current sense.
If (3.2) holds for one of them it thus holds for both; taking one of them as the
Bochner-Martinelli form, the proposition follows. O

Ezample 3.9. Let s(¢) be a smooth (1,0)-form in € such that |s(¢)| < C|¢ — z| and
|6¢c—28(¢)| > C|¢ — z|?. Then u = s/V_,s satisfies the hypothesis in Proposition 3.8
and therefore (3.2) holds. O
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4. WEIGHTED REPRESENTATION FORMULAS

We will now consider formulas that allow representation of functions with growth
at the boundary, unbounded domains, and, which is most important for us, provide
division with a tuple of functions, and interpolation. To this end we introduce so-
called weights. Let z be a fixed point in  C C*. A smooth form g € £°(2) such
that V¢_,g =0 and go,0(2) = 1 is called a smooth weight with respect to z.

If g,g" are weights, then g A ¢’ is a weight as well. This follows from (3.1) and
the simple observation that (g A g')o0(2) = go0(2)gp0(2) = 1. More generally, if
g%, ..., g™ are weights and G(\1,...,\,,) is a holomorphic function, defined on the
image of ( — (96,07 .-+, 900), and such that G(1,...,1) =1, then G(g',...,g™) is a
weight. This follows from Proposition 1.2

Ezample 4.1. Let w be a smooth (1,0)-form and assume that G()) is holomorphic
on the image of éc_,w and that G(0) = 1. Then

(—Ow)*
]

G(Veow) = G((w, ¢ = z) = dw) = >~ GP((w, ¢ - )T
0

is a weight in €. O

Proposition 4.2. If g is a smooth weight in ), z € D CC 2, and Vi_,u =1 in a
neighborhood U of 0D, then

(4.1) b(z) = /D G + /8 (@A Wnnrés € OD).

Proof. Let us first assume that u’ is a form such that (3.2) holds. Then
Vez(u'ng) == [) Ag=g—g00(2)[2] =g —[2]

for degree reasons. In particular we have that

d((ul A g)n,nflqb) = 5(1/ A g)n,nflgb = ¢(Z)[Z] - gn,n¢

and so (4.1) follows by Stokes’ theorem but with «’ rather than u. Now V(u' A u) =
u — u' and hence

d((ul A u)n,n72¢) = é(ul N u)n,nf2(l5 = u;z,n—lqb — Upp—19-
Now (4.1) follows for u by Stokes’ theorem since 0D hasno boundary. O

Alternatively one can proceed as in the proof of Proposition 2.3 above, and extend
u to a form that satisfies (3.2).

For instance, if D is the ball and we take u = 0/V(_.0, with the ¢ from Exam-
ple 2.4. Then u depends holomorphically on z. If g = 1 we get back (2.7).

As we have seen, the Cauchy-Fantappie-Leray formula represents a holomorphic
function in a domain D in terms of its values on 0D; provided of course that the
function has some reasonable boundary values. To admit representation for a larger
class of functions we can use an appropriate weight. Here we will exemplify with the

ball.

Ezample 4.3 (Weighted Bergman projections in the ball). Notice that

ol 1-C-x 1 P
PV ) T TS 2w -
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Therefore, as long as z,( € B, for any complex «,

g:<1—c_-z 1-(3(\2)&,

L¢P 2mi 1 |¢P
is welldefined, and in fact a weight. If Re« is large (in fact > 1 is enough), then g
vanishes on JB (for fixed z of course) and is then a weight with compact support.
More specifically, if B

i, Ol

w= 581_7|C’2, wE = wk/k!,
then
(1= [P et
ma=ca(fos) en
where
o — (—1)"n'i M(—a+1)

T T(n+1D)I(—a—n+1)

Using that T'(n + 1) = n! and T'(7 4+ 1) = 7T'(7) we get
1 T'(n+a)
T D(a)

We claim that

av (¢)
4.2 Wy = ————.
"2 A=)

To see this it is enough to see that both sides coincide after application by § = 6. /2.

Notice that

_ _ - 0|¢)?
600|CI* = D¢, dw = ;(1—|(|;<’2)2
Thus
B e ¢ ¢ iNmdI¢[* A (99|¢[P) !
O = 0w A1 = (5) a—icpe " a—iepr - <5) (1 —[¢[2)m+t

O P

2/ (L=t (L= gyt
and thus (4.2) holds. It is clear that all terms in ¢ will vanish on the boundary if
Re « is large. Summing up we get, for Re o large the representation

(43) o= [ e < 0®)

where

dVe = (1= [¢[)*HaV.
However, (1—|¢[?) = (1+|¢))(1—=]¢]) ~ 2(1—]¢]), i-e., roughly speaking the distance
from ¢ to the boundary, and hence the right hand side has meaning as a convergent
integral for all o with Re« > 0. Moreover, it depends holomorphically on «, and by
the uniqueness theorem the equality must hold for all o with Rea > 0.

One can verify that the integral in (4.3) converges for any ¢ € L?(dV,). Since
the kernel is self-adjoint it follows that the integral operator P, so defined must
be the orthogonal projection L?(dV,) — O(B) N L%(dV,), the so-called Bergman
projection. ]
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There is a similar formula in a strictly pseudoconvex domain, cf., Example 8.5.
Let us also mention a representation formula that works for polynomials.

Example 4.4. In C" we can take the weight

_ AIC®  ymin _ 14C-z 1 \mEn
9= (1 B vC*szu + \<|2)> - <1+ E %Q>

for positive integers m, where
i
Q= ;00 log(1 + 1¢]?).

We then get the representation

)= [ 50!

m—l—n)!(l—i—@z)m N

am! \ 1+ |¢|?
where
av
Q==
/M= T ey

for polynomials f of degree < m. In fact, for fixed z and big R we have, in view of
(4.1), the equality

B (m+n)! /1 +C-2z\m u
s =[SO () [ fOun

where u(¢) = B(({ — z) is the Bochner-Martinelli form with pole at z. It is not too
hard to check that the boundary integral tends to zero when R — oo. As in the
previous example, the associated projection onto the polynomials is orthogonal. [

5. SINGULAR WEIGHTS

A main interest for us is formulas for division and interpolation. This leads us to
consider weights that are non-smooth.

Lemma 5.1. If g a smooth form in L°(Q) such that Vi_.g = 0, then g is a weight
with respect to z if and only if

(5.1) /gAg’zl

for each smooth weight g’ with respect to z with compact support in ).

It is in fact enough to check the condition for just one weight with compact support
as will be clear from the proof.

Proof. If g is a weight, then g A ¢’ is a weight with compact support, and so (5.1)
follows from (4.1). Assume that h € £°(2) has compact support and V¢_.h = 0.
Then it follows from the proof of Proposition 4.2 that

/h = hoo.

If we know that V¢_,¢g = 0 and ¢’ is aweight with compact support, therefore the
integral in (5.1) is equal to (g A ¢')o0(2) = go.0(2), and thus goo(z) = 1 so that g is
a weight. U
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If g is any current in £°(€2) such that V_,g = 0, then we say that g is a (singular)
weight with respect to z if (5.1) holds for any smooth weight with compact support.
In view of Lemma 5.1 this definition is consistent with the previous one when g is
smooth. For instance, [z] is a weight with respect to z.

Proposition 5.2. If g is a singular weight with respect to z with compact support
in Q and ¢ is holomorphic, then

(52) [ 90=o).
More generally, if ¢ € £L°(Q) and V.9 =0, then

(5.3) / gAd=doo(2).

Proof. Let x be a curoff function that is 1 in a neighborhood of z and let u be a form
that fulfills (3.2) and is smooth outside z. Then ¢’ = x — dx A u is a smooth weight
with compact support, and so

/ ghg =1.

Notice that w = (x —1)u is smooth and Vi_,w = ¢’ —1. Thus V(gAw) = gAg —g.
Now (5.2) follows from Stokes’ theorem.

If ¢oo = 1, then then ¢’ A ¢ is a smooth weight with compact support, and
gANp=gAg A, soby definition (5.2) holds. If ¢ (0) # 0 we apply the result to
®/$0,0(0). If ¢0,0(0) = 0, we apply the same argument to ¢ + 1. O

Notice that ¢ = xp — Oxp A u is a singular weight with compact support. Thus
Proposition 4.2 follows from (5.2).

When we deal with singular weights we must avoid formulas like (4.1) with bound-
ary integrals. Instead we use smooth regularizations of xp. That is, we choose the
smooth weight

g =x—0xAu

with compact support and get the representation

P(z) = /X9¢—/5><Auxg<b

as the analoge of (4.1). In general we also want a holomorphic dependence of z. Let
us first consider the ball again.

Ezample 5.3. Notice that if |z| < ||, then
1 o¢?
T emi|P -z
is defined, and 6,_,s = 1. Let K be the closed unit ball and assume that x is a

cutoff function the the ball B(0, R), R > 1, that is 1 in a neighborhood of K. Then
for each z in a neighborhood of K,

g =x+0xNs/Vi_.s

is a weight, with respect to z, with compact support in 2, that depends holomorphi-
cally on z. If g is any weight with respect to z we thus have the representation

o) = [ o ngo.
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Notice that
S N~ ur(h L1 BI¢R A (912
Vi = ot @ri)k (|2 —C- 2)k

There is a similar weight for any Stein compact K.

Ezample 5.4. Let K CC ) be a Stein compact and x a cutoff function in € that
is 1 in a neighborhood of K. Then there is a (1,0)-form s(-, z) on the support of
0, depending holomorphically on z in a neighborhood of K, such that d¢—.s = L.
In fact, to begin with can find, for a fixed ¢/, a form a, depending holomorphically
on z, such that é;_.a =1 at ¢ = ¢’ (since the tuple ¢} — z; is non-vanishing on the
Stein compact K there are holomorphic functions a; in a neighborhood of K such
that a1(¢] — 21) + -+ + an({), — 2n) = 1/2mi). Then for ¢ close to ¢, s = a/d¢—.a
is holomorphic in a neighborhood of K and é;_,s = 1. By a partition of unity we
obtain the desired form. Now g = x +0xAs/ V¢_.s is a weight with respect to each z
in a neighborhood of K, with compact support in §2, and depending holomorphically
on z. g

Lemma 5.5. If w is any current in £71(2), then
(5.4) g = 1+ VC,ZIU
s a weight with respect to z.

Proof. In fact, if ¢’ is a smooth weight with compact support, then

/gAg’—/g’Jr/ng(wAg’)—l

since the the last term in the expression in the middle vanishes by Stokes’ theorem.
O

Remark 5.6. In fact, any weight ¢ has the form (5.4), and if g is smooth, then w can
be chosen to be smooth. Here is a sketch of a proof: Take h = g — 1. Assume that
z =0 and write V = V. If Vw' = h in a neighborhood of 0 and Vw"” = h outside 0
and y is a suitable cutoff function, then

w=xw + (1 —x)w +oxAuA (v —w")

solves Vw = h globally. Outside 0 we can take w = u A h. It is thus enough to
solve Vw = h in a neighborhood of 0. By solving a sequence of J-equations in this
neighborhood, starting with Ovy, ,,—1 = hp p, we find that

h=a+ Vo,

where « is holomorphic. The assumption

/h/\g'zO

for smooth weights with compact support, implies that

0= /ag' — a(0).

It is now possible to find a holomorphic § such that V3 = 6,6 = a. Thusw =v+
will do. Il



24

Remark 5.7. In view of the previous remark it is easy to check that if g € £°(Q) and
V.9 =0, then g is a weight if and only if [ g A ¢’ for some smooth weight with
compact support. J

Remark 5.8. Remark 5.6 can be put in a more general context. The first argument
shows that the cohomology of the V_,-complex
VSz ,Ck(Q) VC—TZ [,k+1(Q) VSz
coincides with the cohomology of the germs at z, i.e., H*(£*(2)) = H*(L?). Next no-
tice that L3, V¢ is the total complex associated with the double complex (M .d’,d") =
(Ck,—¢,0¢—2,0). Since it is exact with respect to 0 except at level 0, where the
(co)homology is O, the module of germs of holomorphic —¢-forms, it follows from
Lemma 5 that
HM£2) = HH(0?).
It is well-known, cf., 777, that the right hand side vanishes except at k = 0, where it

is C. Precisely the same argument works for smooth forms.
Check details!!! O

6. A GLIMSE OF DIVISION-INTERPOLATION FORMULAS

We shall now consider a simple example of a division-interpolation formula. Let f
be holomorphic in the ball B(0, R) and let & be a holomorphic (1, 0)-form such that

5§—zH: f(Z) - I

Remark 6.1. Such a form h is called a Hefer form for f. It can be obtained elemen-
tarily in a convex domain like the ball. In fact,

1 n 1 af
FA=1Q) = [ +itc =N =326 =) [ Gt - ape
so we can take h = h1((,2)d¢1 + - - + hy,(C, 2)d(, where

1
B6E) = [ S - apa
O

Let us assume that f is not identically zero. From distribution theory it is known
that there is a distribution U such that such that fU = 1. Before long we will discuss
a canonical choice but for the moment any such U will do. Notice that R = OU is
a (0,1)-current. We claim that if ¢ is holomorphic, then ¢ = fv for a holomorphic
function v if and only if R = 0. In fact, ¢ = fv for a holomorhic v if and only if
¢U = foU = v is holomorhic, which holds if and only if 9(¢U) = ¢R = 0.

In view of Lemma 5.5, ¢' = 1+ V_,hU is a weight with respect to z. A simple
computation reveals that

g =f(z)U+hAR.
Let g be a weight with compact support in B(0, R) and depending holomorphically
on z in a neighborhood of the closed unit ball K. If ® € O(B(0, R)) we thus have
the representation

(6.1) D(2) :f(z)/Ug¢>+/h/\R/\g<I>.
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Notice that the second term is holomorphic in a neighborhood of K. It is the
remainder when trying to divide ® by f. If ¢ is any section of the quotient sheaf
O/(f) over B(0, R) it is the image of a global ® (since the ball is Stein) or in other
words, ® is an extension of ¢. It follows from (6.1) that

U(2) :/h/\R/\gd)
is a holomorphic extension of ¢ to a neighborhood of of K.

Remark 6.2. In this argument we relied on the a priori existence of a global extension
® of ¢. One can prove directly that ¥ is an extension. To this end fix a point 20 and
let ® be a local extension at 2°. Choose a weight § with support close to 2. Then
by the argument above

é(z):/h/\RAgAggb

is a local extentsion of ¢. Now, 1—g = Vw where w is smooth, and V(hAR) = f(z)R,
SO

HARANgAN(1—=g)p=V(RARANgAN(1—3)p)+ f(z)RANgAwo.

By Stokes’ theorem we have, for z close to 2%, that
W(z) - B(2) :/h/\R/\g/\(l—g)qb:f(z)/R/\g/\quS.

We conclude that also W is a local extension of ¢ at 2°. (|

Let now ¢ be a smooth function such that ¢ = fa where a is smooth. Then
Oggb = f@ga and hence

(6.2) (Og¢)R=0
for all multiindices «. Indeed we have

Theorem 6.3. If f is holomorphic and ¢ is smooth, then ¢ = fa where a is smooth
if and only if (6.2) holds for all c.

First proof. Assume that (6.2) holds and let a := ¢U. Then fa = ¢fU = ¢, so we
have to prove that a is smooth. The hypothesis implies that

(6.3) dZa = (9Z0)U

for all . Since R has some finite order N’ it belongs to some Sobolev space W,
Moreover, if 9y € W then ¢» € W1, From (6.3) we can thus conclude that a € W*
for all k, which implies that a is smooth. The last statement follows for instance from
the Fourier transform. O

We shall now give a proof based on integral representation that we shall generalize,
later on, to ideals generated by more than one function f. Since the statement is
local, assume we are in a ball X C C", identify X with the set {({,() € C*"; ¢ € X}
and let X be an open neighborhood of X in (Cé’:u Assume that ¢ is smooth in a
neighborhood of the closure of X and consider

(6.4) 3(¢.0) = Yoy =L

al

XNjay(w = <)),
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where x is a cutoff function in C™ which is 1 in a neighborhood of 0, and A\ are
positive numbers. If Ax — oo fast enough, the series converges to a smooth function
in X such that

and B

99(¢,w) = O(lw — ().
Such a function ¢ is called an almost holomorphic extension of ¢. If ¢ is realanalytic
one can take A\ = 1 for all £ and then ¢ is the holomorphic extension of ¢.

Lemma 6.4. Let v* denote the Bochner-Martinelli form in X with respect to the
point (z, %), and let
*((,w) = ¢(C,w) — Ip AN V.
Then ®* is smooth in (,w,z and V(¢ (., ®* = 0. Moreover, if (6.2) holds for all
a, then ®* AN (R® 1) = 0.
Proof. Since
b
Vicw)-b’
where b =Y "7(¢ — zj)d¢; + Y 7 (wj — Z)dwj, we have that

V¥ =

O(|w —¢|*)
P = ,
(G w) +Z — 22+ |w— 22) 12
if ¢ is smooth, and thus ®* is smooth. If (6.2) holds for all o, then also (3?5@5)/\}2 =0
for all & and therefore pA R®1 =0 and dp AR® 1 = 0. O

Second proof of Theorem 6.3. Notice that f®1-U®1=1in X. From Lemma 5.2
and Lemma 6.4 we have the representation

i o(2.2) = /(2) /X U(C)g A B*(C,w) + /X (¢, w) AR A R(C).

If now (6.2) holds for all «, then the second integral vanishes. The first integral
depends smoothly on z, and ®f ; = ¢(z, Z) = ¢(2) and so Theorem 6.3 is proved. [

7. KOPPELMAN FORMULAS IN DOMAINS IN C"

If f = f1d( is a smooth (0, 1)-form in D C C such that

/ AldV < oo,
D

then
u(z) = /Dwgz Af

is a smooth solution to Ju = f in D; if f has compact support it follows from (4.2)
and (1.2), the general case follows by writing f = xf + (1 — x)f. We shall now
consider multivariable analogues.

Let By —1(n) be the Bochner-Martinelli form and let n: C¥ x C7 — CJ be the
mapping 7(¢,z) = ¢ —z. We let By, ,—1(¢ — 2) := n*Bp -1 in Cé xCL. Itisa
smooth form outside the diagonal A in C™ x C™ that is locally integrable on C™ x C"
in view of (2.4). Notice that 7 is minus the mapping v in Section 4, but notice also
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that B(¢ —z) = B(z — (). Notice also that B(( — z) is locally integrable on C" x C".
Since 0By, n—1 = [0] it follows from (4.2) that

(7.1 OBrn-1(z — €) = A

It is instructive, however, to give a direct argument.

Proof of (7.1). We have to check that

(7.2) //Bnnlz— O NOW(C, 2) /zbzz

for any form ¢ ((, z) of total bidegree (n,n). Here 9 (z, z) means the pullback of ¢ to
the diagonal A = {(z,z2); z € C"} C C" x C", i.e., i*9, where i: C" — C" x C", z +—
(2,2). Notice that d = d¢ +d, and d = 9, + ('_9Z. Since 0 commutes with pullbacks of
holomorphic mappings, by a complex-linear change of variables on C" xC", keeping in
mind that the orientation is preserved, and that Fubini’s theorem holds, the integral
on the left hand side of (7.2) becomes

-/ /< FH(C +2,0) A Brna (€) =
/Z[/Cén¢(C+z,z) A Bnn-1(¢)] +/C [/2521/)(§+z,z)] A Bpn-1(0).

In the first inner integral, for degree reasons only components of 1) which have bide-
gree (0,0) in ¢ can give a contribution, and in view of (2.2) the inner integral therefore
becomes —(z,z). In the inner integral in the second term for degree reasons one
can replace 0, by d., and then the integral vanishes by Stokes’ theorem. O

Proposition 7.1 (Koppelman’s formula). Let K be a form in Q@ x Q of bidegree
(n,m — 1) that is locally integrable and smooth outside the diagonal, and such that
OK = [A]. Let K,, be the component of bidegree (p,q) in z, and consequently
(n—p,n—q—1)1in . If f is a smooth (p,q)-form, then

:az/Kp,q—l/\f+/Kp,q/\af+/ Kp,q/\fa zeD.
D D aD
It is clear that if we can make the boundary integral disappear, then for each f

such that 0f = 0, we get a solution to du = f.

Proof. Let us first assume that f(¢) has compact support and let ¥(2) be a test form
of bidegree (n — p,n — q). Now,

/1p YA f(z //8 Q)NK =
_L@w@AAfAK—GJWWLM@AA@WK.

In the first term we can integrate by parts in the z-integral. After moving f and Of
to the right in the (-integrals we then get the equality

/w YA f(z /w Aa/KAf+/w AKAW

which is equivalent to the theorem in case f has compact support. The general case
can now be deduced, e.g., by replacing f by xif where xr  xp and take limits, or
by mimicking the proof of Proposition 1.1. U
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Certainly K = n*B fulfills the hypothesis in this proposition. We will now look at

more interesting choices. Let b(¢ — 2) = n*b((, 2) = Y7 7;dn;j/2mi|n|* and let
S(C7 Z) = Z Sj(<7 Z)d(C] - Zj)
1
be a form in Q x Q such that 2mi )" s;((; — z;) = 1 outside A C Q x Q, and
5(¢,2) = b(¢ — z) in a neighborhood of A. Let us temporarily call such a form
admissible. Thus 0 = Zj n;0s; and precisely as in the proof of Lemma 2.1 we
conclude that
K =35/ (ds)"1

is O-closed outside A. Since K = By, n—1(z—() in a neighborhood of A we thus have,
cf., (7.1), that 0K = [A].

Lemma 7.2. If f is a smooth (p,q)-form, then

/ceD pa—1(¢,2) A f(C)

is a smooth (p,q — 1)-form in D.

Proof. Fix a point 2°. If w is a small enough neighborhood of 2", then s = b for
all ¢ € w and z close to 2°. Take a cutoff function y in w such that y = 1 in a

neighborhood of z°, and consider the decomposition
u(z):/(l—x)K/\f—i—/xK/\f.
D

The first term is smooth in a neighborhood of 2" since there is no singularity in the
integral. On the other hand, for z close to 2¥ the second integral is

JODABuns(z =€) = (Bunr = (),
i.e., convolution of B, ,—1 with a test form, and thus it is smooth. O

Ezample 7.3 (The Dolbeault-Grothendieck lemma). Assume that f is a smooth (p, q)-
form that is d-closed in a the unit ball B and q > 1. Then there is a smooth
(p,q — 1)-form u in rB, r < 1, such that du = f.

We will use the notation ¢ - d(¢ — 2) for .7 (;d(¢j — zj), etc. Let x be a cutoff
function in B that is identically 1 in a neighborhood of the closure of B, » < 1. Then

{-d¢—2)

S(62) = MOME —2) + (=X g2
is an admissible form for z in B, and for ¢ close to dB it is holomorphic in z. (One can
extend it to an admissible form for z € B as well by taking x(z)s+ (1 — x(2))b(¢ — 2)
where Y is identically 1 in a neighborhood of the support of x; but this is immaterial
for us, since we just bother about z in rB.)

If ¢ > 1 it follows that K, , = 0 if z € rB and ( is close to 0B, since then no dz
can occur. Therefore the boundary integral vanishes and we get

:5Z/Kp,q1/\f+/Kp,q/\(§f, z €rB.
B B

If in addition Of = 0 in B we thus get a solution in 7B. O
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Remark 7.4. With the notation in Koppelman’s formula one can define the kernel
K as s A (ds)" ! instead. It is then still true that dK = 0 outside A. One can then
prove the slightly more general Koppelman formula

(7.3) f(z):dz/DK/\f—i—/DK/\df—i— [ Knr

When restricting to the component K’ of K that is (n,n—1) in dz, d{ we get back the
previous Koppelman formula, but (7.3) also contains other relations that sometimes
are useful. O

Ezample 7.5 (The Dolbeault-Grothendieck lemma for currents). Assume that f is
a O-closed (p,q)-current in the unit ball B. If ¢ > 1, then there is a current u in
rB such that Ou = f. If ¢ = 0, then f is holomorphic. Multiplying with a cutoff
function we may assume that f has compact support in B and is O-closed in B,
where r < 7’ < 1. Let By, ,,—1 be the Bochner-Martinelli form so that 5Bn7n,1 = [0].
Since f has compact support, thus 0B, 1% f = f — Byn—1*0f by (4.2). Moreover,
since Of = 0 in 7B,

Bt % 0f(2) = /c Bun-1(2 — ) AGF(C)

for z € r'B and is smooth in z there. Furthermore, it is 0-closed there since both the
other terms are. Thus we can solve dv = By, ;,—1 * 0f in B, cf., Example 7.3, and
hence O(Byp—1 * f +v) = f in rB. O

8. WEIGHTED KOPPELMAN FORMULAS

Let A be the exterior algebra over the subbundle of 7 (X x X)) spanned by T ; (X x
X) and the differentials dny, ..., dn,. In this section all forms will take values in A.
We let d,, denote formal interior multiplication with

= 0
271 =,
21: 7 om;
on this subbundle, i.e., such that (0/9n;)dny = d;1. Moreover, we let V,, = 6, — 0.
Now 0 acts on both variables ¢ and z. Let

_om-dn Zj(f_j — zj)dn; _0|¢ — z|?

Coomi|¢]2 T 2wl — 2|2 2mi|¢ — 2|2

and consider the Bochner-Martinelli form

n*B:L:b+bA(5b)+~-+bA(é§b)"*1.

Vb
Notice that e et
STy L 9Inl* A (90n|*)"~
*Brr_1=bA (Ob)F1 =
n k,k—1 ( ) (27T2>k ’n‘gk
so that
(8.1) Bk-1 = O(1/[n[**7h).

Proposition 8.1. The form u = b/V b is locally integrable in C" x C" and solves
(8.2) Vyu=1-[Al
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We already know that du,, ,—1 = [A]. The rest of the proof is completely analogous
to the proof of Proposition 3.2.

Proposition 8.2. If u is any smooth form in X x X \ A, with values in A, such
that Vyu = 1 and such that (8.1) holds locally at the diagonal. Then w is locally
integrable in X x X and (8.2) holds.

This is verified precisely as Proposition 3.8.

Ezample 8.3. Assume that s((, z) is a smooth form in X x X such that

(8.3) sl <Clcl, Ks,m)| = Clnl?
uniformly locally at the diagonal. Then
s s s A (0s) 1
Vys  2mi(s,m) (2mi)™ (s, m)™
fulfills the hypothesis in Proposition 8.2. U

We say that a (smooth) form g = goo + -+ + gnn in Q x Q with values in A is
a weight if Vg = 0 and goo = 1 on the diagonal A. As before, if g, g’ are weights,
then g A ¢’ is a weight. If w = w9+ - -+ wy pn—1 is a smooth form, then g = 14+ V,w
is a weight.

If g is a weight and u is a locally integrable form that satisfies (8.2), then

V(g Au) =g —[A].
If we let K = (g Au)ppn—1 and P = gy, we thus have
0K =[A] - P

which leads to the weighted Koppelman formula

(8.4) f(2) :a/DKp,q_lAer/D KMAaer/aD Kp,q/\f+/D Py Nfy  f € &E.4(D),

cf., Proposition 7.1. Again K, , denotes the component of bidegree (p,q) in z and
hence (n —p,n—q—1) in (.

In order to obtain a solution formula for 9 we must get rid of the last two terms.
If g = G(V,wip), G(0) = 1 and wy 9 depends holomorphically on z, then P,, = 0
for ¢ > 0, and so we get rid of the last term in the Koppelman formula. If in addition
the weight vanishes on the boundary, then also the boundary integral vanishes. Let
us consider a couple of examples.

Example 8.4. Let p be a convex function in C". A Taylor expansion at the point ¢
gives p(z) = p(¢) + 2Re (9p((), z — () + @2, where Q2 > 0. Thus

(8.5) —2Re (9p(C),m) < p(2) — p(¢)-
Let H = ) 0c;dn;/mi and form the weight

g = e_vﬁH — e_2<8p(<)777>6265p
Let u = n*B be the Bochner-Martinelli form. If f is a smooth (0, ¢)-form in C™ such
that

/|f|e_p(i65p)"_k <oo, k=0,...,n—k,
then

’U(Z) = /‘K()’q_l A f
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converges and is a solution to dv = f in C™. In fact,

n—q

Kog-1 A f = e 2000w Z Un—kn—k—1 A (i00p)F A f,
k=0

if Uy — g n—k—1 here is the component of u that has bidegree (0,¢—1) in 2, and in view
of (8.5) thus

n—q 1

[Kog1 A fl < CePD N T (i09p)"| £ (¢) e,
0

It also follows that the solution v roughly speaking has a growth like exp(z). g

In a similar way one can use the weight in Example 4.4 and get solutions to dv = f
when f has polynomial growth in C”.

Ezample 8.5 (Weighted Henkin-Ramirez formulas). Let D = {p < 0} be strictly
pseudoconvex with smooth boundary and assume that p is a defining function that
is strictly plurisubharmonic in a neighborhood of D. Tt follows from [?] that there is
a smooth n-tuple H((, z) in a neighborhood of D x D, holomorphic in z, such that

2Re (H((,2),m) = p(¢) — p(2) + dln|>.
If
®(¢,2) = (H(C, 2),m) — p(¢)
it follows that

(3.6) 2Re® < —p(C) — pl=) + 3l
Let h = H - dn/2mi. We form the weight

s (1w ()
P —p p
If we choose o > 0 we get, cf., Example 4.3, then P = g, ,, behaves like (—p(¢))**
for fixed z € D. We get representation formulas, holomorphic in z that are very
similar to the ones on the ball.

Moreover, assume that f is smooth and O-closed in D and has a growth at the
boundary at most as a power of —p. For an appropriate choice of a@ > 0, and with

K = (g ANu)ppn—1, then
v = / KO,q—l Nf
D

is a solution to Ov = f, since the boundary integral in Koppelman’s formula vanishes.

For optimal estimates of the solution, however, it turns out that one should replace
the Bochner-Martinelli form u by a form that is better adapted to the local geometry
at the boundary. Let M((,z) = —H(z,() and let

s = (M,n)M - dn/2mi — p(z)|n|>.

Then s satisfies (8.3) and thus u = s/V,s will do just as well. Let us compute the
boundary values of the resuling solution when f is a (0,1)-form. Notice that when
p(z) = 0, then s is parallell to M -n/®(z,¢{) = m/®P(z, (), which is holomorphic in (,
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and hence this term itself is the only contribution to Koo from u. Thus we just get
the term ¢,,—1,,—1 from the weight g, which is, cf., the computaion in Example 4.3,

_p>n+a71<_ h )TL*I
Col— 0— .
(cp L

The second factor is

<8h op A h)n—l ~ —p(Oh)" "t 4 (n — 1)(Oh)" 2 NOp A h
—p (=p)? a (—p) '

o(z) = / (=) tm A (pOh — (n —1)0p A h) A (OR)" 2 A f
D (I)(Caz)a+n_1q)(za<) '
One can check that |®(z, ()| ~ |®(¢,2)|. If z is a fixed point at the boundary, then
{¢; |2(¢, 2)| < €} is a so-called Koranyi tent with center at ¢. It has length ~ /e in
the complex-tangential directions, and ~ ¢ in the last to ones, so that the volume is
like €"*1. One can also check that

Thus

/ 1 1

zeop @M (=p(Q))

if v > 0. Notice morover that m = h on the diagonal so that |m A h| < C|n|. From
(8.6) we have that |n| < /|®|. Combining, if @ > 1/2, we get the estimate

/ \vréc/ 1+ (LV=D)06 A fI.
oD D

It was proved independently by Henkin and Skoda, and it was the first triumph
of weighted integral solution formulas. The previously known solution formula, the
Henkin-Ramirez formula, roughly speaking a formula corresponding to o = 0, does
not admit this estimate. U

Beskriv i remark hurman far HR formel.

Remark 8.6. The statements about ® follows from the fact that —d¢®|e—, = d;P|,—¢ =
0p(z) so that

dcRe®|c—, = —dp, dcIm®|.—, = cdp,
and similarily for d,, where the constant ¢ depends on the normalization of d°. Notice
that in any case the annihilator of dp and d°p is the complex tangent space at (.

If we choose real coordinates si, ..., So, such that ds; = dp and dss = d°p, then
|®] ~ ’31""’32“*‘2233% O
Ezxample 8.7. Notice that in the ball,

O, 2)=1-(-=
and

(s,m) =[1=C-2* = (1= [¢)(A ~ |2).



Chapter 2

Multivariable residue currents

1. THE ONE-VARIABLE CASE

Given a holomorphic function f in an open domain X in the complex plane, not
vanishing identically, we want to define the principal value current (distribution)

1 1
(1.1) < H JEdz A d2> — lim “edz A dz.
f 0S|
Given that this limit exists, clearly f[1/f] = 1 in X. We then also have residue
current
=71 ) 1
(1.2) <8H,gdz> = lim ~edz.
f 01
However, the zero set of f is discrete and the attempted definition of [1/f] is local
so we may assume that z = 0 is the only zero on X.

Remark 1.1. If the test form £dz is holomorphic, the integrals in the right hand
side of (1.2) are all equal for small € by Cauchy’s theorem and we interpret this
number as the residue at 0 (times 27¢) of the meromorphic form &dz/f. If we fix the
holomorphic coordinate z we get the classical notion of residue

§ 1 §
Res,—g= = — =>dz.
TP 2mi e f
O
Notice that f(z) = 2™g(z) where g is nonvanishing, so locally f(z) = (z¢(2))™,
and we can take w = z¢(z) as a new holomorphic coordinate. Thus it is enough to
consider f(z) = 2™. The following proposition is fundamental for residue theory.

Proposition 1.2. For each integer m and test function & € D(C) the limit
1 dz Ndz

(1.3) < [7] Jedz A d2> — lim bdz N dz
AL e—0 |2|2>€ zm

exists and defines a current. We have the following equalities:

s )

1o [S)e) [S men
i aL)-0 asna ] <0 men
e o T KRR P
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Here, as before, [0] denotes the (1, 1)-current evaluation 0, i.e., ([0],&) = £(0) for
test functions &, cf., (1.2).

Proof. If m = 1, then 1/z is locally integrable and (1.3) holds by dominated conver-
gence. By Taylor’s formula,

5(2) = pmf(z) + ng(z)a
where p,£(2) is a polynomial of degree m — 1 and r,£(2) = O(]2|™). Consider

I / 22z N dz
e<|z|2<1 Zm .

By the change of variables z — Az with || = 1 we find that I = A*”*=™] and hence
I =0if £+ k < m. We may assume that £ has support in the unit disk. Then

/ §(z)dzNdz / §(z)dzNdz / rm&(2)dz A dz
|2]2>€ 2m e<|z|?<1 Zm e<|z|?<1 zm .

Since r,&(z) = O(|z|™), we see that the limit in (1.3) exists and that
1 _ rmé(2)dz A dz
1.10 — |, edzndz :/ Ime\2)az /A 62
(110) (] sznaz)= | |

Zm

It is clear from the definition that (1.4) holds. By Stokes’ theorem we have that
edz A dz _/ (9€/92)dz A dz i/ ¢dz
|z]2>€ |z]2=€ .

" zPpse 2™ 2Zm 2m

In the last integral we can replace £ by r,,£ for similar symmetry reasons as above,
and then it becomes clear that it is O(e). Now (1.5) follows. The first equality in
(1.6) follows by Stokes’ formula (notice the orientation!). When m = 1, the second
equality holds because then the integral is just the mean value of £ (times 27i) over
the circle with radius e. When m > 1 we can replace & by p,,& and for symmetry
reasons again only the 2™ !-term gives a contribution. Its coefficient is precisely
om=1£/02m71(0)/(m — 1)!, so the equality follows from the case m = 1. The first
equality in (1.7) follows, e.g., from (1.6), whereas the second one is obvious for degree
reasons. Finally, (1.8) follows from (1.6) and (1.7), and (1.9) follows from (1.4) and
(1.6). O

It is often conceptually convenient to treat currents as (generalized) differential

forms and write
/ Edz Ndz
z Zm

<[Zim],gdz Adz).

In particular we identify the principal value current with the associated semi-meromorphic
form.

rather than

Corollary 1.3. For a function ¢ that is holomorphic in a neighborhood of 0 the
following are equivalent:

(3 b (=m),
(i) 69| =0,
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(iid) 990)=0, £=0,...,m 1.

Notice that (ii) means that the current ¢p9[1/2z™] vanishes, not to be mixed up
with current acting on a test form! Thus we can represent the ideal (z™) either by
a generator z", as the annihilator of a residue current, or by so-called Noetherian
differential operators.

Proof. If (i) holds, then ¢ = 1z™ where 1 is holomorphic, and so
=11 1
00| | = vz | | = war o,
Zm 2™

according to (1.4), and thus (ii) holds. If (9[1/2™], ¢dz) = 0 for all test forms £dz,
then in view of (1.6), (iii) must hold. Thus (ii) implies (iii). Finally (iii) implies (i)
by Taylor’s formula. O

In the several variable case we will often rely on another way to define the currents

[1/2™] and O[1/2™]:

Lemma 1.4. Let £ be a test function in C and m a positive integer. Then

re [ Pen E0E

Zm
and
AH/bmﬂAa> |

a priori defined when Re X > 0, both have analytic continuations to Re A > —1/2,
and the values at A =0 are ([1/2™],£dz A dZ) and (O[1/2™],&dz), respectively.

Proof. We may assume again that £ has support in the unit disk. With the same
notation as in the proof of Proposition 1.2 we write £ = pp& + & If Re A > 0,
then for similar symmetry reasons as before, we have

(1.11) /VW@M“k:/ !%YMAMZ/ 2P b (2)d A dz.
2 |z]<1 |l2|<1

zm zm

Hence the proposed analytic continuation to Re A > —1/2 exists and when A\ = 0 it
is equal to ([1/2™],£dz A dZ) in view of (1.10). The second integral in the lemma is

<5\z|2’\/zm,§dz> = <—|z|2’\/zm,5§ Adz)
for large Re A, and from the first part of the lemma and the uniqueness of analytic
continuation, the value at A = 0 is (—[1/2™],0¢ A dz) = (9[1/2™],&dz). O

It is often convenient to suppress the test form and say: The functions A —
|2|220A /2™ and O(|z|**v?) /2™, a priori just defined for Re A > 0 have current-valued
analytic continuations to ReA > —1/2, and the values at A\ = 0 are precisely the
principal value current 1/2™ and the residue current 9(1/2"), respectively. Thus

1 |2>\
{me} :llj%Xlzl%ejm: om pars
Remark 1.5. Notice that

1
/|z|2/\ £dz N dz = /' Gl 2|2 edz A dz ‘ /|z|2/\m§dz/\d2,
z

if Re A > 0. By the uniqueness of analytic continuation it must hold in general, i.e.,
|2|22[1/2™]|x=0 = [1/2™], cf., also Proposition 4.1 below. O
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2. TENSOR PRODUCTS

We will now consider tensor products of one-variable principal-value currents.

Definition 1. Given strictly positive integers mi,...,m,, r < n, we define the
current

=]

zm - z;nl e Z,rmr
in C™ as the tensor product of the currents [1/2{"!],...,[1/2""].

It follows from Proposition 1.2 that

(2.1) <{M},§d21 ANdzy N Ndzy N d2n> =

. . Edzy Ndzi A -+ AN dzn A dZy,
lim --- lim

mi my
€e1—0 er—0 |21]2>€1 ..., |2r 2> € FAERRY 7

if € is a test form in C™. We shall now consider other ways to represent this principal
value current.

We say that a function x on the real line is a smooth approzimand of the character-
istic function X[, of the interval [1,00) if x is smooth, equal to 0 in a neighborhood
of 0 and 1 in a neighborhood of co. In the sequel the notation

X ™~ X[1,00)
means that x is either x[j o) or a smooth approximand.

Let ai,...,a, be strictly positive integers, » < p < n, and let us write 2% =
20 zp? and 2™ = 2 ... 2. Moreover, let dz Adz =dz Adz A ... Adz, Adz,

Lemma 2.1. Let v be a smooth strictly positive function and let X ~ X[1,00). For
any test function &,

(2.2) 1%/){“2“[2@/6)&22(12 = <[zim],£dz /\d2>.

Moreover,

z

A — / |Za‘2)\v)\£dz7/7\ldz’
a priori defined for Re A > 0, has an analytic continuation to Re A > —e and
dz Ndz 1
(2.3) / ]za\”‘v’\gziz‘ = <[—],§dz A d2>.
2m A=0 2Zm
Proof. We first consider the case v = 1. Notice that

1

mj
Zj

)

Y4
(/\17 .. '7)\;7) = SO(AM . . 'a/\p) = H ‘z?j‘2Aj
j=1

with m; = 0 for j > r, is holomorphic in the product set {Re2a;\; > —1}. In
particular, A — (A, ..., ) is holomorphic for Re A > —e. Now (2.3) follows from
Lemma 1.4.
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Recall that Taylor’s formula with remainder term of order m for a function ¢ of
one complex variable w can be written

m— o 8k
DS “awj;i@fww

k=0 " j+e=k
1 am¢
Jap . tw) (1 — )™ at.

Z v 1) 0 8w38ﬂ)€( w)( )

Jj+Hl=m
Let us first apply it to z1 — &(z1,...,2,) with remainder term of order m;. Then
we apply the same formula to

m
Z9 az{ gf (tzl, 2y eeny Zn)

with remainder term of order mo and plug the result into the first formula. Proceed-
ing in this way we end up with a smooth decomposition

§ = pm& +rmé,
where r,& = O(|z1|™ - -+ |2,|™") and p,,& has the following property: For each term
7¢ in pp€ there is an index j = j(¢) such that 7, is a monomial in z; of degree at
most m; — 1, for each fixed value of the other variables. By a symmetry argument
as in the proof of Proposition 1.2 it follows that

(2.4) / BRI KA
|z5]<1 Zj
if ReA > 0.
We may assume that £ has support in the unit polydisk A™ = {|z;| < 1}. For

Re A > 0 we now have, in view of (2.4) and Fubini’s theorem, that

/|Za‘2>\£d'2/\d2 :/ ’Za|2>\w :/ |z“|2)‘w‘
An An

zm zm zm

In the last integral, the integrand is bounded, so by (2.3) we get
1 médz N\ dz
(2.5) <Z—m,§dz A d2> _/ rm&dz A dz

ZTTL

In the same way,

[0S 5= = [ aem g S R = g A

Therefore,

(2.6) liI%/X(’ZQ‘Q/G)deT/r\Ldz _/ Tmfdz/\dz.
€e— z n

Zm

Combining (2.5) and (2.6) we get (2.2) in case v = 1.

Now suppose that v is smooth and strictly positive. Notice that p,,(v*§) and
hence also r,, (v*&) are entire functions of p. It follows that

_ i -
(A,M) H/‘za|2AUHM :/ |Za|2Arm(U §)dzAdz

zm AL

is holomorphic in the set {Re A > —e} x C,, and taking A = p = 0 we get (2.3).
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Close to 0 we can make the smooth non-holomorphic change of coordinates wy =

pl/2mag, w; = 2j, j = 2,...,n. After scaling we may assume that this works in the
unit polydisk. Then

. ¢dz A dz w2 E(w)dw A dio
(2.7 [ xS0 E [ ur oS

for a certain smooth function &(w ) From (2.2) with v = 1 we know that

(2.8) hm/ (Jw®|? /
However, we also have that

/|z“|2’\v)‘§(z)i':qwz/ |w“|2/\M

wm

)dw ndw <im,§dw A du_1>.

9

and in view of (2.3) we conclude that
([1/2™],€dz A dZ) = ([1/w™)], Edw A diD).
The general case follows from this equality in combination with (2.8) and (2.7). O

3. THE PRINCIPAL VALUE CURRENT [1/f]

Let f be a holomorphic function on the analytic space X. We are now going to
define the principal value current 1/f.

Recall that a proper holomorphic mapping 7 : X > Xisa modification if there
is an analytic subset V' C X such that the restriction of 7 to X \ 7~V is a biholo-
morphism onto X \ V. By Hironaka’s theorem there is modification (resolution of
singularities) 7: X — X such that the zero set of 7* f has normal crossings. This
means that in a neighborhood of each point in X one can choose local coordinates
in which 7* f is a monomial.

Let v be a smooth strictly positive function and consider, for A such that Re A > 0,
(3 1) / ‘f|2>\7))\£ _ / ’W*fP)\W*UAﬂ'*g
x f X ™ f

Since 7 is proper and £ has compact support, 7*¢ has compact support in X. Thus
we have a finite open cover Uy, such that 7* f is a monomial in each U}, for appropriate
local coordinates. If py is a partition of unity pj subordinate to Uy we have

|f|2>‘1))‘€ B |7r*f|2>‘7r*v)‘ﬂ'*§
/X - Z/ of

Fix a k and assume that 7*f = s]" -+ - s/ =: s™ in Uj,. Thus

52) /Iﬂ*fI”W*vAﬂ*é /‘Sm’w\/\ |
m

where « is a smooth form with compact support. It now follows from Lemma 2.1
that the analytic continuation to Re A > —e exists, and that the value at A = 0 is

independent of v.
f2>‘11)‘f
&)=/ Hina Yy
x [ D=0

Definition 2. We define
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Remark 3.1. If follows now from (3.1) and the definition that

(-0 ={=7~9
=)
Ezample 3.2. Notice that if a is a non-vanishing holomorphic function, then

o[z = 151

Ezample 3.3. If f is a holomorphic section of a Hermitian line bundle L — X, then
in a local frame |f|2 = |f|?v for some smooth strictly positive function v. It follows
that

which means that

0

1P |
f T f A=0
is a well-defined L~ !-valued current. O

With the same notation as before we have, if x ~ X[1,00),

*

5 * * 7T § * * 7T*§
[ s = [t a2 =37 [ sl o

Moreover,

ﬂ_*

[ semtoro T = [x(smPrtoro 5
From Lemma 2.1 we conclude that the limit when € — 0 exists and is equal to (2.7).
Thus we have proved

7T*

Proposition 3.4. Assume that v is smooth and strictly positive on X and that
X ~ X[1,00)- LThen

1 , .1
5] = mx(7Po/e) %
We shall now see that one can replace x(|f|>v/€) by more general regularizations.

Lemma 3.5. Let 1) be a smooth function on [0, 0c| such that 1p(c0) = 1 and 1»(0) = 0.
Then (d/dt)y(t/e) — 0o as measures on [0,00).

Here “smooth at co” means that ¥(s) = ¢(1/s) is smooth at 0.

Proof. First notice that ¢(s) = —1/(1/s)/s?, and thus ¢/(t) = O(1/t?) as t — co.
If ¢ is continuous with compact support on [0, o), therefore
C
' ()] < ——=
B(e) )] <
where C' is independent of €. By the dominated convergence theorem we have

| etroswi= [~ Lumatendr o) [ Lutrir = o0)
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Proposition 3.6. Let i be as in the lemma and let f be a holomorphic function on
X and v smooth and strictly positive. Then for any k > 1,

tiy [ 6(17Po/0*S = (Fr.6) € € Dun(X),

Proof. On the set Q = {(2,t) € C" x (0,00); |f(¢)|*v >t} we have, for each fixed e,
that

1 d i 1
‘}f@iﬁ(t/e) ‘SC\/;

Hence we have an integrable singularity on {2 and by Fubini’s theorem we get

>~ d . £ e [WPvy ko [ fPu/e)ke
Jo 0 et [ e )y deseta= [

However,
§
J(t) = / £
®) fzost fF

is a continuous function with compact support on [0, o0) such that J(0) = (1/f*,¢)
according to Proposition 3.4, with X = X[1,o), and so Proposition 3.6 follows from

Lemma 3.5 applied to ¥* instead of . ([

Proposition 3.6 is more general than Proposition 3.4 and for instance allows us to
take 1(t) =t/(1+1).

Example 3.7. If v is smooth and strictly positive and k > 1, then
i () [4].
e—0 \v|f]2 + € Ik
O

Ezample 3.8. Even if fi(z) belongs holomorphically on a parameter ¢ it is not true
that [1/f;] and thus neither J[1/ f;] are necessarily even continuous in ¢. Take f;(z) =
22 — 2. Since

ﬁ:%(%_ z%l—t)
<6[227i152},§dz> = f(t);f(_t)

for t # 0, and if for instance £(z) = Z in a neighborhood of 0, then the limit when
t — 0 does not exist. ]

it follows that

4. ELEMENTARY PSEUDOMEROMORPHIC CURRENTS

It turns out that many of the currents that appear in multivariable residue the-
ory are pseudomeromorphic. These currents have several geometric features. For
instance, a pseudomeromorphic current p of bidegree (*,p) must vanish if its sup-
port is contained in a variety with codimension larger than p. In the next sections
we will see that if 4 has support on the variety V with codimension p and du = 0,
then p must be a so-called Coleff-Herrera current®. We shall also see that if V is a

3Notice the analogy with normal currents. If a normal (p,p)-current p has support on V' and
codimV > p then p = 0. If codim V' = p, then p is (the Lelong current associated with) an analytic
cycle with support on V|, see, e.g., [568, 777].
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subvariety of X, then the restriction of a pseudomeromorphic current u to the open
set X \ V has a natural extension as a pseudomeromorphic current on X. To begin
with we discuss elementary pseudomeromorphic currents.

Let t; be coordinates in C" and let o be a smooth form with compact support.
We know that

1 1 - 1 = 1
(41) T:aAW"'Wam/\"'AamT
1 k k+1 T

is a well-defined current, since it is the tensor product of one-variable currents (times
«). We say that 7 is an elementary pseudomeromorphic current, and we refer to
1/ t;nj and 0(1/ t,") as its principal value factors and residue factors, respectively. It
is clear that (4.1) is commuting in the principal value factors and anti-commuting in
the residue factors. We say the the affine set {t;11 = --- = t, = 0} is its elementary
support. Clearly the support of 7 is contained in the intersection of the elementary
support and the support of a.
It is readily shown that if 7 is elementary as in (4.1), then

(4.2)
k
= 1 1 1 1 -1 = 1 =1
d
87':2(—1)%0‘&/\@@@tm—katwj/\atmm/\AﬁtW—l—
j=1 1 j=1 “j+l k J k+1 T
_ 1 1 - 1 =1
1 k k+1 r

and thus a finite sum of elementary pseudomeromorphic currents. In the same way
we see, cf., (1.8), that 07 is a finite sum of elementary pseudomeromorphic currents.
It is clear that v A 7 is elementary if v is a smooth form.

Lemma 4.1. If k+1 < /{ <p, i.e., £ corresponds to any of the residue factors, then
(4.3) tT = 0, dty N7 =0.

If t* is any monomial, v is smooth and strictly positive, and X ~ X[1,), then the
analytic continuation
’ta’”"l))"]”)\:[)
and the the limit
lim x(|£* 0/ )7
both exist. If t* contains a coordinate corresponding to any of the residue factors in
7, then they both vanish, and otherwise they are both equal to 7.

It follows from the proof that x(|[t%|?v/€)T is a well-defined current even if y =
X[1,00) if € > 0 is small enough. If x is smooth this problem does not appear.

Proof. The equalities in (4.3) follow immediately from (1.7). If ¢* contains a factor
t; that corresponds to a residue factor in 7, i.e., k+1 < j < p, then x(|t*|?v/e)
vanishes in a neighborhood of the support of 7 so x(|t%|?v/e)T = 0 for all € > 0.
Moreover, t* vanishes on the support of 7 so |t?|**v*7 = 0 if ReA > 0. Thus the
analytic continuation trivially exists and is 0.

Now assume that t* has no factor corresponding to any residue factor; say t®
consists of the variables t1,...,%,, v < k. In short hand notation

1 1 -1
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where t™ = ]+ g7 ™ =) and
=1 = 1 =1
k+1 r

If n is a test form, then

1 1 -1
(4.4) (e Porr ) = (162 O, v A

g’ g pm

thus a tensor products of currents acting on the test form v*a A 7. It now follows
from (the proof of) Lemma 2.1 that (4.4) is holomorphic for Re A > —e, u € C, and
that the value at A =0 is

<1 ! 0 ! v“a/\n>:(v“r,n>.

tm/ tm// tm/// )

Letting = 0 we get (7, 7).
Notice now that

op2 (oo L L L
(4.5) Ot Pofemn) = (X Po/) 1 1 O @ A ).

If v = 1 we have again a tensor product of currents acting on the test form a A 7,
and by Lemma 2.1, x(|t%?/e)(1/t™) — 1/t™ | so (4.5) tends to (7,7) as claimed. If
v is arbitrary, we first make a non-holomorphic change of variables in (4.5) as in the
proof of Lemma 2.1, and then we are back to the case v = 1. O

Notice also that

O([t*P*0*) A 7|r=0
and the the limit

lin% ox([t*?v/e) AT

€—
both exist and are equal to a certain sum of elementary pseudomeromorphic currents.
This follows from the equality

PP A T = 5(!#‘]2)‘@/\7) — [t A O,

the analogous one for dx(|t%|?v/€) A 7), the proposition, and (4.2).

Assume now that t* is a monomial with the same coordinate factors as t*. It
follows that
1 |ta|2/\
(4.6) [E}T =
exists and defines an elementary pseudomeromorphic current. In fact, if t* contains
one of the residue factors, then we get 0; otherwise we get

1 1 -1

tm'+a W tm"’

U/\T|/\=o

a N\

with the notation from the proof of the lemma. Again we also have

1 . 1
(4.7) 5] 7 = lim (it Po/e) 5
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5. THE SHEAF OF PSEUDOMEROMORPHIC CURRENTS

Fix a point x € X. We say that a germ u of a current at x is pseudomeromorphic
at x, 1 € PM,, if it is a finite sum of currents of the form m,7 = 7l ... 7™7, where

U is a neighborhood of z,

(5.1) Up ™5 Tty T Uy = U,

each 77 : U; — Uj_ is either a modification, a simple projection U;_1 x Z — U;_1,
or an open inclusion (i.e., U; is an open subset of {;_1), and 7 is elementary on U,.

By definition the union PM = U,PM, is an open subset of the sheaf C = C¥X
and hence it is a subsheaf, the sheaf of pseudomeromorphic currents, of C. A section
w of PM over an open set V C X, u € PM(V), is then a locally finite sum

(5.2) p="> (m)er,

where each 7, is a composition of mappings as in (5.1) (with & C V) and 7 is
elementary. For simplicity we will often suppress the subscript ¢ in 7.

If € is a smooth form, then, cf., Section 6, & A 7T = Ty (7r*§ A 7'). Thus PM
is closed under exterior multiplication by smooth forms. Since 0 commutes with
push-forwards it follows, in view of (4.2), that PM is closed under 0.

Lemma 5.1. Assume that p: Y — X CcC C™ is a modification and T is an elemen-
tary pseudomeromorphic current in X (with respect to the standard coordinates in
C™). Then there is a modification p: Y — Y such that

T = PaDs ZTK,
l

where the sum is finite and each 7 is elementary with respect to some local coordinates
m Y. If h is holomorphic in' Y we may assume as well that p*h is a monomial times
a nonvanishing factor with respect to the same local coordinate systems.

Proof. Let us first assume that p is a modification and that 7 is elementary with
respect to the coordinates t; in X, say of the form (4.1). Notice that p*t; are global
holomorphic functions in Y. There is a smooth modification p: Y — Y and an open
cover Uy of Y such that, for each ¢, all the functions p*p*t; are monomials (with
respect to the same local coordinates s) times a nonvanishing holomorphic factor in
Uy. Take a partition of unity y, subordinate to U,. If

O L N 12 TS | S 7
A AL A - A a— N ar T R TaT ,
ty ty tk+1 r
where r < n, then
— )\lrnz)\r
T=7T \=0"""[x1=0-

Let m =pop. For A > 0 we have that
T = Z e T
l
By repeated applications of Lemma 4.1 it follows, for each £, that

(5.3) Xem T g =0+ a=0
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A

exists and is a finite sum 7 of elementary currents in ;. Since 7* = m,m*7* when

Re A > 0, we conclude that
T = W*Zﬁ :p*ﬁ*Zﬁ.
4 4

The last statement about h follows from the proof. O

Proposition 5.2. Assume that @ € PM has support on the zero set 'V of the
holomorphic function h. Then hy = dh A = 0.

This intuitively means that the current 7 only involves holomorphic derivatives of
test forms.

Proof. Starting with any representation (5.2) of u, by repeated use of Lemma 5.1 we
can obtain a new representation (5.2) such that 7*h is a monomial for each ¢. Let
us take such a representation and decompose it as

un= Z W*Té + Z W*Té,,
L L

where 7/ are those elementary pseudomeromorphic currents that have a residue fac-
tor corresponding to a coordinate factor in 7*h. In other words, those 7, whose
elementary supports are contained in 7= 'V. Since h vanishes on the support of s,

0=x(h?/e)p =Y m(x(7*h*fe)ri) + > m(x(w*hl* fe)7)))
l

¢
for € > 0. It follows from Proposition 4.1 that the limit of the right hand side is

equal to
>
¢

/
1

so we can conclude that

Now
B,u:Zm(ﬂTé), dﬁ/\u:Zm(dﬂAr;),
l ¢

and from Proposition 4.1 we have that 7*h7) = dm*h A 7, = 0. Thus Proposition 5.2
follows. (]

Remark 5.3. In this proof it was advantegous to use the regularization with e rather
than A since it is obvious that x(|h|?/€)u = 0 if u has support on the zero set of h.
A posteriori it is clear that also |h|**1r = 0. This can also be concluded directly from
[?, Theorem 2.3.11], since V' is Whitney regular. O

We now get

Theorem 5.4 (Dimension principle). If u € PM has bidegree (k,p) and support on
a variety V. with codimV > p, then p = 0.

Proof. Locally V;¢4 is on the form {wy = ... = wpy¢ = 0} for some £ > 1 and suitable
coordinates (21, ..., 2p—p—¢, W1, .., Wpte). From Proposition 5.2 we have that

(5.4) dojAp=0, j=1,...,p+~L.
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However, if (5.4) holds, then yu must be of the form
p=p Ador A ... A dBpi.

Since £ > 1 therefore u = 0. We can conclude that ;1 = 0 on V.4 so the support must
be contained in V' '\ V;¢, which has codimension at least p + 2. By finite induction
we find that pu = 0. O

Proposition 5.5. If p: X' — X is a modification, then
pe: PM(X') — PM(X)
18 surjective.

Proof. Assume that p = .7, where 7 is a composed mapping as in (5.1) and 7 is
elementary in U,,. It is enough to see that u = p.u’ for some p' € PM(V) where
V = p~'U. The proposition then follows since a general global section is a locally
finite sum of such y and p is proper.

We claim that (5.1) can be extended to a commutative diagram

V =y, oo 2oy Loy =y
(5.5) Lpm I Ip

~ 1

U = U, ™ o ™y "N o = U

so that each vertical map is a modification and each 7; is either a modification, a
simple projection, or an open inclusion. To see this, assume that this is done up to
level k. It is well-known that if mp4q1: Up+1 — Uy is a modification, then there are
modifications g1 1: Viy1 — Vi and pgy1: Vier1 — Uks1 such that

Vit =5 Wy

lpk+1 lpk

ﬂ,k+1

U1 — Uk
commutes. If instead Uy41 = Uy X Z then we simply take Vi1 = Vi x Z. Finally, if
i: Ux41 — Uy is an open inclusion, then we take Vi1 = p,;ll/{kﬂ.

By Lemma 5.1 there is a pseudomeromorphic current 7 with compact support in
VY such that p,,7 = 7. If 7 is the composed mapping in the upper line, it follows
that ' = 7,7 is pseudomeromorphic in V such that p,pu' = p.

O

6. RESTRICTIONS OF PSEUDOMEROMORPHIC CURRENTS

Assume that p is pseudomeromorphic and V' is a subvariety. We shall now see
that the restriction of p to the open set X \ V has a natural pseudomeromorphic
extension 1x\yp to X.

Lemma 6.1. Let p be pseudomeromorphic, h a holomorphic function, and v a
smooth strictly positive function. The function X — |h|**v*u (a priori defined for
ReX > 0) has a current-valued analytic continuation to ReX > —e. If x ~ X[1,00)»
then

(6.1) Lwp = lim x(|h|/é)u

|2>\

exists and is equal to |h|* v u|x=o.
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It follows from the proof that currents in the limit exist for small enough ¢ > 0
even if X = X[1,00)

Proof. With the setup and notation from the proof of Proposition 5.2 it follows, in
view of Lemma 4.1, that both the limit and the analytic continuation exist, and both
are equal to ) m,7,. O

In particular, we see that the limit only depends on the zero set of h and not on
the particular choice of h.

Let V be the germ of a subvariety at z and choose a tuple f of holomorphic
functions whose common zero set is precisely V. We claim that for each germ of a
pseudomeromorphic current p at x,

Ly = | P plr=o

exists and is independent of the choice of f. In fact, X ne a suitable neighborhood
of z and let p: X’ — X be a principalization so that p*f = fOf’ as above. If
p = pupt!y then = |f|2u = pu(If°12 f/)2* 1) an so it follows from Lemma 6.1 that
the analytic continuation exists. If g is another such tuple, then we can find a
common principalization, and it follows from the lemma that the value at A = 0 only
depends on the set p~'V, and so it only depends on V. It also follows that we also
have

Laywwp = lm x(|f1/9)n.
It is clear that 1x\y coincides with u in the open set X \ V', and hence

lyp:=p—1x\vp
is pseudomeromorphic and has support on V. In particular, 1y u = p if g has support
on V.
Notice that if p: X’ — X is any composition of modifications, simple projections,
and open inclusions, and p = p./, then |f|* = p.(|p* f|**1), and hence

(6.2) Lyp = pu(lp-1p ).
Moreover, notice that if « is a smooth form, then
(6.3) ly(aAp) =aAlypu.

Let u = w7 where 7 is elementary. If the elementary support H of 7 is contained
in 7~V then 1,-1y,7 = 7. Notice that H is a linear subspace. If H has codimension
q, then 7 = a A7/, where « is smooth and 7/ has bidegree (0, ¢). If H is not contained
in 771V, then, since H is irreducible, H N 7~'V has codimension at least ¢ + 1. By
(6.3) and the dimension principle we now have that 1,-1y,7 = aAl,-1,7 = 0. Thus

Lemma 6.2. If u has the form (5.2) then

lyp = Z W*th,

where T, are those elementary pseudomeromorphic currents whose elementary sup-
ports are contained in 1V

As an immediate consequence we get
Lemma 6.3. If V,W are analytic sets, then
(6.4) 1ylwp = lyawp = lwlyp.
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Later on we will see that the mapping (V, u) — 1y u extends to all constructible
sets V, i.e., all sets in the Boolean algebra generated by the analytic sets.

Remark 6.4. We can now strengthen Proposition 5.2: If a is a holomorphic form
that vanishes on V' and the support of the pseudomeromorphic current p is contained
in'V, then & A p = 0. In fact, we know that we can write 4 on the from (5.2) where
all 7, have their elementary support contained in 7!'V. Now

O?/\/LZZTF*(W*@/\TE) :Zﬂ'*(m/\rg),

and 7m*@ is an anti-holomorphic form that vanishes on 7~ !V. Thus it is enough to
prove that ¥ A 7 = 0 if v is a holomorphic form that vanishes on the elementary

support H of 7. However, if H = {s; = --- = s, = 0}, then such a v must have
the form?* $171+ -+ S$ey +Hdst Ay 4 -+ dsy Adsy, and so AT =0 in view of
Lemma 4.1. O

7. ANOTHER BASIC OPERATION ON PMX

We now consider another fundamental operation on PM~X. Given a holomorphic
function h we define

o =t o2

The existence of the necessary analytic continuations, and that the result is pseu-
domeromorphic, follows as in the first part of the proof of Proposition 5.2 in combi-
nation with (4.6). Notice that the support of the second current in (7.1) is contained
in the intersection of the support of T" and V'(h).

Lemma 7.1. The formal Leibniz rules

=1 =1 1~ (=1 -1 =
(7.2) 8(ET) = 92 AT+ 0T, a(aﬁ A T) — —07 AT
hold. If o is a smooth form, then
1 1 =1 -1
: —T=—anT — AT = (=1)%9°5— T.
(7.3) oc/\h h@/\ , a/\@h/\ (—1) 8h/\a/\

Proof. If Re A > 0, then

2\ IH |2 2 IH |22 12X

h h h h
Now (7.2) follows by the uniqueness of analytic continuation. In a similar way,
2\ 2\ A1p (12X STTAEL
a/\|h}|L T:|h}|L aNT, a/\aly /\T:a”;’ ANaAT,
so (7.3) follows as well. O

Ezample 7.2. Let f a be meromorphic (k,0)-form on X, i.e., (locally) f = g/h
where h is a holomorphic function that does not vanish identically on any irreducible
component of X and g is a holomorphic (k,0)-form (i.e., given a local embedding of
X in a smooth €, g is obtained from a holomorphic (k.0)-form G in §2). By definition

4First write v = 7' 4+~ where 7" has no factor ds;, j < r. Since s,11,...,sn is a coordinate
system on H, the various ds; in 7" are independent, so all coefficients a; must vanish on H, and
thus of the form s1a1 + -+ + s,c.
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f =4¢'/I if and only if ¢'h — gh’ vanishes outside a set V of positive codimension.
In that case

1 1
. il =71)
(7.4) 95 =9 %
outside VUV (h)UV (h') which has positive codimension. By the dimension principle,

thus (7.4) holds as currents. Thus there is a well-defined principal value current
associated with f, and this current is pseudomeromorphic. O

Ezxample 7.3. If f and g are any two holomorphic functions it follows that

11 11
gf [fg
by the dimension principle. By Leibniz’ rule we conclude that

=1 1 1.1 -1 1 1 21
o— —+-0-=0--—+—--0—-.
g f 9 f fg9g f g
However, it is not true in general that
=1 1 1 -1
§9= .= ==-.9H=
g f [ g
as the next example shows. O

)

Example 7.4. Let z be the standard coordinate in C and let a, b be positive integers.
It follows directly from the definition that

1-1
=0 =0
whereas 1 1 1
R

O
Ezample 7.5. Assume that f, g are holomorphic and codim {f = g = 0} is at least 2.

ol =al2)-

by the dimension principle, and by Leibniz rule hence
2] ao[2] =-a[] ol
O

Formally one should think of 7"+ (1/h)T and T + 9(1/h) AT as operators on
PM. Notice also that .
h

which in general is not equal to T°.

h T — 1X\V(h)T

From (the proof of) Proposition ?? and (4.7) it follows that we can replace the
analytic continuation with a limit with cutoff functions. That is, if x ~ X[1 o) We
have

(7.5) LT = lim x(|h2v/e)T

SWe have not even excluded the possibility that h is identically 0 on some (or all) irreducible
components of X
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if V(h) = V. e >0 is small enough. In the same way,

1 2 1 5 2
7=ty XD 5L gy P/

h h h

although in the second equality one should let y be smooth, in order to avoid unnec-
essary interpretation problems, cf., also Example 7.6 below.

In most cases it is a matter of taste if one use the analytic continuation or the
limit with cutoff functions. In most situations we stick to the analytic continuation
since we find it more practical. However, at a few occasions, as in the proof of 7777
above, it is convenient to have smooth approximands, like the smooth regularization

ox(|h|?v/€)/h of O(1/h).

Ezample 7.6. Let V be a subvarity of an open set X C C™ of pure codimension p,
and let f,h be holomorphic in X, such that V(f) D V(h) U Viing, but f does not
vanish identically on any irreducible component of V.

It is proved in Section ?? below that the Lelong current [V] is pseudomeromor-
phic. Thus (1/h)[V] is a well-defined pseudomermorphic current. By the dimension
principle we have that 1y (1/h)[V] = 0 and thus

1

IV = Ly 3 (V] = lim x(112/0) [V]

according to (7.5). Since x(|f|?/€)(1/h) has support outside Vj;ng, we have that
1 _ 1
(G} = tim [ x(rPreg e
for test forms &. Taking 0 we get
(9 A V1.€) = lim [ Ox(f/e A3 e
h ’ e—0 Jy/ h ’

as long as x is smooth. If X = X[1,o), then for almost all small € > 0 we can apply
Stokes’ theorem, and so we get

1 1
0— N |[V],€) =1lim — NE.
< h [ ] §> e—0 Vﬂ{|f\2:6} h g

g

Ezample 7.7. The currents log |2|? and u := dz/z = dlog|z|? are not pseudomero-
morphic. In fact, if pu is pseudomeromorphic , then we can form 7 = (dz/z) A p
and then 7 is equal to dz A dz/|z|? outside the origin. In view of (7.5) the limit
lim x(|z|?/8)7 would exist, but this is certainly not true. O

Ezample 7.8 (The Poincaré-Leray residue formula). Let g be a holomorphic function
in X C C" such that dg # 0 on V,¢4, where V= V(g). We claim that there is a
unique meromorphic (n — 1,0)-form w on V, cf., Example 7.2 above, such that

(7.6) iw = a[;} Adz

if w here denotes the associated principal value current, cf., Example 7.2. The form
w is called the Poincaré-Leray residue of the meromorphic form dz/g in .
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Clearly w (or equivalently, the associated principal value current) is unique if
it exists since i, is injective. Given a point z € V we can find a form &’ in a
neighborhood in €2 such that
(7.7) dg A W' = 27i.

In fact, for some j,

1 —
7.8 W= ——dz;
( ) o g / azj J

will do at . Then

/Qz'*z’*w’Agz/Vz'*w’/\i*gz/Q[V}Aw’Agz/QaB]A;iAw’/\gz/Qa[;]Adz/\g

so (7.6) holds for w = i*w’. Here we have used the Poincaré-Lelong formula, cf.,
Example 0.16, (1/g) Adg/2mi = [V]. Possibly after a linear change of coordinates we
may assume that 0g/0z; is generically nonvanishing on each irreducible component
of V. Thus w = i*w' is in fact a meromorphic form on V and so it defines a
pseudomeromorphic current that we also denote by w, cf., Example 7.2. Since (7.8)
holds outside V¢4 it must hold across Ving by the dimension principle, since both
sides are pseudomeromorphic.

Let h be any tuple such that V'(h) contains Vj;,4 but no irreducible component of
V. Then w = lim x(|h|/d)w. If h = 0g/0z; as above and x = X[1,00) We get

1 211 e n
<87 A dz,£> i midzg N\ ... Ndzy NE
g =0 Jyn{|9g/021 2>} 0g/0z1
We can also take h = (9g/0z1,...,09/0z,). Since Since also
e 2mi Y (0g/0zj)dz;
|dgl?
satisfies (7.7) outside Viing we get the formula
_1 21 S (0g/0z:)dz; A
(= ndz€) = lim 25 g/zj) 2L
g =0 Jyn{|dg|2>e} |dgl|

O

The form w on V' and analogues for general varieties we be of basic importance in
Section ?77.

8. COMMENTS TO CHAPTER 77

The definition here is from [10] and it is in turn a slight elaboration of the definition
introduced in [13].

9. THE STANDARD EXTENSION PROPERTY, SEP

Let Z be a pure-dimensional subvariety of X. We say that a pseudomeromorphic
current g on X with support on Z has the standard extension property, SEP, on Z
if 1yp = 0 for each V' C Z of positive codimension on Z. We let W5 denote the
subsheaf of PMX of currents with the SEP on Z. Instead of W))(( we just write WX,
We shall first discuss a special case of global pseudomeromorphic currents with the
SEP on X.
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10. ALMOST SEMI-MEROMORPHIC CURRENTS

Recall that a current is semi-meromorphic if is a principal value current of the
form «/ f, where « is a smooth form and f is a holomorphic function. We shall now
discuss a far-reaching generalization of the operation 7+ (1/f) A T.

Let X be a puredimensional analytic space. We say that a current a is almost
semi-meromorphic in X, a € ASM(X), if there is a modification 7: X’ — X such
that

(10.1) a=m(w/f),

where f is a holomorphic section of a line bundle L — X', not vanishing identically
on any irreducible component of X', and w is a smooth section of L. We say that a
is almost smooth in X, a € AS(X), if one can choose f = 1.

We can assume that X’ is smooth because otherwise we take a smooth modification
7/: X” — X’ and consider the pullback of f and w to X”. If nothing else is said we
always tacitly assume that X’ is smooth.

Assume that a € ASM(X) and that V has positive codimension in X. Since
71V has positive codimension in X’ we have that 1ya = 7. (1,-1y(w/f)) = 0.
Thus ASM (X) is a subspace of W(X).

Ezample 10.1. Let b = 9|z|?/27|2|? in C" and let 7: X — C" be the blow-up at
0. Then b = a/s where s is a section that defines the exceptional divisor and « is

smooth. Now 3 B
_ 0 =1 0
o0b = m(—a) —i—m(@f /\a) = m(—a),
S S S
since the second term must vanish by the dimension principle. It follows that

Aokl a A (Oa)k—1
are almost semimeromorphic for k£ < n. O

Remark 10.2. One can of course introduce a notion of locally almost semimeromor-
phic currents and consider the associated sheaf. However, will have no immediate
need for this notion. O

Given two modifications X; — X and X9 — X there is a modification 7: X’ — X
that factorizes over both X; and Xp, i.e., we have X' — X; — X for j = 1,2.
Therefore, given ai,as € ASM(X) we can assume that a; = m.(w;/f;), j = 1,2. It

follows that foor & f
Wiy | w2 2w1 + fawa
o= (G D) = n
so that aj +ag is in ASM (X)) as well. Moreover, A := m,(w1 Awa/f1f2) is an almost
semimeromorphic current that coincides with a; A az outside the set w(sing () U
7V (f1) UV (fz2). If we had two other representations of a; we would get an almost
semimeromorphic A’ that coincides generically with a; A az on X. Because of the

SEP thus A = A’. Thus we can define a; A as as A. It is readily verified that
as N\ ayp = (_1)dega1dega2a1 N a2

as usual.

Let sing (7) be the (analytic) set where 7 is not a biholomorphism. By definition
of modification it has positive codimension. Let Z C X’ be the zero set of f.
By assumption also Z has positive codimension. Notice that a is smooth outside
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7m(Z U sing (7)) which has positive codimension in X. It follows that the smallest
Zariski-closed set V' = ZS55(a) such that a is smooth outside V, the Zariski-singular
support of a, has positive codimension in X.

Ezample 10.3. Notice that if Z is empty, then a is almost smooth, and ZSS(a) C
m(sing (r)). However, this inclusion may be strict. Notice that if a is smooth, i.e.,
ZS5S(a) is empty, then w = 7*a outside sing (7). Since both sides are smooth across
sing (), by continuity also the equality must hold everywhere in X'. O

Lemma 10.4. If a is almost semi-meromorphic in X, then it has a representation
(10.1) such that f is non-vanishing in X'\ 7=1ZSS(a), and w = fr*a there.

Proof. Let V.= ZS5S5(a) and let us assume that we have a representation (10.1) and
that X' is smooth. Let Z’ be an irreducible component of Z = Z(f) such that Z’ is
not fully contained in 7~'V. Since X’ is smooth, Z’ is a Cartier divisor, and so there
is a section s of a line bundle L' — X’ that defines Z’. Since Z’ is irreducible, f has
a fixed order r along Z’ and it follows that f = f’g where f' = s" and g holomorphic
and non-vanishing on Z’ N Z,¢,. Outside sing (7) U Z = sing (1) U Z U7~V we have
that w = fn*a and hence

(10.2) w= fr*a= f'gr*a

there. By continuity it follows that (10.2) must hold in X'\ 771V since both sides
are smooth there.

We now claim that w/f’ is smooth in X’. Taking this for granted, the lemma now
follows by a finite induction over the number of irreducible components of Z not fully
contained in 7*a. Thus we have to prove the claim.

It is a local statement in X’ so given a point in X’ we can choose local coordinates
s in a neighborhood U of that point and consider each coefficient of the form w with
respect to these coordinates. Thus we may assume that w is a function. Then still
w = f’y where v is smooth. For all multiindices a@ we thus have that

8‘%}5 1
ote f/
in X'\ 77'V. By assumption Z’ N 7~V has positive codimension on Z’. By the

dimension principle it follows that (10.3) holds in X’ for all a. From Theorem 6.3
we conclude that w/f’ is smooth in U. It follows that it is smooth in X’ O

Theorem 10.5. Assume that a € ASM(X). For each 7 € PM(X), there is a
unique pseudomeromorphic current At in X that coincides with a A7 in X \ ZSS(a)
and such that 1755 AT = 0.

Let h be a tuple (locally) such that Z(h) = V := ZSS(a). If the extension At
exists, then A7 = 1x\y and thus

(10.4) At = lir%x(\h|/6)a/\7'.

(10.3) =0

In particular, the extension must be unique. It is natural to denote this extension
by a A 7 as well.

Conversely, if the limit in (10.4) exists as a pseudomeromorphic current in X, then
A7 must coincide with a A 7 in X \ V. Moreover, x(|h|/€)AT = x(|h|/€)a A T and
hence 1\ z55(a)AT = AT, i.e., 1y AT = 0. To prove the theorem it is thus enough to
verify the the limit in (10.4) exists as a pseudomeromorphic current.
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Proof. In view of Lemma 10.4 we may assume that a has the form (10.1), where
Z = Z(f) is contained in 7~V and that w/f = 7*a in X'\ 7 V. Let xc = x(|h|/¢),
so that 7*x. = x(|7*h|/€).

By proposition 4.10 there is 7/ € PM(X’) such that w7/ = 7. Thus

Xe@ AT = Xea A ToT = Ty (W*Xeﬂ'*a A T’) = T, (7T Xe 7 AT )
Notice that
" ng AT — 1X/\7r—1vf AT
when € — 0. In particular, this is a pseudomeromorphic current. Thus the limit in
(10.4) exists and is pseudomeromorphic. O

Notice that if W is any analytic set, then
(10.5) 1w(a/\7') =allwT.

In fact, the equality holds in the open set X \ Z5S(a) since a is smooth there. On the
other hand are both sides zero on ZSS(a) since 1551w (a A7) = 1wlzgs@q)(aA
T)=0.

Assume now that X is smooth, z is a coordinate system and let dz := dz1 A. . . Adz,.

Lemma 10.6. If uAdz is almost semi-meromorphic then p is almost semi-meromorphic
as well.

Proof. Assume that pAdz = m.(w/f). If f is a section of L — X', then w must be a
section of L& Kx/. Now g = m*dz is a genericallynon-vanishing section of Kx/. Thus
p = 7m(w/ fg) is almost semimeromorphic in X, and y/Adz = £ (gw/ fg) = £uAdz.
It follows that u = £+u’ and thus p is in ASM(X). O

Lemma 10.7. If a is an almost semi-meromorphic (p,*)-current on a smooth X
and z is a coordinate system, then (Oa/0z)p is almost semi-meromorphic as well.

Proof. Assume that

Fix a multiindex J and let J¢ be the complementary index. Then
aANdzje = fa; Ndz.
Un view of Lemma 10.6 thus as is in ASM(X). Moreover,
Oay
— Ad
azl l; a1

Therefore it is enough to consider the case when a has bidegree (0, q). Assume that
a=mi(w/f). Let D =D"+ 0 be a Chern connection on L. Then

w Dw-f—wD'f
=

f f?
which is thus in ASM (X). Therefore da/0z1 Adz = daNdza A...dz, isin ASM(X).
From Lemmal0.6 we conclude that da/0z; is in ASM(X). O

~ Notice that if a1, ag are almost smooth,_ then aj A ag is almost snzooth. Moreover,
Jaj are almost smooth and d(a1 A az) = day A ag + (—1)d821 ) A Das.
Ar det sant att 0a/0z; ar almost smooth 777
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Ezample 10.8. Let W be a hypersurface in X. We claim that if o € P My, o(X) and
the restriction o/ to X \ W is holomorphic, then « is meromorphic on X. In fact, by
assumption, o’ has a current extension to X, so if we have an embedding i: X<,
then the current .0/, a priori defined in Q \ W, has a current extension to Q. By
[23, Theorem 1], ¢’ has a meromorphic extension & to X, and since both o and &
are in P./\/lifo, « = & by the dimension principle.

Let a be a meromorphic form in €2 such that o = i*a. Then i, = a A [X], where
[X] is the Lelong current associated with X in €, so da = 0 on X precisely means
that (a A[X]) = 0 in Q. This in turn by the definition in [23] means that « is in the
sheaf (that we denote) B; of Barlet-Henkin-Passare holomorphic (k, 0)-forms. We
conclude that B; is the subsheaf of d-closed currents in 77/\/12(70. ]

11. SOME FURTHER PROPERTIES OF PM AND W

Notice that if 7 is an elementary pseudomeromorphic current in C? and z“ is a
monomial, then there is an elementary current 7’ such that %7’ = 7. In fact, by
induction it is enough to assume that the monomial is z;. If z; is a residue factor
or a principal value factor in 7 then we just raise the power of z; in that factor one
unit. Otherwise we take 7/ = (1/21)7.

We shall now see that this observation holds in more generality.

Proposition 11.1. Assume that pp € PMy where x € X and X is smooth.
(i) If h € O, is not identically zero, then there is ' € PM, such that hy' = p.

(i) If

/
= Z pr Ndzg,
[T|=p

then each py is in PM,.

(i1i) (0/0zp)—p is in PM,

(iv) (0/0z¢)p (Lie derivative) is in PMy.

The same statement holds with W instead of PM2 .

By a partition of unity we get a global p’ such that hy' = p. Also (ii) and (iv)
hold globally if, say, /9/z, is replaced by a global holomorphic vector field.

Notice that (i) is not true if h is anti-holomorphic. In fact, if Zu' = 1, then
(1/2)4 is equal to 1/|z|? outside 0. Thus lim x(|z|?/8)’ does not exist, and hence
p' cannot be pseudomeromorphic. Moreover, neither (iii) or (iv) is true for 9/9z¢.
For example, the current

_ 91 _9 51
T_ﬁzz_az_‘ z

is nonzero but with support at 0 so, in view of the dimension principle, it cannot be
pseudomeromorphic.

Proof. We know that there is a modification 7: X — X such that

p=> 7
l
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where 7, are elementary and 7*h is locally a monomial in X , cf., Lemma 5.1. As
noted above we can find elementary 7, such that 7*h7) = 74. Thus

= W*ZTF*I’LTé = W*(W*hZTé) = hﬂ'*ZTé =
l

Thus (i) is proved.

We now consider (ii). We first assume that p has bidegree (n, *) so that u = iAdz
and show that /i is pseudomeromorphic. We may assume that p = 7. (7 Ads) where 7
is elementary. Since 7 is generically surjective, we may assume, at least locally in X ,
that s = (s',s") where h = det(9n/0s’) = det(0z/0s’) is not vanishing identically.
Let us assume that this holds on the support of 7; ortherwise we use a partition of
unity in X. By (i) there is 7/ such that hr’ = 7 in X. Now

aNdz = m (1 Ads) = T (7' ANhds' Nds") = m (7 Atdz Ads") = £ (7 Ads”) N dz.

Thus /i = +m. (7' A ds”) is pseudomeromorphic.

In general, uy A dz = £u A dzje, where 1€ is the complementary multiindex of 1.
It follows that u; is pseudomeromorphic. Thus (ii) is proved.

Now (iii) immediately follows. It is enough to prove (iv) for u of bidegree (0, *).
We notice that 9 5

=
0z 8,2@
and thus (iv) follows from (iii) since du is pseudomeromorphic.

—Ou

Let us now consider the case with W. If u € W, then f[1/h]u = 1x\yn)p = p1 s0
(i) follows. To see (ii) just notice that
/
Lyp =Y (lypr) Adzr,
=p
and hence p has the SEP if and only if each p; has. Now (iii) follows directly. For
(iv) we need the following simple but useful lemma.

Lemma 11.2. A current yu € PM, is in W, if and only if it has a representation
~ > n
¢

where no 1, has elementary support contained in any set 7'V, where V has positive
codimension in X,.

This lemma is a simple consequence of Lemma 6.2 above. Now (iv) follows for
w € W, just noting that if the elementary support cannot decrease under the action
of 0. O

12. TENSOR PRODUCTS AND DIRECT IMAGES UNDER SIMPLE PROJECTIONS
Lemma 12.1. If T € PMX and T' € PMX' | then T@ T' € PM(X x X').

Proof. 1t is enough to consider T' = 7,7 and T" = 7,7/, where 7 and 7’ are elementary
and 7 and 7 are as in (3.2). However, the mapping 7@ 7’: U x U’ is a composition of
modifications, simple projections, and open inclusions. To see this, just notice that
if p: Y — X is a modification, a simple projection, or an open inclusion, then the
same holds for p® I: Y x Z — X x Z. Now 7 ® 7' is elementary in U x U and
TRT =(rr )T O
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It is easy to verify that
(12.1) 1V><V’T®T/ =1yT® ]_V/T/.

Lemma 12.2. Assume thatp: ZxW — Z is a simple projection. If yu is in PMZ*W
and p~ K N supp p is compact for each compact set K C Z, then pyu is in PM?Z.

Proof. Since being pseudomeromorphic is a local property, multiplying p if necessary
by a suitable cutoff function we can assume that p has compact support. By com-
pactness and a partition of unity we then have a finite representation p = >, m,7.
Now the lemma follows from the very definition of PM. O

Example 12.3. If p is a simple projection X x X’ — X, we can take any test form y
in X’ with total integral 1. Then the tensor product 7 ® x is en elementary current
in X x X’ such that p.(t ® x) = 7. O

It follows from Example 10.1, tensorizing with 1, and a linear change of coordinates
that bA (0b)*~1 is almost semi-meromorphic in C" x C™ if b = 9|¢ — z|?/27i|¢ — 2|2, If
X is a domain in C" then weighted integral kernel like K = (g Au)p n—1 in as in Ch?.
Section 77 is almost semi-meromorphic in X x X. Now let i be pseudomeromorphic
with compact support in a domain X C C". Then p ® 1 is pseudomeromorphic in
X x X and thus K Ap := KA(u®1) is pseudomeromorphic in X x X. Notice that this
product is unproblematic since, after a linear change of variables locally, it is a tensor
product. Since K is almost semimeromorphic it is the limit of x(|¢ — z|/¢)K and
hence the product K A p considered as a tensor product coincides with it considered
as product of an almost semi-meromorphic current and a pseudomeromorphic current
in X x X as in Theorem ?77.

It follows that we can apply the simple projection p: X, x X, — Z. and get a
pseudomeromorphic current Ky that is precisely the bla from Section 777. We thus
have the Koppelman formula

p=0Ku+ Kou+ Pu,

and that all terms are pseudomeromorphic.
In particular it follows, cf., the proof of 777 (the case with general currents) that

0— 0O — PMopyo i PMo1 —

is a fine resolution of @ when X is smooth.

Fasy to see that can “divide” by h: Say more: Ky is in W.

Proposition 12.4. The integral operators K, P map pseudomeromorphic currents
with compact support into W and any pseudomeromorphic into W if K, P have com-
pact support with respect to (.

Proof. Assume that p € PM has compact support and that V has positive codi-
mension. In view of (10.5) and (12.1) we have

Iy Kpu=1yp.(KAp®1) =pi(lenxy (K Ap®1)) =
p*(K A 1(C”><V(M ® 1)) = p*(K ANlenp ® 1V1) =0,
since 11 = 0. The argument for P is even simpler. O

We can now provide a completely different proof of Proposition 11.1.
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A new proof of Proposition 11.1. (This proof is not elaborated in detail!) First as-
sume that p is in W. As in the previous proof we then have that h[1/h|u = p. Notice
also that ho[1/h]u = Oh[1/h)p = Ou so (i) is proved for 7 = O where u isin W. In
the general case we may assume that p has compact support in C". Let K be the
Bochner-Martinelli integral operator. Then

p=0Kpu+ Kopu.

Now (i) follows in view of Proposition 12.4.

Notice that if p is pseudomeromorphic and p A dz is in W then p is in W. Now
take a general p in P Mg, with compact support and apply Koppelman’s formula
again. It is not hard to verify that

K(puNdz)=KuANdz

if K is the Bochner-Martinelli integral operator and g is any current with compact
support. If now p A dz is in PM, then O(u A dz)) = Op A dz is in PM and hence
K(O(u A dz)) = K(Op) Adz is in W and in particular in PM. In the same way,
K(pNdz) = KpAdzisin W and hence Ky is in W. We conclude that if p A dz is
in PM, then p is in PM.

man fixar sedan allmanna fallet emd dz; och (iii)
(iv) follows as before from (ii). However we want to give a completely different

proof:
(iv) Let 7 be any current on X and consider the current

=70 dw

2miw?

on the manifold X’ = X x C,,. Clearly 7" has support on X and we claim that it
has the SEP with respect to X. In fact, 7/ = 1x7’ so that if 7 is the projection
(z,w) +— z, then

lym =1 ayax™ = Loyl =1, y7.
Moreover, if h(z) cuts out V in X, then
(12.2)
lyxc,™ =lim(1 — x(|h(2)|/e)7" =lim(1 — x(|h(2)]/€)T @ 5%12} =1lyT® 5%;) =0.
Now let us make the change of variables
n=0—w, z=¢,Jj=2,...,n wW=uw,
and let p be the natural projection (¢,w) +— (. Since

= dw RS
05— 5-&6(w) = 5~(0)

it is readily verified that p,7" = 907/(;. Now,
1y (07/C1) = 1yper = p*(lp—lvT/)) =p.0=0,

cf., (12.2), and thus 07/(; is in W¥X.



58

13. LOCAL REPRESENTATION OF Wgx

Assume that X is smooth. Let Z C X be a smooth submanifold of codimension p
and let us choose local coordinates (z,w) such that Z = {wy = --- = w, = 0}.

Lemma 13.1. Fach p € PM)Z( of bidegree (0,k) has a unique representation as a
finite sum

= 1
la|=p
where [, are in PMgk,p. Moreover, u € W%( if and only if each g is in W2,

Here

e o o

Proof. ? 7 ?

14. PSEUDOMEROMORPHIC CURRENTS ON REDUCED SUBVARIETIES
Theorem 14.1. Assume thati: X — Y is an embedding of a reduced pure-dimensional
space X into a smooth manifold Y .

(i) If T is in PMX, then i1 is in PMY, and if T is in WX then i.T is in WY.
(i) If T is in CX and i.7 is in PMY, and in addition,
(14.1) 1x,,,0T =0,
then 7 is in PMX. If i1 is in W}(/, then T is in W*X.
That is, we have the natural mappings
iv: PMX S PMY | i WY S WYL

Notice that the condition (14.1) in (ii) is automatically fulfilled if i.7 is in W¥.

As already mentioned the proof of Theorem 14.1 relies on the existence of a strong
desingularization, see, e.g., [?] and the refererences given there. This means that there
is a smooth modification p: Y — Y thatis a biholomorphism outside Xg;,4 and such
that the strict transform X of X is a smooth submanifold of ¥ and the restriction P

of p to X is a modification p' X — X of X. Thus we have a commutative diagram

X 5y
(14.2) Wb
X 5 Y

Proof of Theorem 14.1. First assume that X is a smooth submanifold. The state-
ment (i) is local so we may assume that ¥ = X, x C" and i(z) = (2,0). It is easily
checked that 7,7 is equal to the tensor product

(14.3) p=1A[w=0]
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where [w = 0] means the point evalutation at 0 € C". In view of Lemma ?7 it is then
pseudomeromorphic since [w = 0] = 91 A dw(2mi)~" is. For a test form & = £(z, w),
we can write £ = ¢’ + &”, where £ contains no occurrences of dw; or dw;. Then

il =10 =10 =1.8(-,0) = p.€,
cf., (14.3), and hence i,7 = p is pseudomeromorphic in Y. Now assume that i: X —
Y is arbitrary and consider (14.2). Any 7 € PM(X) can be written p,7 for some
T e PM()?) according to Proposition 4.10. By the first part we now that ,7 is
pseudomeromorphic in Y. Thus i,7 = ixpLT = pyiy7T is pseudomeromorphic in Y,
and so the first part of (i) is proved.

Assume that V' C X has positive codimension. Since i~'V = V we have, cf., (??),
that 1y 4.7 = i41y7. Thus 7.7 is in W}g if (and only if) 7 is in WX and so the
second part of (i) follows.

We now consider (ii). Again assume first that X is smooth. Again the statement is
local so we may assume that Y = X, xC],. Let 7: Y — X, be the projection (z,w) —
z. Since i, 7 is pseudomeromorphic by assumption also p.i.7 is pseudomeromorphic.
Now,

PuisT 06 = 1,70 " = 0,7 (-, 0) = TE,
for all test forms &, and hence p,i,7. We conclude that 7 is in PMX. Thus (ii) holds
in case X C Y is smooth.

Now assume that i: X — Y is general, p := i,7 € PM(Y), and consider (14.2).

We claim that p = p.fi, where i € PM(Y'), i has support on X, and 1-1x,, it = 0.
To begin with p = p,ji for some i € PM(Y) according to Proposition 4.10. Since

0 = y\xpsft = P(L55 o1 x A1),

cf., (?7), we have that = p.y/ where p// := 1,-1x /1 has support on p~'X. Notice
that this set is in general much larger than the strict transform X of X. Now

’u/ = 1p71Xsingl’L/ + 1p71(X\Xsing)’u’/
and, by assumption (14.1), 0 =1x_,, p = pil,-1x,,, ', and thus g = p.ji where

= 1pfl(X\Xsmg)M'

has support on the closure of p~!(X \ Xgny) which is (contained in) X. Thus the
claim is proved. N

Next we claim that fi = i,7 for a current 7 on X. In fact, let & is a test form
on Y such that i*¢ = 0. Since p is a biholomorphism outside p_lXSmg, ENp =0
there since y = 4,7 there. Since fi has support on X it follows that EN = 0 outside
Xn p1X sing, and hence £ A [i = 0 by continuity. Thus the claim follows.

From the smooth case we know that 7 is pseudomeromorphic and therefore p,7
is pseudomeromorphic as well. Finally, i,p.7 = pyisT = pefi = p = ix7 and thus
p,7 = 7. Thus 7 is pseudomeromorphic. The second part of (ii) is verified as the
second part of (i). O

15. COMMENTS TO SECTION 77

Repeated limits very similar to Coleff-Herrera’s original definition.
Eller att detta i en remark.
Can prove that indeed coincide, see Larkang-Samuelsson
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The sheaves Bi{ were defined in this way in [23] but introduced earlier by Barlet,
[15], in a different way, see [23, Remark 5].



Chapter 3

Coleff-Herrera currents

We shall now consider an important sheaf of residue currents whose annihilator
ideals

The prototype is the CH product which is a

We shall now generalize Example 777.

0.1. The Coleff-Herrera product. We say that the tuple f = (fi,..., fm) of
holomorphic functions on X is a complete intersection on X if codim V(f) = m,
where
V(f)={fm="=f=0}

If f is defined in a neighborhood of z € X we say that it is a complete intesection
at x if the germ of V(f) at x has codimension m. This holds if and only if fj is a
regular sequence in the local ring O,. If fi is a complete intersection at z, then also
each subset of f; is a complete intersection (a regular sequence in O,). Notice that
fj is a complete intersection on X if and only if it is a complete intersection at each
point x € V(f).

Theorem 0.1. Assume that (fi,..., fm) is a complete intersection at x. Then
=1 -1

0.1 Fmresft .= 9 N ND—
( ) : fm fl
is O-closed, has support on V(f) and is anti-commuting in fj. Moreover,

1 -1 =1 = 1 -1
0.2 —0 AN NO— =20 A NO—
(02 P i i
and

1

1 -1
A+ ANO— =0.
Jm—1 f1
The (germ of a) current pf is called the Coleff-Herrera product defined by the
tuple (f1,..., fm) at z.

Proof. Since each subset of f; is a complete intersection at x we can proceed by
induction over the number m of factors. The theorem is clearly true if m = 1.
Suppose it is proved for k£ and consider

(0.3) fméf—m AD

1 -1 =1 =1 =1 1
T=—0—-N...NO——0—N...NO—+ —.
Tet1 fr i Je fi fen
By the induction hypothesis p/1fk has support on V(f1,..., fx). In view of (7.3),
the pseudomeromorphic current 7' must have support on V (fx11, f1,.-., fr). Since

this set has codimension k41 and T" has bidegree (0, k) it follows from the dimension
principle that 7' = 0. By Leibniz’ rule (7.2) we get

'ufk+1,fk~-~,f1 _ (_1>kufk,~-wf1,fk+1.

It follows now (using the induction hypothesis again) that plettfef1 i anti-commuting
in f;. Notice that

Mfk7"'7f1 Mfk?"':fl fkv"':fl

1
- fimrngl =1y, M
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has bidegree (0,k) and support on V(fxi1, fk,.-.,f1) so again by the dimension
principle it must vanish, i.e., (0.2) holds. Finally we get (0.3) from (0.2) and Leibniz’
rule. O

One can define pf in almost any reasonable way if one just avoids limits by cutoff
functions X[1,0), see the discussion in Section 7?7 below.

0.2. The Koszul complex. Let f = (f1,..., fm) be a tuple of holomorphic func-
tions on X. Let E be a trivial vector bundle of rank m with global frame eq,..., e,
and let e;'f be its dual frame for the dual bundle E*. If we consider f = ) ; fje;'f as
a section of E*, it induces a mapping d; on the exterior algebra AE. We will also
consider differential forms and currents with values in A. For instance &y j(A‘E) is

the sheaf of smooth (0, k)-forms with values in A*E which we consider as a subsheaf
of the sheaf of the bundle A(E @ T*(X)). Thus a section v of & (A‘E) is just a
formal expression

where vy are smooth (0, k)-forms, and with the convention that dz; Ae; = —e; A dZ;
etc. In the same way we have the sheaf Cy (A'E) of A*E-valued (g, k)-currents, etc.
Notice that both 0 and ¢y act as anti-derivations on these sheaves, i.e.,

d(v Aw) = 0v Aw + (—1)%8Y A Jw
if at least one of v and w is smooth, and similarly for d;. Moreover, it is straight
forward to check that
(0.4) 570 = —06;.
If we let

V=07 —0.
it follows from (0.4) that
(0.5) Vi =0.
Notice that V; is also an anti-derivation. If
LF = @®;Co k(N E),
we get the complex
Vs k-1 vy rk vy rk+1 Vy ‘

For instance, a section of £~ is of the form v = v +- - - 4+ vy, where vy, is a (0, k —1)-

current with values in A¥E. More formally, (0.4) means that Co ;(A*E) is so-called

double complex, and £* with the mappings V 7 is the associated total complex.
The Dolbeault-Grothendieck lemma for currents means that

(0.6) 0000202

is exact. Thus the double complex C%*(A’E) is exact in the k-direction except at
k = 0, where we have the cohomology sheaves O(A‘E). By standard homological
algebra it follows that the natural mapping

Ker (O(A'E) “ O(A*1E)) _ Ker (£ T4 £+1)

(0.7) ~
Im (O(AE) 2 OME))  Tm(£-1 4 £-0)
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is an isomorphism, cf., 7777 Ch.0. We can just as well replace C by £. In particular,
the case k = 0 has the following two useful implications; let e = e; A ... A e, and
let 7 = J(f) be the ideal sheaf generated by f;, i.e., the image of 6;: O(E) — O.

Lemma 0.2. (i) If there is a current v in L' such that Vv = ¢, then ¢ belongs
to J.

(i) If pNe € Cop(APE) and Vy(puNe) =0, then there is a function ¢ € O, unique
in O)J, and a current v in L1 such that Viv=1—phe.

For the reader’s convenience, and for further reference, we supply a direct proof
of the lemma.

Proof. Let v = v1+ ...+ vy, where v, € Cox—1(A*E). Then vy, = 0 and since (0.6)
is exact we can solve dw,, = n,, locally. Now, O[vy,_1 + dpwm| = OVp—1 — 5f5wm =
V1 — dfvy = 0 and so we can solve W1 = U1 + d fwp,. Continuing in this
way we finally get that 1) = v + dyws is a holomorphic solution to d;1) = ¢. The

second statement is verified in a similar way. O
Let 0 = Zj(fj/|f|2)ej in X \ V(f) and notice that éfo = 1 there. Since
(0.8) Vio=1-0c
has even degree and the scalar term is nonvanishing, cf., Ch 0 7?7, we can form
o
(0.9) u= Vo
and by the functional calculus, using (0.5), we have that
(0.10) Viu=1

in X \ V(f). From (0.8) we get the more explicit representation
u=0-+0ANdo+aA(Dc)*+---+oA(0c)"

so one can verify (0.10) directly as well. This form u in £~! will be of fundamental
importance later on.

0.3. Duality theorem for the Coleff-Herrera product. Assume now that f =
(fi,..., fm) is a complete intersection at = and let u/ be the associated Coleff-Herrera
product. It follows from Theorem 0.1 that fjpf =0, i.e., puf = 0 for all ¢ in the
ideal J(f)z. On the other hand it is clear that the annihilator ann /) i.e., the set
of functions in O, such that the current ¢u/ vanishes at z, is an ideal in the local
ring O,. We shall now see that this ideal is in fact equal to J(f).,.

Consider the current

1 1.1 11 =1
(0.11) v:Eel—|—£(9E/\€1/\62+E85A8E/\61/\62/\63+---:
€1 €9

€1 es =€9 €1
LR DL DY LY 1 S
i fo A fs fo N

A simple computation, using Theorem 0.1, yields that
(0.12) vazl—uf/\e.

Proposition 0.3. Let f be a complete intersection at x and assume that there is a
current U such that VU =1—puANe. Then annp = J(f)s at x.
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Proof. 1If ¢ € ann p, then VU¢ = ¢—puie = ¢ and hence ¢ € J(f), by Lemma 0.2.
Conversely, if ¢ € J(f)s, then there is a holomorphic ¢ such that ¢ = §sp =V fl/}
and hence ¢pu = Vyp A= Vy(p Ap)=0.

In view of (0.12) we get

Theorem 0.4 (Duality theorem). If f is a complete intersection at x, then annuf =
T(f)a-

Ezxample 0.5. We also get a simple proof of the well-known fact that if f is a complete
intersection on X, then the sheaf complex

0—OM"E) L o) % . L onE) Lo -0/T -0

is exact.
In fact, if x € V(f), then f is a complete intersection there. Let ¢ be a section of
O(AFE), k > 1, such that dr¢p = 0. If v is the current in (0.12), then

ViwAg)=(1—p/ Ne)no =0,
since eA¢ = 0 for degree reasons. By (0.7) we get a holomorphic solution to ¢ = ¢.
On the other hand, if x is outside V(f), then f; # 0 for some f;. Given ¢ such that
dr¢ = 0 we can then take ¢ = e; A ¢/ f;. O

0.4. Coleff-Herrera currents. The Coleff-Herrera product is the model for a slightly
more general kind of currents called Coleff-Herrera currents.

Definition 3. Let V' be an analytic variety in X of pure codimension p. A (0,p)-
current g with support on V is a Coleff-Herrera current on V, u € CHy, if it is
0-closed,

(0.13) Iyp=0,

and it has the following property: For any holomorphic function h that does not
vanish identically on any irreducible component of V',

(0.14) lim x(|h[*/€)p = p
I X~ X[1,00)-

It is clear that CHy is a sheaf of O-modules. The property (0.13) means that hy =
0 for any holomorphic h that vanishes on V. The last property is called the standard
extension property, SEP, (with respect to V') and means that u is determined by its

values on V'\ 'Y for any hypersurface Y not containing any irreducible component of
V.

Ezample 0.6. If y € PMoy has support on V, then 1y ;)p = 0 by the dimension
principle, which can be expressed as (0.14), cf., (7.5). Moreover, from Proposition 5.2
it follows that (0.13) is fulfilled. If in addition Ou = 0 therefore p is in CHy. In
particular, if f is a p-tuple such that V' (f) has codimension p and is contained in V',
then the Coleff-Herrera product p/ is in CHy . O

The sheaf CHy is important for several reasons. For instance, each element in
the local (moderate) cohomology sheaves H[V} has a unique representative in CHy,
i.e., the natural mapping CHy — H[V] is an isomorphism, see Section 4.11 below.

Another reason is that there is a close connection between Coleff-Herrera currents
and Noetherian differential operators. This will be discussed in Section 0.6.
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0.5. Basic properties of Coleff-Herrera currents.

Lemma 0.7. If ju is in CHy and for each neighborhood w of V' there is a current w
with support in w such that Ow = u, then p = 0.

The proof will also provide a description of ;1 locally on V4. Later on we will see
that a similar description holds even across the singular part.

Proof. Locally on V., we can choose coordinates (z,w) such that V = {w = 0}. We
claim that there is a natural number M such that

= 1 = 1
lo| <M —p w1 Wp

where a,, are the push-forwards of u Aw®*dw/(27i)P under the projection (z,w) — z.
In fact, since w;u = 0 and op = 0 it follows that doj Ap=20,35=1,...,p, and
hence p1 = podwy A ... A dwy,. Therefore it is enough to check (0.15) for test forms
of the form &(z, w)dw A dZ A dz. Since w;p = 0 we have by a Taylor expansion in w
(the sum is finite since p has finite order), cf., (1.6), that

l uAgmmmhAdz_E:/

;W

(z 0)—dw/\dz/\dz—
Z/aa 50 i(z O) dw/\dz/\dz(2m)
Za:/zaa(z)/wawaﬂ/\f(zw)dw/\dz/\dz.

Since p is O-closed it follows that a, are holomorphic. It follows from Corollary 1.9
that

=1
0 B
wp”

A 8— A alwf1 A dwp”/(2m)p =01 Bplw = 0],
w1
where [w = 0] denote the current of integration over V..
Now assume that 0y = p and 7 has support close to V. We have, for |5| = M
that

Ay A dwP) = (2miYPag_1(2)B1 - Bplw = 0].
If v is the component of v A dw® of bidegree (p,p — 1) in w, thus
dwv = Oypv = (2mi)Pag_151 - -+ Bplw = 0].

Integrating with respect to w we get that ag_1(z) = 0. By finite induction we can
conclude that 1 = 0 locally on V;..y. Thus p vanishes on V;.., and by the SEP it
follows that p = 0. O

We have the following uniqueness theorem:

Theorem 0.8. Let f = (fi,...,fp) be a complete intersection at x. If there is a
current solution v € L™' to Vyv=7Ae and 7 € CHy sy, then 7 =0.

Proof. Let w be any neighborhood of V' and take a cutoff function x that is 1 in
a neighborhood of V' and with support on w. Let u be the smooth form (0.9) in
X \ V(f) such that Vsu =1 there. Then

g=x—-0xAu
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is a smooth form in w and Vyg = 0. Moreover, go = 1 and g, = 0, k > 1, in a
neighborhood of V. Therefore,

Vilghv)=gor Ne=TAe,

and thus w = —(g A v),—1 is a current solution to dw = 7 with support in w. From
Lemma 0.7 we conclude that 7 = 0. U

Corollary 0.9. Let f be a complete intersection at x. If V;U =1 - puAe and
p € CHy (), then p is equal to the Coleff-Herrera product ul.

Proof. Take v as in (0.11) such that Vv = 1—puf Ae. Then V(v—U) = (u—pf) Ae,
and by Theorem 0.8 thus p = /. (]

Corollary 0.10. Let f be a complete intersection at x. If i € CHy 5y and J(f)p =
0, then there is a holomorphic function v, unique in O)J(f), such that p = pu’.

Proof. From the assumptions it follows that Vyu A e = 0. In view of Lemma 0.2
there is a function ¢, unique in O/J(f), such that ¥ — uAe = VU for some current
U e L;'. Now take v € £;! such that Vv = 1—uf Ae. Then V(o) = v—1pul Ne.
It then follows from Corollary 0.9 that p = vuf at . (]

The corollary can be expressed more algebraically as saying that the mapping
¢ — ¢pd A e induces an isomorphism

O/J(f) = Homo(O/T(f), CHy (1) (A"E))

at z, where CHy () (APE) denotes the sheaf of currents in CHy () with values in the
vector bundle APFE.

This isomorphism only depends on the section f of F, and not on the choice of
frame, i.e., the current uf A e is independent of the frame. In fact, let e;- be another
frame of F, let (e;)* be its dual frame, and let fj’ be the corresponding functions so
that

file)) + -+ fp(6p)" = frel + -+ foey
and let p/" denote the associated Coleff-Herrera product d(1/f]) A ... A d(1/ Ip)-

Then since 0y is an invariant operation on AE, we have a current solution to V V' =
1—pl neife :=e|A... A e),- By Corollary 0.9 we conclude that

(0.16) w ne=pl" Ne

This equality can be rephrased as the so-called transformation law for the Coleff-
Herrera product:

Corollary 0.11 (Transformation law). Assume that f; is a complete intersection at
x. If g is a holomorphic invertible p X p matriz and f' = gf, then
1 =1 =1 -1
fp fl P fl

We will see later on that the same formula holds for any g such that also f’ is a
complete intersection.

(0.17) 0

Proof. Let € be the frame such that e*f = (¢/)*gf. Then ¢’ = eg? and thus €} A
.. Nej,y=detgTe; A... Aeyp. Now (0.17) follows from (0.16). O
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We can just as well consider the sheaf
CHY = CHy (AFTY (X))

of (k,p)-currents in CHy. If u € CHY, and J(f)p = 0, then in view of Corollary 4.3
there is then a holomorphic (k, 0)-form ¢ such that u = u/v.

Ezample 0.12. We claim that the Lelong current [V] is a section of CHY},. In fact,
it is a (p,p)-current that has support on V and is even d-closed. Moreover, it is
clearly annihilated by Iy,. To see the SEP, let h be a holomorphic function that does
not vanish identically on (any irreducible component of) V', and let 7: V' — V be a
smooth modification. Then

| xtnkrog= [ ximnprome— [ we= [ ¢

for test forms &, by the dominated convergence theorem since the zero set of 7*h is
a set of measure zero on V.
If z are local coordinates at  we thus have that

where 77 are in CHy at z. Since certainly J(f)[V] = 0 it follows from Corollary ?7
that there are holomorphic functions a; such that 77 = a;uf, i.e.,

/
Vi=p NA=pf A Z ardzy.
[I|=p
We will see later on that one can choose

A=adfi A...Ndfy,

where « is a suitable holomorphic function, that is constant on each irreducible
component V; of V' at x. O

We have the following structure result for Coleff-Herrera currents.

Corollary 0.13 (Structure theorem for CHy ). Let V' be any variety of pure codimen-
sion p. Any pu € C'H{“/ is locally of the form b N\ u9 where g is complete intersection
and v is a holomorphic (k,0)-form.

Proof. Any V' of pure codimension p is locally a subset of V(f) for a complete

intersection f = (fi,..., fp); this follows from the local parametrization theorem
structure ?????. For sufficiently large M, g = (f,..., fé\/[) will annihilate p € CHy
and hence u = ¥u9 according to Corollary 4.3. O

Corollary 0.14. If i is a Coleff-Herrera current, then its annihilator sheaf annp is
coherent.

Proof. Locally we have that ann pu is the ideal of ¢ in O such that ¢ is in the ideal
J(g). Since O/J(g) is coherent it follows that ann p is coherent. O

It follows from Corollary 0.13 that any Coleff-Herrera current is pseudomeromor-
phic. In view of Example 0.6 we therefore have

Corollary 0.15 (Characterization of CHy ). The sheaf CHy is precisely the subsheaf
of p € Wi such that Op = 0.
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In particular, in view of Example 0.12, all Lelong currents [V] are pseudomero-
morphic.

Ezample 0.16 (Poincaré-Lelong’s formula). Let g be a holomorphic function in X
with multiplicity ay on the irreducible component V; of V= V(g). Then

(0.18) 8; Ndg/2mi = Zag[Vg].
l

In fact, in a neighborhood © C X of any point on V4 \ Viing we can choose holomorphic
coordintes z such that g = 2. Noting that [z; = 0] considered as a current in C" is
the tensor product of the current [2; = 0] in C and the function 1 in C"~!, we now

har!!) that

=1 =1
0— Ndg/2mi = 0—g; N dz7"/2mi = ay[z1 = 0]
g 1

in Q. Thus (0.18) holds in X \ V. However, since both sides are pseudomero-
morphic (p, p)-currents, and Vg has codimension at least p + 1, it follows from the
dimension principle that (0.18) holds in X. O

Corollary 0.17. Suppose that V has pure codimension p and V' is a subvariety of
V' of the same dimension, i.e., a union of irreducible components of V.. Then CHy
is precisely the currents in CHy that have support on V.

Let A be a hypersurface such that V' N A has positive codimension and let CHy (A)
denote the sheaf of Coleff-Herrera currents on V' with possible poles at A. This means
that u € CHy (A) if and only if there is a holomorphic function h with V(h)NV C A
such that & = hy is in CHy . Notice then that

1
0.19 = —l.
(0.19) p= i
In fact, (0.19) holds outside A, and hence it holds across by the dimension principle.
It follows that .
Ou =0+ N fi
) p=0oNp
is a 0-closed current in PM, 1 with support on V N A and thus it is in CHyna in
view of 777.
Proposition 0.18. The operator 0 re is a well-defined mapping
0: CHy(A) — CHyna.

0.6. Noetherian differential operators. Ev flytta allt om BM-strommar till sec-
tion 6 7777

Let p € CHy,x and let J = ann p, i.e., J/O, is the ideal of all ¢ such that ¢u = 0.
We shall now see that J is described by so-called Noetherian differential operators.

Theorem 0.19 (Bjork). Let V' be a germ of an analytic variety of pure codimension
p at 0 € C". There is a neighborhood Q of 0 such that for each pn € CHy (Ey) in
Q, there are holomorphic differential operators Lq,...,L, in  such that for any
¢ € O(Ey), up = 0 if and only if

(0.20) Lip=--=L,p=00n V.
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Proof. Tt follows from the local normalization parametrization?? theorem that one
can find holomorphic functions f1,..., f, in an open neighborhood {2, forming a
complete intersection, such that V' is a union of irreducible components of V(f) =
{f = 0}, and such that
dfi A...ANdfp #0

on V \ W where W is a hypersurface not containing any component of Vy. By a
suitable choice of coordinates ((,w) € C" P x CP we may assume that W is the zero
set of

of
h = dta—
Let
z=¢ w= f((w).
Since o ) of
zZ,w) I 0 _ (223
d(C,w)_det OF10C Of 0w —detaw,

locally outside W, (z,w) is a local holomorphic coordinate system. Take p € O(Ef).
From Corollary 4.3 we know that there is an M and a holomorphic function A such

that
= 1

AR ryvens
p

Since (z,w) are coordinates locally in 2\ W, by a Taylor expansion of w +— A(z,w)
we see that

K= Aa fM+1

OM=A(z,0 I | -1
/ MSZ’ ) O—5N...NO—5~
=0 0Las owM=-a (M — «a)! wp” wy”
there. In view of (1.6) therefore
M= A(z,0) 9>
(0.21) (, €dz A dw A di) / Z oM a Guga

=0 p<a<M

Notice now that ¢pu = 0 in Q \ W if and only if for all é with support in Q\ W,

(0.22) 0 = (Gp, Edz A dw A dib) = / Z Qz¢a 7
=0 g<p<m
where
Z aM ap a— —/
« a—L~0"
(<a<M 8'LUM aw

However, by applying to £ = w®n for appropriate a (induction downwards) it follows
that (0.22) holds for all £ € D(Q\ W) if and only if Qep =0 on VN (Q2\ W) for all
(< M.

Notice now that
% ac I 01! I 0
{55 i‘}}:[@f w] = | _(ar\-lor (ofy-1
0z ow ( ) (8w)

and hence
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where 7 is a holomorphic matrix. It follows that

0 owy, 0 1 0
0.23 = S L2
( ) 8U)j zk: 8wj 8wk h zk: ik &uk

It follows from (0.23) that @, are (semi-)global differential operators of the form
Q¢ = Ly/hY, where £, are holomorphic. Now, ¢u = 0 if and only if ¢p = 0 on
X \ W by the SEP, and this holds as we have seen if and only if Ly =0 on V \ W
which by continuity holds if and only if £y = 0 on V. Thus the proposition is
proved. O

Notice that if

oM A oo
3

@ M —a gy
0<a<M

and ¢ is any test form of bidegree (n,n — p) with support in Q \ W, we have from
(0.21) that

6= [ Quo/mw-e.
It follows from the proof that

-y , OMA o

wM « awa’
a<M

a priori defined in Q\ W is equal to @ = L/h for some N where L' is a holomorphic
differential operator in 2. Moreover,

o0 1
ow W
where 7 is a holomorphic section of APTj ((£2) in §2. Notice that there is a holomorphic
differential operator £ such that £'(h=Pn) = h=" Ln. We now have

Proposition 0.20 (Bjork). Given p € CHy there is a neighborhood Q of x, a holo-
morphic differential operator L, a holomorphic function h not vanishing identically
on any irreducible component of V', and a holomorphic (p,0)- vector field T such that

(0.24) 106 = [ 7L, €€ Dumpl@)

The right hand side here is defined as a principal value integral.

Proof. With the notation in the preceding proof and discussion we know that (0.24)
holds for £ with support in Q\ W. In view of the dimensional principle it is therefore
enoughto see that the right hand side defines a pseudomeromorphic current in €.
Let £* be the formal adjoint of £ in €). Then the right hand side is £ the action
of the current
=L (hM V)
on £, and this current is pseudomeromorphic according to Proposition 11.1. O

It follows that there is a holomorphic differential operator N such that
p=1-(h"MNV]).
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1. VANISHING OF COLEFF-HERRERA CURRENTS

If 4 € CHy(X) and X Stein, then we can solve dv = p in X. Notice that such a
solution v defines a Dolbeault cohomology class w* in X \ V' that only depends on p.
We shall see now that p = 0 if and only if w” = 0. In particular this implies that the
annihilator ann y is the ideal of holomorphic functions ¢ in X such that ¢w" = 0.

Theorem 1.1. Assume that X is Stein and V' C X has pure codimension p. If
w € CHy(X) and v = p in X, then the following are equivalent:

(i) p=0. )

(11) For all ) € Dy p—p—1(X \'V) such that 0y =0 in some nbh of V we have that

/v/\ézﬂ—o.

(i4i) There is a solution to Ow = v in X \ V. B
(iv) For each neighborhood w of V' there is a solution to du =v in X \ w.

Proof. 1t is readily checked that (i) implies all the other conditions. Assume that (ii)
holds. We can mimick the proof of Lemma 0.7 above: Locally on V., = {w = 0} we
have (0.15), and by choosing &(z,w) = ¥(2)x(w)dw® A sz A dz for a suitable cutoff
function x and test functions 1), we can conclude successively from (ii) that all the
coefficients a,, vanish, so that g = 0 there. It follows by the SEP that u = 0 globally.

Clearly (iii) implies (iv). Finally assume that (iv) holds. Given % in (ii) we can
choose w such that 91 vanishes in a neighborhood of @. Then

/V/\@Q/) /w/\c%/) )=0

by Stokes’ theorem, so (ii) holds. Alternatively, given w D V choose w’ CC w and

a solution to ow =V in X \ W' If we extend w arbitrarily across w’' the form
U =V — 0w is a solution to OU = p with support in w. In view of Lemma 0.7 thus
u=0. 0

Corollary 1.2. Assume that f defines a complete intersection at x and V = V(f)
and assume that Ov = pf in X \'V, where X is a small Sein neighborhood of = in
X. Then ¢ € O is in J(f)s if and only if

/(;51) AOY =0
for all v € Dy y—p—1(X) such that 0p=0onV.
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Bochner-Martinelli type residues

Again let f = fie] + -+ + fpe, be a holomorphic section of the dual E* of a
trivial vector bundle £ — X. For the moment we also assume that f; form a
complete intersection at some given point x. We have seen that the AP FE-valued
current pf A e is invariantly defined. However, the current v in (0.11) such that
Viv=1- u! A e certainly depends on the choice of frame ej. Moreover, although
the residue current is only singular on the set V(f), the current v is singular on
the hypersurface fif2--- f, = 0. Let us try to find a somewhat more invariant such

current by taking mean values in the following way. Let a = (a!,. .., aP) be a p-tuple
of elements in CP and consider the current
al-e a?-e _al-e
Vo = + AO 4+

al-f  a?-f al.f

te=afe +- —i—ozf)ep and o - f = afe; +- —i—af)fp. As long as o/ are linearly

where «
independent, this is just the current corresponding to the new frame e; =l e

Jj=1,...,p, and hence Vjv, =1 — u! Ae. Notice that v, actually depends only on
[o] = ([@],.... [a]) € (PP1)P.
Lemma 0.3. Ifa € (CP)* and a # 0, then

G-e a-e

/WI 570 = e

where dt is the (normalized) Fubini-Study metric on PP~ 1.

Proof. It will follow from the argument below that the integrand in the lemma is
integrable so the integral exists. It is clear that

B-e B-e
Pl = 2 s
/[B]eml f-a @) /ﬁll B-a ).

where dS' is normalized surface measure on the unit sphere in CP. By obvious homo-
geneity it is enough to assume that |a| = 1. First assume even that a = (1,0,...,0).
Then the integral is

prer + [aea + - -
/ as(p),
18]=1 B
so the integrand is integrable, and the integral is in in fact equal to e; for symmetry
reasons. Thus the lemma holds for this particular a. If |a| = 1, take a unitary

mapping A such that Aa = (1,0,...,0). Then

. to. .
a-e:a'A*Ae:Aa-Ae:/ ﬂAedSZ/ Atﬂedsz/ b 6d57
Bl=1 0 - Aa pl=1 A6 - a B=1 0 a

by the rotational invariance of dS. ([

Outside V(f) we thus have that

/ Va=0+0ANIo+0A(D0) +--- = u,
[a]e(Pr=1)p
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where

7
It is thus reasonable to guess that if we can extend this smooth form wu across V(f)
to a current U, then VU = 1 — p! Ae. This is indeed the case as we shall see
now. However, we shall consider slightly more general currents u corresponding to
an arbitrary Hermitian metric on F.

fe
5

0.1. Bochner-Martinelli type residues. Let now £ — X be any Hermitian vec-
tor bundle of rank m and let f be a global holomorphic section if the dual bundle
E* — X. Locally we can choose a holomorphic frame ey, ..., ey, so that f =>_ fjej-.
To begin with we do not assume that f is a complete intersection. If F is trivial we
can fix a global frame e; and choose the metric on E so that e; is orthonormal. Let

g = E ajej
J

be the pointwise minimal solution to fo =1 in X \ V. If the metric on E* is given
by the Hermitian positively definite matrix hj, so that

2= fifkhje,
i

then it is easily checked that

fihik
7= 2
k
In X\ V we define

uz%}jza%—a/\(‘)a#—...—i—a/\(aa)ml.

It follows immediately that
Viu=1
in X\V.

Theorem 0.4. The function X — |f|**u has a current-valued analytic continuation
to Re A > —e. The value at A =0,

U = |f[*ulr=o,
is a PM-current in X that coincides with u on X \'V, and
V;U=1-R,

where
R = 0| f|** A ulr=o

is a current with support on V.

Since R is pseudomeromorphic and has support on V(f) it follows that it is anni-
hilated by h and dh for h € Iy,. By the dimension principle we hav that

R:RcodimV+"'+Rm'
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Proof. If f = fof" = fo(fi,---, f), where f’ # 0, then

L

Jo

where ¢’ is smooth across V. In fact, fr, = fof}, and |f|* = |fo|?|f'|* so that o; =

>k fehiw/ fo- Thus
(0.1) up = o A (9o)f1 =

g =

o
f5
where « is smooth.

Both the definition and the statement is clearly local and therefore we can assume
that the bundle E is trivial in i C X.

With a smooth principalization 7: X — X as in Section 7?7 above, we have

[ 1rPucng = /UZ 7 P (e o AT =
Z/ (Y £ g A (),

If we for each j choose a suitable partition of unity p;, we have a local coordinate
system ¢ in a neighborhood of the support of In view of (0.1) each terms is like

/ RIS A ) 7

and thus the proposed analytic continuation exists.
there, where fy is a monomial in ¢ and f’ is non-vanishing. In view of 777 it is
now clear that the analytic continuation exists and moreover, that

/L{ |f1P A Bla=o = ZT@ A () *
l

where each 7, has the form

Q

- m
in suitable local coordinates ¢, where o has compact support. Thus we have that
(0.2) Ui = Zmﬂfn.

¢

Moreover,

=1 o

T = 871 A\ 7T
tl t ..
Since

(0.3) V(I f[Pu) = [F2 = Ol A

and clearly |f|?* has a continuation to Re A > —e which is 1 for A = 0, the desired
continuation of the last term follows, and if we define the currents U and Rf as
the values of the corresponding terms at A = 0, then (1.4) follows from (0.3). In
particular, it follows that R has support on Y.

FIXA TILL !!!!
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Thus we have that
(0.4) Ry = Z Ty
V4

=1
T=20 a

Jar a a
tll t22 TT

It now follows that

Corollary 0.5. If € O and ¢R = 0, then ¢ € (f).

The algebraic meaning and generalizations will be discussed in 77?7 Let us just
see that this leads to a simple proof of the

Theorem 0.6 (Briangon-Skoda). Suppose that f = (fi,..., fm) and ¢ are germs at
0 such that |¢| < |f|™(m™) . Then ¢ € (f).

Notice that if f is a complete intersection, i.e., V' = V(f) has codimension p, then
R =R, and OR =0. Thus R = R, = p A e where p € CHy. In view of 7?7 and
Theorem 7?7 we thus have

Theorem 0.7. If f is a complete intersection then
R:Rp:,uf/\el.../\ep,
where p! is the Coleff-Herrera product (77).

Let us point out a direct proof of this remarkable theorem.

A direct proof of Theorem 0.7. Let v be the current from 7?7 so that Vv =1 TN

e. Notice that 5Ug = R/ and 9v, = p/ Ae. If ReA > 0, then |f|>*U/ is smooth
and hence

vf(|f|2)\Uf /\U) — |f|2>\’U N ’f|2>\U o 5‘f|2>\ AU A .
since |f|**uf = 0. Now
|fIPV [0 = v

since the difference is 1zv, that vanishes in view of the dimension principle, since v
has degree at most (0,p — 1). Moreover,

3’f’2)\ AU A U‘A:O =0

since again this is a pseudomeromorphic current of bidegree of a most (0, p—1). Thus
we have VA = v — U and in particular, —0A, = U, — v, so that 0 = dv, — U, =
u! Ne— RS, O

Corollary 0.8. Assume that f defines a complete intersection at x and V =V (f).
Then ¢ € Oy is in (f) if and only if

/qsquézp:o

for all ) € Dy p—p-1(X) such that ) =0 on V.
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We have already seen that if 4 € CHy/, then it can be factorized as p = u/, where
1 is holomorphic and f is a complete intersection (Corollary ??). The disadvantage
is that uf in general must have support on a larger set than V.

However, we shall now see (with basically the same argument) that if we choose
a tuple f with common zero set V' such that J(f)u = 0, then we can write, p =
codimV,

/
m= Z fIR{a
[Il=p
where &7 are holomorphic and

/
R}J; = Z R{ Ner.
lI1=p
Theorem 0.9. Let f = (fi,...,fm) be an arbitrary tuple in O,. Assume that
V = V(f) has codimension p and let V' be the components of pure codimension p.
Assume that u € CHy+ and that J(f)p = 0. Then there is £ € OL(A™ PE), with
0r& =0, such that

(0.5) ,u/\e:R};/\f.

Notice that if £ € Oy(A™PE), with §¢§ = 0, then Rg A€ is a O-closed (0,p)-
current with support on V’ (by the dimension principle) , and hence an element in
CHy/ (A™E).

In fact,

8(R£ NE) = 5fR:z{+1 NE= 5f(Rg+1 ANE) =0,

where the last equality holds since Rg 11 A& =0 for degree reasons.

Proof. Since Vy(uAe) =0, by (0.7) there is { € O(A™ PE) (with §;£ = 0) such that
Vv =& — puAe for some current v. On the other hand, V(U A §) = £ — Rine=
£ — R}j A € for degree reasons. It follows that there is a current w in £P~™~! such
that

Vfgw:Rg/\f—u/\e.
Now (0.5) follows from a slight modification of (the proof of) Theorem 0.8. O

0.2. A more geometric point of view. Again arbitrary f section of £* — X and
assume that m: X — X is a smooth modification such that 7 f = fOf', where f is
a section of a line bundle L — X and f'is a section of L™! @ m*E*.

Notice that the zero set |D| of f9 is precisely 71V (f). here D denotes the divisor
of FO. Will ne imortant later on. Over X we thus have, suppressing 7* on vector
bundles for simplicity in notation, that

(0.6) Elc

factorizes as
e
E-LtLc,
and we have a pointwise exact sequence

(0.7) 05 Lelt o,
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Notice that the holomorphic vector bundle S — X coincides with the kernel of (0.6)
over X \ 71V (f).

Since F and S already have got a Hermitian metric, we equip L~! = E/S with the
quotient metric. Let ¢’ be the minimal inverse of f’, i.e., so that ¢’¢ is the element
in F with minimal norm such that f'c€ = £. Then by definition of quotient metric
€| = |0’'¢|p. We claim that

™o =o'/ f°
on X \ |D|. In fact, orthogonal to Ker f that is the same as Ker f’ on this set.
Over X \ |D| we thus have that globally, cf., the proof of 77?7 in Section 77?77,

™ up = 7 (0 A (Do)Ph) = o' A (Do’ )k

1
(fO)*
It is clear now that u; admits an obvious (unique) semi-meromorphic extension across
|D| in X as the principal value current 1/(f°)* times the smooth form o’ A (9o”)F~1.
Moreover, since this current is the value at A = 0 of

[FOFP O e A (Do) = 7| f [P
we conclude, cf., 7777, that Uy is the direct image under , of the (natural extension
across |D|) of the current m*ug. It follows then that
_ = 1 ! 3 Nk—1
Ry, = 7« 87(f0)k/\a/\(80) , k>1,

and
Ro = 77*1|D\-

Notice that 1/ is a meromorphic section of L~=!. Thus

11/ = 10"/ ) = o - 1l = 1/|f]p~,

since
lole =1/|fle-
PLVVVVNVVV00NN?
We conclude that
1L = | o=

0.3. Another regularization of Bochner-Martinelli currents. Although the
approximands Uf* = |f|2A U/ and R/ = 9| f|>* AU7 of UT and R’ are arbitrarily
smooth if Re A is large enough, if is sometimes desirable to have infinitley smooth
approximations, just as for the case when f is one single function.

Recall that o := | f|?0 is smooth in X. For € > 0 let
.«
RTIERT:
and let us introduce the smooth forms

(0.8) Ult = — 2 — o 0  ANONG+ oA (D)2 + -,

1 - 0o,
and

e = € da \k
(0.9) RS _§’f|2+6(|f’2+6) .
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Proposition 0.10. We have that

(0.10) VUM =1- R,
(0.11) lim ulhe=u/
and

(0.12) lim R =R/

Proof. We use the notation from 777. Recall that

1
Uy = <(f0) Ao’ A (Do) 1)
where %0 = (1/f°)o’. Since
_ P
VT

we have that

. 5 \k— FPIFP N 1 e
™ (05/\(8ae)k 1) = (|f|0|2||f|,|2|+6) Go7° A (Do’ )kt

which tends to
Ao’ A (Do
o o 10
in view of Example ?7?. It follows that

Ule = (n*U ) — U/

so that (0.11) is settled.
Since §fo = 1 we have that 6y = | f|>. Thus

Ufe = ¢ =%
|fI?+e—0a e+ Va
Thus -
« €
VU =1-
! e+ Va e+ Va
Moreover,
€ € € 1

|f|2+
and developing the right most factor we get (0.10) Now (0.12) follows from ?77. [

6+Va_e+]f\2—504 Ifl?4+e1—

Remark 0.11 (Resolutlons and dimension of subvarieties). In a resolution 7: X - X,
the inverse image Y of a variety Y in X is (usually) a hypersurface in X so any
assumption about big codimension, e.g., an assumption about complete intersection,
will necessarily be destroyed. However, it will be reflected on the pullback of a
test form in the following way. Any smooth (0, ¢)-form v can locally be written
Y = >, Yyw,, where w, are holomorphic (0,¢)-forms and 1, are smooth. Now
assume that the complex dimension of Y is smaller than ¢, so that (the pullback of)
1 vanishes of Y for degree reasons. Moreover, assune that s is a local coordinate
function in X such that {s = 0} C Y. Then 7*w, is holomorphic and vanishes on
the hyperplane {s = 0} and therefore it is a sum of terms, each of which is either
divisible by s or by ds. It follows that 9 is a sum of terms each of which is a smooth
form times § or a smooth form times ds. ]
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Ezample 0.12. Let X = C2,, and Y = {0} and let X be the blow-up at 0, and
assume that z = s, w = st, so that ¥ = {s = 0}. Then 7*dw = df + 5dt, so both
kind of terms may appear. O

1. MULTIVARIABLE POINCARE-LELONG



Chapter 5

Residue currents of generically exact complexes

1. RESIDUE CURRENTS OF GENERICALLY EXACT COMPLEXES

Let E,Q be Hermitian holomorphic vector bundles over a connected manifold X
and let f: EF — @ be a holomorphic morphism. If f has optimal rank p then the
rank is precisely p outside the analytic set Z = {F = 0}, where F' = det” f is a
section of APE* @ APQ. Let 0: Q — E be the minimal inverse in X \ Z, i.e., of is
the minimal solution to fn = £ if £ is in the image of f and ¢& = 0 if £ is orthogonal
to Im f. Then clearly ¢ is smooth outside Z, and following the proof of Lemma 4.1
in [45] we get

Lemma 1.1. If F = FOF' in X, where F° is a holomorphic function and F' is
non-vanishing, then F0o is smooth across Z.

Let

(1.1) 0 By gy T T e

be a holomorphic complex of Hermitian vector bundles over the n-dimensional com-
plex manifold X, and assume that it is pointwise exact outside the analytic set Z of
positive codimension. Then for each k, rank fj is constant in X \ Z and equal to

(1.2) pr =dim Ey —dim Fgy1 4 --- £ dim Ey.

The bundle £ = &F) has a natural superbundle structure, i.e., a Zy-grading, F =
ET @ E~, E* and E~ being the subspaces of even and odd elements, respectively,
by letting BT = @9 B, and E~ = @oy1 By, see [75] and, e.g., [46], for details. The
mappings f = Y f; and 9 are then odd mappings on D, (E) and they anticommute so
that V2 = 0, where V = f — 0 is (minus) the (0, 1)-part of Quillen’s superconnection
D—9. Moreover, V extends to an odd mapping Vgnq on D, (EndE) and V& _; = 0. In
X\Z let oy: Ex_1 — Ej be the minimal inverses of fy. If c = 0_p;11+---+on: E —
FE and I denotes the identity endomorphism on E, then fo + of = I. Moreover,
oo = 0 and thus

(1.3) o(do) = (do)o.

Since ¢ is odd, Vgpqgo = Voo +0oV = fo+of — (Doo +000d), so we get

(1.4) Vindo = I — Oo.

Notice that do has even degree. In X \ Z we define the End E-valued form, cf., (1.4),
(1.5) uw=0(Veno) =0l —00) =0+ 0(do)+0c(do)*+....

Now, VEnqt = VEndo(VEndo) ! — 0VEnd(VEnao) !, and since V%nd = 0 we thus
have

(1'6) Venqu = 1.
Notice that
=Y Y
0 k>0+1

where B -
uj, = o390y -1) - (9op11)
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is in & y—¢—1(Hom (Ey, E})) over X \ Z. In view of (1.3) we also have

(1.7) Uy = (003,)(9og_1) - (D0p42) 0041
Let
ut = Z ui,
k>0+1

be u composed with the projection £ — FE,. We can make a current extension
of u across Z following [74] and the proof of Theorem 1.1 in [42]. In fact, after a
sequence of suitable resolutions we may assume that the sections F; = det” f; of
APIET @ APIE;_ are of the form Fj = F]QFJ{, where F]Q is a monomial and F]’ are
non-vanishing. If F is a holomorphic function that vanishes on Z, in the same way we
may assume that F = FOF'. By Lemma 1.1, oj =aj/ F]Q7 where «; is smooth across
Z. Since ajy1a; = 0 outside the set {F]QHF]Q = 0}, thus o410 = 0 everywhere.
Therefore, cf., (1.7), it is easy to see that

(O k) (Oapsp—1) - -+ (Ocpsa)apsr
(1.8) RSy A—
Ok 01

Since Fj only vanish on Z and F vanishes there, F¥ must contain each coordinate
factor that occurs in any F ]Q. It follows now that A — |F|**u has a current-valued

analytic continuation to Re A > —e, and that U = |F|**u|y_g is a current extension
of u.
In the same way we can now define the residue current R = R(FE,) associated to
(1.1) as
R = 0|F|** A ulx—o.

It clearly has its support on Z. If Ri = J|F|* /\u£| a—o0 and R’ is defined analogously,

then
R=>R'=> Y R
¢

£ k>4+1

Notice that Ri is a Hom (Ey, Ey,)-valued (0, k — £)-current. The currents U* and U ﬁ
are defined analogously. Notice that U has odd degree and R has even degree. In
analogy with Theorems 1.1 and 1.2 in [42] we have:

Proposition 1.2. If U and R are the currents associated to the complex (1.1) then
(1.9) ViU =1 — R, VEnaR = 0.

Moreowver, Rf; vanishes if k —{ < codim Z, and ER = dé A R = 0 if ¢ is holomorphic
and vanishes on Z.

The residue current R = R(F,) is related to the (lack of) exactness of the sheaf
complex associated to (1.1) in the following way.

Proposition 1.3. Let R = R(E,) be the residue current associated with (1.1) and
let ¢ be a holomorphic section of Ey.

(i) If fo¢p = 0 and R'¢ = 0, then locally there is a holomorphic section v of Epyq
such that fei19 = ¢.

(ii) If moreover R = 0, then the existence of such a local solution 1 implies that
Rl¢ =0.
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Proof. Let U be the associated current such that (1.9) holds. Then V(U¢) = ¢ —
U(V¢) — Rp. Since Up = U'p, Rp = R'¢p, and V¢ = fup — 0¢, it follows from
the assumptions of ¢ that V(U’@) = ¢. Now (i) follows by solving a sequence of
O-equations locally. For the second part, assume that fy, 19 = ¢. Then by (1.9),

R'¢ = Rp = R(Vy) = V(R¢) = V(R*1y) =0. 0

If now (??) is a generically exact holomorphic complex of Hermitian bundles, since
rank f1 is generically constant, we can define o1 in an unambiguous way in X \ Z,
and therefore the currents R’ for £ > 0 can be defined as above, and we have:

Corollary 1.4. If R = R(F,) is the residue current associated to (??7), then Propo-
sition 1.8 holds (for £ > 0), provided that fo¢ = 0 is interpreted as ¢ belonging
generically (outside Z) to the image of fi.

If f1 is generically surjective, in particular if rank £y = 1 and f; is not identically
0, then this latter condition is of course automatically fulfilled.

Proof. The corollary actually follows just from a careful inspection of the arguments
in the proof of Proposition 1.3. Another way is to extend (??) to a generically exact
complex (1.1) and then refer directly to Proposition 1.3, noting that the definition of
R for £ > 0 as well as the condition fo¢ = 0 are independent of such an extension. [

2. RESIDUE CURRENTS WITH PRESCRIBED ANNIHILATORS
The exactness of (?77) is characterized by the current R associated with (?77).

Theorem 2.1. Assume that (??7) is generically exact, let R be the associated residue
current, and let (??) be the associated complex of sheaves. Then R =0 for all £ > 1
if and only if (??) is exact.

For the proof we will use the following characterization of exactness due to Buchsbaum-
Eisenbud, see [62] Theorem 20.9: The complex (??) is exact if and only if

(2.1) codim Z; > j

for all j, where, cf., (1.2),
Zj = {z; rank f; < p;}.

Remark 2.2. To be precise we will only use the “only if”-direction. The other direc-
tion is actually a consequence of Corollary 1.4 and (the proof of) Theorem 2.1. [

Proof. From Corollary 1.4 it follows that (??) is exact if R = 0 for £ > 1. For the
converse, let us now assume that (??) is exact; by the Buchsbaum-Eisenbud theorem
then (2.1) holds. We will prove that R' = 0; the case when £ > 1 is handled in the
same way. The idea in the proof is based on the somewhat vague principle that a
residue current of bidegree (0,¢) cannot be supported on a variety of codimension
q + 1. Taking this for granted, we notice to begin with that R} = 9|F|** A ga|r—¢ is
a (0, 1)-current and has its support on Zs, which has codimension at least 2. Hence
R} must vanish according to the vague principle. Now, o3 is smooth outside Z3, and
hence R%) = Jos A R% = 0 outside Z3; thus Ril)) is supported on Z3 and again, by the
same principle, R} must vanish etc. To make this into a strict argument we will use
the following simple lemma which follows from a Taylor expansion.

Lemma 2.3. Suppose that v(s,T) is smooth in C x C" and that moreover v(s,7)/§
is smooth where 11 -+ -1, # 0. Then v(s,7)/§ is smooth everywhere.
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After a sequence of resolutions of singularities the action of R} on a test form ¢ is
a finite sum of integrals of the form

= oon . (0ag)(Oag_1) - (Daz)as -
J e PR R Sl

where FO, Fi0 and «; are as (1.8) above, and where € is the pullback of £&. To
be precise, there are also cutoff functions involved that we suppress for simplicity.
Observe that 9| F°|?} is a finite sum of terms like a\|F°|?*d5/5, where a is a positive
integer and s is just one of the coordinate functions that divide F°. We need to show
that all the corresponding integrals vanish when A = 0, and to this end it is enough
to show, see, e.g., Lemma 2.1 in [42], that

n= ? A (Oag)(Oag_1) - - - (0az)az /\5

is smooth ((ds/s) A 8 being smooth for a smooth [, means that each term of [
contains a factor s or ds).

Let £ be the largest index among 2, ...,k such that s is a factor in FKO (possibly
there is no such index at all; then ¢ below is to be interpreted as 1) and let 74,..., 7
denote the coordinates that divide F; ,? = 'F59+1- We claim that, outside 71 --- 7. = 0,
the form

ifA (aa;())"'(fi)oéeﬂ) A E
§ E e

is smooth. This follows by standard arguments, see, e.g., the proof of Lemma 2.2
in [74] or the proof of Theorem 1.1 in [42]; in fact, outside Z N ... N Zyy1 the
(n,n—£+1)-form (Joy) ... (dopr1) A€ is smooth and it must vanish on Z, for degree
reasons, since Z; has codimension at least £. Thus the form

= A @ar) - @ara) A €

is smooth outside 71 - - - 7. = 0. By Lemma 2.3, applied to
v =d5 A (Day) - (Dagyr) AE,
7 is smooth everywhere, and therefore 7 is smooth. O
If (?7) is exact, then, with no ambiguity, we can write Ry, rather than RY.

Proof of Theorem 7. Since a free resolution of a free sheaf is pointwise exact, it
follows that Zy C --- C Z; = Z. Therefore u° is smooth outside Z and thus the
support of R must be contained in Z. By Theorem 2.1, R' = 0, and so the second
assertion, the Noetherian property of R = R?, follows from Corollary 1.4. U

Given any coherent sheaf F in a Stein manifold X and compact subset K C X,
one can always find a resolution

(2.2) e O%2 L, 0%, %70

of F in a neighborhood of K, e.g., by iterated use of Theorem 7.2.1 in [66]. The
key stone in the proof of Theorem 2.1, the Buchsbaum-Eisenbud theorem, in general
requires that the resolution (2.2) starts with 0 somewhere on the left. However, by
the Syzygy theorem and Oka’s lemma, Ker (0%t — O%7¢-1) is (locally) free for large
¢, so we can replace such a module O®"¢ with this kernel and 0 before that. Therefore
Theorem 2.1 holds and we have



84

Proposition 2.4. Let J be a coherent subsheaf of O®™ in a Stein manifold X. For
each compact subset K C X there is a residue current R defined in a neighborhood
of K such that annR = 7.

The degree of explicitness of the Noetherian residue current R in Theorem ?7 is
of course directly depending on the degree of explicitness of the resolution.

Ezample 2.5 (The Koszul complex). Let H be a Hermitian bundle over X of rank
m and let h be a non-trivial holomorphic section of the dual bundle H*. Then h can
be considered as a morphism H — C x X, and we get a generically exact complex
(??) by taking Ej, = A*H and let all the mappings f; be interior multiplication with
f. If n is the section of E over X \ Z of minimal norm such that f -7 = 1, then
or& = n A& for sections € of Fy_1, and hence uﬁ =n A (On) 71, acting on AH via
wedge multiplication. Thus Rf = 9|h|** AEA(0€)* 71|\ are precisely the currents
considered in [42]. If h is a complete intersection and h = hyej +- - - + hpe), in some
local holomorphic frame e} for H*, then R is precisely the Coleff-Herrera product
(??) times e; A ... A e, where e; is the dual frame, see [42]. O

We now consider a simple example of a non-complete intersection ideal.

Ezample 2.6. Consider the ideal J = (2, 2122) in C? with zero variety {z; = 0}. Tt
is easy to see that

(2.3) 002 0020 o

where

fi=]2 =z | and f2=[ = ]7

—21

is a (minimal) resolution of O/J. We equip the corresponding vector bundles with
the trivial Hermitian metrics. Since Z has codimension 1, R consists of the two parts
Ry = O|F|** Auf|yx—0 and Ry = O|F|*} A ul|x—0, where u§ = 02007 and u{ = o7,
respectively. To compute R it is enough to make a simple blow-up at the origin, and
one gets, cf., [78] and [77], that

1 1 17-71
Ra=03| 5| no| 2] ana m=| V] [2]0]

21 z9 1 zZ9 Z1
We see that ann Ry = (22, z2) and ann Ry = (21), and hence ann R = (27, 25) N (21) =
J as expected. Notice that the Koszul complex associated with the ideal J is like
(2.3) but with an extra factor 21 in the mapping f2. Then the current RY is of course

the same as before, but
171 =71
RS = 20| na[=].
2 2 Z:l)’ z92

In this case ann R = ann RY Nann R} = (23, 20) N (21) which is strictly smaller than

J. Roughly speaking, the annihilator of RY is too small, since the singularity of oy
and hence of 4} is too big, due to the extra factor z1 in fo. O

There has recently been a lot of work done on finding free resolutions of monomial
ideals, see for example [69], [48] or [50]. For more involved explicit computations of
residue currents for monomial ideals, see [78]. We conclude with a simple example
where ann (O(Ep)/J) = 0.
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Ezample 2.7. Consider the submodule J of O%2 generated by fi = [z120 — 22]T
and the resolution 0 — O LN O%2 which is easily seen to be minimal. Notice that
Z = {z1 = 0} is the associated set where O%2/.J is not locally free, or equivalently
where fi is not locally constant. Moreover, notice that ann (0%?/J) = 0. The
associated residue current is
17471
R=r=|—|a[=|[0 1].
z9 21
If we extend the complex with the mapping fo = [21 21| the new complex is still exact
outside Z. Observe that ann R is generated by z1[1 1]7 and moreover that Ker fq is
generated by [z2 — 21]7. Thus Ker fo Nann R = J as expected. O

3. DIVISION AND INTERPOLATION FORMULAS

To obtain formulas for division and interpolation that involve our currents R and
U we will use the general scheme developed in [46]. Let z be a fixed point in C", let
d¢—» denote interior multiplication by the vector field 2mi Y7 ({; — 2;)(9/9¢;), and
let Ve, =d¢—, — 0. Let g = 90,0 + - -+ gn,n be a smooth form such that Vo_,g =0
and go0(z) = 1 (here lower indices denote bidegree); such a form will be called a
weight with respect to the point z. If ¢ has compact support then

(3.1) o(z) = / g6

for ¢ that are holomorphic in a neighborhood of the support of g, [46].

Let D be a ball with center at the origin in C™ and let y be a cutoff function that
is 1 in a neighborhood of D. Then for each z € D,

- S

(3.2) g=x—0xA Ve
is a weight, and it depends holomorphically on z. Assume that (1.1) is a complex
of (trivial) bundles over a neighborhood of D and let J = Im f;. Let us also fix
global frames for the bundles Ej. Then Ej ~ C™Fk and the morphisms f; are
just matrices of holomorphic functions. One can find (see [46] for explicit choices)
(k — ¢,0)-form-valued holomorphic Hefer morphisms, i.e., matrices, Hi: Ej, — Ej
depending holomorphically on z and (, such that H ,ﬁ =0fork<?¢ H f = Ig,, and
in general,

(33) S¢c—-Hi = Hy_y fr — fepa () H™
here f stands for f((). Let
HU = H™"'U =) H'U{, HR=) H'R=) H{Rj.
J4 lk y4 lk

Then ¢ = f(2)HU + HUf + HR maps a section of E; depending on ( into a
(current-valued) section of Ey depending on both ¢ and z. Moreover, Vi_.¢" =
0 and gyo=Ig. If g is weight with compact support, cf., Proposition 5.4 in [46],
we therefore have the representation

(34 6(2) = fin(2) /< H™*'Ug ng+ /< HU fup A g + /C H*Ré A g,

= x—OxA[s+sNDs+---+s5NA(0s)" ]

z € D, for ¢ € O(D, E;,). Thus we get an explicit realization (in terms of U) of to
fer1 = ¢, if frd =0 and R¢ = 0, and thus an explicit proof of Proposition 1.3 (i).
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If we have a complex (??) over a neighborhood of D, and either f; is generically
surjective or we have an extension to a generically exact complex ending at F_j,
then (4.6) still holds for k = 0. If R is Noetherian, then the last two terms vanish if
and only if ¢ is in J. We thus obtain an explicit realization of the membership of
J.

In the same way as in [43] one can extend these formulas slightly, to obtain a
characterization of the module £J of smooth tuples of functions generated by J, i.e.,
the set of all ¢ = f1¢ for smooth . For simplicity we assume that O(Ep)/J has
positive codimension so that fy = 0. Let R be a Noetherian current for J. First
notice that if ¢ = fi14, then, cf., Proposition 1.2, R¢ = R°¢ = ROfi1p — R'OY =
RV = VRY = 0, so that R¢ = 0. Since each partial derivative 9/ 0z; commutes
with f1, we get that

(3.5) R(9°$/97%) = 0

for all multiindices «. The converse can be proved by integral formulas precisely as
in [43], and thus we have

Theorem 3.1. Assume that J C O%™ is a coherent subsheaf such that O™ /.J has
positive codimension, and let R be a Noetherian residue current for J. Then an
ro-tuple ¢ € E9™ of smooth functions is in EJ if and only if (3.5) holds for all «.

Let J be a coherent Cohen-Macaulay ideal sheaf of codimension p over some
pseudoconvex set X and let p be an analytic functional that annihilates J. In [60]
was proved (Theorem 4.4) that p can be represented by an (n,n)-current i with
compact support of the form i = a A R, where « is a smooth (n,n — p)-form with
compact support and R is the Coleff-Herrera product of a complete intersection
ideal contained in J. In particular, ji vanishes on £J. As another application of our
integral formulas we prove the following more general result.

Theorem 3.2. Let X be a pseudoconvex set in C™ and let J be a coherent subsheaf
of O(Ey) ~ 0% such that O(Ey)/J has positive codimension. If pn € O'(X, E})
is an analytic functional that vanishes on J, then there is an (n,n)-current i with
compact support that represents u, i.e.,

(3.6) pé=pg, &€ 00X Ey),

and such that fi vanishes on EJ. More precisely we can choose fi of the form
p= Z ag Ry,
k

where R is a Noetherian residue current for J and oy € Dy, (X, E}).

Here E) refers to the trivial vector bundles associated to a free resolution of
O(Ey)/J.

Proof. Assume that pu is carried by the O(X)-convex compact subset K C X and let
V be an open neighborhood of K. For each z € V we can choose a weight g with
respect to z, such that z — ¢* is holomorphic in V' and all g* have support in some
compact K C X, see Example 10 in [42]. Let R be a residue current for .J, associated
to a free resolution of O(Ey)/J in a neighborhood of K, cf, Proposition 2.4. Now
consider the corresponding decomposition (4.6) (with & = 0) that holds for z € V,
with g = ¢%; notice that fo = 0 by the assumption on J. The analytic functional
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w has a continuous extension to O(K, Ep) and since O(X) is dense in O(K) p will
vanish on the first term on the right hand side in (4.6). If we define the (n, n)-current

fi=pa(g" NHOR =Y (9 gpi NHORE =) Ry,
k k

then ay have compact support and (3.6) holds. Since R is Noetherian, i annihilates
EJ. O

4. NALLE

Recall that F has pure codimension p if the associated prime ideals (of each stalk)
all have codimension p. The starting point in this paper is the following result that
follows from [13] (see also Section ?? below); as we will see later on it is in a way
equivalent to Roos’ characterization of purity.

Theorem 4.1. The sheaf F = O(Ey)/Z has pure codimension p if and only if T is
equal to the annihilator of R,, i.e.,

T = {6 € O(F); Ryd=0}.

If 7 is Cohen-Macaulay we can choose a resolution (??) with N = p, and then
R = R, is a matrix of CHz-currents which thus solves our problem. However, in
general R, is not 0-closed even if F has pure codimension. Let

(4.1) 0— o) L own L o) o)
be the dual complex of (?7) and let

Ker ¢+ O(E}
(12) o) = i )

fRO(E};_)

be the associated cohomology sheaves. It turns out that for each choice of £ € (’)(E;)
such that f7, ;£ = 0, the current {R) is in CHyz (E§), and we have in fact a bilinear
(over O) pairing

(4.3) HP(O(E)) x F —CHz, (& ¢)— {Rpo.

Moreover, (4.3) is independent of the choice of Hermitian metrics on Ej. It is well-
known that the sheaves in (4.2) represent the intrinsic sheaves Ext & (F,0). (If Z

does not have pure codimension p then we define CHz as CHz/, where Z' is the union
of irreducible components of codimension p; this is reasonable, in view of the SEP.)

Theorem 4.2. Assume that F has codimension p > 0. The pairing (4.3) induces
an nitrinsic pairing

(4.4) Ext?)(F,0) x F — CHy.
If F has pure codimension, then the pairing is non-degenerate.

Notice that Hom (F,CHz) is the subsheaf of Hom (O(Ey),CHz) = CHz(ES)
consisting of all Coleff-Herrera currents p with values in Ej such that u¢ = 0 for all
¢ € I. It follows that we have the equality

(4.5) IT={¢e O(Ey); np =0 for all up € Hom (F,CHz)}

if F is pure. The sheaf HP(O(E})) is coherent and thus locally finitely generated.
Therefore we have now a solution to our problem:
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Corollary 4.3. Assume that F has pure codimension. If&1,...,&, € O(Ey) generate
HP(O(EY)), then p; = &R, are in Hom (F,CHz) and

(4.6) T =nNj_ annp;.

Remark 4.4. If T is not pure, one obtains a decomposition (4.6) after a preliminary
decomposition Z = NZ,, where each Z,, has pure codimension. O

In case of a complete intersection, Ext?(F, ) is isomorphic to F itself. If F =
O(Ep)/T is a sheaf of Cohen-Macaulay modules there is also a certain symmetry: If
(?7) is a resolution with N = p, then it is well-known, cf., also Example 4.12 below,
that the dual complex (4.1) is a resolution of O(E,)/Z*, where I* = frO(E; ;) C
O(E}), and we have

Corollary 4.5. If O(Ey)/Z is Cohen-Macaulay, then O(Ey)/I* is Cohen-Macaulay
as well and we have a non-degenerate pairing

O(Eo)/T x O(Ep)/T" — CHz, (£ ¢) — ERpo.

Remark 4.6. Assume that F has codimension p = 0, or equivalently, ann F = 0. If
it is pure, i.e., (0) is the only associated prime ideal, then there is a homomorphism
fo: O(Ey) — O(E_q) such that Z = Ker fy. It is natural to consider fy as a Coleff-
Herrera current p associated with the zero-codimensional “variety” X. Then 7 =
ann 4 and thus analogues of Theorem 4.1 and Corollary 4.3 still hold. U

The duality discussed here leads to a generalization of the Dickenstein-Sessa de-
composition that we now will describe. It was proved by Malgrange, see, e.g., [56],
that the analytic sheaf of distributions C is stalkwise injective. Thus the double
complex

(4.7) Hom o(O(Ey),COF) = Ok (EY),

with differentials @ and f*, is exact except at k = 0 and ¢ = 0, where we have the co-
homology sheaves O(E}) and Hom (F,C%*), respectively. By standard homological
algebra, we therefore have natural isomorphisms

(4.8) HE(O(EZ), 0) ~ HF(Hom (F,C%*)).
The residue calculus also gives

Theorem 4.7. Assume that codimF = p > 0. Both mappings
(4.9) HP(O(EY)) 2 Hom (F,CHyz) ~ HP(Hom (F,C%*))

are isomorphisms, and the composed mapping coincides with the isomorphism (4.8).
These isomorphisms seem to be known as “folklore” since long ago, cf., Section 77

below. Our contribution should be the proof by residue calculus, and especially, the
realization of the mapping ¥ as { — £R,,.

Ezxample 4.8. If u € CHyz is annihilated by 7 it follows that we have the factorization
i = {R,. There are analogous isomorphisms where O is replaced by 2", the sheaf
of holomorphic (r,0)-forms, and Coleff-Herrera currents of bidegree (r,p), CH;, =
CHz ®p Q. For instance it follows that there is a factorization

(2] = £Ry,
where [Z] is the Lelong current, and ¢ is in QP(E}) with f; & = 0. O
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Ezample 4.9. We can rephrase the second isomorphism in (4.9) as the decomposition

(4.10) Ker (Hom (F,C%) 2 (Hom (F,cO7+1)) =
= Hom (F,CHz) ® OHom (F,CO0P71).
For a given O-closed (0, p)-current g (with values in Ej and annihilated by Z), its

canonical projection in Hom (F,CHz) is given by {R,,, where  is obtained from g
via the isomorphism (4.8). O

Ezample 4.10. Assume that Z has pure codimension p and let C%’k denote the sheaf
of (0, k)-currents with support on Z. If F has support on Z, then Hom (F,C%*) =
Hom (F, C%’k). Since any current with support on Z must be annihilated by some
power of Z, (4.10) implies the decomposition

(4.11) Ker (€% 2 c9P+1) = cHy @ oCyP !
that was first proved in [59] by Dickenstein and Sessa (in the case of a complete
intersection; see [56] for the general case). O

Since (?7?) is generically exact, so is its dual complex

Fonga
—

(4.12) 0— E*,, RN SN

of Hermitian vector bundles, and we have the corresponding dual complex of locally
free sheaves

(4.13) 0 0E ) 25 I oEy) —o.
Using the induced metrics, we get a residue current
R =) (R)"=) (R,
k k¢

where (R*)} takes values in Hom (Ej, E7).

Proposition 4.11. Using the natural isomorphisms Hom (E}, E}) = Hom (Ey, E},)
we have that (R*)% = RE.

Proof. 1t is readily verified that the adjoint o*: E* — E* of 0: E — E over X \ Z
is the minimal inverse of f*. Therefore,

u* = (0 +0(00) +a(do)* + -+ )* = " + " (do*) + % (Do*)? + - - -,
since, see [12], 0*0c* = (0o*)o*. Now the proposition follows. O
If £ € O(E)) and ¢ € O(Ey) we write
ERj0 = G(R)E.
Assume that F is a coherent sheaf of positive codimension p, and let (??) be a

(locally) free resolution of F = O(Ep)/Z. Moreover, assume that fi is generically
surjective so that the corresponding vector bundle complex

(4.14) 0= Ey 2 e 2o g o

is generically exact. It follows from Proposition 77 that

RO=R)+R)  + .
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By Theorem 3.1 in [12], Rf; = 0 for each ¢ > 1, i.e., R = R, and combining with
Proposition ?? above we find that a ¢ € O(Ep) is in Z if and only if Rp = 0. It
is proved in Section 5 of [13] that F has pure codimension p if and only if ann R =
ann 7, i.e., Theorem 4.1 holds.

Proof of Theorem 4.2. 1t follows from (?7) that
(4.15) IRy, = frr1 R
for each k. If £ € O(E}) and f}, ;£ = 0 we therefore have

I(ERy) = +EORy, = £& fry1Ri1 = £(fip1§) R = 0.

Thus {R,, is 0-closed and since it is also pseudomeromorphic, cf., Proposition ??, it
is in CHz. Moreover, if § = fyn, then

ERy = (fym)Rp =nfpRy = nOR, 1 =0
since R, = 0 for k < p. Thus (R, only depends on the cohomology class of £ in
HP(O(EY)). We now choose another Hermitian metric on F and let R denote the
current associated with the new metric. It is showed in [12] (see the proof of Theorem
4.4) that then
Ry — Rp = fp+1M;9+1

for a certain residue current M. Thus £R, = pr. It follows that the mapping (4.3)
is well-defined and independent of the Hermitian metric on £.

It is enough to prove the invariance at a fixed point x, so we consider stalks of the
sheaves at x. It is well-known that then our resolution O, (E,), fo can be written

O:E(E: S E:/) = OI(EL) D Ox(Eg)a foe=fe® fd,

where O, (E)) is a resolution of F, and (since we assume that Fy has minimal rank)
OL(EY), k > 1, is a resolution of O, (Ej) = 0. It follows that the natural mapping
HP(OL((EL)*) — HP(OL((Ee)*)), & +— (£,0), is an isomorphism. Moreover, if we
choose a metric on Ej, = Ej @ E}/ that respects the direct sum, then the resulting
current R is R'®0, where R’ is the current associated with O, (F,). Since all minimal
resolutions are isomorphic, the mapping (4.4) is therefore well-defined.

It remains to check that (4.4) is non-degenerate. If £ € O(E,) with f; £ = 0 and
ER,¢ = 0 for all ¢ € O(E)y), then clearly (R, = 0. Since R = Rg, by Proposition 4.11
therefore (R*))¢ = 0 for all ¢, and now it follows from Proposition ?? that ¢ = fom
for some 7. Thus (the class of) & is zero in HP(O(EY)).

Now, assume that {R,¢ = 0 for all § such that f; ;£ = 0. If 7 is Cohen-Macaulay
and N = p, then f;,; = 0 so the assumption implies that R,¢ = 0, and thus
¢ € Z. However, generically on Z, F is Cohen-Macaulay, and hence for an arbitrary
resolution we must have that R,¢ = 0 outside a variety of codimension > p + 1.
Since R,¢ is pseudomeromorphic with bidegree (0, p) it follows from Proposition 7?7
that R,¢ vanishes identically. If we in addition assume that F has pure codimension
it follows from Theorem 4.1 that ¢ € Z. Thus the pairing is non-degenerate. (]

Ezample 4.12 (The Cohen-Macaulay case). It is well-known, see, e.g., [62], that F
is Cohen-Macaulay if and only if it admits resolutions of length p = codim Z. If
(??) is a resolution with N = p, then R = Rg, and hence R* = (R*)g. It follows
from Proposition 7?7, applied to R*, that the dual complex (4.1) is a resolution of
O(Ej)/T* and, in particular, that O(Ej)/Z* is Cohen-Macaulay. O
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Proof of Theorem 4.7. Let
Lr= Y CMEp)
l+k=v
be the total complex with differential V* = f* — 0, associated with the double
complex (4.7). We thus have natural isomorphisms

Ker v+ LF

(416) Hk(O(E;k)) a Hk(ﬁ) =def W >~ 'Hk('Hom (f, CO’.)).

The naturality means that the ismorphisms are induced by the natural mappings
O(E;) — £F and Hom (F,C%) — LF, respectively, and that & € O(E}) such that
fri 1§ = 0 defines the same class as p € Hom (F, CO*) with u = 0 if and only if
there is W € £F~1 such that V*W = £ — p.

If now £ € O(E}) and f;; € =0, then V*¢ = 0, and hence

(4.17) VU =€ - (R =€~ Ry,
cf., (?7) and Proposition 4.11 above. Therefore the composed mapping in (4.9) coin-
cides with the isomorphisms in (4.8). It is readily verified that the second mapping

in (4.9) is injective, see, e.g., Lemma 3.3 in [?], and hence both mappings must be
isomorphisms. Thus Theorem 4.7 is proved. 0

We think it may be enlightening with a proof of the first isomorphism in (4.9) that
does not rely on Malgrange’s theorem. We already know from Theorem 4.2 that this
mapping is injective, so we have to prove the surjectivity. The proof is based on the
following lemma.

Lemma 4.13. If there is a current W € LP~! such that V*W = pu € CHz(E}), then
w=0.

Proof. Let u be a smooth form u such that Vi qu = Ig« in X \ Z. For a given
neighborhood w of Z, take a cutoff function x with support in w and equal to 1 in

some neighborhood of Z. Then g = xIg« — dx A u is smooth with compact support
in w, equal to Ig~ in a neighborhood of Z, and moreover V*g = 0. Therefore,

V*(gW) = gu = p and hence, for degree reasons, we have a solution dw = pu
with support in w. Since w D Z is arbitrary it follows, cf., Lemma 3.3 in [?], that
u=0. 0

Since (4.7) is exact in k except at k = 0, the first equivalence in (4.16) holds. Take
w € Hom (F,CHz). Then V*u = (ff —0)pu = 0 so by (4.16) (with k = p) there is
£ € O(E}) such that V*W = ¢ — p has a current solution W e £P~!. In view of

(4.17) it now follows from Lemma 4.13 that p = R).

5. COHEN-MACAULAY IDEALS AND MODULES

Let F; be a Ol -module. The minimal length v, of a resolution of F, is precisely
n — depth F,, and depth F, < dim F,, so the length of the resolution is at least
equal to codim F,. Recall that the F, is Cohen-Macaulay if depth F, = dim F,,
or equivalently, v, = codim F, see [62]. As usual we say that an ideal J, C O, is
Cohen-Macaulay if F, = O, /J, is a Cohen-Macaulay module.

A coherent analytic sheaf F is Cohen-Macaulay if F, is Cohen-Macaulay for each
x. If we have any locally free resolution of F and codim F = p, then at each point
Ker (O(Ep-1) — O(Ep,—_2)) is free by the uniqueness theorem, see below, so by Oka’s
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lemma the kernel is locally free; hence we can modify the given resolution to a locally
free resolution of minimal length p. Notice that the residue current associated with a
resolution of minimal length p just consists of the single term R = Rg, which locally
is a 7, X ro-matrix of currents.

Theorem 5.1. Suppose that F is a coherent analytic sheaf with codimension p > 0
that is Cohen-Macaulay, and assume that

(5.1) 0— O(E,) —---— O(E1) — O(Ep)

is a locally free resolution of F of minimal length p. Then the associated Noetherian
current is independent of the Hermitian metric.

Proof. Assume that u and u’ are the forms in X \ Z constructed by means of two
different choices of metrics on E. Then Vgyqu = I and Vgpqu' = I in X \ Z, and
hence

Vena(ut') = (Venqu)u' — uVepqu' = v’ — u,
where the minus sign occurs since u has odd order. For large Re A we thus have, cf.,
the proof of Proposition 1.2,
VEnd(|F|2>‘uu’) = |F|*d — |[F|Pu — 9| F** A
As before one can verify that each term admits an analytic continuation to Re A > —e,

and evaluating at A\ = 0 we get VW = U’ — U — M, where W = |F|? uu/|y—o,
and M is the residue current

(5.2) M = 9|F|** A ua | y—o.
Since V%nd = 0, by Proposition 1.2 we therefore get
(5.3) R— R = VM.

However, since the complex ends up at p, each term in wu’ has at most bidegree
(0,p—2) and hence the current M has at most bidegree (0, p—1). Since it is supported
on Z with codimension p, it must vanish, cf., the proof of Proposition 1.2. O

When F = O(Ep)/J is Cohen-Macaulay we can also define a cohomological
residue that characterizes the module sheaf J = Im (O(E1) — O(Ey)) locally. Sup-
pose that we have a fixed resolution (5.1) of minimal length and let us assume that
p > 1. If w is any solution to Vgyqu = I in X'\ Z, then ug is a O-closed Hom (Ej, E,)-
valued (0,p — 1)-form. Moreover if «’ is another solution, then it follows from the
preceding proof that O(uu/ )2 = ug — u;,o. Therefore ug defines a Dolbeault cohomol-
ogy class w € H*P~Y(X \ Z, Hom (Eo, E,)). If ¢ is a holomorphic section of Ej then
w¢ = [ug@] is an element in H*?~1(X\ Z, E},). Moreover, if v is any solution in X'\ Z
to Vo = ¢, then v, defines the class we. In fact, V(uv) = v — u¢ = v — u’¢ so that
d(uv), = uhp — vp. Precisely as for a complete intersection, [59] and [72], we have

the following cohomological duality principle.

Theorem 5.2. Let X be a Stein manifold and let (5.1) be a resolution of minimal
length p of the Cohen-Macaulay sheaf O(Ey)/J over X, and assume that p > 1.
Moreover, let w be the associated class in H*P~1(X \ Z, Hom (Ey, E,)). For a holo-
morphic section ¢ of Ey the following conditions are equivalent:

(i) ¢ is a global section of J.

(ii) The class wp in X \ Z vanishes.
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(iii) [ wp AOE =0 for all £ € Dpp—p(X, E3) such that 0¢ = 0 in a neighborhood
of Z.

Notice that if R is the associated Noetherian current, then 5US = Ry, so by Stokes’
theorem, (44i) is equivalent to that [ R,¢ A& = 0 for all £ € Dy (X, E;;) such that
0¢ = 0 in a neighborhood of Z.

If p = 1, then f; is an isomorphism outside Z, so its inverse w = o7 is a holomorphic
(0,0)-form in X \ Z. Thus a holomorphic section ¢ of Ey belongs to J if and only
if wg has a holomorphic extension across Z.

Proof. If (i) holds, then ¢ = f11 for some holomorphic ; thus V¢ = ¢. However,
since p > 1, 1 has no component in E,, and hence by definition the class w¢ vanishes.
The implication (i7) — (ii7) follows from Stokes’ theorem.

Let us now assume that (¢i7) holds, and choose a point x on Z. Let v = u2¢.
If X’ is an appropriate small neighborhood of z, then, since Z has codimension p
and v, is a O-closed (0,p)-current, one can verify that the condition (iii) ensures
that dw, = v, has a solution in X'\ W, where W is a small neighborhood of Z
in X’. Then, successively, all the lower degree equations dwy = vp + fry1Witt,
k > 2, can be solved in similar domains. Finally, we get a holomorphic solution
1 = w1 + fows to f11 = ¢, in such a domain. By Hartogs’ theorem v extends across
Z in X'. Alternatively, one can obtain such a local holomorphic solution ), using
the decomposition formula (4.6) below and mimicking the proof of the corresponding
statement for a complete intersection in [72]; cf., also the proof of Proposition 7.1
in [46]. Since X is Stein, one can piece together to a global holomorphic solution to
f1Y = ¢, and hence ¢ is a section of J. O

Ezxample 5.3. Let J be an ideal in Oq of dimension zero. Then it is Cohen-Macaulay
and for each germ ¢ in Oy, w¢ defines a functional on Oy(E;;) ~ Oy". If J is defined
by a complete intersection, then we may assume that (5.1) is the Koszul complex.
Then r, = 1, and in view of the Dolbeault isomorphism, see, e.g., Proposition 3.2.1
in [72], wo is just the classical Grothendieck residue. U

For the rest of this section we will restrict our attention to modules over the
local ring Oy, and we let O(E}) denote the free Op-module of germs of holomorphic
sections at 0 of the vector bundle Ej. Given a free resolution (??) of a module Fy
over Oy and given metrics on Ej we thus get a germ R of a Noetherian residue
current at 0. Recall that the resolution (??) is minimal if for each k, fi maps a
basis of O(FE}) to a minimal set of generators of Im f;. The uniqueness theorem,
see, e.g., Theorem 20.2 in [62], states that any two minimal (free) resolutions are
equivalent, and moreover, that any (free) resolution has a minimal resolution as a
direct summand.

For a Cohen-Macaulay module Fy over Oy we have the following uniqueness.

Proposition 5.4. Let Fy be a Cohen-Macaulay module over Ogy of codimension p.
If we have two minimal free resolutions O(Fe) and O(E,) of Fo, then there are
holomorphic invertible matrices g, and go (local holomorphic isomorphism gy : EI', ~

E, and go: E} ~ Ey) such that R = g,R'gy".

Since minimal resolutions have minimal length p, the currents are independent of
the metrics, in view of Proposition 5.1.
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Proof. By the uniqueness theorem there are holomorphic local isomorphisms g : Ej, —
E;. such that

0 — omy o Loomy oo
gp | g1l g0 |
0 — oFE,) o Loom) oo

commutes. Let g denote the induced isomorphism E — E’. Choose any metric on
E and equip E’ with the induced metric, i.e., such that |¢| = |g7!¢| for a section &
of F'. fo: E — E and ¢': E' — E’ are the associated endomorphisms over X \ Z,
cf., Section 1, then ¢’ = gog~' in X \ Z, and therefore

W =04 (06"’ + - =g(c + (Do)o+ - )g~! = gug™!.
Therefore, (u )g = gpuggo_ ! and hence the statement follows since R = R, = Rg. O
We shall now consider the residue current associated to a general free resolution.

Theorem 5.5. Let Fy be a Cohen-Macaulay module over Oy of codimension p. If
R is the residue current associated to an arbitrary free resolution (?7) (and given

metrics on Ey) and R' = R}, is associated to a minimal resolution 0 — O(E},) ,
L o) L o), then
(5.4) R, = hy R, [,

where By: Eg — Ej is a local holomorphic pointwise surjective morphism and hy, is a
local smooth pointwise injective morphism hy,: E;, — F,. Moreover, for each £ > 0,

Rp—i—f = ang,
where ay is a smooth Hom (E,, Ep,)-valued (0, €)-form.

Proof. By the uniqueness theorem for resolutions, the resolution E, is isomorphic to
a direct summand in F,, and in view of the preceding proposition, we may assume
that

O(Ex) = O(E}, @ Ey) = O(E},) ® O(Ey)
and fr = f, & f/, so that

0 ~ omy o omy o)
ip+1 | ip | i1 | io |
S O(Bp) 2 o) o B om) S o),

where iy: E; — E; @ E}/ are the natural injections, and
— O(Ep,1) =5 O(Ey) = -+ =5 O(EY{) - O(Ey)
is a resolution of 0. In particular,

_ p+1”—“>ng—p>---—2>E{’f—l>E(’]’—>o
is a pointwise exact sequence of vector bundles, and therefore the set Z; where rank f,
is not optimal coincides with the set Z; where rank f; is not optimal. In particular,
Zy, = 0 for k > p. If we choose, to begin with, Hermitian metrics on Ej that respect
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this direct sum, and let oy, 0}, and o} be the corresponding minimal inverses, then
o = 0, ® oy, and hence

up = (90, ® 003,) (90,1 ® Jo_y) - -+ (Joy @ Do) (01 © o) = (u')), ® (u")}

for all k. However, (u”)? is smooth, and hence

Rp:R;@O, Ry =0 for k # p.

For this particular choice of metric thus (5.4) holds with h, as the natural injection
Ip: E;, — F, and (3 as the natural projection.

Without any risk of confusion we can therefore from now on let R; denote the
residue current with respect to this particular metric on E, and moreover let o’
denote the minimal inverse of f with respect to this metric etc. We now choose
other metrics on Ej and let Ry from now on denote the residue current associated
with this new metric. Following the notation in the proof of Proposition 5.1 we again
have (5.3), and for degree reasons still M[? = 0; here M, ,ﬁ denotes the component of
M that takes values in Hom (Ej, Ey). Thus

0
R, — R, = fpr1M,, .
Moreover, if we expand uu/, we get
Myyy = O|F | A [opi107,(Doy,_y) - - (o) +
p+1(00p)0,1(90y,5) -+ (001) + -+ | |x=0.
However, 0,41(00,) = (0op+1)0p, and 0,11 is smooth since Z, 41 is empty, so

M1?+1 = —opr1lR, + (5Up+1)M;? = —0pt1 R,

Thus,
Rp = R;; - fp-&-lUp-i-lR;; = (IEp - fp+10'p+1)R;;-
Since fp41 has constant rank, H = Im f,41 is a smooth subbundle of E,. Notice
that I = Ig, — fp+10p+1 is the orthogonal projection of E, onto the orthogonal
complement of H with respect to the new metric. In this case therefore h in (5.4)
becomes the natural injection i,: Ej, — E, composed by II, and since E, N H =0, h
is pointwise injective.
Since Zj, is empty for k > p, oy is smooth for k > p and hence for ¢ > p,
Ry = d|F|* A (oy) - - (80p+1)ug = (Doy) - (Dops 1) F|*A A ug =R,

where ay = (day) - - (0opi1). O

6. THE NOTION OF STRUCTURE FORM w ON X

To begin with, let i: X< be a (reduced) hypersurface in a pseudoconvex domain
Q c C"ie., X = {f =0} where f is holomorphic in  and df # 0 on X,¢,. If o’
is a meromorphic (n,0)-form in € (or in a small neighborhood of X in ) such that

(6.1) (df 2mi) AW =dC A oo ANdCnaa

on X, then w := ¢*w' is a meromorphic form on X that is independent of the choice
of W, and the classical Leray residue formula states that for test forms v of bidegree
(0,n — 1), the principle value integral

/Xw/\i*w
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is equal to the action of the residue current 9(1/f) on the test form ¥d(i A...AdCni1.
This equality can be rephrased as

=1
(6.2) el = 8? ANdCL A ... NdCpt1-

If 0f/0(n+1 is not vanishing identically on (any irreducible component of) X, one
can take, e.g., w' = 1/(0f/0(n+1)d¢1 A ... A d(,. Notice that under this assumption
on f, any meromorphic form on X can be written hd(i A ... A d¢, for a unique
meromorphic function h. It follows from (6.2) that dw = 0 so w is in B,(X), cf.,
Example 10.8. The form w also has the following two properties:

(i) If ¢ is a meromorphic function on X, then ¢ is in OX if (and only if) 9(¢w) = 0.
(ii) If a is in B;X then o = hw for some h in OX.

Since any meromorphic (n,0)-form « is hw for a unique meromorphic function h, (i)
and (i7) are in fact equivalent; for a proof of (i), see, e.g., [23, Remark 3] or below.

For the rest of this section let i: X — Q C CV be a pure n-dimensional subvariety
of the pseudoconvex domain €2, and let p := N — n be its codimension. We will
introduce an almost semimeromorphic form w on X, that satisfies an analogue of
(6.2). In a reasonable sense it will also fulfill (i) and (i7). It can be noted that w
plays a central role in [11]. To begin with we look for an adequate generalization of
the residue current 9(1/f).

If f is any holomorphic function, then a holomorphic function ¢ is in the ideal (f)
generated by f if and only if p9(1/f) = 0. Given any ideal sheaf J in €2, in [12] was
constructed a residue current R such that

(6.3) ¢ € J if and only if ¢R =10

ifp € O%. Tt is thus reasonable to consider R when J = J. v is the radical ideal sheaf
J = Jx associated with X, so let us first recall its definition. In a slightly smaller
set, still denoted €2, there is a free resolution

(6.4) 0= OBy I . B o) 2 oE) L 0y

of the sheaf O/ Jx; here Ej, are trivial vector bundles over Q and Ey ~ C x Q is
the trivial line bundle. This resolution induces a complex of vector bundles

(6.5) 0= B, I~ ... L2p 2op g

that is pointwise exact outside X. Let X} be the set where f; does not have optimal
rank. Then

e CXp1 CXp C - C X1 C Xging C Xp=-+-=X; = X;

these sets are independent of the choice of resolution and thus invariants of the sheaf
F := 0%/Jx. Since F has pure codimension p (i.e., no embedded prime ideals),

(6.6) codim X, > k+1, for k>p+1,

see Corollary 20.14 in [19]. There is a free resolution (6.4) if and only if X = 0 for
k > m. Thus we can always have m < N — 1. The variety is Cohen-Macaulay, i.e.,
the sheaf F is Cohen-Macaulay, if and only if X} = () for £ > p+ 1. In this case we
can thus choose a resolution (6.4) with m = p. If we define

(6.7) X0 = Xging, X" =Xppr, 72> 1,
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then

X"tc...cXx'cx'cX, codimX*>Fk+1.
The sets X* are independent of the choice of embedding, see [14, Lemma 4.2], and
are thus intrinsic subvarieties of the complex space X and reflect the complexity of
the singularities of X.

Let us now choose Hermitian metrics on the bundles Ej. We then refer to (6.4) as a
Hermitian free resolution of 0X /JIx in Q. In Q\ Xj we have a well-defined vector
bundle morphism o1 : By — Ejp,1, if we require that o4 vanishes on (Im fj41)",
takes values in (Ker f,1)* and that fi,10%1 is the identity on Im fi,;. Following
[12] we define the smooth Ej-valued forms

(6.8) U — (60k)-~-(502)01 ZUk(éo'kfl)-”(gUl)
in Q\ X; for the second equality, see [12, (2.3)]. We have that
frun =1, fepupp —0up =0, k>1,

in Q\X. If f := & fr and u := ) uyg, then these relations can be written economically
as Vyu = 1 where Vy := f — 0. To make the algebraic machinery work properly
one has to introduce a superstructure on the bundle F =: ®F} so that vectors in
Esj; are even and vectors in Foi 41 are odd, and hence f, 0 := @oy, and u := > ug
are odd. For details, see [12]. It turns out that u has a (necessarily unique) almost
semi-meromorphic extension U to €2, and the current R is defined by the relation

ViU=1-R.
If F'is any holomorphic tuple that vanishes on X, then
(6.9) U=|FPulxz0, R=9|F[**Aulro.

Thus R has support on X and is a sum ) Ry, where Ry is a pseudomeromorphic
Ej-valued current of bidegree (0,k). It follows from the dimension principle that
R =R, + Ry11 + -+ Ry. Since we can always choose a resolution that ends at
level N — 1, cf., (6.6), we may assume that Ry = 0. If X is Cohen-Macaulay and
m = p in (6.4), then R = R, is O-closed; in general, R is V s-closed.

Remark 6.1. If J is an arbitrary ideal sheaf and R is defined in the same way as
above, then (6.3) holds, [12]. In case J is Cohen-Macaulay, one can express this
duality in a way that only involves the smooth form w in Q\ X, where X is the zero
set of 7, see [12, Theorem 4.2]. This result was recently proved algebraically in [28]
with no reference to residue calculus and resolution of singularities. (]
Remark 6.2. In case J is generated by the single function f, then we have the free
resolution 0 — O Loso /(f) — 0; thus U is just the principal value current 1/f
and R =90(1/f). O

Notice that (6.4) gives rise to the dual Hermitian complex
(6.10) 0—oE) L. o) B o).

Since the sheaf Ker (O(E}) as O(E,, 1)) is coherent, there is a (trivial) Hermitian
vector bundle F' in € and a holomorphic morphism g: F,, — F such that

(6.11) O(F") L o) T o)
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Is exact. Since fp+1 has constant rank outside Xj41, also f;,; has, and it follows
that g has as well. Outside X, 1 we can thus define the mapping op: F' — E, such
that o = 0 on (Img)* C F, opg = Id on (Kerg)t = (Im f,41)* and Imop is
orthogonal to Ker g. If m = p, then we can take F' = E, and g = Id.

Let d¢ :=d(3 A ... Ad(y. We also introduce the notation

E" = Ep+r|X7 fr = fp+r|X

so that f” becomes a holomorphic section of Hom (E", E"~1). Notice that for k& > 1,

ok = i*0o,,, are smooth in X \ X*.

Proposition 6.3. Let (6.4) be a Hermitian free resolution of O%/Jx in Q and let R
be the associated residue current. Then there is a unique almost semi-meromorphic
current

W=wo+wr+ -+ wWn1
on X, where w, has bidegree (n,r) and takes values in E”, such that

(6.12) ixw = RAdC.

Moreover,

(6.13) fPwo =0, frwp=0w,_1, r>1, on X,
and

(6.14) lw| = O(5™M)

for some M > 0, where 0 is the distance to Xging.

Assume that (6.11) is exzact. The forms a¥, 1 < k < n—1, defined and smooth out-
side X*, and op, defined and smooth outside X', extend to almost semimermorphic
currents on X. There is an F-valued section 9 of B:X such that

(6.15) wo = UF’l9.
Moreover,
(6.16) wr = apwr_1, r>1, on X.

We say that w so obtained is a structure form on X. The products in (6.15) and
(6.16) are well-defined by Proposition ??. Notice that if X is Cohen-Macaulay and
m = p, then wy is an E%valued section of B .

Proof. Let x be an arbitrary point on X,..4. Since the ideal sheaf Jx is generated by
the functions f{ that constitute the map fi, cf. (6.4), we can extract holomorphic
functions a; ...,a, from the f{’s such that daj; A --- A da, # 0 at z. Possibly

after a re-ordering of the variables ¢ in the ambient space, we may assume that

¢=(¢",¢")=(¢,¢5- -+, ¢y) and that A := det(da/I¢") # 0 at x. We also note that
d¢’ Nday A -+ - Ndap, = Ad¢' N d¢" = AdC close to x.

Now, Jx is generated by a = (a1, ..., a,) at z and so the Koszul complex generated
by the a; provides a minimal resolution of oL /Jx there. The associated residue
current R* = Ry is just the Coleff-Herrera product formed from the tuple a, cf.,
Section 12. The original resolution (6.4) contains the Koszul complex as a direct

summand in a neighborhood of = and so it follows from Theorem 4.4 in [12] that

=1 =1
(6.17) Ry=ad—A---ANd—,
ap al
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where « is a smooth section of F, close to z. By the Poincaré-Lelong formula thus

1 1 a¢’
(6.18) RyndC = +ad= A ADZ AdayAeee Adayn %
ap ai A

!/

= :i:(27ri)padj A [X]

close to . If wy is the pullback of £(27i)Pad(’/A to Xyeq, then the preceding
equation means that

(6.19) Ry AdC.1p = / wo A i*1),
X

where 1) is a test form with support close to x. Thus wq is determined by R, and
so it extends to a global E,-valued (n,0)-form on X,.4, still denoted wp. Since
op+1up = 0 outside X,11, cf., (6.8), we find that R, and hence wy takes values in
(Im f,41)* C Ep, cf., (6.9) and (6.19). Thus wy = orgwy = o where ¥ := gwp.
On X,¢4 we have

1,00 = —i,gOwy = —g0iwy = —géRp NdC = —gfpr1Rpp1 NdC =0

since g fp+1 = 0. Thus 0¥ = 0 and from Example 10.8 we conclude that 9 is a section
of BX.

Let ap be the Fitting ideal of g, restricted to X, i.e., the ideal (on X) generated by
the 7 X r-minors of g, where r is the generic rank of g; notice that g has rank 7 on X'\
X1 Let aj be the Fitting ideals of f*, k =1,...,n—1. By Hironaka’s theorem there
is a smooth modification 7: X — X such that all the ideals T*ap, 7*a1,. .., 7 ap_1
are principal on X. This means that there are holomorphic sections sg, s1, .. ., Sn_1
of line bundles on X that generate these ideals. It follows from [12, Lemma 2.1]
that 7*op = Bp/sp and ok = Bk/Sk, k > 1, where fp and B are smooth. Hence,
ok = 9B /sk. We conclude that op as well as aF are almost semi-meromorphic on
X.

Let us now define w, inductively by (6.16). We claim that

(6.20) LW = Rerk ANdC, k>0.
If £ =0 it is just (6.19). Assume (6.20) is proved for k — 1. It follows from (6.8) and
(6.9) that Ryix = aptrRpir—1 in @\ Xppg4+1. In this set we thus have that

LaWE = i*akwk_l = ap+ki*wk_1 = ap+kRk_1 ANdC.

Let x5 = x(|h|/6), where h is a holomorphic tuple that cuts out X1, cf., (6.1). Then
i (* xswk) = XsRi N d¢. Now x5Rpir — Rpik in view of (6.6) and the dimension
principle, and i*yswr — wg, and hence (6.20) holds in .

The estimate (6.14) follows since it holds for @, being a tuple of meromorphic forms
on X that are holomorphic on X4, and for each of i*op, al,...,a"" 1. Finally, (6.13)
follows since (f —0)R = VR = 0. O

Let © be an F-valued meromorphic form in €2 such that ¢*@ = 4. Notice that
O =v01d(1 A... NdCN

for a (unique) meromorphic section of FF @ APTH0(Q). If v := opve + alopye +
a?alopye + -+ and w' = vy1d(, thus w = i*w’. Since [X] Ayad¢ = [X] AW = iww =
R AdC, and [X] A ~yad( = (—1)Pyo[X] A d¢ we have

(6.21) R=(—1)P7.[X], iw=[X]Aw = [X]Aw.
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We will now discuss generalizations of (7) and (ii) above. It is proved in [7] that
if ® is meromorphic in €2, then ¢ := i*® is in OX if and only if V;(®R) = 0 in Q.
Combining with Proposition 6.3 we get:
(i)' If ¢ is a meromorphic function on X, then ¢ is in O if and only if V (¢w) = 0
on X.

Let £2% denote the sheaf (’)(AkTiO(Q)). Let £d¢ be a section of the sheaf
Hom o (O(E,), ) ~ O(E,) ®o N

such that f;,,§ = 0. Then I wy) = =€ 0wy = €+ frriwr = fpi1€§ w1 =0, s0
that & - wg is in Bff . The minus signs appear since f is an odd mapping with respect
to the superstrucure. Moreover, if § = fyn for n € O(E;_;), then § - wo = fyn-wo =

—n - fpwo = 0. We thus have a sheaf mapping
(6.22) HP (Hom (O(E,), 2V)) — B, £d¢ € - wo.

Proposition 6.4. The mapping (6.22) is an isomorphism, and it is independent of
the specific choice of resolution, hence establishing an isomorphism

ExtP(O%) Tx, 2V) ~ BX.

This isomorphism is well-known, cf., [23, Remark 5]. Our contribution is the
realization (6.22). Thus B\ is coherent and we have:
(i1)" If &, ..., &, are generators of HP(Hom (O(EY))), thenny := &p-wo, £=1,...,v,
generate the OX -module B.X.

Proof of Proposition 6.4. If h € B, then i,h = h A [X] is a so-called Coleff-Herrera
current with respect to X (taking values in the holomorphic vector bundle A 170 (52))
that is annihilated by Jx, cf., [8]. Thus we have mappings

(6.23) HP (Hom (O(E,), 2V)) — BX — Hom (0%/Jx,CHx) ©0 2V,

defined by &d¢ — & - wp and h — i.h. The latter mapping is certainly injec-
tive. The composed mapping is an isomorphism according to [8, Theorem 1.5].
It follows that both mappings are isomorphisms. From [8, Theorem 1.5] we also
know that the composed mapping is independent of the particular Hermitian res-
olution, and choice of d¢, and thus induces an isomorphism ExtP(O%/Jx, 2V) ~
Hom (0%/Tx,CHx) @0 2. Hence the proposition follows. O

We conclude with a lemma that roughly speaking says that one can “divide” by
w.

Lemma 6.5. If ¢ is a smooth (n,q)-form on X, then there is a smooth (0, q)-form
@' on X with values in (E°)* such that ¢ = wy A ¢'.

Proof. Let ® be a smooth extension of ¢ to €. Since [X] is a Coleff-Herrera current
(with values in APTT((€2)), it follows from [8, Theorem 1.5 and Example 1] that
locally there is a holomorphic Ej-valued (p,0)-form a such that R, A a = [X].

By a partition of unity we can find a global smooth & such that R, A @ = [X] in
Q. Since a A @ has bidegree (N, g), there is an Ej-valued smooth (0, ¢)-form & in Q
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such that a A ® = d{ A ®'. For every test form ¥ in 2 we now get

/Xq,’)/\z'*\lf = [X(®AT) =Ry Ad. (®AT) =R, AdC. (O AT)
= /wo/\qb’m'*\lf,
X
where ¢/ = i*®’. Hence, ¢ = wy A ¢’ on X. O

An algebraic counterpart of the factorization R, Aa = [X] appeared in [27] in case
X is Cohen-Macaulay; then one can take a = df1dfs - - - dfy,.

7. THE STRONG O-OPERATOR ON X

Let w be a structure form on X, and let x5 := x(|h|/J), where x is a smooth
approximand of the characteristic function of [1,00), and h is a holomorphic tuple

such that Xn, = {h = 0}. Notice that if « € W(X), then
(7.1) 1x,,,Via=0 < 1x,,, 0a=0 < dxs ha—0, § — 0.

In fact, since 1x,,, @ = 0 and f is smooth we have that 1x_ fa = 0; hence the
first equivalence follows. For the second one, consider the equality

sing

d(xsa) = xsO0a + Oxs A a.

Since xsa — «a it follows that 1x,, Oa = lim(1—ys)da = 0 if and only if IxsAa — 0.

sing
Lemma 7.1. Assume that p € W(X).
(i) If there is T € W(X) such that

(7.2) ~Vi(uAw)=TAw,
then Op = 7 and
(7.3) Oxs N\puAhw—0, § — 0.
(ii) If Op € W(X,¢g) and (7.3) holds, then there is T € W(X) such that (7.2)
holds.

From Proposition ?? we know that ;1 A w is a well-defined current in W(X).

Proof. Assume that (7.2) holds. Then —1x_, Vi(pAw) = 1x,, 7T Aw =0, since
T Aw is in W(X). Thus (7.3) holds, in view of (7.1). Since w is smooth on X,., and
Vw =0, (7.2) implies that duAwy = T Awp on Xyeq. It follows from Lemma 6.5 that
O =T on Xreg. Moreover, from (7.3) and Lemma 6.5 we find that Oxs A — 0, so
that, cf., (7.1), 1X5m95u = 0. It follows that O = 1x,¢,0p = 7. Thus (i) is proved.

If Oy has the SEP on Xreg, then 7 := lxregé,u has the SEP on X and hence is in
W(X). Since w is smooth on X,eq, =V¢(p Aw) = 7 Aw there. In view of (7.3) and
(7.1), 1x,,,,Vi(pAw) =0, and since V¢(u Aw) has the SEP on X, it follows that
it has the SEP on X, i.e., is in W(X). Since w is smooth on X,c4, (7.2) holds on
Xyeg. Since both sides have the SEP, the equality must hold on X. O

Let = be a point in an arbitrary complex space X. By choosing local embed-
dings X < Q C CV at x and Hermitian free resolutions of O/ Jx (and choice of
coordinates on €, cf., (6.12)) we get the collection &, of all structure forms w at .

Given u, 7 € Wo),(*,x we say that Oxu = 7 at z if (7.2) holds at z for all w € &,.
It follows from Lemma 7.1 that dxu = 7 if and only if Op = 7 and the “boundary
condition” (7.3) holds for every w € &,.
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Definition 4 (The sheaves Dom, dx). We say that a (0,¢)-current y is a section of
Dom, 0x in the open set U C X if p € Wy 4(U) and there is 7 € Wy 4+1(U) such that
Oxp=T1in U, i.e., Oxp = T at each point z € U.

If 4 € W(X) is smooth on X,g, then it follows from Lemma 7.1 that g € Dom, Ox
if and only if (7.3) holds at each x € X for each w € &,. If y is smooth on X, then
J(pu A w) has the SEP, and so (7.3) holds for each w. Thus 5(‘)); is a subsheaf of

Dqu ax.

Proposition 7.2. The sheaves Dom, Ox are ng*—modules and

(7.4) O—>(’)X<—>D0m05Xi>Dom1(§Xi-~
is a complex. Moreover, the kernel of @ in DomgOx is OX.

When dim X = 1 the complex (7.4) is exact, i.e., a fine resolution of OX, see
Section 13 below. We do not know whether this is true if dim X > 1.

Proof. Assume that y is in Dom dx and that w € &,. In view of Lemma 7.1, x
and Op are both in WX and (7.3) holds. Since w is smooth on X, and Viw =0,
Vi (0xs A Aw) = —dxs A O Aw. Therefore (7.3), with u replaced by du, holds as
well and it follows from Lemma 7.1 that O € Dom dx. Moreover, if ¢ is smooth it
is clear that (7.3) holds with p replaced by & A ju. Since 9(9u) = 0 and (€ A p) is in
WX we conclude that & Ay € Dom Ox.

Now assume u € W(fo and (7.2) holds with 7 = 0. Then du = 0 by Lemma 7.1
and hence p is holomorphic on X4, and has a meromorphic extension to X, cf.,
Example 10.8. Thus g € O in view of (i)’ above. O

If (7.2) holds at z for a given w € &,, then in particular, d(u A wo) & pfpr1wr =
7 Awp. Applying various § € O(E,) with fp41€ = 0 to this equality we conclude, by
Proposition 6.4, that
(7.5) O(uAO)=7AN0, 6cBX.

If X is Cohen-Macaulay, and (7.2) holds for one w, then it holds for all w € &,.
In fact we have:

Proposition 7.3. If X is Cohen-Macaulay, then p € W(X) is in Domdx and
Oxp =7 if and only if (locally) (7.5) holds.

Proof. 1t follows from Proposition 6.3 that if X is Cohen-Macaulay at = € X, and
thus X! = ), any w € &, has the form a) where 9 is (a vector-valued) section of BX
and a is smooth. If 7 € W(X) and (7.5) holds, then

O(p Aw) =F0(au ANI9) = +da Apu NI Fad(uAd) =E£daAuAdFar A,

It follows that 1x_, O(uAw) =0 and hence y is in Dom dx. O

sing
Notice that W&(n = Dom,, dx. Assume now that

(7.6) codm X" >r+4¢, r>0.

We claim that if ¢ < ¢ —2, u € ngq and Ou € ngqﬂ, then 1 € Dom, dx. To

O(u N wg) = 0 for each kK > 0. For k = 0 it

sing _
follows directly by the dimension principle since 1y 9(u A wo) has bidegree (at
most) (n,f — 1) and support on X° that has codimension £. Now, w; = a'wy and

see this, we have to verify that 1x

sing
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al is smooth outside X', so 1Xs,mg(§(u Awy) = iallxsmgé(u A wp) = 0 outside

X1 Thus 1 Xsmgé(u A wi) has support on X! and hence must vanish by (7.6) and
the dimension principle. The claim follows in this way by induction. It follows in
particular that X is normal if (7.6) holds for £ = 2. One can verify that (7.6) with
¢ =2 is a way to formulate Serre’s conditions R1 and S2 for normality.

8. THE INJECTIVITY OF THE ANALYTIC SHEAF C

Here is a proof of Malgrange’s theorem by residue calculus. Let F be any module
over the local ring Oy and let (??) be a resolution of F. We have to prove that then
the complex

(8.1) 0 — Hom (Op(Ep), C) 1 Hom (O(E1),C) 22

is exact except at k = 0. Fix a natural number N. Given a smooth function ¢ in
X C C", let ¢ be the function

B¢ w) = Y 926()(w—()/al,

la|<N
in X = {(¢,{) € C?; ¢ € X}. Then
$(¢,¢) = ¢(¢), 0 =0(lw—{|N).

Moreover, if f is holomorphic then % = f¢. Combining the formulas in [46] with
the construction in [43], we get

3(z7) = /< (Frsa (=) HEU + HERE 4+ HUML) A (6 + 06 A7) A g,

where g is a suitable form in C?" with compact support and v? is the Bochner-
Martinelli form in C?" with pole at (z, ), and H’ are holomorphic forms. Since
R¥ =0 for k > 1 when (??) is a resolution, we have the homotopy formula

¢ = fr41Ths10 + Ti(fro), k>1,

where
Trd(z) = H*U (¢ + dp Av*) A g7,
Cw

Moreover, as in [43] one can verify that Tj¢ is of class CM if N is large enough. If
now g has order at most M, then we have

1= T frap+ felip,
so if fi =0, then u = fivif v = Tpu. Thus (8.1) is exact at k.

9. KOPPELMAN FORMULAS ON X C ) (THE EMBEDDED CONTEXT)

We first recall the construction of integral formulas in [5] on an open set Q C C¥.
Let n = (n1,...,mn) be a holomorphic tuple in € x €, that generates the ideal
associated with the diagonal A C Q¢ x €2,. For instance one can take n = ( — z.
Following the last section in [5] we consider forms in Q¢ x €2, with values in the
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exterior algebra A, spanned by 7§ (€2 x Q) and the (1,0)-forms dny,...,dn,. On
such forms interior multiplication ¢, with

A
n = 2mi Nj7—

; on;
is defined. Let V, = 6, — 9. A smooth section g = go + -+ + gy of A, defined
for z € @ € Q and ¢ € Q, such that V,g = 0 and go|a = 1, lower indices denote
degree in dn, will be called a weight with respect to z € Q. Notice that if g and ¢
are weights, then g A ¢’ is again a weight. We will use one weight that has compact
support in © and one weight which gives a division-interpolation type formula (for
z € Q) for the ideal sheaf Jx associated with a subvariety X < Q. We first discuss
weights with compact support.

Ezample 9.1 (Weights with compact support). If € is pseudoconvex and K is a
holomorphically convex compact subset, then one can find a weight with respect to
z in some neighborhood €' @ Q of K, depending holomorphically on z € €/, that
has compact support in £, see, e.g., Example 2 in [6]. Here is an explicit choice
when  is a neighborhood of the closed unit ball B, K = B, and n = ( — 2: Let
o=(-dn/2mi(|¢|> = (- 2)). Then 6,0 =1 for ( # z and

N VR (¢ - dn) A (dC - dn)F—1
MO = G (P —Ch

If x = x(¢) is a cutoff function that is 1 in a slightly larger ball €', then

N
gzx—gx/\%:x—éx/\ (ZU/\(@U)]’“_1>.
n k=1

is a weight with respect to z € ' with compact support in Q. O O

Let s be a smooth (1,0)-form in A, such that |s| < || and |n|*> < |d,s; such an
s is called admissible. Then B 1= s/V,s =, s A (0s)F~! satisties V,B =1 — [A],
where [A] is the (IV, N)-current of integration over A. If n = ¢ — 2, then s = 9|n|?
will do and we refer to the resulting B as the Bochner-Martinelli form. If g is any
weight, we have V, (g A B) = g — [A], and identifying terms of bidegree (N, N — 1)
we see that

(9.1) (g AN B)n = [A] = gn,

which is equivalent to a weighted Koppelman formula in 2.

We now turn our attention to construction of weights for division-interpolation with
respect to the ideal Jx. For the rest of this section we assume that Q C cN
is pseudoconvex and that X < () is a subvariety. Let us fix global holomorphic
frames for the bundles Ej in (6.5) over Q. Then Ej =~ crank By o Q, and the
morphisms fj are just matrices of holomorphic functions. One can find, see [6] for
explicit choices, (k — ¢, 0)-form-valued Hefer morphisms, i.e., matrices H ,ﬁ: B, — Ey,
depending holomorphically on z and (, such that H ,’j = Ig, and

SyHE = Hi 1 fr, — fon(2)HE, k>4,
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where If, is the identity operator on Ej and f stands for f(¢). For Re A > 0 we
put U» = |F|?!u, see Section 6 for the notation, and

N
R*=>"Ry=1-V U =1 |F* +0|F* ru.
k=0
Then
N N N
P = LV HIR = S HRY 4 fi(2) Y HILY
k=1 k=0 k=1
= HR+ fi(z)HU?
is a weight that is as smooth as we want if Re A is large enough. Let g be any smooth
weight with respect to ' € Q (but not necessarily holomorphic in z) with compact

support in ©¢. Then (9.1) holds with g replaced by g* N g. Since R(z) is V f(z)-closed
we thus get

—Vi) (R(z) Adz A (P AgA B)N) = R(z)AdzA[A] -
— R(z)Adz A (¢ A g)n.

Notice that the products of currents are well-defined; they are just tensor products
since z and 7 are independent variables in © x €. Moreover, since R(z)f1(z) = 0 we
have

~V)(R(z) Adz N(HR*NgAB)N) = R(z) AdzA[A] -

(9.2) — R(z)AdzA(HRAg)y.
It follows from (6.12) that (recall that A C Q x € is the diagonal)
(9.3) R(z) Ndz N [A] = tew,

where +: AX < Q x Q is the inclusion of the diagonal AX € X x X € Q x Q. We
notice that the analytic continuation to A = 0 of the last term on the right hand side
of (9.2) exists and yields the well-defined current R(z) Adz A (HR A g)n in Q¢ x £,
The existence of the analytic continuation to A = 0 of the left hand side of (9.2)
follows from Proposition 2.1 in [13] since R(z) A B is pseudomoromorphic in € x .
Our Koppelman formulas will follow by letting A = 0 in (9.2).

To begin with, let us consider (9.2) for A = 0 in (2 \ Xging) X (' \ Xsing). In this
set we have, by (6.12) and (6.21), that

(9.4) R(z) Ndz A (HR A g)n = fw(z) AXC) A (HY(Q)a[Xe]) Ag)

= tw(2) AXC A X Ay (Qa(H A g)y = w(z) AXz x X Ap(C,2),
where
(9-5) p(¢; 2) = £(V(Q)2(H A g)N) ()

is the term of £v(¢)Ji(H A g)n of degree n in d(; this is the only term of ++({)i(H A
g)n that can contribute in (9.4) since w(z) A [X;] has full degree in the dz;. Notice
that p({, z) is almost semi-meromorphic on X x X’ (X’ = X N ') and smooth on
Xyeg % 3 if g is holomorphic in z then z — p((, z) is holomorphic in €.

29

Lemma 9.2. In (¢ \ Xsing) X (2, \ Xsing) we have
(9.6) R(z)AdzA(HR*AgAB)y|amo = R(z) Adz A (HR A g A |n)**B) §|r=o-
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Proof. Recall from Section 6 that in ©\ X4, R is a smooth form times R,. Notice
that

T := Ry(2) A R) A Bj_p|xo — Bp(2) A Ry A [ Bj_g|r—o0, j < N.
is a pseudomeromorphic current in Q x € of bidegree (j —k,p+k+j—k—1) =
(j —k,p+j —1) that clearly vanishes outside X . It also vanishes outside A since B
is smooth there. Thus T} has support contained in AX ~ X which has codimension
2N —n=p+ Nin Qx Q. Since p+ N >p+j—1 for j < N, it follows from the
dimension principle that T’j;, must vanish; in particular, Rp(z)/\Rg/\Bj,M r=0 = O for
k < psince Ry, = 0 for k < p. We conclude that (9.6) holds in (Q\ Xsing) X ('\ Xsing)
since T}, = 0 there. O

Notice that the right hand side of (9.6) only involves B; with j < n since all terms
in HR have degree at least p in dn. If ke A > 0 we may replace g by g A |[7/**B in
(9.4) and combining with Lemma 9.2 we get

(9.7 R(z) AdzA(HR*AgAB)n|,_, = R(z) Adz AN (HRAg A n|**B)n|,_,

= w(z) ALX x XA (4(Q)a(H Ag A n|*B))
n
= w(2) A X x XIA (32D _(HAg)n—; Ml Bj) |,
j=1

in (Q\ Xsing) X (¥ \ Xsing). Since B; = O(|n|=2*1), we see that B; is locally
integrable on X¢q X Xy for j < n. It is thus innocuous to put A = 0 in the right
hand side of (9.7) as long as we restrict our attention to X, x X/ . Notice that
the integral kernel

N‘)\zo

n

(9.8) k(¢ 2) = £(v(Q)2) (HAg)N—j A B;) iy

j=1
is almost semi-meromorphic on X x X’ and locally integrable on X, x X,
In view of (9.2), (9.3), (9.4), (9.7), and (9.8) we have that

(9.9) ~Vi) (@) ARG 2) =w AAT] = w(z) Ap(C2)
in the current sense on X4 X X;eg. Combined with Lemma 6.5 this gives

Lemma 9.3. With k(C,z) and p(C,z) defined by (9.8) and (9.5) respectively, we
have

Ok (¢, 2) = [AY] = p(¢, 2)

; !/
in the current sense on Xyeg X X, g

We can write our integral kernels p((,z) and k((,z) in terms of the structure
form w as follows: Let F' be a trivial vector bundle over 2 x €2 with basis elements
€1,...,en. Now replace each occurrence of dn; in H and g by €; and let H and g be
the forms so obtained. Then

(HAg)n =€y A Aeia(dm A~ Adnpy A (H A G)n),

where {€}} is the dual basis and the lower index NV on the right hand side means the

term with degree IV in the ¢;. If C' = C((, z) is the invertible holomorphic function
defined by dn = Cd(¢ + - - -, we thus have, cf., (6.21),

(9.10) p(C,2) £ Cey A AN L(HAG) N Aw(C).
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Similarly, we get that
n
(9.11) k(¢ 2) = +Ceny A Nefod (HAG)n-j ABj Aw(Q).
j=1

10. KOPPELMAN FORMULAS ON X (IN THE INTRINSIC CONTEXT)

Let X be a reduced complex space of pure dimension n. Locally, X can be embed-
ded as a subvariety of a pseudoconvex domain in some CV, so let us, for notational
convenience, assume that X can be embedded, X «— €, in a pseudoconvex domain
Q c CN. Then, following the previous section, for any Q' € Q we can construct
integral kernels k((, z) and p(¢, z) which are almost semi-meromorphic on X x X',
where X' = X N/, such that (9.9) and Lemma 9.3 hold. Moreover, k(¢, z) and
p(¢, z) are locally integrable on X, x X{neg and smooth on X,.4 x Q' respectively.

Now assume that p({) € Woq(X). Since k(¢,z) and p((,z) are almost semi-
meromorphic, the products k(¢, z) A u(¢) and p(¢, 2) A u(¢) are well-defined currents
in W(X¢ x X7) in view of Proposition ??. Let m: X x X, — X, be the projection
and put Ku(z) = m(k(¢,2) A p(€)) and Pu(z) = m(p(¢, 2) A u(€)). Since k and
p have compact support in ¢ € Q, Ku and Pu are well-defined currents in W(X?),
and in fact, Pu(2) is a smooth function in €’ since p(¢, 2) is smooth in 2z € Q'; if we
choose the weight g to be holomorphic in z, then Pu(z) is holomorphic in €. Tt is
of course natural to write

(101)  Kule) = /X B(C.2) Ap(Q), Pu(z) = /X p(C,2) A ().
¢ ¢

Lemma 10.1. Let p € Wy 4(X).
(i) If p is smooth in a neighborhood of a given point x € X, then Ku(z) is
smooth in a neighborhood of x.
(ii) If u vanishes in a neighborhood of x € X', then Ku(z) is smooth close to x.

Proof. Since k((, z) is smooth in z close to z if ( avoids a neighborhood of z, (ii)
follows. To see (i) it is enough to assume that p is smooth and has compact support
close to x € X,¢g. Close to the point (z,z) X x X is a smooth manifold, w(¢) is
smooth, and Bj ~ |¢ — z|~%*1. Thus, (i) follows from the following lemma, cf., the
definition (9.8) and (9.11) of k((, 2). O

Lemma 10.2. Let ® be a non-negative function on RE x }RZ such that ®? is smooth

and ® ~ |z —vy|. For each integer m > 0, let ., denote an arbitrary smooth function
that is O(|x — y|™), and let &, denote a finite sum Y-, <o om/®". Ifv <d—1

and £ € C¥(RY), then

T¢(x) = g Ev(z,y)é(y)dy

is in C*(RY).
This lemma should be well-known, but for the reader’s convenience we sketch a
proof.

Sketch of proof. Let L; = 0/0x; + 0/0y;. It is readily checked (e.g., by Taylor
expanding) that L;p,, = ¢, from which we conclude that L;€, = &,. Let

Tr¢(x) = / & — 46, (2, )€ (y)dy.
R4

Y



108

For Re A > —1/2, it is clear that T*¢ is an analytic C°(R%)-valued function. More-
over, for Re A > 0, one easily checks by using L;&, = &, that all distributional

derivatives of order < k of TA¢ are continuous and analytic in A for Re A > —1/2.
It follows that T¢ = T°¢ € C*(RY). O

Proposition 10.3. If i1 is a section of Domy Ox over X, then Ou € Wo,g+1(X) and
the current equation

(10.2) p=0Ku+ K(Ou)+Pu
holds on X, ., = Xyeqg N Y.

reg

Proof. From Proposition 7.2 it follows that Ou € W 4+1(X) and so K(9p) is a well-
defined current in W(X’). Moreover, from Lemma 9.3 it follows that if ¢(z) is a test

/
form on X7/, then

(103) 60 = [ k60 40 [ HEAD+ [ P2 Ad)

for ( € X;eq. We also see from Lemma 10.1 that all terms in (10.3) are smooth on
X. If p has compact support in X4, then the proposition follows by duality.

For the general case, let x5 = x(|h|/d), where h = h(({) is a holomorphic tuple
cutting out Xging. Then the proposition holds for xsu. Since k(¢,z) A u(¢) and
(¢, 2) A u(¢) has the SEP on X x X', we have that (xsu) — Kp and P(xsp) —
Pu. Moreover, Ou € Wy 4+1(X) so k(¢, z) A Ou(¢) has the SEP, which implies that
K(xs0u) — K(Op). Hence,

Jim K(0(xsp)) = K(Op) + lim K(0xs A p).

The singularities of k((, z) only come from the structure form w(¢) when z and ¢ “far
apart”, e.g., for z in a compact subset of X;eg and ¢ close to Xg;pg. From Lemma 7.1
we have that Oxs A Aw — 0 and so lims_o+ K(dx5 A p) = 0 for z in X/, ; thus the
proposition follows. O

Notice that Pp in general is smooth. If the weight g is holomorphic in z, then Py
is holomorphic in €’ for ¢ = 0 and 0 for ¢ > 1. In this case, Proposition 10.3 thus
is a homotopy formula for 0 on X,’,eg in the sense that if ;1 is in Dom, Ox on X and
Op = 0, then y is holomorphic in € for ¢ = 0 and u = 9Ku on Xjeg for g > 1.

Proof of Proposition ?7?. We know that K¢ is defined and in WX if ¢ € WX. By
choosing the weight ¢ to be holomorphic in z, we get that P¢ is in OX. Moreover,
from Proposition 10.3 we have that the Koppelman formulas (?7) and (??) hold on
X, if, in addition, ¢ is in Dom dx.

O

We do not know whether 0/Cpu is in W or not, still less whether Kp is in Dom dx
or not in general. However, we shall now see that this is true if y is smooth, and
more generally if p is obtained by a finite number of applications of K’s. Notice
that K is only defined in the slightly smaller set X’. Therefore, when we in the
following lemma consider products of kernels A;k;(27, 271), where (21,...,2™) are
coordinates on X x - - - x X, we will assume that 271+ k;j 1 (2971, 2972) has compact
support where 2771 i k;(27, 2971) is defined.
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Lemma 10.4 (Main lemma). Let k; denote kernels (9.8) obtained via local embed-
dings and arbitrary Hermitian free resolutions of O/ Jx. Let (z',...,2™) be coordi-
nates on X x --- x X and assume that 271 — ki1 (2971, 2972) has compact support
where 271 v ki(27, 2971 is defined. Then, for any 2™ € X and any w € Gym, we
have

10.4 lim dx(|h 5) A i ) =0
(10.4) i Ox(|h(=")]/8) A w /\ (7,2

in the current sense in a neighborhood of {x™} x X x -+ x X.

Proof. We proceed by induction over m. Every w € G, m is in WX, so ysw — w and
hence
—Oxs Nw = Vi(xsw) — Vyw = 0.

Thus the lemma holds for m = 1 (i.e., when there are no k-kernels). Now consider
the case m + 1. Recall that the limit in (10.4) is a pseudomeromorphic current 7" in
a neighborhood of {21} x X x --- x X. When 2! # 22, then k;(z!, 22) is a smooth
form times w(z!), cf., (9.11). Thus, outside 2! = 22, T is a smooth form times the
tensor product of w(z') and a current of the form (10.4) in the variables 2™+ ... 2%
the support of T is thus contained in {z! = 22} by the induction hypothesis. For a
similar reason the support of 7' must be contained in {z¥ = 2**1} and we see that T
must have support contained in the diagonal A = {z™*! = ... = 21 = 0}. Moreover,
the support of 1" is clearly also contained in X,y X X X --- x X. Thus, the support
of T is contained in (AX) sing C A, which has dimension (at most) n — 1 and hence
codimension (at least) (m+ 1)n — (n —1) = mn + 1.

Now let T° be the component of T obtained from the component wo(z™*+!). Then
T has bidegree (mn,m(n — 1) + 1) since each k; has bidegree (n,n — 1). However,
since m > 1, we have m(n — 1) +1 < mn + 1 and so T° = 0 by the dimension
principle. Let T be the component of T' obtained from wy(2™*1). Since w; = alwy
and o' is smooth outside X!, it follows from what we have just proved that 7' has
support contained in (X' x X x --- x X)N A ~ X!, This set has codimension at
least mn 4+ 1 4+ 1 and T has bidegree (¥,m(n — 1) + 1+ 1) so also T = 0 by the
dimension principle. Proceeding in this way we conclude that 1" = 0. O

We can now show that Lemma 9.3 holds on X x X".
Proposition 10.5. We have that
_vf(z) (W(Z) A k(Ca Z)) =wA [AX] - w(z) /\p(C7 Z)

in the current sense on X x X'.

Proof. Let x5 = x(|h(¢)|/d) and xe = x(|h(2)|/€), where h as before cuts out Xjp,.
From Lemma 9.3 we have that
—V 4(2) (xoxew(2) A k(C, 2)) = xoxew AAX] = xsxew(2) Ap(¢,2) + V(6,€),
where ) )
V(0,€) = Oxs A xew(2) AK(C, 2) + xs0xe Aw(2) ANk(C, 2).
Since w, k, p, as well as the products w(z) A k((, z) and w(z) A p((, z) all are in
W(X x X), it is enough to see that lim¢_olims_ V' (d,€) = 0. We have

(10.5) lim V(8,€) = lim Dxs A xewo(2) A K(G 2) + e Awl2) AK(C 2).
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Since x.w(z) is smooth and vanishing in a neighborhood of Xing, k(¢, 2) is a smooth
form times w(¢), cf., (9.11), on the support of dxs if & is small enough. Therefore,
the first term on the right hand side of (10.5) is 0 by Lemma 10.4 with m = 1.
The second term on the right hand side of (10.5) tends to 0 as ¢ — 0, again by
Lemma 10.4. (]

11. THE AD HOC SHEAF AX

We are now ready to define the sheaf A¥; it is indeed an ad hoc definition with
respect to the Koppelman formulas in the intrinsic context. From the previous two
sections we know that we locally (and semi-globally) on X can construct integral
kernels k((, z) and p((, z), cf., (9.11) and (9.10), and corresponding integral operators
K and P such that Proposmon 10.3 holds.

Definition 5. We say that a (0, ¢)-current ¢ on an open set Y C X is a section of
AX over U, ¢ € A (U), if, for every z € U, the germ ¢, can be written as a finite
sum of terms

S NKL(-- & AN2(& AK1(60)) -+ -),

where IC; are integral operators with kernels k;(C,z) at x of the form defined in
Section 9 and &; are smooth (0, x)-forms at = such that &; has compact support in
the set where z — k;((, z) is defined.

Recall from Section 10 that if ¢ € W(U) and K is an integral operator, as defined
above, with kernel k((, 2), where z — k((, 2) is defined in U’ € U, then K¢p € W(U').
Therefore, AX is a subsheaf of WX and from Lemma 10.1 it follows that the currents
in AX are smooth on Xreg- In view of Lemmas 10.4 and 7.1 we see that AX is in
fact a subsheaf of Dom dx. We also note that if ¢ € A,(U), then K¢ € A,—1(U').

Proof of Theorem ??. 1t is clear that AX D 50 are fine sheaves satisfying (i) of
Theorem ?? and we have just noted that also (11) holds.

We must check condition (iii). We have already seen in Proposition 7.2 that the
kernel of @ in Domg dx is OX. Let ¢ be a section of Agf, q > 1, in a neighborhood
of an arbitrary point x € X, and assume that d¢ = 0. Since AX C Dom dx we also
have Ox¢ = 0. For some neighborhood U of x, by Proposition 10.3, we can find an
operator K such that

(11.1) K¢ = ¢

in Ureg; here K corresponds to a weight that is holomorphic in 2. Since ¢ is a section
of AX we know that K¢ is a section of Aé(,l and since AX C Dom Oy it follows from
Proposition 7.2 that K¢ is in WX. Both sides of (11.1) thus have the SEP and we
conclude that (11.1) in fact holds on U.

It remains to prove that 0 is a map from AX to AX. It is sufficient to show that

(11.2) 5(§VAICV(-~-§2/\IC2(§1/\ICl(fo))---)) G.AX,

for any operators IC; (not necessarily corresponding to weights that are holomorphic
in z) and smooth ( x)-forms &; with compact support where K;(§;—1) is defined.
We prove (11.2) by induction over v. The case v = 0 is clear. Assume that (11.2)
holds for v = £/ —1. Let K, j = 1,...,£ be any integral operators and §;, j = 0,...,/,
smooth forms with compact support where K;(£;j—1) are defined. Put ¢p_; = &1 A
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Ke—1(---& AK1(€o) -+ ) and let U be a sufficiently small neighborhood of supp &;.
By Proposition 10.3 we have that

(11.3) b1 = Ke(Opp—1) + OKopp—1 + Prpo_1

in Uyeq; notice that Pypy_; is smooth. From the induction hypothesis we have that
Oy_1 is in AX. Moreover, any K maps AX to AX and since AX C Dom 0y, all
terms in (11.3) have the SEP. Hence, (11.3) holds on U/ and it follows that 9/Coy_1
is in A(U). Thus, (11.2) holds for v = ¢ and the proof is complete.

O

Proof of Theorem 7. From Section 10 we have integral operators IC and P such that
Py is holomorphic in Q" if ¢ € Wy o(X) and 0 if ¢ € Wy 4(X), ¢ > 1. Moreover, we
noted above that K: Ag41(X) — A, (X’) and that A¥ is a subsheaf of Dom dx. Let
¢ € Ag(X), ¢ > 1. By Proposition 10.3 we have that

(11.4) ¢ = 0K + K(0¢) + Pg
on X}, Since ¢ and d¢ are in AX | all terms in (11.4) have the SEP, cf., the previous
proof. Hence (11.4) holds on X’ and so Theorem 7 follows. O

12. EXAMPLE WITH A REDUCED COMPLETE INTERSECTION

Let ay,...,a, € O(B), where B C C" is the unit ball, and assume that X = {a; =
.-+ = ap = 0}NB is a reduced complete intersection, i.e., that X has pure codimension
p and dai A---Ada, # 0 on X,y Let eq, ..., e, be a holomorphic frame for the trivial
bundle A and let a be the section a = aje] + - - + ape;, of the dual bundle A*, where
{ej} is the dual frame. Put Ej = A*A and let §,: O(Fey1) — O(E,) be interior
multiplication with a. The Koszul complex (O(F,),d,) is then a free resolution of
0%/ Jx, cf., (6.4). Tt is clear that s, := > aje;j/lal® is the solution to dzs, = 1,
outside X, with pointwise minimal norm (with respect to the trivial metric on A).
If we consider all forms as sections of the bundle A(T*(Q2) @ A), then we can write
(6.8) as uy, = 54 A (0s,)F 1. Following [12], cf., (6.9), we get that

_ 1 1
(12.1) R:Rp:8|a\2AAup\A:0:8G—A---A8a—l/\e1/\---/\ep,
P

i.e., R is the classical Coleff-Herrera product (times e; A---Aep). Let w’ be a smooth
Ep-valued form in Q \ Xging such that day A --- A da, A w'/(270)P = e A d{ where
e=e N---Nepand d( =d( A--- Ad(n. Then the pullback i*w’, where i: X—B,
is unique and meromorphic on X. By the Leray residue formula we get that

R/\dgzéiA---/\éi/\eAdgzw’A[X],
ap al
and so, cf., (6.12) and (6.21), the structure form associated to R is w := i*w’. If we
choose coordinates ¢ = (¢, (") so that det(da/9(’) is generically non-vanishing on
Xreg, then we can take o’ = (—27i)P e A d¢”/ det(0a/I(’") and the structure form is
explicitly given as

w=1" ((—27rz')p eNdC"/ det(@a/@(')).
If we let

o (—2mi)P 0 0

"7 der(@aocy oG, o

then we have R = (—1)Py4[X], cf.,, (6.21).



112

Let 1 € Wy,4(X) and assume that p is smooth on X,.4. Then, cf., Section 7, p is
a section of Dom Oy if and only if dxs A p Ai*(d¢”/ det(0a/A¢")) — 0 in the current
sense as 6 — 0; here x5 = x(|h|/d), x is a smooth approximand of the characteristic
function of [1,00) and h cuts out X;pg.

To construct integral kernels, cf., Section 9, let h; be (1,0)-forms so that §,h; =
a;(¢) — a;(z), where = ¢ — z. We then have Hefer morphisms Hj given as interior
multiplication with (3 hj A e;‘f)k_e/(k‘ — ). Let g be the weight from Example 9.1
and let B be the Bochner-Martinelli form. Then (HRA g A B)y = H)R, A (g A B)y
since R = R, and a straight forward computation shows that

1 1
HR=H)R,=0—A--ANO— ANhy A+ A hy.
ap aj

There is a k((, z) = O(|n|~2"*1) such that
hi A~ Ahy A (g A B)p = (2m0) Pdn A k(C, 2)
and so from (9.8) we see that our solution kernel for 0 on X is
dC//
det(9a/d¢")

Similarly, there is a smooth form p((, z), depending holomorphically on z if g does,
such that

k(C,z) = £(ysHp A (g A By, = £k(C,2) A

(n)

hi A Nhy A(C-dn) A (dC - dn)" ™' = (2mi)~Pdn A (¢, 2)

and we can compute p((,z) from (9.5) using p(¢,z). We get the representation
formula

5 d¢” p(¢, 2)
12.2 ¢zz/8x(§/\ A ——— #(()
122 &= O Gett@aroey " (- - o
for (strongly) holomorphic functions ¢ on X. If X intersects OB properly and Xiq
avoids OB then we may let x tend to the characteristic function for B. The integral
(12.2) then becomes an integral over X N9B and the resulting representation formula
coincides with a formula of Stout [41] and Hatziafratis [22].

Let us consider the cusp X = {a(z) = 27 — 25 =0} C B C C? where 2 < r < s
are relatively prime integers, in more detail. In this case the structure form is the
pullback of —2mie; A dCa/(r¢™!) to X and we can take v(¢) = (—2mi/r¢] ™) - e1 A
(0/0¢1). The Hefer form is given by

1 T __ ZT' S __ ZS
h = hidm + hadne = 7(@ Ly + ‘3 2 dny)

2 (1 — 21 G2 — 22

and we get

123)  halgAB) = h A2 (amiy gy A dm (. 2)
2miln|? ’

for a certain function k((,z). The restriction of this function to X x X can be
computed by applying 6, to (12.3) and noting that 6,h = a({) —a(z) =0 on X x X.
One gets that k(¢,2z) = x(¢) h1/n2 on X x X and so our solution kernel for d on the
cusp is

O ~ x(©Q) ¢ — 21 d¢o
b 2) = r¢it HG2) = o (G —21)(G—2) Y
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Expressed in the parametrization 7 — (7°,7") = ((1,(2) our solution operator for
(0,1)-forms thus becomes

Ko(0) = g [ X0) = A 60

2ri 75 —t5) (77 —t7) (51

One similarly shows that the projection operator P looks the same but with x re-
placed by Oy, i.e., the kernel is the same but the solid integral is replaced by a
boundary integral.

13. THE ONE-DIMENSIONAL CASE

In the case when X is a complex curve we have some further results. In particular,
we have a stronger version of Proposition 7.2.

Proposition 13.1. Let X be a reduced complex curve.
(i) If the compler 0 — OX — 537(0 9, 55’(1 — 0 is exact, then AX = 5&(*.
(ii) The complex 0 — OX < Domg Ox 9, Domy Ox — 0 is ezact.

Proof. To prove (i), according to Definition 5, it is enough to show that K¢ is smooth
for every K if € is a smooth (0, 1)-form. If £ is a smooth (0, 1)-form, there is (locally)
a smooth function ¢ such that di = £. Smooth forms are in AX and so, cf., the
proof of Theorem 7, we get that

K¢ = K(04) =+ — Py
on X. Since Py is smooth, K¢ is indeed smooth on X.

From Proposition 7.2 we have that the kernel of 9 in Domg dx is OX so to prove
(ii) it remains to see that d: Domgdx — Dom; Ox = W(i(l is surjective. We take a
minimal local embedding X — CV so that X sing = {0} and we let 1 be a section
of W(i(l in a neighborhood of 0. We choose a Hermitian minimal free resolution of
OX and we get the structure form w = wp; notice that OX is Cohen-Macaulay since
dim X = 1. Let K and P be integral operators as in Section 10 associated with a
weight g which is holomorphic in z. From Proposition 10.3 we have that u; := Kp
is in W(i(o and solves Ou; = p outside 0; we will modify this solution to a solution in
Dom Ox.

Let m: X — X be the normalization of X. Then w = T*w is a meromorphic
(1,0)-form and from (5.5) we see that there is @y in Wy such that m.a; = u1. Let
h be a holomorphic tuple such that {h = 0} = {0} and put x5 = x(|h|/d). Then
v = limg_,o+ 8)(5 AT1@ is a pseudomeromorphic (1, 1)-current on X with support in
the finite set of points 7=1(0). Let us for simplicity assume that X is irreducible at
0 so that X is connected and 7—1(0) is just one point ¢ = 0 for some holomorphic
coordinate ¢ on X. Then v has support at t = 0 and hence equals a finite linear
combination of derivatives of the Dirac mass, dp, at ¢ = 0. Moreover, since v is
pseudomeromorphic, only holomorphic derivatives occur, cf., the first part of the
proof of Proposition 77, and so we have

V—ch 8t3 ZCJ (tﬂ+1>/\dt c ,¢; € C.
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Also, since @ is meromorphic, @ = f(t)dt/t* for some k > 0 and some holomorphic
function f with f(0) # 0. The current

¢ tk—j—l
T )

is holomorphic for ¢ # 0 and by construction, v = 9(2®). If @ := @1 — g, it is then
straightfo_rward to VerifX that Oxs A uw — 0 on X. Hence, u := m,U = uy — myUs i8S
in Domg dx and solves Ju = pu. (|

j=0

Notice that once we know that 0: Domgdy — Dom; Ox = W(i(l is surjective, it
is easy to show, using an argument similar to the proof of statement (i) above, that
our solution operators for 0 indeed produce solutions in Domg Jx.

Also notice that, in view of Proposition 7.2, it follows from (ii) of Proposition 13.1
that if H1(X,0X) =0 and ¢ € Wp1(X) = Dom; Ox, then there is a 1 € Wy o(X)
such that Ox1 = ¢ on X.
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