
CHAPTER 1

Some basic elements of complex analysis

version 2008-07-30

1. Complex notation and holomorphic functions

Let x and y be the standard coordinates in C ' R2 and consider
the complex-valued functions z = x+ iy and z̄ = x− iy. The exterior
derivative d extends to a complex-linear operator on complex-valued
functions and forms. In particular, dz = dx + idy and dz̄ = dx − idy,
and an easy computation reveals that

i

2
dz ∧ dz̄ = dx ∧ dy = dV (z),

the area form on C. In particular, dz and dz̄ are linearly independent
so any 1-form ξ can be written ξ = αdz + βdz̄. In particular, if f is a
differentiable function (at a given point), then we have

df =
∂f

∂z
dz +

∂f

∂z̄
dz̄ = ∂f + ∂̄f,

with

∂

∂z
=

1

2

( ∂
∂x

− i
∂

∂y

)
,

∂

∂z̄
=

1

2

( ∂
∂x

+ i
∂

∂y

)
.

It is easily checked that the limit

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

exists if and only if f is differentiable at a and (∂f/∂z̄)(a) = 0. In
that case, then f ′(a) = (∂f/∂z)(a). A function f ∈ C1(Ω) is said to
be holomorphic, f ∈ O(Ω), if ∂̄f = 0.

1
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In the same way, in Cn we have the standard coordinates zk =
xk + iyk, and

(1.1)
( i

2

)n

dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n =

dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn = dV (z)

is the volume form in Cn ' R2n. Therefore, cf., Exercise 1, the forms
dzj, dz̄k form a basis for the cotangent space at each point, and hence
any complex-valued form ξ can be written

ξ =
′∑

I,K

ξI,KdzI ∧ dz̄K ,

with the usual multi-index notation, so that dzI = dzI1∧dzI2∧. . .∧dzI|I| ,
etc, and the prime indicates that the summation is performed over
increasing multiindices. We say that ξ has bidegree (p, q) if it can be
written with |I| = p and |K| = q. If f is a function, we have

df =
∑

k

∂f

∂zk

dzk +
∑

k

∂f

∂z̄k

dz̄k = ∂f + ∂̄f,

and in general

dξ =
′∑

I,K

dξI,K ∧ dzI ∧ dz̄K =

∑
I,K

∂ξI,K ∧ dzI ∧ dz̄K +
∑
I,K

∂̄ξI,K ∧ dzI ∧ dz̄K = ∂ξ + ∂̄ξ.

Notice that since 0 = d2 = (∂ + ∂̄)2 = ∂2 + ∂̄∂ + ∂∂̄ + ∂̄2, for degree
reasons,

∂2 = 0, ∂̄2 = 0, ∂̄∂ + ∂∂̄ = 0.

As in the case n = 1 we say that a function f ∈ C1(Ω), Ω ⊂ Cn, is
holomorphic, f ∈ O(Ω), if ∂̄f = 0. Since ∂̄ is linear, clearly O(Ω) is a
linear space. Moreover, for functions f, g,

∂(fg) = f∂g + g∂f, ∂̄(fg) = f∂̄g + g∂̄f,

so O(Ω) is also a ring, i.e., closed under multiplication. If H ⊂ Cn is
any set, then f ∈ O(H) means that f is holomorphic in some open
neighborhood of H.

In the same way, a smooth (p, 0)-form f is holomorphic if ∂̄f = 0.
If f =

∑′
|I|=p fIdzI this just means that each fI is holomorphic.

We say that f : Ω → Cm is holomorphic, f ∈ O(Ω,Cm), if each
of its coordinate functions are holomorphic. If this holds and if w
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are coordinates on Cm, then dwj = dfj = ∂fj and dw̄j = df̄j = ∂̄f̄j.
Therefore, if ξ is a (p, q)-form in a neighborhood of the image of f ,
then the pull-back f ∗ξ is again a (p, q)-form in Ω. In particular, if g is
holomorphic, then d(g ◦ f) = d(f ∗g) = f ∗(dg) = f ∗(∂g), which shows
that d(g ◦ f) is a (1, 0)-form and thus g ◦ f is holomorphic.

Now suppose that Ω ⊂ Cn and f ∈ O(Ω,Cn). If w = f(z), then

dw1 ∧ . . . ∧ dwn = det
∂f

∂z
dz1 ∧ . . . ∧ dzn,

where

∂f

∂z
=
[∂fj

∂zk

]
jk
.

Let Df be the real-linear derivative of f (at some fixed point). In view
of (1.1) we then have

dV (w) =
( i

2

)n

dw1 ∧ dw̄1 ∧ . . . ∧ dwn ∧ dw̄n =∣∣∣ det
∂f

∂z

∣∣∣2( i
2

)n

dz1 ∧ dz̄1 ∧ . . . ∧ dzn ∧ dz̄n =
∣∣∣ det

∂f

∂z

∣∣∣2dV (z),

which means that detDf = | det(∂f/∂z)|2; in particular detDf is
non-negative. By the inverse function theorem, f is locally a diffeo-
morphism if (and only if) df1∧ . . .∧dfn 6= 0. In that case dzj are linear
combinations of dwk which implies that the inverse is holomorphic as
well. We say that f is (locally) biholomorphic; since then detDf > 0,
it preserves orientation.

For an open set Ω we make O(Ω) into a Frechet space with the semi-
norms ‖f‖K = supK |f | for compact subsets K, so that a sequence fj

tends to 0 if and only if fj → 0 uniformly on each K. As usual
E(Ω), the Frechet space of smooth functions in Ω, has the topology so
that fk → 0 if and only if on each K all derivatives of fk tend to 0
uniformly. We will see later, in Section 3, that in fact O(Ω) is a closed
subspace of E(Ω) with the induced topology. If K is a compact set we
let O(K) be the space of functions that are holomorphic in some open
neighborhood of K, and fk → 0 if(f) all fk are holomorphic in a fixed
open neighborhood and tends to 0 there.

We say that a differentiable manifold X is a complex manifold if
it is covered by coordinate neighborhoods (z, U) such that U via z is
diffeomorphic to an open set in Cn, and all the induced diffeomorphisms
are biholomorphic.
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Locally, thus X has the complex structure of Cn and hence all no-
tions like holomorphic function, (p, q)-form etc are well-defined. More-
over, we have a natural orientation, inherited from the standard orien-
tation on Cn.

A closed subset Y is a complex submanifold of dimension p if for
each point z0 ∈ Y there is a neighborhood U and local holomorphic
coordinates z, such that Y ∩ U = {z ∈ U ; zp+1 = · · · = zn = 0}. In
that case clearly z1, . . . , zp is a local coordinate system on Y , so Y is a
complex manifold itself.

2. The Cauchy formula and some consequences

For fixed z ∈ C,

ωζ−z =
1

2πi

dζ

ζ − z

is the Cauchy kernel with pole at z. It is holomorphic in C \ {z} and
locally integrable in C. We first study the local nature of the Cauchy
kernel at the origin.

Lemma 2.1. For each C1-function φ in C with compact support we
have

(2.1) −
∫
∂̄φ ∧ dζ

2πiζ
= φ(0).

Proof. Notice that outside the origin d(φωζ) = ∂̄φ∧ωζ . By Stokes’
theorem we therefore have

−
∫
|ζ|>ε

∂̄φ ∧ ωζ =

∫
|ζ|=ε

φωζ =
1

2πi

∫
|ζ|=ε

f(ζ)
dζ

ζ
=

1

2πiε2

∫
|ζ|=ε

f(ζ)ζ̄dζ =
1

2πiε2

∫
|ζ|<ε

[f(ζ) +O(|ζ|)]dζ̄ ∧ dζ =

1

πε2

∫
|ζ|<ε

(f(ζ) +O(|ζ|))dV (ζ)

which tends to f(0) when ε→ 0, �

Proposition 2.2 (Cauchy-Green’s formula). If f is C1 in Ω and
D ⊂ Ω is bounded and has smooth boundary (or at least some reason-
able regularity, like piecewise C1) then

(2.2) f(z) =

∫
∂D

ωζ−zf +

∫
D

ωζ−z ∧ ∂̄f, z ∈ D.
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As an immediate corollary we have, for a holomorphic function f ,
the Cauchy formula,

f(z) =

∫
∂D

f(ζ)ωζ−z, z ∈ D.

This formula is the corner stone in the theory of one complex vari-
able and probably one of the most remarkable formulas in analysis.

Notice that

ωζ−z ∧ ∂̄f =
1

2πi

∂f

∂z̄

dz ∧ dz̄
ζ − z

= − 1

π

∂f

∂z̄

dV (z)

ζ − z
.

Proof. Notice that (2.2) is just (2.1) if f has compact support in
D. Now suppose that f vanishes identically in a neighborhood of the
point z. Then d(ωζ−zf) = −ωζ−z ∧ ∂̄f and hence (2.2) follows from
Stokes’ theorem. For the general case, let χ be a smooth cutoff function
that has compact support in D and is identically 1 in a neighborhood
of the point z. Then f = χf+(1−χ)f = f1 +f2 where f1 has compact
support in D and f2 vanishes in a neighborhood of z. Since (2.2) is
linear in f , the general case now follows. �

See Exercise 7 for an alternative way to obtain (2.2) from (2.1).

Now let f be holomorphic in a neighborhood of the origin in Cn,
say in the so-called polydisk {z ∈ Cn; |zj| ≤ rj}, and take εj < rj. By
iterated use of the Cauchy formula we get

(2.3) f(z1, . . . , zn) =

∫
|ζ1|=ε1

. . .

∫
|ζn|=εn

f(ζ)ωζ1−z1 ∧ . . . ∧ ωζn−zn ,

for z with |zj| < εj. If we expand the Cauchy kernels in geometric
series, we get the power series representation

f(z) =
∑
|α|≥0

cαz
α, |zj| < εj,

where zα = zα1
1 · · · zαn

n , and (α! = α1! · · ·αn!)

cα =
∂αf

∂zα
(0)/α!.

In particular, we see that if all derivatives of f vanish at a point, then
f is identically zero in a neighborhood. Therefore, if f ∈ O(Ω) and A
is the set of points in Ω at which all derivatives of f vanish, then A is
both open and closed. We therefore have

Proposition 2.3 (Uniqueness theorem). Assume that f ∈ O(Ω)
and Ω is connected. If all derivatives of f vanish at some point in Ω,
then f ≡ 0 in Ω.
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Since we can differentiate (2.3) with respect to z any number of
times at the origin, which is an “arbitrary” point, we find that each
holomorphic function is of class C∞.

We leave it to the reader to prove the maximum principle (it can
be reduced to the one-variable case):

Assume that f ∈ O(Ω) and Ω is connected. Then for each interior
point a, |f(a)| < supΩ |f | unless f is constant.

Let f be a (p, q)-form and consider the equation ∂̄u = f . Since
∂̄2 = 0 a necessary condition for solvability is that ∂̄f = 0. We will see
later on that locally this is also sufficient. However, we start with :

Proposition 2.4. Assume f = f1dz̄ is Ck, k ≥ 1, has compact
support in C. Then

u(z) =

∫
ζ

ωζ−z ∧ f(ζ)

is in Ck and solves ∂̄u = f .

Proof. By a linear change of variables,

u(z) =

∫
ζ

f1(ζ + z)dζ̄ ∧ ωζ

and it is now clear that we can differentiate the integral k times, so u
is (at least) Ck. Moreover,

∂u/∂z̄ =

∫
ζ

(∂f1/∂ζ̄)(ζ + z)dζ̄ ∧ ωζ =

∫
ζ

(∂f(ζ)/∂ζ̄)dζ̄ ∧ ωζ−z

which is equal to f1(z) by (2.1). �

In general, the solution will not have compact support. In fact, if
it has, then ∫

f ∧ dz =

∫
∂̄u ∧ dz =

∫
d(udz) = 0

by Stokes’ theorem, so for a counterexample just take any f = f1dz̄
such that f1 has non-vanishing integral. However, if n > 1 we have

Proposition 2.5. Assume that f is a smooth ∂̄-closed (0, 1)-form
in Cn, n > 1, with compact support. Then there is a smooth solution
to ∂̄u = f with compact support.

Since u is holomorphic in the (interior of the) set where f = 0, by
the uniqueness theorem, u is identically zero in the unbounded compo-
nent of the complement of the support of f .
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Proof. For f =
∑

k fkdz̄k, the condition ∂̄f = 0 means that

(2.4)
∂fk

∂z̄`

=
∂f`

∂z̄k

.

For simplicity we assume n = 2. Let

(2.5) u(z1, z2) =

∫
ζ1

f1(ζ1, z2)ωζz−z1 .

Then, by Proposition 2.4, ∂u/∂z̄1 = f1. However, we also have that

∂u

∂z̄2

=

∫
ζ1

∂f1

∂z̄2

(ζ1, z2)ωζz−z1 =

∫
ζ1

∂f2

∂ζ̄1
(ζ1, z2)ωζz−z1 = f2(z1, z2),

where we have used (2.4) for the second equality and Cauchy-Green’s
formula for the last equality. Therefore ∂̄u = f . From (2.5) it is obvious
that u vanishes if |z2| is large. Since moreover ∂̄u vanishes outside some
big ball, u is holomorphic outside this ball, and by the uniqueness it
follows that u vanishes identically there. �

One of the first striking phenomenon that was noticed in the several-
dimensional case is the followin. See Exercise refharex for a real ana-
logue.

Proposition 2.6 (Hartogs’ phenomenon). Let Ω be an open set in
Cn, n > 1, and let K be a compact subset such that Ω\K is connected.
For each f ∈ O(Ω \K) there is a function F ∈ O(Ω) such that F = f
in Ω \K.

If Ω is connected and Ω\K is not connected, then it means that K
has some “holes”; so extending K to the compact set H by filling out
theses holes, we get that Ω \H is connected.

Proof. Take a cutoff function χ in Ω that is identically 1 in a
neigborhood of K. Then (1 − χ)f is smooth in Ω and moreover,
g = ∂̄(1 − χ)f = −f∂̄χ has compact support in Cn and is ∂̄-closed.
Therefore, by (the remark after) Proposition 2.5 we can find a solution
to ∂̄v = g that vanishes in the unbounded component of the comple-
ment of the support of χ. However, the boundary of this set belongs to
Ω\K so F = (1−χ)f−v is a holomorphic function in Ω that coincides
with f on some open subset of Ω \ K. Since Ω \ K is connected, it
follows from the uniqueness theorem that F = f in this whole set. �

In particular it follow that the set where f ∈ O(Ω) vanishes cannot
be compact in Ω unless n = 1. In one variable, on the other hand,
holomorphic functions of course may have isolated zeros and singular-
ities.
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Proposition 2.7. Suppose that f is holomorphic in a neighborhood
of 0 ∈ Cn, f(0) = 0 but f is not vanishing identically when zn = 0.
Then f = aW where a(0) 6= 0 and

W (z) = zr
n + αr−1(z

′)zr−1
n + · · ·+ α1(z

′)zn + α0,

where z′ = (z1, . . . , zn−1) and αj(0
′) = 0.

Proof. Se tex GH!! ????????? �

3. The Bochner-Martinelli and Cauchy-Fantappié-Leray
formulas

If s =
∑n

1 sjdζj is a (1, 0)-form and ζ is a point, we let

s · ζ = 〈s, ζ〉 =
n∑
1

sjζj.

Let s =
∑n

1 sjdζj be a smooth (1, 0)-form such that 2πis · ζ = 1. Such
a form always exists outside 0; for instance one can take

b =
∂|ζ|2

2πi|ζ|2
=

∑n
1 ζ̄jdζj

2πi|ζ|2
.

Then

0 = ∂̄1 =
n∑
1

ζj ∂̄sj,

so the 1-forms ∂̄s1, . . . , ∂̄sn are linearly dependent and thus ∂̄s1∧ ∂̄s2∧
. . . ∂̄sn = 0. Since s ∧ (∂̄s)n−1 has bidegree (n, n− 1), therefore

(3.1) d(s ∧ (∂̄s)n−1) = ∂̄(s ∧ (∂̄s)n−1) = (∂̄s)n = (
n∑
1

∂̄sj ∧ dζj)n =

n!∂̄s1 ∧ . . . ∧ ∂̄sn ∧ dζn ∧ . . . ∧ dζ1 = 0.

The form B = b ∧ (∂̄b)n−1 is called the Bochner-Martinelli kernel.
Notice that

(3.2) B =
1

(2πi)n

∂|ζ|2

|ζ|2
∧
(
∂̄
∂|ζ|2

|ζ|2
)n−1

=
1

(2πi)n

∂|ζ|2 ∧ (∂̄∂|ζ|2)n−1

|ζ|2n
;

here we use the fact that ∂|ζ|2∧∂|ζ|2 = 0. Therefore, B = O(|ζ|−2n+1)
and thus locally integrable. We have the following multivariable analog
of (2.1).

Lemma 3.1. If φ is a C1-function in Cn with compact support, then

(3.3) −
∫
∂̄φ ∧B = φ(0).
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Proof. Outside the origin d(φB) = ∂̄φ ∧ B. By Stokes’ formula
and (6.10),

−
∫
|ζ|>ε

∂̄φ ∧B =

∫
|ζ|=ε

φ ∧B =

1

(2πi)n

1

ε2n

∫
|ζ|=ε

φ∂|ζ|2(∂̄∂|ζ|2)n−1 =
1

(2πi)n

1

ε2n

∫
|ζ|<ε

[
φ(∂̄∂|ζ|2)n+O(|ζ|)

]
.

The right hand side tends to φ(0) when ε→ 0 since

(
i

2
∂∂̄|ζ|2)n =

( i
2

n∑
1

dζj ∧ dζ̄j
)n

=

n!
( i

2

)n

dζ1 ∧ dζ̄1 ∧ . . . ∧ dζn ∧ dζ̄n = n!dV (ζ)

and the volume of the unit ball is πn/n!, see Exercise 5. �

We have the following global formula.

Proposition 3.2 (The Bochner-Martinelli formula). Let a be a
point in D ⊂⊂ Ω and let s be a smooth (1, 0)-form in Ω such that
2πi 〈s, ζ − a〉 = 1 outside a and equal to b(ζ − a) in a neighborhood of
a. Let K = s ∧ (∂̄s)n−1. Then for any C1-function f we have

(3.4) f(a) =

∫
∂D

Kf +

∫
D

K ∧ ∂̄f.

Notice that if n = 1 then K is just the Cauchy kernel so we get
back the Cauchy-Green formula. In higher dimensions, however, there
are many choices. Later on we shall see that it is enough that s(ζ)
“behaves like” b(ζ − a) close to a.

Proof. Notice that K = B in a neighborhood of a. By (3.1) we
have that d(Kf) = −K∂̄f if f vanishes in a neighborhood of a. In
view of (3.3) we now obtain (3.4) in the same way as (2.2). �

Corollary 3.3 (The Cauchy-Fantappiè-Leray formula). Assume
that f is holomorphic in a neighborhood Ω of D, and that σ is a smooth
(1, 0)-form on ∂D such that σ · (ζ − a) = 1, a ∈ D. Then for any
holomorphic function f we have

f(a) =

∫
∂D

σ ∧ (∂̄σ)n−1f.

To interprete the integral, let σ denote any smooth extension to
a neighborhood of ∂D. Since σ ∧ (∂̄σ)n−1 = σ ∧ (dσ)n−1 for degree
reasons, the pull-back to ∂D is an intrinsically defined form.
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Proof. With no loss of generality we may assume that a = 0. Let
σ be any extension to a neighborhood of ∂D. By continuity σ · ζ 6= 0
close to ∂D and if χ is an appropriately chosen cutoff function

s = (1− χ)
σ

2πiσ · ζ
+ χb

satisfies the assumption in Proposition 3.2. Therefore, the corollary
follows, noting that s ∧ (∂̄s)n−1 = σ ∧ (∂̄σ)n−1 on ∂D. �

For any domain D and a ∈ D we can use σ(ζ) = b(ζ − a) and thus
obtain a representation formula for holomorphic functions, generalizing
the Cauchy formula for n = 1. When n > 1 unfortunately it will not
depend holomorphically on the variable a. However, in certain cases
one can find a formula with holomorphic dependence of a.

Remark 3.1. A necessary condition for the existence of a form
s(ζ, z) for ζ ∈ ∂D depending holomorphically on z such that 〈s(ζ, z), ζ − z〉 =
1, such an s is called a holomorphic support function, is that D is pseu-
doconvex. In general. though, it is not sufficient, even if we assume
that D has smooth boundary. However, if D is strictly pseudoconvex
one can always find a holomorphic support function, see Ch 2. It is also
true for a large class of weakly pseudoconvex domains, e.g., all convex
domains, see Example 3.2 below. �

Example 3.1. Let B = {ζ; |ζ| < 1} be the unit ball. Then for
a ∈ B we can take

σ =
∂|ζ|2

2πi(1− ζ̄ · a)
.

We then get, by a similar argument as above,

f(a) =

∫
|ζ|=1

f(ζ)∂|ζ|2 ∧ (∂̄∂|ζ|2)n−1

(2πi)n(1− ζ̄ · a)n
=

∫
|ζ|=1

f(ζ)dν(ζ)

(2πi)n(1− ζ̄ · a)n
.

We leave it as an exercise to the reader to check that

dν(ζ) =
1

(2πi)n
∂|ζ|2 ∧ (∂̄∂|ζ|2)n−1

is the normalized surface measure on ∂B, cf., Exercise 12. This repre-
sentation formula is called the Szegö integral. �

Example 3.2. More generally, letD = {ρ < 0} be a convex domain
in Cn with defining function ρ, i.e, dρ 6= 0 on ∂D; it is not necessary
to assume that ρ is a convex function. Then for any a ∈ D,

(3.5) 2Re 〈∂ρ(ζ), ζ − a〉 > 0, ζ ∈ ∂D,
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see Exercise 8. Taking this for granted we can use

s(ζ, z) = ∂ρ(ζ)/ 〈∂ρ(ζ), ζ − a〉

and get the classical representation formula

f(a) =
1

(2πi)n

∫
∂D

f(ζ)∂ρ ∧ (∂̄∂ρ)n−1

〈∂ρ(ζ), ζ − a〉n
.

�

Example 3.3 (Cauchy estimates). Sometimes it is useful to have
a representation of holomorphic functions where the integration is per-
formed over something thicker than just a boundary ∂D. Let H be
any compact subset of Ω and let χ be a cutoff function in Ω that is
identically 1 in a neighborhood of H. Using s(ζ) = b(ζ − a) for a ∈ H,
and applying (3.4) to fχ we get the representation

(3.6) f(a) = −
∫
f∂̄χ ∧K, f ∈ O(Ω).

Since ∂̄χ∧K is smooth for a in a neighborhood ofH we can differentiate
an arbitrary number of times, and hence we get constants CM such that∑

|α|≤M

sup
K
|∂αf/∂zα| ≤ CM

∫
Ω

|f |dV, f ∈ O(Ω).

Thus all derivatives of a holomorphic function can be estimated uni-
formly on K by the L1-norm of f over a slightly larger open set, in
particular by the supremum of the function itself over the larger set.
Estimates of this kind are called Cauchy estimates.

It follows that if E(Ω) is equipped with the usual topology, then
O(Ω) has the induced topology as a closed subspace of E(Ω). �

Example 3.4. In (3.6) the kernel does not depend holomorphically
on a unless n = 1. However as before one can obtain holomorphic
dependence in special cases like the ball. Let χ be a cutoff function in
the ball B that is identically 1 in a neighborhood of the closure of rB
for some r < 1. Moreover, for a ∈ K, let

s(ζ) = χ(ζ)b(ζ − a) + (1− χ(ζ))
∂|ζ|2

2πi(|ζ|2 − ζ̄ · a)
.

For holomorphic f , applying (3.4) to χf , we then get the representation

(3.7) f(a) = −
∫
f(ζ)∂̄χ(ζ) ∧K,
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where the kernel

K =
1

(2πi)n

∂|ζ|2 ∧ (∂̄∂|ζ|2)n−1

(|ζ|2 − ζ̄ · a)n

is holomorphic in a for a ∈ rB and ζ on the support of ∂̄χ. �

4. Koppelman’s formula

If f = f1dζ is a smooth (0, 1)-form in D ⊂ C such that∫
D

|f1|dV <∞

then

u(z) =

∫
D

ωζ−z ∧ f

is a smooth solution to ∂̄u = f in D; this follows from Proposition 2.4
by writing f = χf + (1 − χ)f . We shall now consider multivariable
analogues.

Let α(ζ, z) be any form of on Cn × Cn with compact support. We
then define

(4.1)

∫
ζ

α(ζ, z)

as the form in z such that∫
z

φ(z) ∧
∫

ζ

α(ζ, z) =

∫ ∫
z,ζ

φ(z) ∧ α(ζ, z)

for all forms φ. The right hand side is well-defined since Cn has even
real dimension so the orientation (volume form) on Cn × Cn is unam-
biguously defined. A moment of thought reveals that the definition
practically means that one first moves all differentials of ζ to the right
(or to the left) and then perform the integration with respect to ζ. For
instance, if ψ(ζ, z) is a function, then∫

ζ

ψ(ζ, z)dζ ∧ dz ∧ dζ̄ = −
[ ∫

ζ

ψ(ζ, z)dζ ∧ dζ̄
]
dz.

Clearly, only components of α that have bidegree (n, n) in ζ can give
any contribution in (4.1). We have the Fubini theorem∫

z

∫
ζ

α(ζ, z) =

∫
ζ

∫
z

α(ζ, z)

if α has bidegree (2n, 2n).

Let B(η) be the BM form as above and consider the mapping
η : Cn × Cn → Cn defined by (ζ, z) 7→ η = ζ − z. Then η∗B(ζ, z)
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is a form that we simple write as B(ζ− z). Practically this means that
each occurence of ηj in B(η) shall be replaced by ζj−zj, each ocurrence
of dηj shall be replaced by d(ζj − zj) etc.

Proposition 4.1. For any form ψ(ζ, z) of total bidegree (n, n) in
Cn × Cn, we have

(4.2) −
∫

ζ

∫
z

∂̄ψ(ζ, z) ∧B(ζ − z) =

∫
z

ψ(z, z)

Here ψ(z, z) means the pullback of ψ to the diagonal ∆ = {(z, z); z ∈
Cn} ⊂ Cn × Cn, i.e., i∗ψ, where i : Cn → Cn × Cn, z 7→ (z, z).

Notice that d = dζ + dz and ∂̄ = ∂̄ζ + ∂̄z.

Proof. Since ∂̄ commutes with pullbacks of holomorphic map-
pings, by a complex-linear change of variables on Cn × Cn, keeping
in mind that the orientation is preserved, and that Fubini’s theorem
holds, the integral on the left hand side of (4.2) becomes

−
∫

z

∫
ζ

∂̄ψ(ζ + z, ζ) ∧B(ζ) =∫
z

[ ∫
ζ

∂̄ηψ(ζ + z, z) ∧B(ζ)
]
+

∫
ζ

[ ∫
z

∂̄zψ(ζ + z, z)
]
∧B(ζ).

In the first inner integral, for degree reasons only components of ψ
which have bidegree (0, 0) in ζ can give a contribution, and in view
of (3.1) the inner integral therefore becomes −ψ(z, z). In the inner
integral in the second term for degree reasons one can replace ∂̄z by dz,
and then the integral vanishes by Stokes’ theorem. �

Now let b(ζ − z) = η∗b(ζ, z) =
∑n

1 η̄jdηj/2πi|η|2 and let

s(ζ, z) =
n∑
1

sj(ζ, z)d(ζj − zj)

be a form in Ω × Ω such that
∑
sj(ζj − zj) = 1 outside ∆ ⊂ Ω × Ω,

and s(ζ) = b(ζ− z) in a neighborhood of ∆. Such a form will be called
admissible. Precisely as before, 0 =

∑
j ηj ∂̄sj and therefore

K = s ∧ (∂̄s)n−1

is ∂̄-closed outside ∆. Let Kp,q be the component of bidegree (p, q) in
z, and consequently (n− p, n− q − 1) in ζ.

Lemma 4.2. If f is a smooth (p, q)-form, then∫
ζ∈D

Kp,q−1(ζ, z) ∧ f(ζ)
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is a smooth (p, q − 1)-form in D.

Proof. Fix a point z0. If ω is a small enough neighborhood of
z0, then s = b for all ζ ∈ ω and z close to z0. Take a cutoff function
χ in ω such that χ = 1 in a neighborhood of z0, and consider the
decomposition

u(z) =

∫
D

(1− χ)K ∧ f +

∫
χK ∧ f.

The first term is smooth in a neighborhood of z0 since there is no
singularity in the integral. On the other hand, for z close to z0 the
second integral is just

±
∫

(χf)(ζ) ∧B(ζ − z),

and by an argument analogous to the proof of Proposition 2.4 it follows
that u is as smooth as f is. �

Theorem 4.3 (Koppelman’s formula). If f is a smooth (p, q)-form,
then

f(z) = ∂̄z

∫
D

Kp,q−1 ∧ f +

∫
D

Kp,q ∧ ∂̄f +

∫
∂D

Kp,q ∧ f, z ∈ D.

It is clear that if we can make the boundary integral disappear,
then for each f such that ∂̄f = 0, we get a solution to ∂̄u = f .

Proof. Let us first assume that f(ζ) has compact support and
let ψ(z) be a test form of bidegree (n − p, n − q). Since ∂̄K = 0 and
K = B(ζ − z) near ∆ it is clear that (4.2) holds for K instead of
B(ζ − z). Therefore,∫

z

ψ(z) ∧ f(z) = −
∫ ∫

∂̄(ψ(z) ∧ f(ζ)) ∧K =

−
∫

z

∂̄zψ(z) ∧
∫

ζ

f ∧K − (−1)p+q

∫
z

ψ(z) ∧
∫

ζ

∂̄f ∧K.

In the first term we can integrate by parts in the z-integral. After
moving f and ∂̄f to the right in the ζ-integrals we then get the equality∫

ψ(z) ∧ f(z) =

∫
z

ψ(z) ∧ ∂̄z

∫
ζ

K ∧ f +

∫
z

ψ(z) ∧
∫

ζ

K ∧ ∂̄f

which is equivalent to the theorem in case f has compact support. The
general case can now be deduced, e.g., by replacing f by χkf where
χk ↗ χD and take limits, see Exercise 6, or by mimicking the proof of
Proposition 2.2. �
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5. The local ∂̄-equation

We are now in position to prove the local solvability of the ∂̄-
equation which is usually referred to as the Dolbeault-Grothendieck
lemma. This is the counterpart of the Poincaré lemma for d.

Theorem 5.1. Assume that f is a smooth (p, q)-form that is ∂̄-
closed in a the unit ball B. Then there is a smooth (p, q− 1)-form u in
rB, r < 1, such that ∂̄u = f .

We will use the notation ζ̄ · d(ζ − z) for
∑n

1 ζ̄jd(ζj − zj), etc.

Proof. We may assume that f is defined and closed in the unit ball
B. Let χ be a cutoff function in B that is identically 1 in a neighborhood
of the closure of rB, r < 1. Then

s(ζ, z) = χ(ζ)b(ζ − z) + (1− χ(ζ))
ζ̄ · d(ζ − z)

(|ζ|2 − ζ̄ · z)2πi
is an admissible form for z in rB, and for ζ close to ∂B it is holomorphic
in z. (One can extend it to an admissible form for z ∈ B as well
by taking χ̃(z)s + (1 − χ̃(z))b(ζ − z) where χ̃ is identically 1 in a
neighborhood of the support of χ; but this is uninteresting for us, since
we just bother about z in rB.)

If q > 0 it follows that Kp,q = 0 if z ∈ rB and ζ is close to ∂B, since
then no dz̄ can occur. Therefore the boundary integral vanishes and
we get

f(z) = ∂̄z

∫
B
Kp,q−1 ∧ f +

∫
B
Kp,q ∧ ∂̄f, z ∈ rB.

If in addition ∂̄f = 0 in B we thus get a solution in rB. �

We also have a generalization of Proposition 2.5.

Theorem 5.2. Suppose that f is a smooth ∂̄-closed (0, q)-form in
Cn with compact support. Then there is a solution to ∂̄u = f with
compact support if q < n. If q = n such a solution exists if and only if

(5.1)

∫
f(ζ) ∧ ζαdζ1 ∧ . . . ∧ dζn = 0

for all multiindices α ≥ 0.

A similar statement holds for (p, q)-forms, since Ep,q(Cn) ' ⊕′
|I|=pE0,q(Cn).

Proof. If q = n and there is a solution u with compact support,
then (5.1) follows by Stokes’ theorem.
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We may assume that f has its support in rB for some r < 1. Choose
a cutoff function χ as in the preceding proof, and let

s(ζ, z) = χ(z)b(ζ − z) + (1− χ(z))
−z̄ · d(ζ − z)

2πi(|z|2 − z̄ · ζ)
;

this is the same s as in the preceding proof but with z and ζ inter-
changed. Since f has compact support no boundary integral occurs
and we thus have ∂̄u = f with

u(z) =

∫
Kp,q−1 ∧ f.

Moreover, for z close to ∂B,

K(ζ, z) = ± 1

(2πi)n

z̄ · d(ζ − z) ∧ (dz̄ · d(ζ − z))n−1

(|z|2 − z̄ · ζ)n
,

so K0,q = 0 for q < n− 1 and

K0,n−1 = ± 1

(2πi)n

z̄ · dζ ∧ (dz̄ · dζ)n−1

(|z|2 − z̄ · ζ)n

for z close to ∂B. Since we can expand the kernel in an absolutely
convergent series for ζ ∈ rB and ζ close to ∂B, it follows that u(z) = 0
close to ∂B if (5.1) holds, and thus u has compact support. �

Remark 5.1. With the notation in Koppelman’s formula one can
define the kernel K as s ∧ (ds)n−1 instead. It is then still true, see
Exercise 15, that dK = 0 outside ∆. One can then prove the slightly
more general Koppelman formula

(5.2) f(z) = dz

∫
D

K ∧ f +

∫
D

K ∧ df +

∫
∂D

K ∧ f.

When restricting to the component K ′ of K that is (n, n− 1) in dz, dζ
we get back the previous Koppelman formula, but (5.2) also contains
other relations that sometimes are useful, see Exercise 18. �

6. Positive forms

Fix a point z ∈ X and let dV (z) be the volume form (at z) with
respect to some holomorphic coordinate system. Recall that if w is
another coordinate systen then dV (w) = cdV (z) for some c > 0.

An (n, n)-form α is positive, α ≥ 0, if α = cdV (z) where c ≥ 0
and strictly positive if c > 0. In what follows we only discuss (weak)
positivity and leave it to the reader to formulate the corresponding
definitions and statements for strict positivity.
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A (p, p)-form ω is positive if for all (1, 0)-forms αj,

(6.1) ω ∧ iαp+1 ∧ ᾱp+1 ∧ . . . ∧ iαn ∧ ᾱn ≥ 0.

Clearly the set of positive (p, p)-forms is closed under positive linear
combinations.

Notice that each p-dimensional complex subspace V of Tz(X) is
Tz(Y ), where Y is a p-dimensional complex submanifold. In fact, V
is determined by n − p linearly independent (1, 0)-forms αp+1, . . . , αn,
and if we choose a coordinate system z such that dzj|z = αj for j =
p+ 1, . . . , n, then Y = {zp+1 = · · · = zn = 0} will do.

Lemma 6.1. A (p, p)-form ω is positive at z if and only if it is
positive, restricted (pulled-backed) to each complex p-dimensional sub-
manifold through z.

Proof. Suppose the condition in the lemma holds, and assume
that αp+1, . . . , αn are given. If they are linearly dependent then clearly
(6.1) holds. Otherwise, we can choose a coordinate system z as above.
Then z1, . . . , zp is a coordinate system on Y and hence by assumption
ω|Y = cidz1 ∧ dz̄1 ∧ . . . ∧ idzp ∧ dz̄p with c ≥ 0, i.e.,

(6.2) ω = cidz1 ∧ dz̄1 ∧ . . . ∧ idzp ∧ dz̄p + . . . ,

where . . . denote terms with some dzj or dz̄j for j > p. It follows that
(6.1) holds. Thus ω ≥ 0.

Conversely, if ω ≥ 0 and Y is given, then it follows that (6.2) must
hold with c ≥ 0, and thus the pull-back of ω to Y is positive. �

Lemma 6.2. We claim that any (k, k)-form is a linear combination
of forms like a1 ∧ ā1 ∧ . . . ak ∧ āk.

This follows by repeated use of the identity

4dzj ∧ dz̄k = (dzj + dzk) ∧ (dzj + dzk)− (dzj − dzk) ∧ (dzj − dzk)

+ i(dzj + idzk) ∧ (dzj + idzk)− i(dzj − idzk) ∧ (dzj − idzk) =∑
`∈Z4

i`(dzj + i`dzk) ∧ (dzj + i`dzk)

Proposition 6.3. If ω ≥ 0, then ω is real, i.e., ω̄ = ω.

Proof. It follows from the preceding proof that if αp+1, . . . , αn are
arbitrary (1, 0)-forms, then

ω ∧ iαp+1 ∧ ᾱp+1 ∧ . . . ∧ iαn ∧ ᾱn

= cdV = c̄dV = ω̄ ∧ iαp+1 ∧ ᾱp+1 ∧ . . . ∧ iαn ∧ ᾱn.

This implies that ω = ω̄ in view of Lemma 6.2. �
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Proposition 6.4. A (1, 1)-form ω = i
∑

jk αjkdzj ∧ dz̄k is positive

if and only if (αjk) is a positively semi-definite Hermitian matrix. It is
strictly positive if and only if (αjk) is (strictly) positively definite.

Proof. If ω is positive it is real, and hence the matrix αjk is Her-
mitian. After a linear change of coordinates, we may assume that it is
diagonal, i.e.,

(6.3) ω = i
∑

k

αkdzk ∧ dz̄k.

It is now clear that ω is positive if and only if αk ≥ 0. �

Proposition 6.5. If ω ≥ 0 is (1, 1), γ ≥ 0 is (p, p), then α ∧ ω is
positive.

Proof. We may assume that ω is as in (6.3). Since it is clear that
γ ∧ idzk ∧ dz̄k is positive for each fixed k, the sum of them must be as
well. �

It is important here that ω is (1, 1). The conclusion is not true in
general.

Lemma 6.6. If aj are (1, 0)-forms, then

ia1 ∧ ā1 ∧ . . . ∧ iap ∧ āp = ip
2

a1 ∧ . . . ∧ ap ∧ ā1 ∧ . . . ∧ āp.

Proof. First notice that ap∧ ldots∧a1 = (−1)p(p−1)/2a1∧ . . .∧ap

since one has to move the factor ap p− 1 steps to the right, then move
ap−1 p− 2 steps to the right etc. Therefore the right hand side is equal
to

(−1)−
p(p−1)

2 ip
2

ap ∧ . . .∧α1 ∧ ā1 ∧ . . .∧ ap = ipap ∧ . . .∧ a1 ∧ ā1 ∧ . . .∧ ap,

which is equal to the left hand side. �

7. Hermitian metrics and Kähler metrics

Now suppose that

ω = i
∑
jk

αjkdzj ∧ dz̄k

is a smooth strictly positive form and fix a point p. Then ω induces a
positively definite Hermitian form

h(ξ, η) = −iω(ξ, η̄)

on T1,0 at p and on T0,1 such that the decomposition TC = T1,0⊕T0,1 is
orthgogonal. Here TC denotes the complexification of the real tangent
space, i.e., TC = TR ⊗R C. In practice this means that given a basis of
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the real tangent space TR, e.g., ∂/∂x1, ∂/∂y1, . . . , ∂/yn, then TC is the
complex space spanned by these basis elements.

We claim that h restricted to TR defines a Riemannian metric. In
fact, at a given point we choose holomorphic coordinates z such that
(6.3) holds. Then it is easily checked that

h =
∑

αj(dxj ⊗ dxj + dyj ⊗ dyj).

We say that ω is a Kähler metric if in addition dω = 0. Later on
we will see that ω is Kähler if and only if at each point p we can choose
holomorphic coordinates z, with z(p) = 0, such that ω =

∑
j dzj ∧

dz̄j +O(|z|2).

Our Hermitian metric (induced by) ω on T ∗ extends to a Hermitian
metric on the exterior algebra ΛT ∗ in the following way. Let ∗ denote
the Hodge operator om the underlying real cotangent space and extend
it complex-linearly to T ∗. If e1, . . . , en is an ON-basis for T ∗

1,0, then
∗e1 =????? etc.

〈f, g〉ωn = f ∧ ∗ḡ ∧ ωn−p

Any Riemannian metric, in particular any Hermitian metric (in-
duced by a) ω extends to a metric on all differential forms in the usual
way, i.e., if ej is an ON basis for T ∗, then eI , |I| = k is ON in the space
of k forms.

balblalablabal

Lemma 7.1. If ω metric on X and Z is a complex submanifold,
then the pullback ωZ of ω to Z defines the induced Riemannian metric
on Z.

Proof. ???? �

As a consequence we get the formula

(7.1) area(Z) =

∫
Z

ωk

if Z has dimension k.

In standard metric in Cn β, we find that the local area of Z is
the sum of the areas of the projections onto the various k-dimensional
coordinate planes.
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Corresponding volume form is ωn. Moreover, if f, g are (p, 0) then
we have the very useful formula

〈f, g〉ωn = ip
2

f ∧ g ∧ ωp.

Obs on any X one can find a Hermitian metric by a partition of
unity.

Aven area av ∂D etc.

8. Currents

Currents are indispensable in complex analysis. From the naive
formal point of view they are just differential forms with distribution
coefficients, and hence quite simple generalizations of distributions.
However they provide analytic representations of geometric objects like
submanifolds and subvarieties, and intrinsic generalizations of these ob-
jects.

8.1. Definition of currents. Let X be a subset of Cn or a com-
plex manifold. Let Dp,q(X) be the space of (p, q)-forms with compact
support, and with the topology such that φk → 0 if(f) all supports of
φk are contained in a fixed compact set K and moreover φk → 0 with
all its derivatives tends uniformly to 0.

Remark 8.1. If z is local coordinates, and φ =
∑′

I,J φIJdzI ∧ dz̄J ,

then we cam take |φ| =
∑′

IJ |φIJ | as local pointwise norm of φ; it
is easy to see that it is essentially independent of the choice of local
coordinates, and so the topology of Dp,q is well-defined. However, a
more elegant way is to fix a global hermitian metric ω and let |φ| be
the corresponding pointwise norm. �

Notice that if f ∈ (L1
loc)p,q(X), i.e., f is a (p, q)-form with locally

integrable coefficients, then it defines a continuous linear functional on
Dn−p,n−q(X),

φ 7→
∫
f ∧ φ,

where we use the canonical orientation of X. Notice that f is de-
termined by this functional, i.e., f = 0 if and only if the functional
vanishes. A current u of bidegree (p, q) on X, u ∈ Cp,q(X), is a con-
tinuous linear functional on Dn−p,n−q(X). If u is a (p, q)-current and
ψ ∈ Ep′,q′(Ω), that is, ψ is a smooth (p′, q′)-form, then ψ ∧ u is a
(p+ p′, q + q′)-current defined by

ψ ∧ u.φ = (−1)(p+q)(p′+q′)u.(ψ ∧ φ), φ ∈ Dn−p−p′,n−q−q′(X).



8. CURRENTS 21

Thus C•(X) is a module over the ring E•(X). Moreover, if X ′ ⊂ X we
have a restriction mapping C•(X) ⊂ C•(X ′) in the obvious way.

In this formalism a usual distribution should be considered as a
(n, n)-current since it acts on test functions.

If we fix a (say holomorphic) coordinate system z, then a (p, q)-
current µ can be written

µ =
′∑

|I|=p,|J |=q

µIJdzI ∧ dz̄J ,

where µIJ are distributions in the usual sense, defined by

µIJ .φ = ±µ.φdzIc ∧ dz̄Ic ,

where Ic = {1, 2, . . . , n}\I, ordered so that I, Ic coincides with {1, . . . , n}
after an even number of permutations.

Proposition 8.1. Let Ωj be open subsets of X and Ω = ∪Ωj. Then
we have

(i) If u ∈ C•(Ω) and u = 0 in Ωk for each k, then u = 0.

(ii) If we have uj ∈ C•(Ωj) such that uj = uk in Ωj ∩ ωk, then there is
a u ∈ CΩ such that u = uk in Ωk.

Proof. The proof is obtained by a partition of unity and we only
sketch it. There is a locally finite partition of unity subordinate to Ωk,
that is, a collection of cutoff functions φj, with suppφj ⊂ Ωkj

, such
that the sum

∑
φj is locally finite and equal to 1 in Ω. To see (i), take

a test form φ. Then u.φ =
∑

j u.χjφ = 0, since χjφ has support in Ωkj
.

To see (ii), let

u.φ =
∑

`

uk`
.(χ`φ),

which is well-defined since the sum is finite for each fixed φ. For a fixed
j and φ ∈ D(Ωj) we have, since uk`

= uj in Ωk`
∩ Ωj,

u.φ =
∑

`

uk`
.χ`φ =

∑
`

uj.χ`φ = uj.φ

as wanted. �

The proposition means that C•(X) is a sheaf of E-modules, see
Appendix 9.

The simplest examples of currents are L1
loc,•(X), in particular all

smooth forms are currents. If Z is a smooth analytic submanifold of
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complex codimension p, then it defines a (p, p)-current

[Z].φ =

∫
Z

φ.

Similarly any smooth oriented submanifold V defines a current [V ].
A locally finite complex measure µ defines a (n, n)-current by

µ.φ =

∫
φdµ, φ ∈ Dn,n(X).

Remark 8.2. Notice that the definition here is invariant and only
depends on the orientation induced by the complex structure on X. �

From Proposition 8.1 follows that there is a maximal open subset of
X in which the current u ∈ D′

• vanishes, and the complement is called
the support of u, denoted suppu.

One important feature of currents, precisely as for usual distri-
butions, is that differentiation is a continuous operation: Given u ∈
Cp,q(X) we define ∂̄u by

(8.1) ∂̄u.φ = (−1)p+q+1u.∂̄φ, φ ∈ Dn−p,n−q−1(X).

The choice of sign in (8.1) is chosen so that it is compatible with the
usual operation in case u is (given by) a smooth form. By ???? above
it follows that ∂̄u restricted to an open set ω only depends on the
restriction of u to ω. In the same way ∂ and d are defined, and of
course we still have that d = ∂ + ∂̄ and 0 = ∂2 = ∂̄∗ = ∂∂̄ + ∂̄∂.

Lemma 8.2. If D is a smoothly bounded domain in X, then

d[D] = −[∂D].

Proof. In fact,

d[D].φ = −[D].dφ = −
∫

D

dφ = −
∫

∂D

φ = −[∂D].φ.

�

If Z is an complex submanifold of codimension p, thus [Z] is a
d-closed (p, p)-current.

We can now express (3.3) as

∂̄B(ζ) = [0].

If a is a fixed point we have by translation that ∂̄B(ζ − a) = [a].
Moreover, if we consider B(ζ − z) as a current on Cn × Cn we have,
cf., (4.2),

∂̄B(ζ − z) = [∆].
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We know that ∂̄K = 0 outside ∆; sinceK = B(ζ−z) in a neighborhood
of ∆ we thus have that ∂̄K = [∆].

Let f : Ω → Ω′ be a smooth proper (i.e., the invers image of
each compact set is compact) mapping. Then the pull-back f ∗ maps
D•(Ω

′) → D•(Ω) and thus we get a dual mapping

f∗ : C•(Ω) → C•(Ω′),

called the push-forward, defined by

f∗u.φ = u.f ∗φ.

If f is holomorphic, then f∗ preserves codegree; i.e., if Ω and Ω′ have
dimensions m and n, respectively, then

f∗ : Cm−p,m−q(Ω) → Cn−p,n−q(Ω).

If f is holomorphic it immediately follows that

f∗∂̄u = ∂̄f∗u.

It is easily checked that if f is a diffeomorphism, then f∗ = (f−1)∗.

8.2. Convolution of forms and currents. Given forms f, g in
say the Schwartz class S = S(Cn) (i.e., their coefficients when expresses
in the standard coordinates are in S) we can define the convolution

f ∗ g(z) =

∫
ζ

f(ζ − z) ∧ g(ζ),

where as before f(ζ − z) = π∗f(ζ, z) and π(ζ, z) = ζ − z. This defini-
tion is completely real, but again we will profit from the fact that our
underlying space has even real dimension, and leave it to the interested
reader to find out what happens in the odd-dimensional case. As in
the usual case, f ∗ g will be a new form with coefficients Notice that if
ψ is in S, then

(8.2)

∫
z

f ∗ g(z) ∧ ψ(z) =

∫
z

∫
ζ

g(ζ) ∧ ψ(z + ζ)

and similarly as in the usual case we can take (8.2) as the definion of
f ∗ g when they are currents, and one of them has compact support.
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The following facts are easily verified:

(8.3) deg f ∗ g = deg f + deg g − 2n

if f ∈ Sp,q, g ∈ Sp′,q′ , then f ∗ g ∈ Sp+p′−n,q+q′−n

f ∗ g = (−1)deg f ·deg gg ∗ f
(f ∗ g) ∗ h = f ∗ (g ∗ h)

[0] ∗ f = f

d(f ∗ g) = df ∗ g + (−1)deg ff ∗ dg
∂̄(f ∗ g) = ∂̄f ∗ g + (−1)deg ff ∗ ∂̄g.

Example 8.1. Let φ be a (n, n)-form with compact support such
that

∫
φ = 1, and let φε(z) = φ(z/ε). Then

φε → [0]

in the current sense. �

8.3. The local ∂̄-equation for currents. nalle We can now prove
the Dolbeault-Grothendieck lemma for currents.

Proposition 8.3. If f is a ∂̄-closed (p, q)-current with q ≥ 1, then
locally ∂̄u = f has a current solution. If q = 0, then f is holomorphic.

Proof. Since we can multiply f with a cutoff function, we may
assume that f is ∂̄-closed in say the unit ball B, and has support in
2B. If B is the BM-kernel we know that ∂̄B = [0] and hence since f
has compact support, ∂̄B ∗ f = f − B ∗ ∂̄f by (8.2). Moreover, since
∂̄f = 0 in B,

B ∗ ∂̄f(z) =

∫
ζ

B(ζ − z) ∧ ∂̄f(ζ)

for z ∈ B and is smooth in z there. Furthermore, it is ∂̄-closed there
since both the other terms are. Thus we can solve ∂̄v = B ∗ ∂̄f in rB
in view of Theorem 5.1, and hence ∂̄(B ∗ f + v) = f in rB. �

8.4. de Rham and Dolbeault cohomology. LetX be any com-
plex manifold, for instance an open subset of Cn. In view of Theo-
rem 5.1 it follows that consider the sheaf complex

(8.4) E0,0
∂̄→ E0,1

∂̄→ . . .
∂̄→ E0,n → 0

is a resolution of the sheaf O, and since in addition all the sheaves E0,∗
are modules over E , we say then that the resolution is fine, it follows
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from abstract sheaf theory that the sheaf cohomology groups Hk(X,O)
are represented by the cohomology of the induced complex

(8.5) E0,0(X)
∂̄→ E0,1(X)

∂̄→ . . .
∂̄→ E0,n(X) → 0.

of O(X)-modules. See Appendix 9 below.
Moreover, by Proposition 8.3 we have as well the fine resolution

(8.6) C0,0
∂̄→ C0,1

∂̄→ . . .
∂̄→ C0,n → 0

and thus also the cohomology of the corresponding complex of O(X)-
modules of global sections will represent the sheaf cohomology groups
Hk(X,O). Finally, since we have natural sheaf mappings i : E0,∗ → C0,∗
that commute with ∂̄, it follows that the natural mappings

Ker ∂̄E0,k(X)

∂̄E0,k−1(X)
→ Ker ∂̄C0,k(X)

∂̄C0,k−1(X)

are indeed ismorphisms. In particular we have: If f is a smooth form in
X such that ∂̄u = f has a current solution, then there is also a smooth
solution.

There are completely analogous statements for the de Rham com-
plex by replacing O by the constant sheaf C, ∂̄ by d, and E0,k and Co,k

by Ek and Ck, respectively.

9. Appendix I: Some facts about sheaf theory

10. Appendix II: Some notions in algebraic (analytic)
geometry

The local ring Ox Noetherian, blabla eventuellt primary decompo-
sition ??? radikal ???

Recall that an ideal J is radical if φN ∈ J implies that φ ∈ J . Thus
we can represent the geometric object Z both as a certain ideal and as
a current.

In this section we state some basic facts about analytic sets. Com-
plete proofs and further results can be found in, e.g.., [?], and [?].

Weierstrass polynomial. Assume that f(z, w) is holomorphic in a
neighborhood of the origin in Cn−1

z ×Cw and that f(0, 0) = 0. If f does
not vanish identically on the w-axis, i.e., w 7→ f(0, w) is not identically
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zero, then we have a unique representation

f = Wa

where a is nonvanishing,

W = wr + ar−1(z)w
r−1 + · · ·+ a1(z)r + a0(z);

where aj(0) = 0. The function W is called a Weierstrass polynomial.
Notice that after a generic linear change of variables any nontrivial f
is of this form.

Let X be a complex manifold. A subset A is called an analytic set
(or an analytic variety) if each point has a neighborhood U such that
A ∩ U is the common zero set of a (finite) collection of holomorphic
functions in U .

A point z ∈ A is regular if there is a neighborhood U of z such
that A∩U is a submanifold of U . The set of regular points is denoted
Areg. The complement A \Areg is called the singular part of A. It is a
non-trivial fact that A \ Areg is in itself an analytic set.

An analytic set A is irreducible in X if there are no proper analytic
subsets A1 and A2 such that A = A1 ∪ A2 and Aj ⊂6= A.

We will also consider germs Vx of analytic varieties at x. Notice
that finite unions and intersections of such germs are welldefined and
are again germs at x. Such a germ Vx is irreducible if it cannot be
written as the union v1

x ∪ V 2
x where vj

x 6= Vx.

If x is a regular point of A, then A is irreducible at x.

If A is any analytic set, then it is irreducible in X if and only if
Areg is connected. More generally we have:

Theorem 10.1. Given any analytic set A, let Ãj be the connected

components of Areg, and let Aj be the closure of Ãj in A (or equivalently
in X). Then each Aj is an irreducible analytic set and A = ∪Aj.
Moreover, this union is locally finite.

The varieties Aj are called the irreducible components of A.

Example 10.1. Let V = {zw = 0} in C2. Then Vreg = V \ {0, 0)}
which is disconnected, and we have V = V1 ∪ V2, where V1 = {w = 0}
and V2 = {z = 0}. �

Example 10.2. Let A be the zero set of z3 − w2 in C2. Notice
that Areg = A \ {(0, 0)} by the implicit function theorem, or by direct
inspection. We claim that however V is irreducible at (0, 0). Of course
this follows from Theorem??? since Vreg is connected. However it can
be seen directly. Notice that V is parametrized by γ(t) = (t2, t3), t ∈ C.
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If V = V1 ∪ V2 and V1 ⊂6= V2, then one could find a function φ1 in a
neighborhood U of (0, 0) that vanishes on V2 but is not identically zero
on V1 in any neighborhood of (0, 0). In the same way one can find φ2

with the same property but with V1 and V2 interchanged. Thus φ1φ2

vanishes identically on V , and hence γ∗φ1 · γ∗φ2 ≡ 0 in γ−1(U). Thus
one of the factors must vanish identically in a neighborhood of 0, and
hence one of the φj must vanish on V in a neighborhood of (0, 0), which
is a contradiction.

Notice that “above” any z ∈ Cz \{0} there are presicely two values

w = ±
√
z3 such that (z, w) lies on V . �

Example 10.3. Consider the curve t 7→ (t(t−2), t2(t−2)) = (z, w)
in C2. A simple computation reveals that it is the zero set of the
cubic w2 − 2zw − z3. In fact, since t = w/z we get the relation z =
(w/z)(w/z−2). One can show that A is globally irreducible. However,
locally at the origin in C2 it is two curves intersecting transversally, so
A is not irreducible at 0. In fact, if

√
z + 1 denotes the branch that is

close to 1 when z is close to 0, then we have

w2 − 2zw − z3 = (w − z(1−
√

1 + z))(w − z(1 +
√

1 + z)).

�

We say that an irreducible A has codimension p it the manifold
Areg has codimension p; since it is connected, the definition is mean-
ingful. For a general A we say it has codimension p if p is the minimal
codimension of any of its irreducible components.

If A is irreducible, and φ holomorphic; then either A ⊂ {φ = 0} is
empty or has codimension p+ 1.

However, in general, one needs more than p functions to define a
variety A of codimension p. If p is enough we say that A is a complete
intersection. In general, if A has pure dimension p one can always
locally find f1, . . . , fp, defining a complete intersection, so that A is a
union of irreducible components of the intersection.

Obs if A is irreducible with codim p and f is holo, then the codim
of A∩{f = 0} is p+1 or the intersection is empty. Thus, if f1, . . . fm is
a complete intersection, then also each subset of these functions must
be. (so-called regular sequence!)

For each germ of variety Vx at x we get an ideal

IV ⊂ Ox = {φ ∈ Ox; φ = 0 on Vx}.
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Conversely, for each ideal J ⊂ Ox we get a germ of a variety

Vx(J) = {z; φ(z) = 0 for all φ ∈ J}.

Clearly, J ⊂ IV (J) for any ideal J ⊂ Ox, and Hilbert’s Nullestellen-
satz states that √

J = IV (J).

Here
√
J is the radical, i.e., the set of all φ ∈ Ox such that φN ∈ J for

some power N .

Proposition 10.2. Let A be the germ of an analytic variety at x.
Then Ax is irreducible if and only if IA ⊂ Ox is a prime ideal in Ox iff
there are arbitrary small neighborhood s in which Areg is connected.

Thus we have a 1-1 correspondence between prime ideals in Ox and
germs of irreducible varieties at x.

Recall that each f ∈ Ox has a unique factorization f = φa1
1 · · ·φam

m ,
where φj are prime elements and aj are positive integers. Then the
hypersurface (i.e., variety with codimension 1) V (f) has the irreducible
components Zj = V (φj). We say that f has the order aj on V (φj).

Any variety Z of pure codimension p is a union of irreducible com-
ponents of a complete intersection.

Example 10.4. The curve t 7→ (t3, t4, t5) = (z, w, u) is defined by
the three binomials z4−w3, z5−u3, w5−u4 but one can prove that not
just two of them are enough. In fact, the set cannot, even locally at
0, be defined by less than three holomorphic functions, i.e., the local
prime ideal at least three generators.

However, V is an irreducible component of the complete intersection
z4 − w3, z5 − u3. Besides V it also contains for instance the curve
t 7→ (t3, ei2π/3t4, ei2π/3t5). �

Suppose that V is the germ of a irreducible variety at 0 ∈ Cn oc
codimension p. After a generic linear change of coordinates, we may
assume that Cn = Cn−p

z × Cp
w, there is a polydisk ∆ = ∆′ × ∆′′, a

positive nubmer r and a variety Y ⊂ ∆′ such that V is a branched
covering of ∆′:

π : V ∩∆ → ∆′

such that for each z ∈ ∆′ \Y the fiber π−1(z) has precisely r points, for
any z π−1(z) has at most r points, outside Y , the projection is locally
a biholomorphism.

Moreover, V ∩ (∆ \ π−1(Y )) is connected, and contained in Vreg.
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Analytic space

Structure sheaf ablbalbla

Blowing up along a subvariety, normalization, Hironaka resolution
in various formulations,

and examples .....

11. Exercises

Exercise 1. Let V be a real 2n-dimensional vector space (think
of V as the cotangent space of Cn at some fixed point p) and consider
the complex 2n-dimensional vector space V C = V ⊗R C, the so-called
complexification of V . The notion of wedge product etc extends by
(complex-)linearity from V to V C. Let v1, . . . , vk be elements in V C.
Show that they are lineraly independent over C if and only if v1∧ . . .∧
vk 6= 0.

Exercise 2. Let n = 1 and assume that f = f1dz̄ has compact
support. Show that there is a solution u to ∂̄u = f with compact
support if and only if ∫

f ∧ zkdz = 0

for all integers k ≥ 0.

Exercise 3. Show that Hartogs’ phenomenon immediately implies
that ∂̄u = f has a solution with compact support if f is a ∂̄-closed
(0, 1)-form.

Exercise 4. Let Ψ(z) be a reasonable function in the unit ball in

Cn (or rather defined in a neighborhood of the closure) and let ψ̃(z, w)

be the function in the ball in Cn+1 defined by ψ̃(z, w) = φ(z). Show
that

(11.1)

∫
|z|2+|w|2<1

(1− |z|2 − |w|2)αψ̃(z, w)dV (z, w) =

π

α+ 1

∫
|z|<1

(1− |z|2)α+1ψ(z)dV (z).

Exercise 5. Prove, by (11.1), that the volume of the ball in Cn is
πn/n!.
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Exercise 6. Let h be smooth a (n, n − 1)-form and let χk be
a sequence of cutoff functions in D that tends to the characteristic
function χD. Show that

∂̄χk ∧ h→ −
∫

∂D

h.

Exercise 7. Assume that we know (3.4) for all f with compact
support in D. Let χk be a sequence of cutoff functions in D that tends
to the characteristic function χD. If f if arbitrary, apply (3.4) to χkf
and deduce (3.4) for f .

Exercise 8. Show that the linear term in the Taylor expansion of
a function ρ(ζ) at a is 2Re 〈∂ρ(ζ), ζ − a〉. Prove (3.5),

Exercise 9. Assume that f is locally integrable in Ω and that∫
f ∧ ∂̄ψ = 0

for all smooth (n, n − 1)-forms with compact support. Show that in
fact f is holomorphic; to be precise, there is a holomorphic function F
in Ω that is equal to f almost everewhere.

Exercise 10. Assume that f is an entire function, i.e., f ∈ O(Cn)
and such that |f(z)| = O(|z|γ). Show that f is a polynomial of degree
at most γ.

Exercise 11. Prove: Assume that f ∈ O(Ω) and Ω is connected.
Then for each interior point a, |f(a)| < supΩ |f | unless f is constant.

Exercise 12. Let {ρ < 0} be a domain in RN . Show that a
(N − 1)-form α defined in a neighborhood of ∂D = {ρ = 0} represents
the surface measure on ∂D (with the orientation such that ???) if and
only if

dρ ∧ α/|dρ| = dV.

Exercise 13. Sometimes it is instructive to compare to the real
case, by letting “holomorphic” correspond to “constant” (i.e., homoge-
neous solution to the Poincare’ operator d). Prove analogues of Propo-
sitions 2.5 and 2.6 in Rn for n > 1 and compare to the case n = 1.

Exercise 14. Antag n = 2. Suppose that σ and s are (1, 0)-forms
outside 0 such that s · ζ = σ · ζ = 1. Show that

∂̄σ ∧ s = σ ∧ ∂̄σ − s ∧ ∂̄s.
Give a new proof of the CFL formula in this case, assuming that it is
proved for s = b. Try to generalize to higher dimensions.
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Exercise 15. Let s =
∑n

1 sjdηj be a form in C2n such that
∑

j sjηj =
1. Show that

ω(s, η) = s ∧ (ds)n−1

is d-closed where it is defined. Prove formula (5.2) in Remark 5.1 above.
(First show that ds1, . . . , dsn, dη1, . . . , dηn must be linearly dependent!)

Exercise 16. Let u and v be (p, p)-forms. We say that u ≤ v if(f)
v − u ≥ 0. Let ω be a positive (1, 1)-form and let u be any smooth
(1, 1)-form. Show that u ≤ Cω for some number C.

Exercise 17. Assume that w(z) is a holomorphic coordinate sys-

tem in B \ (1/2)B. Prove that it has an extension to a coordinate
system in B.

Exercise 18. Use (5.2) to prove that ?????????????????

Exercise 19. Assume that f : Ω → Ω′ is holomorphic and proper
and that f(0) = 0. Show that f∗[0] = [0].

Let ω be the Cauchy kernel in C with pole at the origin, and let
Kσ = fσ

∗ ω, where f(τ) = τσ and σ ∈ Cn, σ 6= 0. Show that

∂̄Kσ = [0].

Define

K =

∫
|σ|=1

Kσ dσ,

where dσ is normalized surface nmeasure, and prove that ∂̄K = [0].
Show that in fact K is the BM kernel.

12. Notes





CHAPTER 2

Integral representation with weights

In this chapter we shall now consider various modifications of the
simple integral representations we encountered in the previous chapter.
They will admit balbalblaa. It turns out to be very useful to have a
functional calculus for forms of even degree.

1. Functional calculus for forms of even degreee

Let E be an m-dimensional vector space and recall that ΛkE con-
sists of all alternating multilinear forms on the dual space E∗. If v ∈ E∗

we define contraction (or interior multiplication) with v, δv : Λk+1E →
ΛkE, by

(δvω)(u1, . . . , uk) = ω(v, u1, . . . , uk).

It is readily checked that this is an alternating form and therefore an
element in ΛkE. Clearly δv is complex-linear in v.

To get a more hands-on idea how δv acts, let us choose a basis ej

for E, with dual basis e∗j , such that v = e∗1. Then δv(e1 ∧ eJ) = eJ if
1 /∈ J . Thus

(1.1) δv(α ∧ β) = δvα ∧ β + (−1)deg αα ∧ δvβ,
if α = eJ and β = eK . By linearity, then (1.1) holds for arbitrary
forms.

Now let ω1, . . . , ωm be even forms, i.e., in ⊕`Λ
2`E, and let ωj =

ω′j + ω′′j be the decomposition in components of degree zero and posi-
tive degree, respectively. Notice that ∧ is commutative for even forms.
Thus if p(z) =

∑
α cαz

α =
∑

α cαz
α1
1 · · · zαm

m is a polynomial, then we
have a natural definition of p(ω) as the form

∑
α cαω

α1
1 ∧ . . . ∧ ωαm

m .
However, it is often convenient to use more general holomorphic func-
tions.

Now ω′ = (ω′1, . . . , ω
′
m) is a point in Cm and for f holomorphic in

some neighborhood of ω′ we define

(1.2) f(ω) =
∑

α

f (α)(ω′)(ω′′)α,

33
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where we use the convention that

wα =
wα1

1 ∧ . . . wαm
m

α1! · · · ∧ αm!
.

Thus f(ω) = f(ω′+ω′′) is defined as the formal power series expansion
at the point ω′. Since the sum is finite, f(ω) is a well-defined form,
and if ω depends continuously (smoothly, holomorphically) on some
parameter(s), f(ω) will do as well.

If f(z)− g(z) = O((z − ω′)M) for a large enoough M , then f(ω) =
g(ω).

Lemma 1.1. Suppose that fk → f in a neighborhood of ω′ ∈ Cm

and that ωk → ω. Then fk(ωk) → f(ω).

Proof. In fact, by the Cauchy estimate, Ch 1, Example 3.3, f
(α)
k →

f (α) uniformly for each α in a slightly smaller neighborhood . There-

fore, α, f
α)
k (ω′k) → f (α)(ω′k) for each α. It follows that

fk(ωk)− f(ω) = fk(ωk)− f(ωk) + f(ωk)− f(ω) → 0

since only a finite number of derivatives come into play. �

Clearly

(af + bg)(ω) = af(ω) + bg(ω), a, b ∈ C,

and moreover we have

Proposition 1.2. If p is a polynomial, then the definition above
of p(ω) coincides with the natural one. If f, g are holomorphic in a
neighborhood of ω′, then

(1.3) (fg)(ω) = f(ω) ∧ g(ω).

If f is holomorphic in a neighborhood of ω′ (possibly Cr-valued) and h
is holomorpic in a neighborhood of f(ω′), then

(1.4) (h ◦ f)(ω) = h(f(ω)).

If v is in E∗, then

(1.5) δvf(ω) =
m∑
1

∂f

∂zj

(ω) ∧ δvωj,

and if ω depends on a parameter, then

(1.6) df(ω) =
m∑
1

∂f

∂zj

(ω) ∧ dωj.
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Proof. For the first statement, with no loss of generality, we may
assume that ω′ = 0, and p(z) = zβ. Then p(α)(0)(ω′′)α vanishes for
α 6= β and equals (ω′′)β for α = β. By linearity the first statement
follows.

Now (1.3) clearly holds for polynomials, and since we can approx-
imate f, g with polynomials fk, gk in O({0}), the general case fol-
lows from Lemma 1.1. One can obtain (1.4) in a similar way, not-
ing that if τk = fk(ω) and hk → h in a neighborhood of f(ω′), then
hk(τk) → h(τ) = h(f(ω)), and hk(τk) = (hk ◦ fk)(ω) → (h ◦ f)(ω).

The remaining statements also clearly hold for polynomials and
hence in general. �

Example 1.1. Since
1

1− z
= 1 + z + z2+

in a the unit disk, if ω is an even form and |ω′| < 1, we have

1

1− ω
= 1 + ω + ω2 + ω3 + · · · ,

and (1− ω)[1/(1− ω)] = 1. If in addition ω′ = 0 we have

1

1− ω
= 1 + ω + ω2 + ω3 + · · ·ωn.

If ω1 and ω2 are even forms, then

eω1+ω2 = eω1 ∧ eω2 .

In fact, if f(z1, z2) = z1+z2, πj(z1, z2) = zj, then (exp ◦f) = (expπ1)(expπ2),
and hence by (1.3) and (1.4),

LHS = exp(f(ω1, ω2)) = (exp ◦f)(ω1, ω2) = π1(ω1, ω2)∧π2(ω1, ω2) = RHS,

since (clearly) πj(ω1, ω2) = ωj.
Of course, in both cases one can easily check the statement directly

as well. �

2. A general Cauchy-Fantappiè-Leray formula

We have already seen that the CFL formula is sort of a substitute
for the Cauchy formula in several variables. We shall now see that
the proper generalization of the Cauchy kernel is a certain cohomology
class.

If U is an open subset of Cn, or any complex manifold, then

Hp,q

∂̄
(U) =

{f ∈ Ep,q(U); ∂̄f = 0}
{∂̄h; h ∈ Ep,q−1(U)}
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is the Dolbeault cohomology group (or rather space) of bidegree (p, q).
In case q = 0 the denominator is interpreted as 0, so Hp,0(U) is just
the space of holomorphic (p, 0)-forms in U . The interest of these spaces
of course depends on the fact that they are non-trivial in general, i.e.,
there are ∂̄-equations that are not solvable.

We need some more notation. Let Ep,q(U) denote the space of
smooth (p, q) forms in the open set U ⊂ Cn and, for any integer m,
let Lm(U) = ⊕n

k=0Ek,k+m(U). For instance, u ∈ L−1(U) can be written
u = u1,0 + . . .+ un,n−1, where the index denotes bidegree in dz.

Fix a point a ∈ Cn, let δz−a : Ep,q(U) → Ep−1,q(U) be contraction
with the vector field

2πi
n∑
1

(zk − ak)
∂

∂zk

.

We claim that

(2.1) δz−a∂̄f = −∂̄δz−af.

In fact, by linearity it is enough to check for f of the form f = φγ, where
φ is a function and γ = dzI ∧ dz̄J . We have ∂̄δf = ∂̄(φδγ) = ∂̄φ ∧ δγ
since δγ is ∂̄-closed, and δ∂̄f = δ(∂̄φ ∧ γ) = −∂̄φ ∧ δγ, since ∂̄φ is a
(0, 1)-form.

We now let
∇ = ∇z−a = δz−a − ∂̄.

Then
∇z−a : Lm(U) → Lm+1(U).

The usual wedge product extends to a mapping Lm(U) × Lm′
(U) →

Lm+m′
(U), such that g ∧ f = (−1)mm′

f ∧ g, and ∇z−a satisfies the
same formal rules as the usual exterior differentiation, i.e., ∇z−a is a
anti-derivation,

(2.2) ∇z−a(f ∧ g) = ∇z−af ∧ g + (−1)mf ∧∇z−ag, f ∈ Lm(U).

Moreover, in view of (2.1) we have

∇2
z−a = ∇z−a ◦ ∇z−a = 0.

Notice that the Cauchy kernel u(z) = dz/2πi(z − a) satisfies

(2.3) 2πi(z − a)u(z) = dz and ∂̄u = [a],

where [a] denotes the current integration (evaluation) at a. In order
to generalize Cauchy’s formula to higher dimensions it is natural to
look for forms u that satisfy the second equation in (2.3), since each
such solution gives rise to a representation formula by Stokes’ theorem,
cf., Chapter 1. However, to find such solutions in several variables it
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turns out to be appropriate to look for multivariable analogues to (2.3)
outside the point a to begin with.

Notice that (2.3) can be written

(2.4) ∇z−au(z) = 1− [a].

If n > 1, (3.17) means that

(2.5) δz−au1,0 = 1, δz−auk+1,k − ∂̄uk,k−1 = 0, ∂̄un,n−1 = [a].

Example 2.1. Let s =
∑n

1 sjdzj be a (1, 0)-form in U such that
δz−as = 2πi

∑
j sj(zj − aj) = 1. Then clearly we must have a /∈ U .

Since the component of zero degree of the form ∇z−au is nonvanishing,
we can define the form

u =
s

∇s
and we claim that

(2.6) ∇z−au = 1

in U . In fact, by the functional calculus for forms we have

∇z−au =
∇z−as

∇z−as
+

s

(∇z−as)2
∇2

z−as = 1

since ∇2
z−a = 0.

More explicitly

u =
s

∇z−as
=

s

1− ∂̄s
= s ∧ [1 + ∂̄s+ (∂̄s)2 + · · ·+ (∂̄s)n−1] =

s+ s ∧ ∂̄s+ s ∧ (∂̄s)2 + · · ·+ s ∧ (∂̄s)n−1.

The sceptical reader of course can confirm (2.6) by a direct compu-
tation. Notice that highest order term is precisely the CFL form in
Corollary 3.3 in Ch. 1. �

Proposition 2.1. If

b(z) =
1

2πi

∂|z|2

|z|2
,

then the form

uBM =
b

∇zb
=

b

1− ∂̄b
= b ∧

n∑
1

(∂̄b)k−1,

is locally integrable in Cn \ {0} and satisfies (3.17) (with a = 0).

We will refer to uBM as the (full) Bochner-Martinelli form.
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Proof. A simple computation yields

uk,k−1 = b ∧ (∂̄b)k−1 =
∂|z|2 ∧ (∂̄∂|z|2)k−1

(2πi)k|z|2k
,

so uk = O(|z|−(2k−1)) and hence locally integrable. We already know
that ∂̄un,n = [0]; this is precisely Lemma 3.1 in Ch. 1, so what remains
is to verify that

(2.7) −
∫
∂̄φ ∧ uk,k−1 =

∫
φ ∧ δzuk+1,k, φ ∈ Dn−k,n−k(Cn).

However,

−
∫
|z|>ε

∂̄φ ∧ uk,k−1 =

∫
|z|=ε

φ ∧ uk,k−1 +

∫
|z|>ε

φ ∧ δzuk+1,k.

Moreover, since k < n, uk,k−1 = O(|z|−(2n−3)), and hence the boundary
integral tends to zero when ε→ 0. Thus (2.7) follows. �

Lemma 2.2. Suppose that a /∈ U . If f is any form in U such that
∇z−af = 0, then there is a form w such that ∇z−aw = f .

Proof. In fact, u(z) = uBM(z−a) is smooth in U and ∇z−au = 1.
Thus ∇z−a(u ∧ f) = f . �

We are now ready to prove the main result of this section, stating
that the proper generalization of the Cauchy form from one variable is
a certain cohomology class ωz−a.

Proposition 2.3. Suppose that a ∈ D and a /∈ U ⊃ ∂D. If u ∈
L−1(U) and ∇z−au = 1, then ∂̄un,n−1 = 0. All such forms un,n−1 define
the same Dolbeault cohomology class ωz−a in U and any representative
for ωz−a occurs in this way. For any representative we have that

(2.8) φ(a) =

∫
∂D

φ(z)un,n−1, φ ∈ O(D).

Proofs. If ∇z−au = 1 then ∂̄un = 0. If u′ is another solution then
∇z−a(u−u′) = 0 and since a /∈ U there is a solution to ∇z−aw = u−u′,
and hence ∂̄wn,n−2 = u′n,n−1 − un,n−1. If u is a fixed solution and ψ
is a (n, n − 2) form, then u′ = u − ∇z−aψ is another solution, and
u′n,n−1 = un,n−1 + ∂̄ψ.

If u′n,n−1 − un,n−1 = ∂̄wn,n−2 in U and φ is holomorphic, then

d(φwn,n−2) = φu′n,n−1 − φun,n−1.

Therefore, Stokes’ theorem, applied to the compact manifold ∂D, im-
plies that (2.8) is unchanged if un is replaced by u′n. If u(z) = uBM(z−
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a) is the Bochner-Martinelli form (translated by a), then we know that
(2.8) holds, and hence it holds in general.

Since the Bochner-Martinelli form u is a Cauchy form, (2.8) and
(2.9) follow immediately. Since any other un is cohomologous in U ,
(2.8) and (2.9) follow in general. �

Notice that ∇z−a is defined on currents as well. We have an anal-
ogous result for nonsmooth forms, and leave the proof as an exercise,
see Exercise 23

Proposition 2.4. With the same notation as in the previous propo-
sition, let u be a current solution to ∇z−au = 1 in U . If χ is a cutoff
function that is 1 in a neighborhood of a and such that the support of
∂̄χ is contained in U , then

(2.9) φ(a) = −
∫
∂̄χ ∧ φun,n−1,

for φ that are holomorphic in some neighborhood of the support of χ.

With the choice of u from Example 2.1, (2.8) is just the CFL for-
mula. However, (2.8) admits other realizations.

Example 2.2. If we have several (1, 0)-forms s1, . . . , sn such that
δz−as

j = 1 we can get a solution u to ∇z−au = 1 by letting u1 = s1,
uk+1 = sk+1 ∧ ∂̄uk. Then sn ∧ ∂̄sn−1 ∧ . . . ∧ ∂̄s1 is a representative for
ωz−a; the corresponding representation formula appeared in [?]. �

Example 2.3. Let us define the current u = u1,0 + · · · + un,n−1 in
Cn by

u1 =
1

2πi

dz1

z1 − a1

, uk =

(
1

2πi

)k
dzk

zk − ak

∧ ∂̄uk−1.

The products are well-defined since they are just tensor products of
distributions. From Proposition 2.4 we get the representation formula

f(a) = −(2πi)−1

∫
zn

∂̄znχ(. . . , an−1, zn) ∧ f(. . . , an−1, zn)
dzn

zn − an

.

Of course, this formula follows immediately from the one-variable Cauchy
formula. �

If we have a solution to ∇z−au = 1 in Ω \ {a}, that has a current
extension across a it is natural to ask whether (3.17) holds.

Proposition 2.5. Suppose that u ∈ L−1(Ω\{a}) solves ∇z−au = 1
in Ω \ {a} and that |uk| . |z − a|−(2k−1). Then u is locally integrable
and (3.17) holds.
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Proof. If u1 and u2 both satisfy the growth condition, then u1 ∧
u2 = O(|z − a|−(2n−2)) and ∇z−a(u

1 ∧ u2) = u2 − u1 pointwise outside
a. Hence it holds in the current sense. If (3.17) holds for one of them
it thus holds for both; taking one of them as the Bochner-Martinelli
form, the proposition follows. �

Example 2.4. Let s(z) be a smooth (1, 0)-form in Ω such that
|s(z)| ≤ C|z − a| and |δz−as(z)| ≥ C|z − a|2. Then u = s/∇z−as
satisfies the hypothesis and therefore (3.17) holds. �

Example 2.5. Any (locally integrable) form u in a neighborhood of
a such that (3.17) holds, can be extended to a global such form in Ω. In
fact, if v is any solution to ∇z−av = 1 outside a, then ∇z−a(u− v) = 0
where it is defined, and hence we have w such that∇z−aw = u−v there.
If χ is an appropriate cutoff function, then u′ = χu+(1−χ)v+ ∂̄χ∧w
is a global form that coincides with u close to a. �

3. Weighted representation formulas

We now introduce weighted formulas. Let z be a fixed point in
Ω ⊂ Cn. A smooth form g ∈ L0(Ω) such that∇ζ−zg = 0 and g0,0(z) = 1
will be referred to as a weight (with respect to the point z).

Theorem 3.1. If g is a weight in Ω, z ∈ D ⊂⊂ Ω, and ∇ζ−zu = 1
in a neighborhood U of ∂D, then

(3.1) φ(z) =

∫
∂D

(g ∧ u)n,n−1φ+

∫
D

gn,nφ, φ ∈ O(D).

Notice that

(u ∧ g)n,n−1 =
n∑

k=1

uk,k−1 ∧ gn−k,n−k.

One can replace u ∧ g in the theorem by any solution v to ∇ζ−zv = g
in U , see Exercise ??.

Corollary 3.2. If g is a weight (with respect to z) with compact
support in Ω, then

(3.2) φ(z) =

∫
φgn,n, φ ∈ O(Ω).

Proof. First suppose that u is chosen so that (3.17) holds (with
a = z). Then

∇ζ−z(u ∧ g) = (1− [z]) ∧ g = g − [z]
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since [z] ∧ g = [z]g0,0 = [z] and g0,0(z) = 1. Thus d(u ∧ g)n,n−1 =
∂̄(u ∧ g)n,n−1 = gn − [z] in the current sense and hence∫

∂D

(u ∧ g)nφ =

∫
D

d[(u ∧ g)nφ] =

∫
D

([z]− gn))φ = φ(z)−
∫

D

gφ,

and so (3.1) holds for this particular choice of u. If now u′ is an arbitrary
solution to ∇ζ−zu

′ = 1 in U , then

∇ζ−z(u ∧ u′ ∧ g) = u′ ∧ g − u ∧ g,

and hence

d(u ∧ u′ ∧ g)n,n−2 = (u ∧ g)n,n−1 − (u′ ∧ g)n,n−1.

Thus the general formula follows from Stokes’ theorem. �

The collection of weights clearly is closed under convex combina-
tions and (wedge) products. More generally, if g1, . . . , gm are weights,
and G(λ1, . . . , λm) is holomorphic on the image of z 7→ (g1

0, . . . , g
m
0 ),

and G(1, . . . , 1) = 1, then g = G(g1, . . . , gm) is another weight. If q is
any smooth form in L−1(Ω) then g = 1 +∇z−aq clearly is a weight. In
fact, any weight is of this form, see Exercise ??.

Example 3.1. Let q be a (1, 0)-form in D, and assume that G(λ)
is holomorphic on the image of ζ 7→ δζ−zq(ζ) and G(0) = 1. Then

(3.3) g = G(∇ζ−zq) = G((δζ−z − ∂̄)q) =
n∑

k=0

G(k)(δζ−zq)(−∂̄q)k/k!

is a weight.
In case g is a weight as in Example 3.1 and u is a form as in

Proposition 2.5, then gn,n and (u ∧ g)n,n−1 are precisely the kernels P
and K from [?]. �

Example 3.2. Let χ be a cutoff function in Ω that is 1 in a neigh-
borhood of z and let u be a (smooth outside z) Cauchy form. Then
h = χ − ∂̄χ ∧ u is a smooth weight that has compact support in Ω.
If u depends holomorphically of z (close to some fixed point say) then
h will do as well. Notice that (3.1) with this choice of weight gives
us back (2.9). For further reference also notice that w = (1 − χ)u is
smooth in Ω and that ∇ζ−zw = 1− h. �

Example 3.3. Let B be the ball and let χ be a cutoff function in
B that is identically 1 in a neighborhood of the closure of rB and take

s =
∂|ζ|2

2πi(|ζ|2 − ζ̄ · z)
.
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Then

g = χ− ∂̄χ ∧ s

∇ζ−zs
= χ− ∂̄χ ∧ [s+ s ∧ ∂̄s+ · · ·+ s ∧ (∂̄)n−1]

is a weight with compact support that depends holomorphically on
z ∈ rB. �

Example 3.4. Let g be a current in Ω with compact support such
that ∇ζ−zg = 0. Moreover, assume that g is smooth in a neighborhood
of z and that g0(z) = 1. Then (3.2) still holds; this follows by exactly
the same proof. If z ∈ D, then a possible choice of weight (with respect
to z) is

gD = χD − ∂̄χD ∧ u,
where u is a Cauchy form in a neighborhood of ∂D. Then (3.2) is just
formula (2.8).

If g is any smooth weight, then gD ∧ g is a new weight, and in this
case (3.2) becomes (3.1). �

As we have seen, the CFL formula represents a holomorphic func-
tion in a domain D in terms of its values on ∂D. However, this requires
that the function has some reasonable boundary values. To admit a
representation for a larger class of functions one can use a weighted
formula. Here we will exemplify with the ball; in a subsequent section
we will consider more general domains.

Example 3.5 (Weighted Bergman projections in the ball). Notice
that

1 +∇ζ−z
∂|ζ|2

2πi(1− |ζ|2)
=

1− ζ̄ · z
1− |ζ|2

− 1

2πi
∂̄
∂|ζ|2

1− |ζ|2
.

Therefore, as long as z, ζ ∈ B, for any complex α,

g =
(1− ζ̄ · z

1− |ζ|2
− 1

2πi
∂̄
∂|ζ|2

1− |ζ|2
)−α

,

is welldefined, and in fact a weight. If Reα is large (in fact > 1 is
enough), then g vanishes on ∂B (for fixed z of course) and is then a
weight with compact support. More specifically, if

ω =
i

2
∂
∂̄|ζ|2

1− |ζ|2
, ωk = ωk/k!,

then

gn,n = cα

( 1− |ζ|2

1− ζ̄ · z

)α+n

ωn,

where

cα = (−1)nn!
1

πn

Γ(−α+ 1)

Γ(n+ 1)Γ(−α− n+ 1)
.
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Using that Γ(n+ 1) = n! and Γ(τ + 1) = τΓ(τ) one gets

cα =
1

πn

Γ(n+ α)

Γ(α)
.

Moreover,

ωn =
( i
2

)n( ∂∂̄|ζ|2
1− |ζ|2

+
∂|ζ|2 ∧ ∂̄|ζ|2

(1− |ζ|2)2

)
n

=

( i
2

)n (1− |ζ|2)(∂∂̄|ζ|2)n + ∂|ζ|2 ∧ ∂̄|ζ|2 ∧ (∂∂̄|ζ|2)n−1

(1− |ζ|2)n+1
=

dV (ζ)

(1− |ζ|2)n+1
,

where we have used (???) and the fact that

(3.4) ∂|ζ|2 ∧ ∂̄|ζ|2 ∧ (∂∂̄|ζ|2)n−1 = |ζ|2(∂∂̄|ζ|2)n.

To see this, notice that

(∂∂̄|ζ|2)n−1 =
n∑

j=1

∧
k 6=j

dζk ∧ dζ̄k

and

∂|ζ|2 ∧ ∂̄|ζ|2 =
∑

`

ζ̄`dζ` ∧
∑

ν

ζνdζ̄ν .

It is now easy to see that (3.4) holds.
It is clear that all terms in g will vanish on the boundary if Reα is

large. Summing up we get, for Reα large the representation

(3.5) φ(z) =
Γ(n+ α)

πnΓ(α)

∫
|ζ|<1

φ(ζ)(1− |ζ|2)α−1dV (ζ)

(1− ζ̄ · z)n+α
, φ ∈ O(B).

However, (1−|ζ|2) = (1+|ζ|)(1−|ζ|) ∼ 2(1−|ζ|), i.e., roughly speaking
the distance from ζ to the boundary, and hence the right hand side has
meaning as a convergent integral for all α with Reα > 0. Moreover,
it depends holomorphically on α, and by the uniqueness theorem the
equality must hold for all α with Reα > 0.

We will see later that it holds for all φ that belongs to L2((1 −
|ζ|2)α−1dV ). �

We conclude this section with another type of application that will
be elaborated further on, which is called a ?? division formula. Roughly
speaking, given holomorphic functions f1, . . . , fm and φ one looks for
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holomorphic functions u1, . . . , um such that

φ =
m∑
1

fjuj,

that is, an explicit realization of φ as a member of the ideal (f) =
(f1, . . . , fm) generated by fj. Of course this is not always possible, but
in the first place we will assume that the functions fj have no common
zeros. balbal

Lemma 3.3. Suppose that Ω is a convex domain in Cn and f is
holomorphic. Then there are holomorphic functions hj(ζ, z) in Ω× Ω,
j = 1, . . . , n, such that

n∑
1

(ζj − zj)h
j(ζ, z) = f(ζ)− f(z).

If f is a polynomial we can choose hj as polynomials.

Notice that if we define the (1, 0)-form h =
∑n

1 h
j(ζ, z)dζj/2πi,

then
δζ−zh = f(ζ)− f(z).

Proof. We have

f(ζ)−f(z) =

∫ 1

0

d

dt
f(z+t(ζ−z))dt =

∫ 1

0

n∑
1

∂f

∂wj

(z+t(ζ−z))(ζj−zj)dt,

so we can take

hj(ζ, z) =

∫ 1

0

∂f

∂wj

(z + t(ζ − z))dt.

It is clear from this formula that hj is a polynomial if f is. �

Example 3.6 (Berndtsson’s division formula). Suppose we have
given holomorphic f1, . . . , fm in a convex domain Ω, and assume for
simplicity that they have no common zeros, i.e.,

|f |2 =
n∑
1

|fj|2 > 0.

Let hj be Hefer forms, so that

δζ−zhj = fj(ζ)− fj(z).

Moreover, let

σj =
f̄j

|f |2
.
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If f = (f1, . . . , fm) etc then

(3.6) f · σ = 1.

Now

∇ζ−z(f(z)·σ−h·∂̄σ) = −f(z)·∂̄σ−(f−f(z))·∂̄σ = −f ·∂̄σ = −∂̄(f ·σ) = 0,

in view of (3.6). Moreover, the value of the scalar term is 1 at ζ = z.
Therefore, for each natural number µ,

g = (f(z) · σ − h · ∂̄σ)µ

is a weight. We now claim that

(h · ∂̄σ)ν = 0

if ν ≥ min(m,n+1). In fact, if ν ≥ n+1, then it vanishes since we have
too many differentials of dζ̄. If ν ≥ m it vanishes since

∑
fj ∂̄σj = 0

so ∂̄σ1, . . . , ∂̄σm are linearly dependent, cf., ???? in Ch. 1. If µ ≥
min(m,n+ 1) we thus have

g = f(z) · σ(−h · ∂̄σ)m−1 + · · · = f(z) · A(ζ, z).

If g′ is any weight with compact support, cf., Example 3.10, we then
get the representation

φ(z) = f(z) ·
∫
A(ζ, z) ∧ g′, φ ∈ O(Ω).

If we are able to choose g′ so that it depends holomorphically on z,
we thus get a holomorphic realization of φ as an element in the ideal
(f) generated by f . �

As an application of the preceding example we prove the following
well-known balbla

A compact subset of Cn is called polynomially convex if for each
z /∈ K there is a polynomial p such that |p(z)| > supK |p|.

We leave it as an exercise to check that a compact subset of the
plane C is polynomially convex if and only if C\K is connected; i.e., K
has no “holes”. In several variables, however, polynomial convexity is
much more involved. Given any compact subset K there is a smallest
polynomially convex set K̂ that contains K; K̂ is called the polynomi-
ally convex hull of K. There are deep open questions about there are
interesting open questions ???? balbalblabla

Theorem 3.4. Assume that K ⊂ Cn is polynomially convex. Then
any φ ∈ O(K) can be approximated uniformly by polynomials on K.



46 2. INTEGRAL REPRESENTATION WITH WEIGHTS

Proof. Take φ ∈ O(K) and let U be an open neighborhood of
K such that φ ∈ O(U). Moreover, let D be a domain with smooth
boundary such that K ⊂ D ⊂⊂ U . Alternatively one chooses a cutoff
function χ in U that is 1 in a neighborhood of K.

For any point z on ∂D (or on suppχ∂̄χ) one can find a polynomial
fz such that |fz(z)| > 1 and |fz| < 1 on K. By continuity |fz| > 1 in
a neighborhood ωz of z. By compactness we can select a finite number
of polynomials f1, . . . , fm such that |fj| > 1 in ωj, |fj| < 1 on K and
∪ωj ⊃ ∂D (or ⊃ suppχ∂̄χ). Replacing each fj with a large power
(here we use the fact that the polynomials constitute an algebra) we
may assume that |f | > 1 on ∂D and |f | < 1/2 on K. Moreover,
possibly after adding an additional (e.g., constant) function we may
assume that |f | > 0.

Since fj are polynomials we can choose Hefer forms hj that are
polynomials in z; in fact the construction described above provides such
hj. Letting uz be the BM form with pole at z, we get the representation

φ(z) =

∫
D

(f(z)σ − h · ∂̄σ)µφ+

∫
∂D

(f(z)σ − h · ∂̄σ)µ ∧ uφ.

Thus the first integral is a polynimal in z, so we have to show that the
boundary integral can be made arbitrarily small.

Since there is a positive distance between K and ∂D, we have that
|u| ≤ C for z ∈ K and ζ ∈ ∂D. Moreover, σ(ζ)| ≤ 1/|f(ζ)| and hence

|(f(z)σ − h · ∂̄σ)µ| ≤ C
n∑

k=0

|f(z) · σ|µ−k|h · ∂̄σ|k µ!

(µ− k)!k!
≤ C

µn

2µ

for z ∈ K and ζ ∈ ∂D, where C does not depend on µ. Since we can
choose µ as large as we want, the theorem follows. �

4. Weighted Koppelman formulas

Let X be a domain in Cn and let

η = ζ − z = (ζ1 − z, . . . , ζz − zn)

in Xζ×Xz. Let E be the subbundle of T ∗(X×X) spanned by T ∗
0,1(X×

X) and the differentials dη1, . . . , dηn. In this section all forms will take
values in ΛE. We let δη denote formal interior multiplication with

2πi
n∑
1

ηj
∂

∂ηj

,

on this subbundle, i.e., such that (∂/∂ηj)dηk = δjk. Moreover, we let

∇η = δη − ∂̄.
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Let

b =
η · dη
2πi|ζ|2

=

∑
j(ζ̄j − z̄j)dηj

2πi|ζ − z|2
=

∂|ζ|2

2πi|ζ|2
.

and consider the Bochner-Martinelli form

u =
b

∇ηb
= b+ b ∧ (∂̄b) + · · ·+ b ∧ (∂̄b)n−1.

Notice that

uk,k−1 = b ∧ (∂̄b)k−1 =
1

(2πi)k

∂|ζ|2 ∧ (∂̄∂|ζ|2)k−1

|η|2k

so that

(4.1) uk,k−1 = O(1/|ζ|2k−1).

Proposition 4.1. The form u = b/∇ηb is locally integrable in
Cn × Cn and it solves

(4.2) ∇ηu = 1− [∆]

in the current sense.

We already know that ∂̄un,n = [∆], so only has to check bab;a;ab
as in balbabla.

Proposition 4.2. If u is any smooth form in X × X such that
∇ηu = 1 and such that (3.1) holds locally at the diagonal. Then (3.2)
holds in the current sense.

Is proved precisely as ??? in ?????.

Example 4.1. Assume that s(ζ, z) is a smooth form in X×X such
that

(4.3) |s| ≤ C|ζ|, | 〈s, η〉 | ≥ C|η|2

uniformly locally at the diagonal. Then

u =
s

∇ηs
=

s

2πi 〈s, η〉
+ · · ·+ s ∧ (∂̄s)n−1

(2πi)n 〈s, η〉n

fufills the hypotheses in Proposition 3.2. �
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4.1. Henkin-Ramirez formulas. Recall that we solved ∂̄ in smaller
ball rB by patching together BM with an form that was holomorphic
in z for ζ close to the boundary. The same can be done in a strictly
psc domain by means of the form H · dη. However, to get a solution
in the whole domain the patching must be done infinitesmally close to
the boundary.

Now letD be strictly psc and letH(ζ, z) be the vector-valued ablbaa
introduced in ?????, smooth in a nbh of D ×D. Recall that

(4.4) 2Re 〈H(ζ, z), η〉 ≥ ρ(z)− ρ(ζ) + δ|η|2.
We now choose

s(ζ, z) = 〈H(ζ, z), η〉H(ζ, z) · dη − ρ(ζ)η̄ · dη
and claim that (3.3) holds in D × D. In fact, clearly |s| ≤ C|η|.
Moreover,

〈s, η〉 = | 〈H(ζ, z), η〉 |2 − ρ(ζ)|η|2.
If ζ ∈ D, then −ρ(ζ) > 0 so (3.3) holds.

Also notice that even if ζ ∈ ∂D we have that 〈s, η〉 = 0 if and only
if z = ζ, since then 2Re 〈H, η〉 ≥ −ρ(z) + δ|η|2.

If we now form the CFL kernel

K =
1

(2πi)n

s ∧ (∂̄s)n−1

〈s, η〉n

then ∂̄K = [∆] and we thus have the Koppelman formula ?????. as in
Theorem 4.3 in Ch. 1. However, notice that when ζ ∈ D, s is parallell
to H · dη, so holomorphic in z and so Kp,q = 0 on ∂D for q > 0. We
therefore have

f(z) = ∂̄z

∫
D

Kp,q−1 ∧ f +

∫
D

Kp,q ∧ f, z ∈ D, q ≥ 1,

whereas for a function v we have

v(z) =

∫
D

Kp,0 ∧ ∂̄v +

∫
∂D

Kp,0v.

Notice that the last term is precisely a CFL integral with a kernel that
is holomorphic in z so it is a projection Ep,0(D) → O(D). We can write
as

f = ∂̄Kf +K(∂̄f)

and

v = K(∂̄v) + Pv.

If f is a ∂̄-closed form, smoth on D, then Kf is a solution in D to
∂̄v = f .
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Henkin-Ramirez formulas.
ablbalblalbaba

Example in the ball. Then

s(ζ, z) = (|ζ|2 − ζ · z̄)ζ̄ · dη + (1− |ζ|2)η̄ · dη,
and

〈s, η〉 = |1− ζ̄ · z|2 − (1− |ζ|2)(1− |z|2).

4.2. Weighted Koppelman formulas. Now let g be a form with
values in E, cf., the previous section, such that ∇ηg = 0 and g0 = 1 on
the diagonal ∆ ⊂ X×X. If u is a locally integrable form that satisfies
(3.2) holds, then

∇η(g ∧ u) = g − [∆].

If we let K = (g ∧ u)n and P = gn we thus have

∂̄K = [δ]− P

which as in Ch 1 Section ???, leads to the Koppelman formula
(4.5)

f(z) = ∂̄

∫
D

Kp,q−1∧f+

∫
D

Kp,q∧∂̄f+

∫
∂D

Kp,q∧f−
∫

D

Pp,q∧f, f ∈ Ep,q(D).

In order to obtain a solution formula for ∂̄ we must get rid of the last
two terms.

5. Further examples of integral repesentation

5.1. Integral representation in Cn.

Example 5.1 (The Fock space). Let F be the Fock space, i.e., the
space of locally square integrable functions in Cn such that

‖f‖2
F =

∫
Cn

|f |2e−|ζ|2 dV (ζ)

πn

is finite.
Consider the weight

g = e−∇ζ−z
1

2πi
∂|ζ|2 = e·̄z−|ζ|

2+ 1
π

i
2
∂∂̄|ζ|2

so that

gn = e·̄z−|ζ|
2 dV (ζ)

πn
.
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Since for fixed z, ζ 7→ eζ·z̄ is in F , in fact ???, the integral

Pf(z) =

∫
Cn

e·̄z−|ζ|
2

f(ζ)
dV (ζ)

πn

is defined for each f ∈ F by Cauchy-Schwarz inequality. In fact we
have

Proposition 5.1. Let AF = F ∩ O(Cn). Then AF is a closed
subspace of F and P : F → AF is the orthogonal projection.

Proof. Clearly AF must be a closed subspace. We first prove
that Pf(z) = f(z) if f ∈ AF . Let u be the BM-form with pole at z.
Moreover let χ(t) be a function that is identically 1 for t < 1 + ε and
0 for t > 2− ε. Then by ????

f(z) =

∫
χ(|ζ|/R)gnf +

∫
∂̄χ(|ζ|/R) ∧ (u ∧ g)nf,

if R > |z|. Clearly the first term tends to Pf(z) when R → ∞. Now
uk = O(|ζ|−2k+1) and ∂̄χ(|ζ|/R) = O(1/R), so that the second term is
bounded by a constant times∫

R<|ζ|<2R

1

R
|f |e−|ζ|2eRe ζ·z.

blablba Cauchy-Schwarz blablabla.

If now f is in the orthogonal complement of AF , then in particular
f is orthogonal to each function ζ 7→ exp(ζ · z̄) and hence Pf = 0.
Thus the proposition is proved. �

�

Example 5.2. Now let φ be any convex function in Cn, and recall
that then

(5.1) 2|re 〈∂φ(ζ), ζ − z〉 ≥ φ(ζ)− φ(z).

In analogy withthe previous example we take

g = e−∇ζ−z
1

2πi
∂φ = e−〈∂(ζ),ζ−z〉+ 1

π
i
2
∂∂̄φ.

Then

gn = e−〈∂(ζ),ζ−z〉dVφ,

where

dVφ =
1

πn

( i
2
∂∂̄φ

)
n
,

which is non-negative form by ?????.
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We now claim that as in the previous example, if f has a growth
at most like eφ/2 then

Pf(z) =

∫
Cn

e−〈∂(ζ),ζ−z〉f(ζ)fVφ(ζ)

has as well. More precisely we have that for each z,

eφ(z)/2|Pf(z)| ≤
∫

Cn

e−φ(ζ/2)|f(ζ)|dVφ(ζ).

This follows immediately from (5.1). �

We conclude with representation of and projections onto polynomi-
als.

Example 5.3. Let m be any natural number and let

g =
(
1−∇ζ−z

∂|ζ|2

2πi(1 + |ζ|2)

)m+n

=
(1 + ζ̄ · z

1 + |ζ|2
+

1

π
ω
)m+n

,

where

ω =
i

2
∂∂̄ log(1 + |ζ|2)

so that

ωn =
dV (ζ)

(1 + |ζ|2)n+1
.

Then

gn =
(1 + ζ̄ · z)m

(1 + |ζ|2)m+n+1

1

πn
dV (ζ).

Again we let

Pmf(z) =

∫
Cn

gnf

provided that the integral exists. As in Example ??? one now can
check that

Proposition 5.2. If L2
m = L2((1+|ζ|2)−m)) and Pm = L2

m∩O(Cn),
then Pm is a closed subspace and Pm : L2

m → Pm is the orthogonal pro-
jection. Moreover, Pm precisely consists of the holomorphic polynomi-
als of degree ar most m.

�
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5.2. Further examples of representation formulas. Integral
formulas in strictly pseudoconvex domains with weights with polyno-
mial decay at the boundary were first used in [?] and [?] (decay of order
one) and in [?].

Example 5.4. Sometimes it is of interest to compare two different
weights. Since (1 + λ)r+1 − (1 + λ)r = λ(1 + λ)r we have that (using
the notation from the preceding example)

gr+1 − gr = ∇z−a(h/ρ) ∧ (1 +∇z−a(h/ρ))
−r,

so it follows that gr
n − gr+1

n = ∂̄Rr, where

Rr =

(
−r
n− 1

)
(−ρ)−1+r

vn−1+r
h ∧ (−∂̄h)n−1.

Since the kernels vanish on the boundary we get the formula∫
D

gr+1(z, a)f(z)−
∫

D

gr(z, a)f(z) =

∫
D

Rr(z, a) ∧ ∂̄f, f ∈ E(D),

which expresses the difference of two holomorphic projections with dif-
ferent weights as an integral of ∂̄f . In the ball case this formula was
obtained in [?] for integer values of r. �

Example 5.5. Suppose that a ∈ D and that {Uj} is an open cover
of a neighborhood U of ∂D, a /∈ U , and that we have local solutions
uj ∈ L−1(Uj) to ∇z−auj = 1. Let {φj} be a partition of unity subordi-
nate to this cover. Then Φu =

∑
j φjuj and ∂̄Φ ∧ u =

∑
j ∂̄φj ∧ uj are

global forms. Since ∇z−a(Φu) = 1− ∂̄Φ ∧ u therefore

(5.2) v = Φu/∇z−a(Φu) = Φu ∧
∑

(∂̄Φ ∧ u)k

is a solution to ∇z−av = 1 in U . If sj are (1, 0)-forms in Uj such that
δz−asj 6= 0, then we can take uj = sj/∇z−asj. The corresponding
representation formula was obtained in [?]. This is not the same as
just normalizing sj so that δz−asj = 1, then piece together to a global
(1, 0)-form Φs =

∑
φjsj and take the global (Cauchy-Fantappie-Leray)

solution v = Φs/∇z−a(Φs) to ∇z−av = 1 in U . In the former formula
each ∂̄sj occurs together with sj which implies that the the kernel is
unaffected if any sj is multiplied by a scalar function. This homogene-
ity property is however lost in the second case. For a cohomological
interpretation of (5.2), see Section ??. �

Example 5.6. Let E be a lineally convex compact set in Cn. This
means that through each point outside E there is a complex hyperplane
that does not intersect E. Let us furthermore assume that 0 ∈ E. We
want to obtain a representation for f ∈ O(E) as a superposition of
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functions like Πn
1 (1−αj ·z)−1, where αj belong to the dual complement;

this means that the hyperplane 1− αj · z = 0 does not intersect E.

Locally in Cn\E we can find (1, 0)-forms sj(z) such that δz−asj(z) 6=
0 for all a ∈ E. If we let uj = sj(z)/∇z−asj(z) and piece together to
a solution v to ∇z−av = 1 as in Example 5.5 we get a representation
formula

(5.3) f(a) =

∫
∂D

K(z, a)f(z), a ∈ E,

if D ⊃ E and f ∈ O(D), where K = vn. Moreover, K(z, a) is a locally
finite sum of terms like γ(z)Πn

j=1(1−αj(z)·a)−1 so (5.3) indeed provides
the desired decomposition of f .

The decomposition formula is particularily simple if we choose a fine
enough open cover so that each sj(z) can be chosen to be holomorphic
(e.g., constant!), because then ∇z−as(z) = δz−as(z). �

Example 5.7 (Weighted Cauchy-Weil formulas). Let D be an an-
alytic polyhedron, i.e., assume that we have functions ψ1, . . . , ψm, that
are holomorphic in a neighborhood Ω of D such that D = {z ∈
Ω; |ψj(z)| < 1, j = 1, . . . ,m}. By Hefer’s theorem we can find (1, 0)-
forms hj, holomorphic in z as well as a, such that δz−ahj = ψj(z)−ψj(a)

for z and a in a neighborhood of Ω. Taking qj(z) = ψj(z)hj(z, a)/(1−
|ψj(z)|2) then g = Πm

1 (1 + ∇z−aqj)
−rj will vanish on ∂D, and we get

the weighted Cauchy-Weil formula

(5.4) f(a) =

∫
D

P r(z, a)f(z), a ∈ D, f ∈ O(D)

where P r is the kernel

c

′∑
|I|=n

∏
j /∈I

(
1− |ψj(z)|2

1− ψj(z)ψj(a)

)rj ∧
`∈I

r`
(1− |ψ`(z)|2)rj−1

(1− ψ`(z)ψ`(a))rj+1
∧ ∂̄ψ` ∧ h`.

By analytic continuation in rj, (5.4) must hold for rj > 0. If ∂ψI ∧
. . . ∧ ∂ψIn 6= 0 on DI = {z ∈ D; |ψI1(z)| = · · · = |ψIn(z)| = 1} (with
an appropriate orientation) for each multiindex I of length n, then we
can let rj ↘ 0 and recover the classical Cauchy-Weil formula

f(a) = c

′∑
|I|=n

∫
DI

f(z)
∧
`∈I

h`

ψ`(z)− ψ`(a)
.

�
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6. Fourier transforms of forms and currents

Our main tool is the Fourier transformation of vectorvalued cur-
rents. Roughly speaking the Fourier transform of a (p, q)-form (or

current) f = fIJ(z)dzJ ∧ dz̄J will be ±f̂IJ(ζ)dζJ ′ ∧ dζ̄I′ , where f̂IJ is
the usual Fourier transform of the coefficient fIJ and I ′ and J ′ denote
complementary indices. The idea with such a Fourier transformation
is quite natural and appeared already in [?], and occurs in [?]; this
definition is quite different from ours below but equivalent. Another
definition, but again equivalent, is introduced and used in [?]. Our def-
inition makes it possible to give simple arguments for the basic results
that we need. Let

ω = ω(z, ζ) = 2πiRe z · ζ̄ + Re (dz ∧ dζ̄) =

= πi(z · ζ̄ + z̄ · ζ) + (dz ∧ dζ̄ + dz̄ ∧ dζ)/2,

where dz ∧ dζ̄ =
∑
dzj ∧ dζ̄j etc. Since ω has even degree, exp(−ω) is

welldefined, and for a form f(z) with coefficients in S(Cn) we let

(6.1) Ff(ζ) =

∫
z

e−ω(z,ζ) ∧ f(z).

Since we have an even real dimension it is immaterial whether we put
all differentials of dζ, dζ̄ to the right or to the left before performing
the integration, and thus Ff(ζ) is a welldefined form with coefficients
in S. To reveal a more explicit form of the condensed definition (6.1)
let us assume that f ∈ Sp,q. Then

Ff(ζ) =

∫
z

e−2πiRe z·ζ̄ ∧
∞∑

k=0

(−Re (dz ∧ dζ̄))k/k! ∧ f(z) =∫
z

e−2πiRe z·ζ̄ ∧ (−Re (dz ∧ dζ̄))2n−p−q/(2n− p− q)! ∧ f(z)

for degree reasons, and hence Ff is an (n − q, n − p)-form. In what

follows we let f̂ mean the same as Ff .

Proposition 6.1. We have the inversion formula

(6.2) f(z) = (−1)n

∫
ζ

eω(z,ζ) ∧ f̂(ζ).

Of course it can be deduced from the inversion formula for the
usual Fourier transform, but we prefer to repeat one of the wellknown
argument in the form formalism.
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Proof. Take ψ ∈ S0,0 such that ψ(0) = 1. Then∫
ζ

f̂(ζ) ∧ eω(w,ζ) = lim
ε→0

∫
ζ

ψ(εζ)f̂(z) ∧ eω(w,ζ) =

= lim
ε→0

∫
ζ

∫
z

ψ(εζ)f̂(z) ∧ eω(w−z,ζ).

Making the change of variables ζ 7→ ζ/ε, z 7→ z + w, the right hand
double integrals becomes (the mapping is orientation preserving, so no
minus sign appears)∫

ζ

∫
z

ψ(ζ)f̂(z + w) ∧ e−ω(z,ζ/ε)

and since ω(z, ζ/ε) = ω(z/ε, ζ) another change of variables ζ 7→ εζ
gives ∫

ζ

∫
z

ψ(ζ)f̂(w + εz) ∧ e−ω(z,ζ)

which tends to cnf(w), where

cn =

∫
z

∫
ζ

ψ(ζ)e−ω(z,ζ).

Taking for instance ψ(ζ) = exp(−|ζ|2), a simple computation reveals
that cn = (−1)n. �

Proposition 6.2. In analogy with the usual case we have the for-
mula

(6.3) f̂ ∗ g = f̂ ∧ ĝ.

Proof. In fact, by definition,

f̂ ∗ g(w) =

∫
z

e−ω(z,w) ∧ f ∗ g(z) =

∫
z

∫
ζ

e−ω(z,w) ∧ f(ζ − z) ∧ g(ζ).

If we now make the change of variables, t = ζ − z, ζ = ζ and use that
ω is bi-linear, we get∫

t

∫
ζ

e−ω(ζ,w) ∧ e−ω(t,w) ∧ f(t) ∧ g(ζ) = f̂(w) ∧ ĝ(w).

�

Let δz−a denote contraction with the vector field 2πi(z − a) · ∂
∂z

for

a ∈ Cn and let ∇z−a = δz−a − ∂̄z. Moreover, let ∇̂ζ = δζ − ∂̄ζ . Then
(∇z −∇ζ)

2 = 0, and since

ω =
1

2
(∇z − ∇̂ζ)(ζ̄ · dz − z̄ · dζ)
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it follows that

(6.4) (∇z−a − ∇̂ζ)ω(z, ζ) = −πia · dζ̄.

Proposition 6.3. If a ∈ Cn, then

(6.5) F(∇z−af(z)) = −(∇̂ζ + A)Ff,
where

Aφ = πia · dζ̄ ∧ φ
for forms φ(ζ).

Identifying bidegrees we also get that

F(δz−af) = −(∂̄ζ + A)Ff and F(∂̄f) = δζFf.

Proof. By (6.4) we have that

(∇z−a − ∇̂ζ)(e
−ω ∧ f(z)) = A(e−ω ∧ f) + e−ω ∧ (∇z−a − ∇̂ζ)f =

= A(e−ω ∧ f) + e−ω ∧∇z−af.

Integrating with respect to z we get (6.5), since
∫
∇z−ag = 0 for forms

g in S. �

It is readily verified that Propositions 6.1 and 6.3 hold for X-valued
forms (and currents, see below) and commuting n-tuples of operators a.
This is checked by applying functionals on both sides of each equality.

We now want to extend the Fourier transform to currents in S ′, and
to this end we first notice that

(6.6) (−1)n

∫
z

u(z) ∧ f(z) =

∫
ζ

f̂(−ζ) ∧ û(ζ),

for u, f ∈ S. To see this, just notice that both sides are equal to∫
z

∫
ζ

u(z) ∧ f̂(ζ) ∧ eω(z,ζ) =

∫
z

∫
ζ

u(z) ∧ f̂(−ζ) ∧ e−ω(z,ζ).

Moreover, one easily checks that if f̌(z) = f(−z), then F f̌(ζ) =
Ff(−ζ). Any u ∈ S defines an element in S ′ by

u.f =

∫
z

u(z) ∧ f(z), f ∈ S.

For a general u ∈ S ′ it is therefore natural to define û by the formula

û.f̂ = (−1)nu.f̌ , f ∈ S.
It is routine to extend δz−a, ∂̄ etc to S ′, and verify that Proposition 6.3
still holds for currents u ∈ S ′.
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Remark 6.1. One can check that

(6.7)

∫
û(ζ) ∧ φ(ζ) =

∫
u(z) ∧ φ̂(−z)

since the conjugates of both sides are equal to∫
ζ

∫
z

e−ω(z,ζ) ∧ u(z) ∧ φ̄(ζ),

in view of the equality ω(z, ζ) = ω(ζ,−z). One can then define the
Fourier transform of currents by means of formula (6.7) instead. �

Lemma 6.4. If [0] denotes the current integration at the point 0,
then

(6.8) F [0](ζ) = 1 and F1(ζ) = (−1)n[0](ζ).

Proof. In fact, for f ∈ S0,0 we have

[̂0].f̂ = (−1)n

∫
z

[0](z) ∧ f̌(z) = (−1)nf(0) =

∫
ζ

f̂(ζ),

where the last equality follows from the inversion formula (6.2), holding

in mind that f̂ is a (n, n)-form. In a similar way we have

1̂.f̂ = (−1)n

∫
z

f̌(z) = (−1)n

∫
z

f(z) = (−1)nf̂(0),

since in this case f is a (n, n)-form. �

We say that u ∈ L−1(S ′,Cn) is a Cauchy current if

(6.9) ∇zu = 1− [0].

From Lemma 6.4 and Proposition 6.3 it follows that u is a Cauchy
current if and only if

∇̂ζ û(ζ) = 1− (−1)n[0].

For instance, if b(z) = ∂|z|2/2i, then

(6.10) B(z) =
b(z)

∇zb(z)
=

n∑
`=1

b(z) ∧ (∂̄b(z))`−1

(δzb(z))`

is a Cauchy current. In fact, since δzb(z) 6= 0 outside 0 it follows that
∇zB(z) = 1 there, and the behaviour at 0 is easily checked. We will

refer to B(z) as the Bochner-Martinelli form. It follows that ∇̂ζB̂(ζ) =
1− (−1)n[0], and more precisely we have that
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Proposition 6.5. If B(z) is the Bochner-Martinelli form (6.10),
then

B̂(ζ) =
b(ζ)

∇̂ζb(ζ)
=

n∑
`=1

(−1)`−1b(ζ) ∧ (∂̄b(ζ))`−1.

In fact, one can verify that B(z) is the only Cauchy current that
is rotation invariant and 0-homogeneous. Since these properties are
preserved by F , the proposition follows. Alternatively, one can use the
wellknown formulas for Fourier transforms of homogeneous functions
in R2n. However, we prefer to give a direct argument which reflects the
handiness of our formalism. We begin with a lemma of independent
interest.

Lemma 6.6. If β(z) = (i/2)∂∂̄|z|2, then

(6.11) F(e−π|z|2+β(z)) = e−π|ζ|2−β(ζ).

Proof. It is convenient to use real coordinates, so let z = x + iy
and ζ = ξ + iη. Then β(z) = dx ∧ dy and ω(z, ζ) = 2πi(x · ξ + y · η) +
dx ∧ dξ + dy ∧ dη. Now,

1 =

∫
x,y

e−π(x2+y2)+dx∧dy = eπ(ξ2+η2)

∫
x,y

e−π(x2+y2)−2πi(x·ξ+y·η)+dx∧dy

by an application of Cauchy’s theorem. By the translation invariance
of the Lebesgue integral we can make the change of variables x 7→ x+η,
y 7→ y − ξ, in the last integral which yields

eπ(ξ2+η2)−dξ∧dη

∫
x,y

e−π(x2+y2)+dx∧dy−ω

and so the lemma follows. �

If βk = βk/k!, then the lemma thus means that

F
[
e−π|z|2βk(z)

]
(ζ) = e−π|ζ|2(−1)n−kβn−k(ζ),

for each k.

Proof of Proposition 6.5. From (the remark after) Proposi-
tion 6.3 (and taking conjugates) we get that

F(e−π|z|2+β(z) ∧ πz̄ · dz) = −e−π|ζ|2−β(ζ) ∧ πζ̄ · dζ.
Noting that −π|z|2 + β(z) = −∇zb(z) and −π|ζ|2 − β(ζ) = −∇̂b(ζ),
and using the homogeneity property of the Fourier transformation, we
get that

F (e−t∇zb(z) ∧ b(z)) = −e−(1/t)∇̂ζb(ζ) ∧ b(ζ)/t2,
and integrating in t over the positive real axis we get Proposition 6.5.

�
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7. The ∂̄-equation in Cn

We will now consider the
Consider
We will discuss the ∂̄-equation ∂̄u = f in Cn when the right-hand

side has polynomial growth and polyonomial decay. In both cases, f is
in S ′ so via the Fourier transformation the equation is transformed to
δζ û = f̂ .

Our principal results are for simplicity we only formulate for L∞

estimates, similar holds for L1, left as an exercise; L2 more special ????

Theorem 7.1. If f is a

that f̂ has a meaning and hence the equation

8. Exercises

Exercise 20. Let ω be a form of even degree and suppose that f
is holomorphic in a neighborhood of D and ω′ ∈ D. Show that

f(ω) =
1

2πi

∫
D

f(ζ)dζ

ζ − ω
.

Are there some multivariable analogue?

Exercise 21. Show that

(8.1)
∇z−a−→ Lm−1(U)

∇z−a−→ Lm(U) → . . .

is a complex in U that is exact if and only a /∈ U .

Exercise 22. Show the following variant of Theorem 3.17:

If ∇ζ−zv = g − [z] in Ω, then

(8.2) φ(z) =

∫
∂D

φvn +

∫
D

φgn −
∫

D

∂̄φ ∧ vn, φ ∈ E(D).

Exercise 23. Prove Proposition 2.4.

Exercise 24. Let u be the current from Example 2.3. Let a = 0
and notice that u and uBM are cohomologous in Cn \ {0}. Use this to
compute the volume of the unit ball in Cn.

Exercise 25. Show that u ∧ g in Theorem ?? can be replace by
any v in U such that ∇ζ−zv = g in U .

Exercise 26. Show that any weight g (with respect to z) can be
written g = 1 + ∇ζ−zq, for some q in L−1. Hint: It is easy to find a
current solution q but more involved to find a smooth solution.
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Exercise 27. Suppose that g = G(∇z−aq) and h = H(∇z−aq) are
two weights as in Example ?? above. If λA(λ) = H(λ)−G(λ) then

h− g = ∇z−aq ∧ A(∇z−aq) = ∇z−a(q ∧ A(∇z−aq));

thus we get an explicit solution to ∇z−aw = h− g.

Exercise 28. Show that there is a smallest polynomially convex
set K̂ that contains a given compact set K.

Exercise 29. Show that K̂ is contained in the convex hull of K,
and that strict inclusion can occur.

Exercise 30. Antag att D = ρ < 0} with ρ smooth and dρ 6= 0
on ∂D. Moreover, assume that

Hρz(v, v) > 0

for all real v ∈ Tz(∂D), i.e., all real v such that dρ.v = 0. Show that
D is strictly convex.

Norguet formler ??????

9. Comments on Chapter ??

Integral formulas in strictly pseudoconvex domains with weights
with polynomial decay at the boundary were first used in [?] and [?]
(decay of order one) and in [?].



CHAPTER 3

Integral representation in strictly pseudoconvex
domains

Strictly pseudoconvex domains in Cn have several good properties
which make it accessible to obtain various generalizations of function
theory as in one variable for finitly connected domains, such as the
disk, the annulus, etc.

For instance, a spsc domain D can be exhausted by compactly
included spsc, it can be approximated from outside by larger spsc do-
mains, and there are “good” integral representations. This implies that
there is a good theory for boundary values, function spaces, estimates
for the ∂̄-equation. ETCETC approximate holo φ in say L2(D) or with
bondary values in L2(∂D) by functions holo in a neighborhood of D;
things that are often quite simple in one variable.

The model case of a spsc domain is the unit ball B.

(Det som gar i boll gar i str psc, aven svagt konvext andlig typ
Fornaess, statt i utveckling sa inskranker till str psc har)

1. Weighted Bergman spaces in the ball

For α > 0, let

dVα = cα(1− |ζ|2)α−1dV (ζ)

where cα is chosen so that ∫
|ζ<1

dVα = 1,

cf., ???? in Section ???, and let L2
α = L2(dVα). We define the weighted

Bergman space
Bα = L2

α ∩ O(B).

Moreover, for φ ∈ CB) we define

Pα(z) =

∫
|ζ|<1

φ(ζ)dVα

(1− ζ̄ · z)n+α
.

Clearly Pαφ is holomorphic, and from ??? we recall that Pαφ = φ if
φ ∈ O(B).
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Theorem 1.1. (i) The Bergman space Bα is a closed subspace of
L2

α.
(ii) O(B) is dense in Bα.
(iii) The operator Pα has a continuous extension Pα : L2

α → Bα and is
in fact the orthogonal projection.

For the proof we will use the following lemma, whose proof will be
discussed in a somwhat more general context in the next section.

Lemma 1.2. If r > 0 and γ > 0, then∫
|ζ|<1

(1− |ζ|2)γ−1

|1− ζ̄ · z|n+γ+ε
≤ Cγ,ε

1

(1− |z|2)ε
.

Proof of Theorem 1.1. If fk → f in L2
α, then fk → f in L2

loc(B)
so fj is a Cauchy sequence in L2

loc and hence in E(B) as a consequence
of the Cauchy estimates, cf., ???. Therefore, fk → f in E(B) and since
fj are holomorphic, therefore f is holomorphic.

To see (ii), let fr(ζ) = f(rζ) for r < 1. Then fr ∈ O(B) and we
claim that fr → f in L2

α. For simplicity we assume that α = 1 and
leave the general case as an exercise. Clearly fr(ζ) → f(ζ) pointwise
in B when r → 1. Moreover, notice that∫

|ζ|<1

|fr(ζ)|2 = r−2n

∫
|ζ|<r

|f(ζ)|2 →
∫
|ζ|<1

|f(ζ)|2

by the monotone convergence theorem. An application of Fatous’s
theorem to the positive sequence

2|f |2 + 2|fr|2 − |f − fr|2

now yields ∫
|ζ|<1

|f − fr|2 → 0.

For (ii) we also assume α = 1. By Cauchy-Schwarz’ inequality and
Lemma 1.2 we have∣∣ ∫ φ(ζ)

(1− ζ̄ · z)n+1

∣∣∣2 ≤ ∫ (1− |ζ|2)ε|φ(ζ)|2

|1− ζ̄ · z|n+1

∫
(1− |ζ|2)−ε

|1− ζ̄ · z|n+1
≤

C(1− |z|2)−ε

∫
(1− |ζ|2)ε|φ(ζ)|2

|1− ζ̄ · z|n+1
.

Another application of Lemma 1.2 now gives∫
|Pφ(z)|2 ≤ C

∫
|φ|2
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and thus the first statement in (iii) is proved. Since Pαφ = φ for
φ ∈ O(B) it no follows from (ii) that Pα maps Bα → Bα and hence is
a projection L2

α → Bα. It remains to see that it is orthogonal.
For φ, ψ ∈ L2,(∫

z

∫
ζ
|φ(ζ)||ψ(z)|
|1− ζ̄ · z|n+1

)2

≤∫
z

|ψ(z)|2
∫

z

(∫
ζ

|φ(ζ)|
|1− ζ̄ · z|n+1

)2

≤ C

∫
|ψ|2

∫
|φ|2.

Since the kernel p(ζ, z) = 1/(1−ζ̄ ·z) is Hermitian, i.e., p(z, ζ) = p(ζ, z),
by Fubini’s theorem we get (φ, Pψ) = (Pφ, ψ). Thus P is self-adjoint
and hence indeed the orthogonal projection. �

1.1. Convexity. Recall that a C2 function h(t) of one variable is
convex if h′′ ≥ 0 and strictly convex if h′′ > 0. It is easily seen that if
h is convex in a neighborhood of the interval [a, b], then

(1.1) h(ta+ (1− t)b) ≥ th(a) + (1− t)h(b), t ∈ (0, 1).

We say that a function f(x) in C2(Ω), Ω ⊂ RN is (strictly) convex
if for each x ∈ Ω and α ∈ RN , h(t) = f(x + tα) is (strictly) convex
where it is defined. Since

h′′(0) =
∑
j`

∂2f

∂xj∂x`

(x)αjα` = Hfx(α, α),

f is thus convex if and only if the qudratic form (Hessian) Hfx(α, α)
is positively semidefinit at each point x. Moreover, since the sphere
{α; |α| = 1} is compact, we find that f is strictly convex if and only if

Hfx(α, α) ≥ c(x)|α|2,

where c(x) > 0 in Ω.
Now assume that f is strictly convex in RN . Then {f < c} is a

convex set for each c ∈ R (in view of (1.1)), and if we assume that
{f < 0} is bounded, then {f < 0} is compactly included in Ω = {f <
ε} for some ε > 0, see Exercise ??. By Taylor’s formula,

f(y)− f(x) = (y − x) · ∇f(x) +Hfx+θ(y−x)(y − x, y − x), y, x ∈ Ω

and since f is strictly convex we thus have

δ|y − x|2 ≤ f(y)− f(x)− (y − x) · ∇f(x) ≤ C|y − x|2, x, y ∈ Ω.

We have already seen, ???, that one has a simple CFL represen-
tation formula for holomorphic functions in a convex domain in Cn.
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We are now going to find weighted such formulas. To this end we as-
sume that ρ(ζ) is a smooth convex function in Cn and D = {ρ < 0}
is bounded, and dρ 6= 0 on ∂D so that ∂D is smooth by the implicit
function theorem. (It is enough to assume ρ is C3 or even C2 but to
avoid technicalities we assume C∞.) It is easy to see that any convex
domain D admits such a convex defining function.

balblablablaba argument !!

1.2. Plurisubharmonic functions. Let u be a real smooth func-
tion in Cn. Already in Example ??in Ch. 1 we noticed that the linear
form in the Taylor expansion at ζ in complex notation is

2Re 〈∂u(ζ), z − ζ〉 ,

which also is equal to −2Re δζ−z∂u(ζ), and the Hessian is in complex
notation

Huz(h, h) = Re
∑
j`

u`j(ζ)hjh̄` +
∑
j`

uj ¯̀(ζ)hjh̄`, h ∈ Cn,

where

uj` =
∂2u

∂zjz`

, uj ¯̀ =
∂2u

∂zj z̄`

.

Now assume that u is strictly convex at z, i.e., Huz(h, h) ≥ c|h|2.
Replacing h by eiθh this implies that∑

j`

uj ¯̀(ζ)hjh̄` −
∣∣∣∑

j`

u`j(ζ)hjh̄` +
∑
j`

uj ¯̀(ζ)hjh̄`

∣∣∣ ≥ c|h|2, h ∈ Cn,

and in particular

(1.2) Luz(h, h) =
∑
j`

uj ¯̀(z)hjh̄` ≥ c|h|2, h ∈ Cn.

The Hermitian form Huz(h, h) is called the Levi form of u at z. A
real function u ∈ C2(Ω) such that (1.2) holds for all z ∈ Ω, i.e., Luz is
positive definite for all z, is called strictly plurisubharmonic, spsh. If
it is just semi-definite u is called plurisubharmonic, psh.

Convexity of a function is preserved under real linear mappings
but not under more general mappings. However, (strict) plurisubhar-
monicity is a complex invariant notion. In fact, if h is identified with
the (1, 0) vector

∑
1 hj(∂/∂zj) at z, then

(1.3) Luz(h, h) = ∂∂̄u(h, h̄),

so u is strictly psh if and only if ∂∂̄u(h, h̄) > 0 for all nonzero (1, 0)
vectors, and this is an invariant condition.
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It is easily checked that u is (s)psh if and only if

v(τ) = u(z + τh)

is (strictly) subharmonic in the plane (where it is defined), for all z ∈ Ω
and h ∈ Cn. Recall that v is (strictly) subharmonic if

∆v(z) = 4
∂2

∂τ∂τ̄
(z)

is (strictly) positive.

Now assume that φ is C2 on the image of u. Then by the chain
rule,

φ(u)j = φ′(u)uj, φ(u)jk̄ = φ′′(u)ujuk̄ + φ′(u)ujk̄,

and hence∑
jk

φ(u)jk̄hjh̄k =
∑
jk

φ′′(u)ujuk̄hjh̄k +
∑
jk

φ′(u)ujk̄hjh̄k,

so that

(1.4)
∑
jk

φ(u)jk̄hjh̄k = φ′′(u)
∣∣∑

j

ujhj

∣∣2 + φ′(u)
∑
jk

ujk̄hjh̄k.

If now u is psh and φ is increasing and convex, then φ ◦ u is psh;
moreover, if in addition u is spsh and φ′ > 0, then φ ◦ u is spsh.

We say that an (n, n)-form ω is positive (at a given point) if ω =
cdV (z) with c ≥ 0.

Proposition 1.3. If u is psh then (i∂∂̄u)n is positive.

Proof. Let z(w) be a holomorphic change of coordinates. From
(1.3) (or by a direct computation) follows that∑

jk

∂2u

∂zj∂z̄k

hjh̄k =
∑

i`

∂2u

∂wi∂w̄`

ηiη̄`,

where η = (∂w/∂z)h. By a complex-linear change of coordinates we
can therefore assume that, at a given point z, the Levi form is diagonal,
i.e.,

i∂∂̄u = i
∑

j

αjdzj ∧ dz̄j.

It follows that

(i∂∂̄u)n = α1 · · ·αndV (z).

�
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Example 1.1. If u is spsh and negative, then

log(1/− u)

is strictly psh. In fact, for t < 0, the function t 7→ log(1/(−t) is convex
and strictly increasing. �

1.3. Weighted formulas in (strictly) convex domains. Here
we will use the notation

〈
ζ̄ , z
〉

= ζ̄ · z Let ρ be a real function in Cn.
Already in Example ??in Ch. 1 we noticed that the linear form in the
Taylor expansion at ζ in complex notation is 2Re 〈∂ρ(ζ), z − ζ〉 which
also is equal to −2Re δζ−z∂ρ(ζ). In that example we get a representa-
tion formula boundary integral, and as we have seen it is independent of
the choice of defining function, see Exercise ?. We shall now construct
weighted formulas in convex domains.

Let ρ be smooth convex function in Cn, D = {ρ < 0} and dρ 6= 0
on ∂D. From the preceding subsection we know that

(1.5) δ ≤ |z − ζ|2 ≤ ρ(z)− ρ(ζ)− 2Re 〈z − ζ, ∂ρ(ζ)〉 ≤ C|z − ζ|2,
for ζ, z in say {ρ ≤ 1} if ρ is strictly convex and at least

0 ≤ ρ(z)− ρ(ζ)− 2Re 〈z − ζ, ∂ρ(ζ)〉
if ρ is merely convex.

In analogy with the ball case we now introduce the weight

g =
(
1 +∇ζ−z

∂ρ

2πi(−ρ)

)−α

=
(−ρ+ 〈∂ρ, ζ − z〉

−ρ
− 1

π
ω
)−α

.

where

ω =
i

2
∂∂̄ log(1/(−ρ)).

It follows from Example ?? that ωn is positive. As in the ball case we
then get

gn =
1

v(ζ, z)n+α
dVα(ζ),

where
v(ζ, z) = 〈ρ(ζ), ζ − z〉 − ρ(ζ)

and

dVα(ζ) = cα(−ρ(ζ))α−1(i∂∂̄ρ)n + i∂ρ ∧ ∂̄ρ ∧ (i∂∂̄ρ)n−1

In view of ????, it is defined for ζ, z ∈ D, and thus we have, cf ball
case,

φ(z) =

∫
D

φ(ζ)dVα(ζ)

v(ζ, z)n+α
, φ ∈ O(D).

It follows from Example ?? that ?? is strictly positive. ??????
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Notice that
(i∂∂̄ρ)n + i∂ρ ∧ ∂̄ρ ∧ (i∂∂̄ρ)n−1

is strictly positive on D. balbalal se som i beviset av ????.

Proposition 1.4. Suppose that D is convex, φ ∈ O(D), and∫
D
|φ|dVα <∞. Then

φ(z) =

∫
D

φ(ζ)dVα(ζ)

v(ζ, z)n+α
.

Sketch of proof. If φ ∈ O(D), then it follows from blalabla, for
large α and hence for any α > 0 by analytic continuation. Now we can
apply this result, for a fixed z, to the slightly smaller convex domains
Dε = {ρ+ ε < 0}. Thus

φ(z) =

∫
ρ+ε<0

φ(−ρ− ε)α−1dVρ+ε

(〈∂ρ, ζ − z〉 − ρ− ε)n+α

Then let ε→ 0. �

General convex domains estimates etc etc balbla not fully under-
stood so far, lots of research currently. Therefore we will in the sequel
restrict to strictly convex domains, i.e., domains defined by a strictly
convex function ρ.

Proposition 1.5. Suppose that D is strictly convex and ρ is a
smooth strictly convex defining function. Then,
(i) v(ζ, z) is smooth in a neighborhood of D ×D and z 7→ v(ζ, z) is
holomorphic.

(1.6) −ρ(ζ)−ρ(z)+δ|ζ−z|2 ≤ 2Re v(ζ, z) ≤ −ρ(ζ)−ρ(z)+C|ζ−z|2.
and

(1.7) dζIm v(ζ, z)|ζ=z = −dcρ(z) = dζIm v(z, ζ)|ζ=z

Here
dc = i(∂̄ρ− ∂),

Notice that dcu is a real form if u is real. Moreover, notice that

ddcu =??∂∂̄u

and that
dcu ∧ du =??∂u ∧ ∂̄u.

If u is real and ∂u 6= 0 therefore dcu∧ du 6= 0. In fact, at a given point
we may assume that ∂u = dz1 after a linear change of coordinates.
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Notice that (1.6) in particular implies that if ζ, z ∈ D, then v(ζ, z) =
0 if and only if ζ = z and z ∈ ∂D.

Proof. To see (1.7).

dζ(〈∂ρ(ζ), ζ − z〉 − ρ(ζ))|ζ=z = (∂ρ− dρ)|z = −∂̄ρ(z),
and hence

dζ2Re v = dζ
1

i
(v − v̄) = −1

i
(∂̄ρ− ∂ρ) = −dcρ.

The second equality in the same way �

1.4. Strictly pseudoconvex domains. Suppose that D = {ρ <
0}. We say that a tangent vector v at z ∈ ∂D is complex tangential
to ∂D if dρ.v = dcρ.v = 0. If v is (1, 0), then it is complex tangential
as soon as it is tangential, i.e., dρ.v = 0 (since then automatically also
dcv = 0). v ∈ TC

1,0(∂D)

Expressed in complex coordinates, the (1, 0)-vector v =
∑n

1 vj
∂

∂zj
is

complex-tangential if and only if
∑n

1 ρjvj = 0.

We say that D is strictly psc for each z ∈ ∂D,

(1.8) ∂∂̄ρ(h, h) ≥ c|h|2, h ∈ TC
1,0(∂D),

i.e.,

(1.9)
∑
jk

ρjk̄hjh̄k ≥ c|h|2,
∑

j

hjρj = 0.

If D is defined by aa spsh function then clearly D is spsh, but the
condition (1.8) is easily seen to be independent of the choince of defining
function, and hence an intrinsic property of ∂D. In fact, if ρ′ is another
defining function then ρ′ = αρ, where α > 0 on ∂D, and for z ∈ ∂D,

ρ′jk̄ = αρjk̄ + αk̄ρj + αjρk̄.

It is now clear that (1.9) holds for ρ′ if(f) it holds for ρ.

Proposition 1.6. If D is strictly psc, then there is a defining func-
tion ρ that is strictly psh in a neighborhood of ∂D.

In fact, one can easily extend it to a s psh function in a neighbor-
hood of D, see ????.

Proof. Let ρ be any smooth defining function and consider φ ◦ ρ.
In view of (1.4), if φ is convex enough, φ ◦ ρ will be s psh. �

Corollary 1.7. If D is strictly psc, then it can be approximated
from inside and outside by str psc domains.
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In particular a strictly convex domain is str psc; and there is a local
converse.

Proposition 1.8. If D is str psc, then locally at z ∈ ∂D one can
choose holomorphic coordinates so that ∂D is str convex.

It is not true that a weakly psc domain is locally biholo with a
convex domain. !!!

Proof. Suppose ρ is a s psh defining function. In view of ???
enough to find local change of coordinates at z = 0, z(ζ), such that

∂2ρ

∂ζj∂ζk
(0) = 0,

since then balbala.
After a linear change of coordinates z′ = Az we may assume that∑

jk

ρzj z̄k
(0)hjh̄k ≥ |h|2,

and that ρz1(0) = 1, ρzj
(0) = 0, j > 1.

We now make the change of coordinates

z1(ζ) = ζ1 −
∑
jk

ρzjzk
(0)ζjζk/2, z` = ζ`, ` ≥ 2.

Then

ρζj
=
∑

k

ρzk

∂zk

∂ζj

and so

ρζjζ`
=
∑
m

∑
k

ρzkzm

∂zk

∂ζj

∂zm

∂ζ`

and evaluated at 0, it becomes

ρζjζ`
(0) = ρζjζ`

(0)− ρζjζ`
(0) = 0,

since
∂zk

∂ζj
(0) = δjk.

�

Theorem 1.9 (Fornaess etc). Let D = {ρ < 0} be strictly psc,
and suppose that ρ is spsh. There is a neighborhood U of D ×D and a
(vector-valued) smooth function H(ζ, z) in U , holomorphic in z, such
that H(ζ, z) = ∂ρ(ζ) +O(|ζ − z|) and

2Re 〈H(ζ, z), ζ − z〉 ≥ ρ(ζ)− ρ(z) + δ|ζ − z|2.
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Thus H(ζ, z) is the subsitute for H(ζ, z) plays the role of ∂ρ(ζ),
In view of Proposition?? it is easy to find such an H locally; how-

ever, to piece together to a global function is non-trivial. As in the str
convex case we now define

v(ζ, z) = 〈H(ζ, z), ζ − z〉 − ρ(ζ),

and in precisely the same way Proposition ?? will hold.
We get analogous representation formulas like ?????

We will use the notation A ∼ B for: There are constants C, c > 0
such that cA ≤ B ≤ CB.

Lemma 1.10. If D is strictly psc, then for fixed γ > 0, ε > 0, we
have that ∫

D

−ρ(ζ))γ−1

|v(ζ, z)|n+γ+ε
∼ 1

(−ρ(z))ε
,

and for ε > 0, ∫
∂D

dS(ζ)

|v(ζ, z)|n+ε
∼ 1

(−ρ(z))ε
.

If ε = 0 then the integrals are like

log(1/− ρ(z)).

Moreover, the same statement hold with z and ζ interchanged.

Let

Pαφ(z) =

∫
D

φdVα

vn+α
.

Let Bα = L2
α ∩ O(D). Taking smaller domains Dε = {ρ + ε < 0}

and taking limits we see that ??? holds for φ ∈ Bα.
Precisely as in Section ??? in the ball case can verify that Pα is a

projection Pα : L2
α → Bα; however in general it is not the orthogonal

projection. However, we will see later on that a small modification of
this projection is approximately orthogonal, in the sense that Pα − P ∗

α

is compact.

So far we have just met stritcly psc domains that are conex and
hence topologically trivial, i.e., contractible, i.e., hopotopy eqquivalent
to a point. Here is a non-trivial example.

Example 1.2. Notice that

ρ(z, w) = 4|1− zw|2 + |z|2 + |w|2 − 3

is strictly psh in C2; this is checked by a simple computation. It also
follows because |1 − zw|2 is psh since 1 − zw is holomorphic, cf. ???,
and |z|2 + |w|2 is str psh. Thus

D = {(z, w); ρ(z, w) < 0}
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is strictly psc since one easily checks that dρ 6= 0 on ∂D. One can also
invoke Sard’s theorem that ensures that at least a small perturbation,
i.e., 3± ε for some small ε will do.

Notice that the cycle

γ : θ 7→ (eiθ, e−iθ)

is contained in D. In particular, the complex line z = 0 lies in the
complement of D. Therefore, dz/z is a smooth form in D∫

γ

dz

z
= 2πi 6= 0

so that H1(D,C) is non-trivial. In particular, D is not contractible.
Thus D is topologically non-trivial. In fact, D is homotopy equivalent
to the cycle γ. �

1.5. The Koranyi balls. We shall now describe the local ge-
ometry at the boundary of a s psc domain, and provide a proof of
Lemma 1.10.

Let us first fix a point z ∈ ∂D. By Proposition ??, dρ(ζ) ∧ dζIm v
is non-zero at ζ = z and hence we can choose local real coordinates
(y, x2, x3, . . . , x2n) in a neighborhood of z such that y = −ρ(ζ), x2 =
Im v(ζ, z), and xj(z) = 0.

This means that we have prescribed the two co-directions dρ|z and
dcρ|z at z, whereas the other 2n− 2 ones are chosen freely. Notice that
in this way we have prescribed a 2n − 2-dimensional real subspace of
the real tangent space at z. It follows that there is a constant c > 0
such that for all t > 0,

{ζ ∈ D; |v(ζ, z)| ≤ ct} ⊂ {(y, x); y + |x2|+
∑

j

x2
j < t} ⊂

{ζ ∈ D; |v(ζ, z)| ≤ t/c}.

Notice that these “balls” have extension ∼
√
t in the 2n− 2 directions

determined by dρ|z and dcρ|z, the “long” directions, and extension ∼ t
in the remaining two directions. In particular, the volume is ∼ tn+1.

Remark 1.1. For ζ, z ∈ ∂D, let

d(ζ, z) = |v(ζ, z)|+ |v(z, ζ)|.

Then clearly d(ζ, z) = d(z, ζ). It is also easy to show that there is a
constant C such that

d(ζ, z) ≤ C(d(ζ, z′) + d(z′, z)).
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This means that d is a pseudo-metric on ∂D called the Koranyi metric.
One can easily show that up to obvious equivalence, this metric is
determined by the covectors dρ and dcρ.

If we choose a smooth projection z 7→ z′ ∈ ∂D for z close to the
boundary, then for any z (close to ∂D)

{ζ ∈ D; |v(ζ, z)| ≤ t} ∼ {ζ ∈ D; d(ζ ′, z′)− ρ(z)− ρ(ζ) < t}.
The Koranyi balls B(z, t) = {ζ ∈ ∂D; d(ζ, z) < t}, satisfy the

following properties:

(i) There is a C > 0 such that if B(z, t) ∩ B(ζ, s) 6= ∅, then either
B(z, Ct) ⊃ B(ζ, z) or B(ζ, Cs) ⊃ B(z, t).

(ii) There is a C > 0 such that for all z ∈ ∂D and t > 0, |B(z, 2t)| ≤
C|B(z, t)|.

These two properties make ∂D into a space of homogeneuos type,
and implies that a large amount of standard harmonic analysis, includ-
ing maximal function inequalities, Carleson measures, covering lemmas,
etc, carry over from the Euclidean case. �

Remark 1.2. Notice that in the definition of the Koranyi balls, it
is important to decide from the beginning the directions that are to
be “long”. Regardless of the choice of “short directions, one gets an
equivalent system of balls. However, if one tries to start with the short
directions, different choices of long directions will give non-equivalent
systems. This is easily seen already in R2. �

Proof of Lemma 1.10. Fix a point z0 ∈ ∂D. By uniformity of
the inverse function theorem, for each z ∈ D in a neighborhood ωz0 of
z0 one can choose a local coordinate system (x, y) such that

y = −ρ(ζ), x2 = Im (ζ, z), xj(z) = 0.

Moreover, we may assume that all functional determinants are bounded
from below and from above by some uniform constants for all these z.
Since ??? it is enough to verify the estimate as long as the integration
in balba is performed over a fixed small neighborhood U of z0, which
we may assume is contained in {y < 1, |xj| < 1} for each z ∈ ωz0 . By
compactness of ∂D, then the lemma will follow.

Therefore we have to estimate∫ 1

y=0

∫
|
xj| < 1

yγ−1dydx2 . . . dx2n

(y − ρ(z) + x2 +
∑
x2

j)
n+γ+ε

.

Notice that for a > 0 and α > 0,∫ 1

0

dt

a+ t2
=
(∫ √

a

0

+

∫ 1

√
a

) dt

a+ t2
∼
∫ √

a

0

dt

aα
+

∫ 1

√
a

dt

t2α
∼ 1

aα−1/2
.
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In the same way, ∫ 1

0

dt

a+ t
∼ aα−1.

Therefore the integral ??? is comparable to∫ 1

0

yγ−1dy

(y − ρ(z))γ+ε
.

Again decomposing the interval in {y < −ρ(z)} and {y > −ρ(z)} we
get the desired estimate (1/− ρ(z))ε. �

2. The ∂̄-equation in a strictly psc domain

In convex domains one can obtain a solution formula for ∂̄ from
Koppelman’s formula. In ∼ 1970 Henkin and Ramirez independently
found that each str psc domain D admits a holomorphic support func-
tion, i.e., essentially the H(ζ, z) in Section ???. In this way one gets
a representation formula of CFL type in D with holomorphic kernel
which makes possible function theory balbla. Henkin also observed
that one obtains a solution formula for ∂̄. It turns out that this for-
mula is good for Lp(∂D) estiamates, p > 1.

However, a long standing question was to prove that each divisor in
D = {ρ < 0} that satisfies the so-called Blaschke condition is defined
by a holomorphic function in the Nevanlinna class N(D). The converse
follows immediately by Jensen’s formula precisely as in one variable.
See Section ?????.

It was well known that one could reduce the question to the follow-
ing a priori estimate:

For each smooth ∂̄-closed (0, 1)-forms on D there is solution u to
∂̄u = f in D such that

(2.1)

∫
∂D

|u|dS ≤ C

∫
D

|f |+ 1√
−ρ
|∂̄ρ ∧ f |.

It turns out that if f smooth up to the boundary, there is a solution
that is smooth up to the boundary as well, so statement has a meaning.

Let us point out, in the case of one variable, why a weighted formula
is needed. Let f be a (0, 1)-form in the disk D such that∫

D

|f | <∞,
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and consider the solution

u(z) =
1

2πi

∫
D

dζ ∧ f
ζ − z

.

When |z| = 1 we have

u(z) = − 1

2πi

∫
D

z̄dζ ∧ f
1− ζz̄

.

Using the second estimate in Lemma ???? we get,∫
|z|=1

|u(z)| ≤ C

∫
D

|f | log(1/1− |ζ|),

which is not what we wanted. However,

u(z) =
1

2πi

∫
D

1− |ζ|2

1− ζ̄z

dζ ∧ f
ζ − z

.

is also a solution in D to ∂̄u = f , since the new factor is holomorphic
in z and identically 1 when ζ = z, see Exercise???. When z = 1 we
thus have

u(z) =

and if we now use Lemma ??? we get the desired estimate∫
|z|=1

|u(z)| ≤ C

∫
D

|f | log(1/1− |ζ|).

Let us now denote

Kf(z) =
1

2πi

∫
|ζ|<1

dζ ∧ f
ζ − z

.

Show that

K(∂̄v)(z) = v(z)− Sv(z),

where

Sv(z) =
1

2πi

∫
|ζ|=1

v(ζ)ds(ζ)

1− ζ̄z
.

It is well-known that the Cauchy transform v 7→ Sv, maps Lp(T ),
1 < p < ∞, onto Hp, where Hp is the space of holomorphic functions
in D that have boundary values in Lp(T ). Therefore, if there is a
solution v to ∂̄v = f with boudary values in Lp(T ), then Kf will also
be such a solution.
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3. Solution formulas in strictly pseudoconvex domains

Let X be a domain in Cn and let

η = ζ − z = (ζ1 − z, . . . , ζn − zn)

in Xζ×Xz. Let E be the subbundle of T ∗(X×X) spanned by T ∗
0,1(X×

X) and the differentials dη1, . . . , dηn. In this section all forms will take
values in ΛE. We let δη denote formal interior multiplication with

2πi
n∑
1

ηj
∂

∂ηj

,

on this subbundle, i.e., such that (∂/∂ηj)dηk = δjk. Moreover, we let

∇η = δη − ∂̄.

Let

b =
η · dη
2πi|ζ|2

=

∑
j(ζ̄j − z̄j)dηj

2πi|ζ − z|2
=

∂|ζ|2

2πi|ζ|2
.

and consider the Bochner-Martinelli form

u =
b

∇ηb
= b+ b ∧ (∂̄b) + · · ·+ b ∧ (∂̄b)n−1.

Notice that

uk,k−1 = b ∧ (∂̄b)k−1 =
1

(2πi)k

∂|ζ|2 ∧ (∂̄∂|ζ|2)k−1

|η|2k

so that

(3.1) uk,k−1 = O(1/|ζ|2k−1).

Proposition 3.1. The form u = b/∇ηb is locally integrable in
Cn × Cn and it solves

(3.2) ∇ηu = 1− [∆]

in the current sense.

We already know that ∂̄un,n = [∆], so only has to check bab;a;ab
as in balbabla.

Proposition 3.2. If u is any smooth form in X × X such that
∇ηu = 1 and such that (3.1) holds locally at the diagonal. Then (3.2)
holds in the current sense.

Is proved precisely as ??? in ?????.
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Example 3.1. Assume that s(ζ, z) is a smooth form in X×X such
that

(3.3) |s| ≤ C|ζ|, | 〈s, η〉 | ≥ C|η|2

uniformly locally at the diagonal. Then

u =
s

∇ηs
=

s

2πi 〈s, η〉
+ · · ·+ s ∧ (∂̄s)n−1

(2πi)n 〈s, η〉n

fufills the hypotheses in Proposition 3.2. �

3.1. Henkin-Ramirez formulas. Recall that we solved ∂̄ in smaller
ball rB by patching together BM with an form that was holomorphic
in z for ζ close to the boundary. The same can be done in a strictly
psc domain by means of the form H · dη. However, to get a solution
in the whole domain the patching must be done infinitesmally close to
the boundary.

Now letD be strictly psc and letH(ζ, z) be the vector-valued ablbaa
introduced in ?????, smooth in a nbh of D ×D. Recall that

(3.4) 2Re 〈H(ζ, z), η〉 ≥ ρ(z)− ρ(ζ) + δ|η|2.
We now choose

s(ζ, z) = 〈H(ζ, z), η〉H(ζ, z) · dη − ρ(ζ)η̄ · dη
and claim that (3.3) holds in D × D. In fact, clearly |s| ≤ C|η|.
Moreover,

〈s, η〉 = | 〈H(ζ, z), η〉 |2 − ρ(ζ)|η|2.
If ζ ∈ D, then −ρ(ζ) > 0 so (3.3) holds.

Also notice that even if ζ ∈ ∂D we have that 〈s, η〉 = 0 if and only
if z = ζ, since then 2Re 〈H, η〉 ≥ −ρ(z) + δ|η|2.

If we now form the CFL kernel

K =
1

(2πi)n

s ∧ (∂̄s)n−1

〈s, η〉n

then ∂̄K = [∆] and we thus have the Koppelman formula ?????. as in
Theorem 4.3 in Ch. 1. However, notice that when ζ ∈ D, s is parallell
to H · dη, so holomorphic in z and so Kp,q = 0 on ∂D for q > 0. We
therefore have

f(z) = ∂̄z

∫
D

Kp,q−1 ∧ f +

∫
D

Kp,q ∧ f, z ∈ D, q ≥ 1,

whereas for a function v we have

v(z) =

∫
D

Kp,0 ∧ ∂̄v +

∫
∂D

Kp,0v.
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Notice that the last term is precisely a CFL integral with a kernel that
is holomorphic in z so it is a projection Ep,0(D) → O(D). We can write
as

f = ∂̄Kf +K(∂̄f)

and

v = K(∂̄v) + Pv.

If f is a ∂̄-closed form, smoth on D, then Kf is a solution in D to
∂̄v = f .

Henkin-Ramirez formulas.
ablbalblalbaba

Example in the ball. Then

s(ζ, z) = (|ζ|2 − ζ · z̄)ζ̄ · dη + (1− |ζ|2)η̄ · dη,

and

〈s, η〉 = |1− ζ̄ · z|2 − (1− |ζ|2)(1− |z|2).

4. Weighted Koppelman formulas

Now let g be a form with values in E, cf., the previous section, such
that ∇ηg = 0 and g0 = 1 on the diagonal ∆ ⊂ X ×X. If u is a locally
integrable form that satisfies (3.2) holds, then

∇η(g ∧ u) = g − [∆].

If we let K = (g ∧ u)n and P = gn we thus have

∂̄K = [δ]− P

which as in Ch 1 Section ???, leads to the Koppelman formula
(4.1)

f(z) = ∂̄

∫
D

Kp,q−1∧f+

∫
D

Kp,q∧∂̄f+

∫
∂D

Kp,q∧f−
∫

D

Pp,q∧f, f ∈ Ep,q(D).

In order to obtain a solution formula for ∂̄ we must get rid of the last
two terms.
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4.1. Weighted formulas in str psc domains. Let D = {ρ < 0}
be strictly psc and let H be a holomorphic support function as before.
We can then define the weight

g =
(
1 +∇η

H · dη
2πi(−ρ)

)−α

=
(−ρ+ 〈H, η〉

−ρ
− ∂̄

H · dη
2πi(−ρ)

)−α

.

Thus

g =
n∑

k=0

ck,α
(−ρ)α+k

(〈H, η〉 − ρ)α+k

(
∂̄
H · dη
−ρ

)k

,

so if α is large enough, then g = 0 when ζ ∈ ∂D, and so the boundary
integral vanishes. Thus we get a solution formula regardless of the
choice of form u. However, for good estimimates on the boundary we
will be somewhat careful.

Let s(ζ, z)dη be the form used in the previous section, and let

ŝ(ζ, z)· = −s(z, ζ)dη, Ĥ(ζ, z) = H(ζ, z).

We will use

u =
ŝ

∇ηŝ
.

we already know that this choice form satisfies (3.2). If f is ∂̄-closed
in D, then

v(z) =

∫
D

K ∧ f

is a solution to ∂̄v = f , with

K = (u ∧ g)n.

We will now prove that this solution formula admits a proof of
Theorem ??. There are similar statements for higher degree forms, but
here we restrict, for simplicity, to the case f is a ∂̄-closed (0, 1)-form.

Sketch of proof of Theorem ??. Thus assume that f is a (0, 1)-
form, and assume that z ∈ ∂D.

For z ∈ ∂D, at least formally, we skip the necessary strict argument,
σ is parallell to

Ĥ · dη

2πi
〈
Ĥ, η

〉
which is holomorphic in ζ. Therefore,

K0,0 ∧ f = c
Ĥ · dη〈
Ĥ, η

〉 ∧ (−ρ)α+n−1

(〈H, η〉 − ρ)α+n−1

(
∂̄
H · dη
−ρ

)n−1

.
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Lemma 4.1. For z ∈ ∂D we have

|K0,0 ∧ f | .
(−ρ)α|f |
|v(ζ, z)|α+n

+
(−ρ)α−1|∂̄ρ ∧ f |
|v(ζ, z)|α+n−1/2

.

From this lemma, and Lemma 1.10 in Ch.2 we get the theorem. �

Thus it remains to prove Lemma4.1.

Proof. First notice that(
∂̄
H · dη
−ρ

)n−1

=
(∂̄H · dη)n−1

(−ρ)n−1
+

(∂̄H · dη)n−2 ∧ ∂̄ρ ∧H · dη
(−ρ)n

We recall that
〈H, η〉 − ρ = v(ζ, z)

and hence 〈
Ĥ, η

〉
= −v(z, ζ)

since ρ(z) = 0. From the proof of Lemma 1.10 it follows that

|v(z, ζ)| ∼ |v(ζ, z)|.
Morever, since H(ζ, ζ) = (ρ1(ζ), . . . , ρn(ζ)) it follows that

Ĥ · dη ∧H · dη = O(|η|).
From ??? we also have that

|ζ| .
√
|v|.

A straight forward estimate of K0,0 ∧ f noe gives the lemma. �

Close to the boundary we can write

f = a+ b ∧ ∂̄ρ,
and the condition on f then means that∫

D

|b|+ 1√
−ρ
|a| <∞.

One cam measure f in the metric induced by the positive definite
form

Ω = −ρ(i∂∂̄ log(1/− ρ)).

Then

Ωn ∼
dV

−ρ
and

(|f |+ 1√
−ρ
|∂̄ρ ∧ f |)dV =

which means that balbalblaba.
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5. The Henkin-Skoda theorem

The Nevanlinna class N is the set of holomorphic functions in D =
{ρ < 0} such that

sup
ε>0

∫
ρ+ε=0

log+ |f |dS <∞.

Theorem 5.1. Let D be a str psc domain and Z a divisor in D.
Then Z is defined by a function f in the Nevanlinna class N if and
only if the Blaschke condition∫

D

−ρ(ζ)[Z](ζ) <∞

holds.

6. Exercises

1. Let ψ(ζ, z) be a C1 function in Ω × Ω that is holomorphic in z
and ψ(z, z) = 1 and f is a (0, 1)-form of class C1. Show that

(6.1) u(z) =
1

2πi

∫
Ω

ψ(ζ, z)
dζ ∧ f
ζ − z

is a solution to ∂̄u = f in Ω if∫
Ω

|ψ(ζ, z)||fζ)| ≤ CK , z ∈ K,

for each compact K ⊂ Ω.
Conversely, show that if ψ(ζ, z) is C1 and (6.1) is a solution for each

f with compact support, then ψ is holo in z and ψ(z, z) = 1.



CHAPTER 4

Basic residue theory

1. Introduction

Let us first give a glimse of the content of this chapter, without
giving any precise definitions and formulations. Let X be a complex
manifold and let Z be an analytic subvariety, i.e., locally Z = {f1 =
. . . = fN = 0} for some holomorphic functions, and let Zreg be the sub-
set of Z where it is smooth, and hence locally a complex submanifold.
The set Zsing = Z \ Zreg is closed in X. It was proved by Lelong 19??
that the current

ξ 7→
∫

Zreg

ξ, ξ ∈ Dn−p,n−p(X \ Zsing)

in X\Zsing has a natural current extension [Z] to X. This current, that
is called the Lelong current associated with Z, turns out to be positive
and closed, see Section ??. It provides an analytic representation of the
geometric object Z, and for this reason one can consider closed positive
currents as intrinsic generalizations of analytic subvarieties. It is easy
to see that the annihilator ideal ann [Z], i.e., the set of holomorphic
functions φ such that φ[Z] = 0, is precisely the radical ideal

IZ = {φ; φ = 0 on Z}.

Assume now that J is a more general ideal in O(X), say of lo-
cally pure dimension. If we want to find a similar analytic object that
represents J we are led to consider so-called Coleff-Herrera currents.
Let us describe the case with a principal ideal J = (f) generated by
the single function f . It was proved by Schwartz in -50’s that there
exists a distribution U such that fU = 1. Then T = ∂̄U is a (0, 1)-
current with the property that a holomorphic function φ annihilates
T if and only if φ belongs to the ideal (f) generated by f . In fact,
if φ is holomorphic and φT = 0, then 0 = ∂̄(φU) so that φU = ψ is
holomorphic, and hence φ = fψ. Conversely, if φ = fψ, then it follows
that φT = ψ∂̄(fU) = ψ∂̄1 = 0.

81
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Another question is to find an explicit such U . It turns out, but is a
highly non-trivial fact, that one can define the principal value current
[1/f ] (Mazzilli??)

(1.1)
[ 1

f

]
.ψ = lim

ε→0

∫
|f |>ε

ψ

f
, ψ ∈ D1,1.

The current ∂̄[1/f ] the has support on Z and by Stokes’ formula we
have that

∂̄
[ 1

f

]
.ψ = lim

ε

∫
|f |=ε

ψ

f
, ψ ∈ D1,0.

Often one is only interested in the action of ∂̄[1/f ] on test forms that
are holomorphic at 0 and then it is not necessary to take limits:

∂̄
[ 1

f

]
.ψ =

∫
|f |=ε

ψ

f
,

if just ε is small enough.
We will consider generalizations to more general ideals. To get an

idea, let

Q =
∑
|α|<m

aα(z)∂α
z

be a holomorphic differential operator, and defined the current µ by

µ.ξ =

∫
Zreg

Qξ.

Here we let Q act as Lie derivatives ablabla. Then this current has
support on Z but it is no longer of order zero. It is a so-called Coleff-
Herrera current. We will show that roughly speaking all ideals can
be expressed locally as the intersections of the annihilators of a finite
number of such currents. However the full proof in next chapter. We
will also discuss Noetherian differential operators. We will show that
for each Coleff-Herrera current one find a finite number of diff op Qν

such that roughly speaking φ ∈ annµ iff Qνφ = 0 on X for all ν.
Section ????

It is also classical (Poincare-Lelong’s formula) that

ddc log |f | = ∂̄
[ 1

f

]
∧ df

2πi
= [Z],

if Z = {f = 0} where the various irreducible components are counted
with multiplicities. We will consider various generalizations of this
formula.
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Remark 1.1. Let a and b be say smooth, forms defined outside
some exceptional set V in a manifold X, and let P be a differential
operator in X such that Pa = b in X \V . Moreover, assume that a and
b have a reasonable current extension A and B across V ; for instance
they are locally integrable, or the some sort of principle values exist. In
our case V will always be an analytic subvariety and P will be d or ∂̄.
Then clearly PA = B outside V since differential operators are local;
however sometimes something extra occurs at V , a residue: That is,
PA = B + R, where R is a current that has support on V . Called a
residue current.

The simplest example is the Cauchy kernel ω = dζ/ζ. It is closed
outside the origin, but dω = [0] so [0] is the residue current here. �

Let us first consider the case of one complex variable. Then the
zeros of f is a dicrete set (unless f ≡ 0) and so the definition of [1/f ]
and ∂̄[1/f ] is local, so we may assume z = 0 is an isolated zero. As
long as th test form ξ is holomorphic

∂̄
[ 1
f

]
.ξdz =

Sometimes one just restrict oneself to consider the action on ψ = 1dz,
and we then get just one number, which is the classical notion of residue

∂̄
[ 1
f

]
.1dz = Resz=0(1/f),

from the one-variable theory.
Here we have a preferred coordinate z. If we want an invariant

definition we have to define the residue of meromorphic (1, 0)-forms
rather than of functions.

To see that the general limit ???? exists little harder.
Since the zero set of f is discrete, the existence of (1.1) is a local

problem so we may assume 0 is an isolated zero of f . Then f(z) =
z−mg(z) g is nonvanishing, so locally f(z) = (zφ(z))m, and we can
take w = zφ(z) as a new holomorphic coordinate. Thus it is enough to
consider f(z) = zm.

Proposition 1.1. For each integer m and each test function φ ∈
D(C) the limit

(1.2)
[ 1

zm

]
.φdz ∧ dz̄ = lim

ε→0

∫
|z|>ε

φdζ ∧ dζ̄
ζm

exists, and defines a current. We have the following properties:

(1.3) z
[ 1

zm+1

]
=
[ 1

zm

]
,
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(1.4)
∂

∂z

[ 1

zm

]
= −m

[ 1

zm+1

]
, m > 0,

(1.5) ∂̄
[ 1

zm

]
.φdz = lim

ε→0

∫
|ζ|=ε

φdζ

ζm
=

2πi

(m− 1)!

∂m−1

∂zm−1
φ(0).

(1.6) z̄∂̄
[ 1

zm

]
= 0, m > 0.

Proof. By Taylor’s formula,

φ(z) =
∑

`+k<m

∂`+kφ

∂z`∂z̄k
(0)

z`z̄k

`!k!
+O(|z|m) = pm(z) +O(|z|m).

Notice that

I =

∫
ε<|ζ|<R

ζ`ζ̄kdζ ∧ dζ̄
ζm

= 0

if ` + k < m. In fact, making the change of variable ζ 7→ λζ with
|λ| = 1, we have that

I = λ`−k−mI,

and since ` < m ≤ m+ k this implies that I = 0. If R is large enough
we therefore have∫

ε<|ζ|

φdζ ∧ dζ̄
ζm

=

∫
ε<|ζ|<R

φdζ ∧ dζ̄
ζm

=

∫
ε<|ζ|<R

O(|ζ|m)

ζm
,

which clearly has a limit when ε→ 0. Thus (1.2) exists. The equality
(1.3) is now immediate. For similar symmetry reasons as above we
have that

(1.7)

∫
|ζ|=ε

φdζ̄

ζm
=

∫
|ζ|=ε

O(1)dζ̄

and

(1.8)

∫
|ζ|=ε

φdζ

ζm
=

∫
|ζ|=ε

(∂m−1φ/∂ζm−1)(ζ)dζ

(m− 1)!ζ
+

∫
|ζ|=ε

O(1)dζ̄.

. Now (1.4) follows from an integration by parts,

∂

∂z

[ 1

zm

]
φdz∧dz̄ = − lim

ε

∫
ε<|ζ|

1

ζm

∂φ

∂ζ
dζ∧dζ̄ = − lim

ε

∫
ε<|ζ|

m

ζm+1
φdζ∧dζ̄,

since the boundary integral vanishes in view of (1.7).
The first equality in (1.5) follows by Stokes’ formula, (notice the

orientation!), whereas the second one follows from (??). �
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Corollary 1.2. For a function φ that is holomorphic in a neigh-
borhood of 0 the following are equivalent:

(i) φ ∈ (zm)
(ii)

φ∂̄
[ 1

zm

]
= 0

(iii)
∂`φ

∂z`
(0) = 0, ` = 0, . . . ,m− 1.

Thus we can represent the ideal either by a generator zm, as the
annihilator of a residue current, or by so-called Noetherian differential
operators. Later on we will discuss multivariable analogues to these
various representations.

Proof. If (i) holds, then φ = ψzm where ψ is holomorphic, and so

φ∂̄
[ 1

zm

]
= ψ∂̄zm

[ 1

zm

]
= ψ∂̄1 = 0,

according to (1.3), and thus (ii) holds. If (ii) holds, then ∂̄[1/zm].φξdz =
0 for all test forms ξdz, which by (??) means that (iii) must hold. Fi-
nally (iii) implies (i) by Taylor’s formula. �

From (1.3) and (1.5) we also have

Corollary 1.3.

∂̄
[ 1

zm

]
∧ dzm

2πi
= m[0].

In the several variable case we will mainly rely on another way to
define the currents [1/zm] and ∂̄[1/zm]: The functions λ 7→ |z|2λ/zm

and ∂̄|z|2λ/zm, a priori just defined for Reλ >> large, have current-
valued analytic continuations to Reλ > −1/2; and the values at λ = 0
are precisely the principal value current [1/zm] and the residue cur-
rent ∂̄[1/zm], respectively. For technical reasons we need the following
slightly more elaborated version of this statement.

Lemma 1.4. Let v be a strictly positive smooth function in C, ψ a
test function in C, and m a positive integer. Then

λ 7→
∫
vλ|z|2λψ(z)

ds ∧ dz̄
zm

and

λ 7→
∫
∂̄(vλ|z|2λ) ∧ ψ(z)

dz

zm

both have analytic continuations to Reλ > −1, and the values at λ = 0
are [1/zm].ψds ∧ ds̄ and ∂̄[1/zm].ψds, respectively. In particular, the
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second one vanishes if (dz̄/z̄) ∧ ψ = 0, i.e. if ψ(z) = z̄φ(s) or ψ =
dz̄ ∧ φ.

Proof. With the same notation as in the previous proof we have
for a large enough R and Reλ large and fixed µ ∈ C,∫
vµ|ζ|2λφdζ ∧ dζ̄

ζm
=

∫
|ζ|<R

|ζ|2λ(vµφ)dζ ∧ dζ̄
ζm

=

∫
|ζ|<R

|ζ|2λO(|ζ|m)dζ ∧ dζ̄
ζm

since ∫
|ζ|<R

|ζ|2λp(ζ)dζ ∧ dζ̄
ζm

for symmetry reasons as before. Hence the proposed analytic contin-
uation to Reλ > −1/2 exists. It is easy to see that p(ζ) and hence
O(|ζ|m) are holomorphic in µ, and therefore the left hand side is holo-
morphic in (λ, µ) for Reλ > −1, µ ∈ C, and when λ = 0 it is equal
to [1/zm].vµφdζ ∧ dz̄, in view of the previous proof. Taking µ = 0, the
statement follows. The second integral is ∂̄(vµ|z|2λ)/zm.ψdz for large
Reλ, and hence even at λ = 0. �

2. Positive currents and Lelong currents

From now on, even if µ is a current we will frequently use the
suggestive notation ∫

µ ∧ ψ

for the action of µ on the test form ψ, rather than µ.ψ.
We say that an (n, n)-current µ is positive if∫

ψµ ≥ 0

for all test forms ψ such that ψ ≥ 0. Since µ is just a distribution it
follows as usual that then µ has order zero, i.e., it is just a locally finite
positive measure.

We say that a (p, p)-current µ is positive if

µ ∧ iap+1 ∧ āp+1 ∧ . . . ∧ ian ∧ ān ≥ 0

for all smooth (1, 0)-forms aj.

Lemma 2.1. If µ is a positive (p, p)-current, then it is real and has
order zero.

Moreover, if for fixed coordinates

µ =
′∑

|I|=p,|J |=p

µIJ i
p2

dzI ∧ dz̄J ,
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then µII are positive for each I and there is a number C only depending
on n, p such that

|µIJ | ≤ C
′∑

|I|=p

µII .

If we fix coordinates z,

µ =
′∑

|I|=p,|J |=p

µIJ i
p2

dzI ∧ dz̄J ,

so we have to prove that µIJ are complex measures.

Proof. Fix IJ and let L,K be complementary multiindices. Re-
call from Lemma 6.2 in Ch.1 that ????? so that

ip
2

dzL ∧ dz̄K =

∧p

s=1idzLs ∧ dz̄Ks =∧p

s=1

i

4

∑
`∈Z4

i`(dzLs + i`dzKs)∧ (dzLs + i`dzKs),

so it follows that

±µIJdV = µ ∧ ip2

dzL ∧ dz̄K =
∑
a∈Zp

4

εaµ ∧ γa,

where

γa =∧p

s=1

i

4
(dzLs + iasdzKs) ∧ (dzLs + iasdzKs)

and εa = ±1,±i. Thus µIJ is a linear combination of locally finite
positive measure and hence a complex measure. Moreover,

|µIJ |dV ≤
∑

a

µ∧γq = γ∧∧p

1

∑
as∈Z4

i

4
(dzj +i

asdzk)∧(dzj + iasdzk) =

µ ∧∧p

1(idzIs ∧ dz̄Is + idzKs ∧ dz̄Ks) ≤ C

′∑
|J |=p

µJJdV,

where C is just a combinatorial constant. Finally, µ it is real for the
same reason as for smooth positive forms. �

Theorem 2.2 (Lelong). Let Z be a variety of codimension p in a
complex manifold X. Then

φ 7→
∫

Zreg

φ

defines a positive closed (p, p)-current [Z].
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The simplest and most elegant way is to use Hironaka’s theorem.
There exists a k = (n − p)-dimensional smooth complex manifold Z̃
and a proper mapping π : Z̃ → Z, such that, if Y = Z \ Zreg and

Ỹ = π−1Y , then π : Z̃ \ Ỹ → Z \Y is a biholomorphism. This is called
a resolution of singularities or a desingularization, and is a very deep
result which rendered Hironaka a Fields medal. Now since π is proper
and Ỹ is a null set in Z̃,∫

Zreg

φ =

∫
Z̃\Ỹ

π∗φ =

∫
Z̃

π∗φ

exists, and ∣∣∣ ∫
Zreg

φ
∣∣∣ ≤ C sup

Z
|φ|.

Moreover, ∫
Zreg

dψ =

∫
Z̃

dπ∗ψ = 0,

so that d[Z] = 0. The positivity follows from the positivity in the
smooth case. Thus the theorem is proved.

[Maste veta har att π∗φ ar glatt i Z̃ om φ glatt i omg till Z i X.
Kolla upp !!! samt vad det betyder att π holo dvs holo struktur pa Z]

Example 2.1. Z = {z2 − w2 = 0, Z̃ = C, π(t) = t3, t2). �

However, it is instructive to consider an elementary proof.

Proof. Since the statement is local we can assume that Z is in
Cn. We first prove that Zreg has locally finite area. Fix a point 0 ∈ Z.
After a rotation we may assume that there is a small polydisk with
center 0 such that the projection of Z onto each coordinate plane of
codimension p is a finite covering outside some hypersurface in the
coordinate plane. Let us call coordinates z and w = (w1, . . . , wp) and
π : ∆′ ×∆′′ ⊂ Cn−p

z ×Cp
w → Cp

z. Since Z has a finite number of sheets
above ∆′ \ Y , the total area of the projection is finite. Hence the total
area is finite in view of ???? in Ch 1.

Hence we have in particular that∣∣∣ ∫
Zreg

φ
∣∣∣ ≤ C sup |φ|

and hence [Z] is a well-defined current. If aj (1, 0) smooth, then ia1 ∧
ā1∧ . . .∧ ian−1∧ ān−p is a positive form on Zreg and so [Z] is a positive
current.
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It remains to prove that [Z] is closed. With notation as above,
choose an ε-neighborhood of Yε of Y in ∆′. We then have

[Z].dψ = lim

∫
Z\π−1(Yε)

dψ =

∫
Z∩∂π−1(Yε)

ψ.

Notice that z are local coordinates on Z at ∂π−1(Yε). Just a finite
number of integrals over ∂Yε so it is enough to see that it can be
chosen so that the area of ∂Yε tends to zero. However, first consider
the regular part of Y . Since it has finite real codim 2 area in ∆′ we
can cover it by say balls so that the total area of the boundaries are
like ε. Next, take the components of Y of (complex) codim 2. Again
locally finite codim 4 real area etc. balbala ??????????????????? See
[?] Propsition ??? for details �

We now consider two results that indicate that positive closed cur-
rents should be considered as geometric objects, generalizing varieties.

Theorem 2.3. Let T be a (k, k)-current such that both T and dT
have order 0 (i,e, have measure coefficients). If T has support on a
variety Z of codimension p > k, then T = 0.

Lemma 2.4. If T is any current such that dwj ∧ T = 0, then T =
T ′ ∧ dwj, where T ′ contains no ocurrence of dwj.

Proof. We can write T = T ′ ∧ dwj + γ, where T ′ and γ have no
occurrence of dwj. Now, 0 = T ∧ dwj = γ ∧ dwj, which implies that
γ = 0. �

Proof. Locally on Zreg we can choose coordinates (z, w) so that
V = {w = 0}. Since T has order zero wjT = w̄jT = 0. Moreover,
since dT has order zero, (d(wjT ) = dwj ∧ T +wjdT = dwj ∧ T so that
dwj ∧ T = 0 and similarly dw̄j ∧ T = 0. By repeated use of the lemma
it follows that

T = T ′ ∧ dw ∧1 ∧dw̄1 ∧ . . . ∧ dwp ∧ dw̄p,

and since k < p, this implies that T ′ = 0. Thus T = 0 on Zreg. Thus T
has support on Y = Z \ Zreg. By induction it follows that T = 0. �

Corollary 2.5. If T is a positive closed (k, k) current with support
on a variety V of codimension p > k, then T = 0.

Theorem 2.6. Let T be a closed (p, p)-current of order zero, with
support on a variety Z of codimension p. Then

T =
∑

j

αj[Z]
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Proof. First assume that p = 0. Then dT = 0 implies that T is a
locally constant function. For the general case first consider Zreg and
assume again that Z = {w = 0}. As in the previous proof we find that
T = T̃ dw∧dw̄, and since T has order zero, T̃ is a measure on {w = 0}.
Now, 0 = dT = dzT̃ ∧dw∧dw̄ implies that T̃ is locally constant. Since
the regular part of each connected component Zj of Z is connected, it
follows that T is αj[Zj] there. Finally, T −

∑
j αj[Zj] is then a closed

(1, 1)-current of order zero with support on Z \ Zreg so it must vanish
according to Theorem 2.3. �

2.1. Positive (1, 1)-currents and psh functions. Let us intro-
duce

dc =
i

2π
(∂̄ − ∂);

notice that

ddc =
i

π
∂∂̄.

Theorem 2.7. Assume that µ =
∑
µjkidzj ∧dz̄k is a (1, 1)-current

in X.
(i) µ is positive
(ii)

∑
jk µjkhjh̄k ≥ 0, for all h ∈ Cn

(iii) locally µ = i∂∂̄u for some psh function u.

Proof. �

Theorem 2.8 (Poincare-Lelong’s equation). Let f be holomorphic
and Z its zero set with irrdeucible components Zj. Then

(2.1) ddc log |f | =
∑

j

αj[Zj],

where αj is a positive integer, the order of f at Zj.

Proof. We first consider the one-variable case. It follows from
Proposition 1.1 that

ddc log |zm| = m∂̄
1

z
∧ dz/2πi = [0].

From Theorem 2.7 we know that ddc log |f | is a closed positive (1, 1)-
current, and in view of Theorem 2.6 we thus have a representation (2.1),
so we just have to see that αj are positive integers. Locally on Zj,reg
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we may assume that it is {w = 0}. Then we can write f = wαg(z, w),
where g 6= 0. Since ddc log |g| is pluriharmonic therefore,

ddc log |f | = αddc log |w| = α[0]⊗ 1 = α[w = 0] = α[Zj].

Thus (ii) holds. The remaining verifications are left as exercises. �

It is worthwhile to notice that ∂ log |f |2 = ∂f/f is locally integrable
even at singular points, and that the equality holds in the current
sense. To see this we may assume that f is a (nonvanishing times a)
Weierstrass polynomial with respect to each variable. Thus f(z′, w) =
wr + ar−1(z

′) + · · · . Outside a ablabla
thenough to see that balbala

Monge-Ampere uppskattning, labla Nirenberg ablabl uppskattning,
sid 169 i Dem

2.2. Resolutions of singularities. As a consequence of Hiron-
aka’s theorem we have the following extremely useful result.

Theorem 2.9 (Hironaka). Let Y be a subvariety of a complex man-
ifold X. Then for any point there is neighborhood U and a proper holo-
morphic mapping π : Ũ → U that is a biholomorphism Ũ \ Ỹ → U \ Y ,
and such that Ỹ has normal crossings in Ũ .

Let f = (f1, . . . , fm) be holomorphic functions on X and let Y =
{f1f2 · · · fm = 0}. Then for any point there is neighborhood U and
a proper holomorphic mapping π : Ũ → U that is a biholomorphism
Ũ \ Ỹ → U \ Y , and such that Ỹ has normal crossings in Ũ . This
means that locally in Ũ one can choose coordinates τ such that Ỹ is
the zero set of a monomial µ = τα1

1 · · · ταn
n . However, since then the

zero set of the function π∗fj is contained in the set where the monimial
µ vanishes, it follows that π∗ is itself a monomial times a non-vanishing
function.

Toric resolution, balbalbala (C∗)n etc etc etc etc balblabalbal.

Theorem 2.10. If fj are monomials in Cn, there is a toric resolu-

tion π̃ : X̃ → Cn such that locally in X̃, one of the monomials divides
all the other ones.

Given a tuple f = (f1, . . . , fm) after two resolution we may assume
that locally f = f0(f

′
1, . . . , f

′
m) = f0f

′, where f0 is a monomial and f ′

is a non-vanishing tuple of holomorphic functions.



92 4. BASIC RESIDUE THEORY

Proposition 2.11. Assume that π : X̃ → X is a resolution and

X̃ \ Ỹ ' X \ Y,

Assume that γ is a smooth form in X \ Y and that ω = dγ. Assume
that γ̃ = π∗γ is locally integrable in X̃. Then

(i) γ is locally integrable in X

(ii) if

dγ̃ = T + ω̃1X̃\Ỹ ,

then

dγ = π∗T + ω1X\Y .

(iii) if T ≥ 0 then π∗T ≥ 0, if dT = 0 then dπ∗T = 0, if T has order
zero, then π∗ has order zero.

Proof. For test forms ξ ∈ D(X), let

Λξ =

∫
X̃\Ỹ

π∗f ∧ π∗ξ,

which is welldefined since π∗f id locally integrable and π is proper so
that π∗ξ is a test form in X̃. If supp ξ ⊂ K, then

|Λξ| ≤
∫

X̃∩π−1K

|π∗f | sup
π−1K

|π∗ξ| ≤ CK sup
K
|ξ|.

It follows that Λ defines a locally finite measure m in X̃, and since

Λξ =

∫
f ∧ ξ

if ξ ∈ D(X \ Y ) it follows that f is the restriction of m to X \ Y and
hence locally integrable. So (i) is proved.

To see (ii), notice that

± df.ξ =

∫
X

f ∧ dξ =

∫
X\Y

f ∧ dξ =

∫
X̃\Ỹ

π∗f ∧ dπ∗ξ =

± T.π∗ξ +

∫
X̃\Ỹ

π∗(df) ∧ π∗ξ = π∗T.ξ +

∫
X\Y

df ∧ ξ.

The proofs of the remaining statements are left as an exercise. �

Notice that similar statements hold with d replaced by dc, ∂, ∂̄, or
ddc.
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2.3. King’s formula. As an application of this technique we can
give a quite expedient proof of King’s formula which is a generalization
of the Poincare-Lelong formula.

Proposition 2.12. Assume that f is a tuple of holomorphic func-
tions with common zero set Z, and that |f | is Hermitian any norm.
Then

(ddc log |f |)k, d log |f | ∧ (ddc log |f |)k, log |f |(ddc log |f |)k,

considered as forms in X \ Z are locally integrable in X. Moreover, if
Z has codimension p, then for each k < p,

(2.2) ddc[log |f |(ddc log |f |)k−1] = (ddc log |f |)k

in the current sense, and also

dc[log |f |(ddc log |f |)p−1] = dc log |f | ∧ (ddc log |f |)p−1

in the current sense.

Here |f |2 =
∑

jk hjkfj f̄k where hjk is a Hermitian matrix that very
well may depend on z.

Proof. We first prove that ω = (ddc log |f |)k is locally integrable.
Given a point x there is a neighborhood U such that we have a resolu-
tion Ũ → U in which π∗fj are monomials. In view of Proposition 2.11

it is enough to prove that π∗ω is locally integrable in Ũ . On the other
hand, to this end, again by Proposition 2.11 it is enough to prove that
the pullback to another resolution, as in Theorem ??, is locally inte-
grable. However, locally in this resolution f̃ = f0f

′ with f ′ 6= 0 and f0

is a monomial. Thus we have that

ddc log |f̃ | = ddc log |f0|+ ddc log |f ′| = ddc log |f ′|

outside Ỹ (in fact outside Z̃, where Z = {f = 0}, since f0 is plutihar-
moniic there. Thus (ddc log |f |)k smooth, and thus in particular locally
integrable. Moreover, if

f0 = τa1
1 · · · τan

n , aj ≥ 0,

then

log |f0| =
∑

j

aj log |τj|,
df0

f0

=
∑

j

aj
dτj
τj

which are locally integrable. It follows that the pullback of the other
forms are locally integrable times snooth and hence locally integrable.
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For the secon statement, we notice that

ddc[log |f | ∧ (ddc log |f ′|)k−1] = d[dc log |f | ∧ (ddc log |f ′|)k−1] =

[f0 = 0] ∧ (ddc log |f ′|)k−1 + (ddc log |f ′|)k

in the resolution. Thus the restriction of ddc[log |f |∧(ddc log |f |)k−1] to
Z ⊂ Y is the push-forward of [f0 = 0]∧ (ddc log |f ′|)k−1. However, this
is a closed (k, k)-form of order zero with support on Z so it vanishes if
k < p and (??) below holds if k = p. �

Clearly (2.2) holds outside Z. When k ≥ p it turns out that some
residues occur at Z. We define

(ddc log |f |)p = ddc[log |f |(ddc log |f |)p−1]

Write (ddc log |f |)p1X\Z to emphasize not consider any possible residues
at Z.

Theorem 2.13 (King’s formula). Let f be a holomorphic tuple with
zero set Z and let Zj be the irreducible components of minimal codi-
mension p. Then

(2.3) (ddc log |f |)p =
∑

j

αj[Zj] + (ddc log |f |)p1X\Z ,

where αj are positive integers, the so-called Hilbert-Samuel multiplici-
ties.

The Hilbert-Samuel multiplicity of f at a regular point of Z is
defined as follows: For generic choices of [aj] ∈ Pm−1 the restriction of
f to a generic p-plane through the point is a mapping Cp → Cp with
isolated zero at the point. The number α is the degree of that mapping.
We first consider the special case when p = m = n.

Proposition 2.14. If f = (f1, . . . , fn) has an isolated zero at z =
0, then using the trivial metric

ddc[log |f |(ddc log |f |)n−1] = d[dc log |f | ∧ (ddc log |f |)n−1] = α[0],

where α is the degree of the mapping f .

Proof. First notice that

(ddc log |f |)n = ∂̄
[ 1

(2πi)n

∂|f |2

|f |2
∧
(
∂̄
∂|f |2

|f |2
)n−1

]
= ∂̄f ∗B,

where
1

(2πi)n

∂|z|2

|z|2
∧
(
∂̄
∂|z|2

|z|2
)n−1

= B(z),
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is the Bochner-Martinelli kernel. If ∂̄f ∗B = α[0], then bu Stokes’
theorem

α =

∫
∂D

f ∗B

so it is enough to make sure that this integral is the degree of the
mapping f . For w close to 0, let fw = f − w. By Sard’s theorem 0
is a regular value for fw for almost all w. For such a value, 0 has d
preimages ζ1, . . . , ζd, and fw is a biholomorhic in a neighborhood of
each of them. Therefore the integral by Stokes’ theorem is equal to

d∑
1

∫
|ζ−ζj |=ε

f ∗B.

However, since biholomorphism each of them equal to 1 since∫
∂D

B = 1.

Since moreover the integral is obviously continuous in w and integer
valued almost everywhere it follows that it is a constant integer in a
neighborhood of 0; this value is by definition the degree at w = 0, and
so the proposition is proved. �

Lemma 2.15. Assume that f and g are holomorphic tuples such
that |f | ∼ |g| and Z = {f = 0} has codimension p. Then

(ddc log |f |)p1Z = (ddc log |g|)p1Z .

Proof. We may assume p < n, because otherwise we can just add
a dummy variable zn+1. Consider a fixed irreducible component Z ′ of
Z of codimension p. On the regular part Z ′

reg let us fix two distinct
points a, b and define a real smooth function t(z) with values between
0 and 1 such that it is identically 1 in a neighborhood of a and 1 in a
neighborhood of b. Then u = t|f |+(1− t)|g| is a nonnegative function.
In an appropriate resolution where f = f0f

′ and g = g0g
′ and f0 and

g0 are (nonvanishing holo times) monomal it follows that f0 = cg0 with
c 6= 0, so

u = |f0|(t|f ′|+ (1− t)|g′|).
Precisely as before it follows that

(ddc log u)p1Z′

is a closed (p, p)-current of order 0, and hence it must be α[Z ′] for some
constant α. However it is equal to ??? at a and ?? at b so klart! �
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Lemma 2.16. If f is a holomorphic m-tuple with isolated zero at
0 (detta inte nodvandigt men gor beviset lattare ngt), then for generic
choices of [a] = ([a1], . . . , [an]) ∈ (Pm−1)n, j = 1, . . . , n, the n-tuple
a · f = (a1 · f, . . . , an · f) satisfies |a · f | ∼ |f |.

Se Demailly!! Ch. 8 Them 10.3

Proof of King’s formula. Since the set of possible choices of
a in the preceding lemma is connected, the degree α of the mapping
a · f must be independent of a, and by Lemmas 2.15 2.16 and Propo-
sition 2.14, it follows that

(ddc log |f |)n1{0} = α[0].

This proves King in case p = n. Finally, if p < n and point on Zreg

and p-plane through point, that intersects Zreg transversally, then may
assume Zreg is {w = 0} and the plane is {z = c}. We know that

α[w = 0] = ddc[log |f |(ddc log |f |)p−1]1Z .

For degree reasons can replace each d, dc with dw, d
c
w. However, then

the equality just means the degree of the mapping f restricted to the
plane z = c, with parameter c. In particular α must be an integer. �

Remark 2.1. Let J be any ideal sheaf in X with zero set Z of
minimal codimension p. Then by a partition of unity we can find a real
function u such that locally u ∼ log |f |, where f is a tuple that defines
J and | · | is any metric. It follows from the proof above that

(ddcu)p1|Z =
∑

j

αj[Zj].

�

Let

Af
k,λ = ∂̄|f |2λ ∧ ∂|f |2 ∧ (∂̄∂|f |2)k−1

(2πi)p|f |2k
.

Lemma 2.17. For the trivial metric we have that

ddc(log |f |(ddc log |f |)p−1)1Z = lim
λ→0+

Af
p,λ.

Proof. Since log |f |(ddc log |f |1X\Z)p−11X\Z is locally integrable
in X, and λ 7→ (|f |2λ−1) is increasing for λ > 0 we have by dominated
convergence that∫

log |f |(ddc log |f |)p−1 ∧ ddcφ =

lim
λ→0+

∫
1

2λ

(
|f |2λ − 1

)
(ddc log |f |)p−1 ∧ ddcφ.
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The current (ddc log |f |)p−11X\Z is closed in the current sense according
to (??), and an integration by parts therefore gives

(2.4) lim
λ→0+

∫
∂̄|f |2λ ∧ ∂|f |2

2πi|f |2
∧
(
∂̄
∂|f |2

2πi|f |2
)p−1

∧ φ+

lim
λ→0+

∫
|f |2λ

(
∂̄
∂|f |2

2πi|f |2
)p

∧ φ,

which proves the lemma since the second term in (2.4) is precisely∫
(ddc log |f |)p1X\Z ∧ φ

(the finiteness of the limit is ensured by King’s formula). �

Namn Rouche’s sats har.

3. Coleff-Herrera currents

We will first consider a class of residue currents that are called
Coleff-Herrera currents, or local residual currents.

Definition 1. Let V be an analytic variety in X of pure codimen-
sion p. A (r, p)-current µ with support on V is a Coleff-Herrera current
on V , µ ∈ CHV , if it is ∂̄-closed,

(3.1) ĪV µ = 0,

and has the following property: For any holomorphic function h that
does not vanish identically on any irreducible component of V , we
require that λ 7→ |h|2λµ, a priori defined for λ with Reλ large, has an
analytic continuation to Reλ > −ε and the value at λ = 0 coincides
with µ.

It is easy to see that CHV is a sheaf of O-modules, and a subsheaf
of the sheaf C0,p

V of (0, p)-currents with support on V and of C0,p.

The property (3.1) just means that h̄µ = 0 for any holomorphic h
that vanishes on V . The last property is called the standard extension
property, SEP, and means that µ is determined by its values on V \ Y
for any hypersurface Y not containing any irreducible component of V .
In fact, if µ ∈ CHV has support on V ⊂ Y , then |h|2λµ must vanish
if Reλ is large enough, and by the uniqueness of analytic continuation
thus µ = 0. Given the other conditions, it turns out that SEP is
automatically fulfilled on Vreg so the interesting case is when the zero
set Y of h contains the singular locus of V .

The SEP can also be expressed in the following way: If h is a holo-
morphic function that does not vanish identically on any irreducible
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component of V , and χ(t) is a smooth cutoff function on R that is 0
for t < 1 and 1 for t > 2, then

(3.2) lim
ε
χ(|h|/ε)µ = µ.

Classically SEP is formulated with the characteristic function for {t ≥
1} rather than a smooth approximand. However, in that case it is
not obvious that χ(|h|/ε)µ has a meaning; this requires an additional
argument. The reason for our seemingly technical choice of definition
of SEP is merely practical. In Subsection 3.11 we will prove that any
of these definitions of SEP can be used to define the sheaf CHZ .

This sheaf CHV of currents is natural for several reasons. It is well-
known that the so-called local (moderate) cohomology sheaves Hk

[V ](O)

vanish for k < p whereas Hp
[V ](O) is isomorphic the sheaf CHV ; i.e.,

each class is represented by a unique Coleff-Herrera current. Another
reason is that there is a close connection between Coleff-Herrera cur-
rents and Noetherian differential operators. Moreover, Coleff-Herrera
currents (of bidegree (n, p)) are natural generalizations of Abelian dif-
ferentials.

3.1. The monomial case. Let t be coordinates in Cn. Let α be
a smooth form. We know that each expression

(3.3)
[
α ∧ 1

tm1
1

· · · 1

tmk
k

∂̄
1

t
mk+1

k+1

∧ . . . ∧ ∂̄ 1

t
mp
p

]
has a well-defined meaning as a current, since it is just the tensor
product of one-variable currents, and that its action on a test form φ
can be computed as the value at λ = 0 of the function

λ 7→
∫ |v1t

a1
1 |2λ · · · |vkt

ak
k |2λ∂̄|vk+1t

ak+1

k+1 |2λ ∧ ∂̄|vpt
ap
p |2λ ∧ α ∧ φ

wm1
1 · · · tmp

p
,

where vj are any nonvanishing functions. It follows from Corollary 1.3
that[
∂̄

1

t
αp
p
∧ . . . ∧ ∂̄ 1

tα1
1

]
∧ dtα1

1 ∧ . . . ∧ dtαp
p

(2πi)p
=

α1[t1 = 0]⊗ . . .⊗ αp[tp = 0] = α1 · · ·αp[t1 = · · · = tp = 0].

In the sequel we will skip the brackets in (3.3). It is clear that (3.3)
iss commuting in the principal value factors and anti-commuting in the
residue factors.

If α has compact support we say that (3.3) is an elementary current.
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It is readily shown that if τ is elementary as in (3.3), then

∂̄τ =
k∑
1

α ∧ 1

tm1
1

· · · 1

t
mj−1

j−1

1

t
mj+1

j+1

· · · 1

tmk
k

∂̄
1

t
mj

j

∧ ∂̄ 1

t
mk+1

k+1

∧ . . . ∧ ∂̄ 1

t
mp
p

+

∂̄α ∧ 1

tm1
1

· · · 1

tmk
k

∂̄
1

t
mk+1

k+1

∧ . . . ∧ ∂̄ 1

t
mp
p

and thus a finite sum of elementary currents. In the same way for ∂τ .

Notice that if α is of the form t̄να
′ for ν ≤ k, then τ vanishes.

3.2. Pseudomeromorphic currents. We now introduce a class
of currents that we call pseudomeromorphic. They share some impor-
tant properties with the space of normal currents; a main feature is
that a pseudomeromorphic current µ must vanish if its support is too
small compared to its degree. We shall also see that a pseudomero-
morphic current admits a reasonable restriction µ1Z to any subvariety
Z. It turns out that many interesting currents that appear in the
multi-variable residue theory are indeed pseudomeromorphic.

Let U be an open set in a complex manifold X and let π1 : U1 →
π1U1 ⊂ U , πk+1 : Uk+1 → πk+1Uk+1 ⊂ Uk, k ≤ N , be a finite sequence
of modifications, and assume that τ is an elementary current in UN .
Then

(3.4) π1
∗ · · ·π`

∗τ

is a current in U with compact support. We define PM(U) as the
space of locally finite sums of currents of this type. For simplicity we
write π∗ for π1

∗ · · ·π`
∗. Then each T ∈ PM(U) can (locally in U) be

written as

T =
∑

π∗τ`

where π denote possibly different sequences of modifications and τ` are
elementary. To be precise we should keep indices even on π∗ but for
simplicity we suppress balbla.

It is easy to see that this defines a sheaf PM over X. Recall that
if τ is an elementary current, then ∂̄τ is a finite sum of elementary
currents. Since moreover ∂̄ commutes with push-forwards it follows
that PM is closed under ∂̄. In the same way it is closed under ∂.
Moreover, if ξ is a smooth form, then

ξ ∧ π1
∗ · · ·πν

∗τ = π1
∗ · · ·π`

∗((π
1)∗ · · · (πν)∗ξ ∧ τ)

so PM is closed under multiplication with smooth forms.
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Proposition 3.1. Assume that T ∈ PM has support on the vari-
ety V and that h is a holomorphic function that vanishes on V . Then
h̄T = dh̄ ∧ T = 0.

Proof. Consider an elementary residue current τ in the coordi-
nates t. Locally in Uν we can make take a resolution of singulari-
ties πν+1 : Uν+1 → πν+1Uν+1 ⊂ Uν such that each (πν+1)∗tj as well as
(πν+1)∗(πν)∗ · · · (π1)∗h are monomials times non-vanishing. It follows
that we have a representation (3.4) of T such that the pullback of h is
a monomial times nonvanishing for each `.

Now

|h|2λπ1
∗ · · ·πν

∗τ = π1
∗ · · ·πν

∗ |(πν)∗ · · · (π1)∗h|2λτ).

Notice that the analytic continuation to λ = 0 of

|(πν)∗ · · · (π1)∗h|2λτ)

exists and is equal to τ if none of the coordinates in the residue factors
of τ is a factor in π∗h and zero if at least one of these coordinates is a
factor in π∗h. We thus have a decomposition

T =
∑

`

π∗τ
′
` +
∑

`

π∗τ
′′
`

where the first sum contains precisely those τ` that have a residue
coordinate as one of the factors in π∗h.

Since h vanishes on the support of T it follows that |h|2λT = 0 for
Reλ >> 0. It follows that

0 = |h|2λT |λ=0 =
∑

`

π∗τ
′′,

and hence
T =

∑
π∗τ

′.

Since π̄∗hτ ′` = dπ̄∗h ∧ τ ′` = 0, the proposition follows. �

Precisely as in the proof of Theorem 2.3 we get

Theorem 3.2. If T ∈ PM has bidegree (k, p) and has support on
a variety V with codimV > p, then T = 0.

In fact, locally Zreg = {w1, . . . , wp+1 = 0} and by ???? we have
that dw̄j ∧ T = 0 for j = 1, . . . , p + 1. Since T has bidegree (0, p) it
follows that T must vanish. Thus the support must be contained in
Z \ Zreg which has codimension at least p+ 2, and by finite induction
we conclude that T = 0.

We have the following analogue of Theorem 2.6.
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Theorem 3.3. Assume that V is a subvariety with pure codimen-
sion p. If µ is is pseudomeromorphic of bidegree (∗, p) with support on
V and ∂̄µ = 0 then µ is a Coleff-Herrera current on Z.

We will see later on that each Coleff-Herrera current is pseudomero-
morphic.

Proof. We alrady know from Proposition 3.1 that µ is annihi-
lated by ĪV so we just have to check the SEP. Let h be a function
not vanishing identically on any irreducible component of Z. As in
the proof of Proposition 3.1 one verifies that |h|2λµ|λ=0 exists and is
pseudomeromorphic. Then

T = µf − |h|2λµf |λ=0

must have its support contained in Y = Z ∩ {h = 0} which has codi-
mension p+ 1 and so it must vanish, i.e., the SEP holds. �

3.3. Coleff-Herrera-Passare products. It is comparatively easy
(Malgrange) to prove existence of a current U such that fU = 1. Obs
clear that ψ ∈ (f) if and only if ψ∂̄U = 0.

A specific choice of such a current is the principal value current[ 1

f

]
.ξ = lim

ε

∫
|f |>ε

ξ

f
.

However, the existence of this current is highly nontrivial, and for the
general case there is no known argument that does not involve Hiron-
aka’s theorem. (kolla Mazzilli!!) It follows by Stokes’ theorem that

∂̄
[ 1

f

]
.ξ = lim

ε

∫
|f |=ε

ξ

f
.

Let χ(t) be the characteristic function for the interval [1,∞). Then

∂̄
[ 1

f

]
= lim

ε→0

∂̄χ(|f |/ε)
f

.

Therefore if we have f1, . . . , fm it is natural to try to define[
∂̄

1

f1

∧ . . . ∧ ∂̄ 1

fp

]
as

lim
ε→0

∂̄χ(|f1|/ε)
f1

∧ . . . ∧ ∂̄χ(|fm|/ε)
fm

,

that is,

(3.5)
[
∂̄

1

f1

∧ . . . ∧ ∂̄ 1

fp

]
.ξ = lim

ε→0

∫
|fj |=εj

ξ

f1 · · · fp

.
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This was done by Coleff and Herrera in (year) bala. However, to make
sure that the limit exists they assumed that εj+1/εj tends to zero fast,
for all j.

They also showed that it is anticommutative in the factors of f
defines a complete intersection. Passare showed that OK outside some
sectors; later on counterexamples, Passare-Tsikh even for m = 2 and
complete intersection. JEB proved non-existence is “generic”. However
Samuelsson recently showed that if let χ be a smooth approximand then
the unrestricted limit exists, at least for m ≤ 3. Here to begin with
we will stick to the analytic continuation definition instead. For the
equivalence, see Subsection 3.11 below??. It is therefore natural with
the following definition.

Theorem 3.4. For a general holomorphic mapping f = (f1, . . . , fm)
one can define a current

(3.6) τ =
[ 1

fp+1 · · · fm

∂̄
1

f1

∧ · · · ∧ ∂̄ 1

fp

]
as the value at λ = 0 of

(3.7) τλ =
|fp+1 · · · fm|2λ∂̄|f1|2λ ∧ . . . ∧ ∂̄|fp|2λ

f1 · · · fm

(a priori a well-defined current if Reλ >> 0) and we have the following
properties:

(o) τ is a pseudomeromorphic current.

(i) τ is anti-commuting in the indices 1, . . . , p and commuting in the
other ones.

(ii) The formal Leibniz’ rule holds, i.e.,

∂̄τ =
m∑

j=p+1

[ 1

fp+1 · · · f̂j · · · fm

∂̄
1

fj

∧ ∂̄ 1

f1

∧ · · · ∧ ∂̄ 1

fp

]
.

(iii) If fp+1 is nonvanishing, then

fp+1τ =
[ 1

fp+2 · · · fm

∂̄
1

f1

∧ · · · ∧ ∂̄ 1

fp

]
and if f1 is non-vanishing, then τ = 0.

(iv) The support of τ is contained in Y = {f1 = · · · = fp = 0}.
(v) If h is holomorphic, then |h|2λτ has an analytic continuation to
λ = 0.

(vi) If h is holomorphic and vanishing on Y , then h̄τ = 0 and dh̄∧τ =
0.
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Example 3.1. If s is a complex variable then a simple computation
reveals that

(3.8) |s|2b∂̄|s|2a =
a

a+ b
∂̄|s|2a+2b.

Moreover, we notice that

λ 7→ |s|2λ
[ 1

sm

]
a priori defined for Reλ >> 0, has an analytic current-valued continu-
ation to Reλ > −1, and the value at λ = 0 is precisely [1/sm]. In fact,
by Prop ??? (??), for Reλ large,

|s|2λ
[ 1

sm

]
= |s|1λ−2ms̄msm

[ 1

sm

]
= |s|1λ−2ms̄m = |s|2λ/sm.

�

Proof. We can assume thatX is so small that we have a resolution
π : X̃ → X such that locally in X̃, π∗fj = ujµj, where µj are monomials
and uj are nonvanishing. For Reλ >> 0 with a suitable partition of

unity ρj on X̃, since π−1(suppφ) is compact, we have for Reλ >> 0
that ∫

X

τλ ∧ φ =

∫
X̃

π∗τλ ∧ π∗φ =
∑

j

∫
π∗τλρj ∧ π∗φ,

where

(3.9)

∫
π∗τλρj ∧ π∗φ =∫
|up+1µp+1 · · ·umµm|2λ∂̄|u1µ1|2λ ∧ . . . ∧ ∂̄|upµp|2λ ∧ α ∧ π∗φ

µ1 . . . µm

,

and α is smooth with compact support. By repeated use of (3.8) and
the observations in Subsection 3.1, it follows that (3.9) has an analytic
continuation to Reλ > −ε. Thus (3.7) has a current valued analytic
continuation to Reλ > −ε. Moreover, it follows that the value at λ = 0
of (3.9) coincides with the value at λ = 0 of∫

|µp+1 · · ·µm|2λ∂̄|µ1|2λ ∧ . . . ∧ ∂̄|µp|2λ ∧ α ∧ π∗φ
µ1 . . . µm

.

Expanding each expression ∂̄|µi|2λ and using ablbala we can conclude
that in fact τ is indeed pseudomeromorphic.

The properties (i) and (ii) are immediate from the definition. Now
notice that if v is non-vanishing, then λ 7→ vλτλ and ∂̄vλ ∧ τ are both
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holomorphic for Reλ ≥ −ε and the values at λ = 0 are τ and 0,
respectively. In fact,

vλ′
τλ.φ = τλ.vλ′

φ

is holomorphic for λ′ ∈ C and Reλ > −ε, and the value at λ′ = λ = 0
is equal to τ.φ. In the same way, ????? Taking v = |fp+1|2 we now get
the first statement in (iii). The second one follows in a similar way.

It follows from (iii) that τ vanishes where fj 6= 0, for j = 1, . . . , p
and hence (iv) holds.

Properties (v) and (vi) follows immediately from Proposition ???
and its proof since τ is pseudomeromorphic.

�

Example 3.2. Let f2(z) = z2
1 and f1(z) = z1z2. Then, for instance,

we have that

z1z2

[ 1

z1z2

∂̄
1

z2
1

]
=
z1z2|z1z2|2λ∂̄|z1|4λ

z1z2z2
1

∣∣∣
λ=0

=

=
2

3

|z2|2λ∂̄|z1|6λ

z2
1

∣∣∣
λ=0

=
2

3
∂̄

1

z2
1

.

�

The point here is that f1 and f2 have a common factor. However,
in the complete intersection case this phenomenon never occurs; it is
indeed possible to cancel any denominator by multiplication.

Theorem 3.5. Assume that f is a complete intersection. Then

(3.10) fp+1

[
1

fp+1 · · · fm

∂̄
1

f1

∧ · · · ∧ ∂̄ 1

fp

]
=[

1

fp+2 · · · fm

∂̄
1

f1

∧ · · · ∧ ∂̄ 1

fp

]
and

(3.11) fp

[
1

fp+1 · · · fm

∂̄
1

f1

∧ · · · ∧ ∂̄ 1

fp

]
= 0.

Proof. Let T be the difference between the left and right hand
sides in (3.10). From Theorem 3.4 follows that T has its support on
the set Z = {f1 = · · · = fp = fp+1 = 0}, and by the assumption of a
complete intersection, Z has codimension p+1. Since T is pseudomero-
morphic of bidegree (0, p) it follows that it must vanish and therefore
(3.10) holds.
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By Leibniz’ rule,[ 1

fp+1 · · · fm

∂̄
1

f1

∧ . . . ∧ ∂̄ 1

fp

]
= ∂̄

[ 1

fpfp+1 · · · fm

∂̄
1

f1

∧ . . . ∧ ∂̄ 1

fp−1

]
−[ 1

fp

∂̄
1

fp+1 · · · fm

∧ ∂̄ 1

f1

∧ . . . ∧ ∂̄ 1

fp−1

]
.

Since ∂̄ commutes with multiplication with fk+1, (3.10) and a new
application of Leibniz’ rule gives (3.11). �

Theorem 3.6. Let f be a complete intersection. Then the Coleff-
Herrera product

µf =
[
∂̄

1

fp

∧ · · · ∧ ∂̄ 1

f1

]
is indeed a Coleff-Herrera current on Z = {f1 = . . . = fp = 0}.

Proof. It follows from Theorem 3.4 that µf has its support on Z
and that it is ∂̄-closed, and since it is pseudomeromorphic it follows
from balblaa that it is Coleff-Herrera. �

Example 3.3. Let Z be a variety of pure codimension p, then [Z]
is in CHZ . In fact, we only have to check SEP. If Z is smooth, it is
clear that |h|2λ[Z] has an analytic cont and = [Z] at λ = 0. In general
use π : Z̃ → Z. Also see ξ 7→ [Z].Qξ where Q holo dif operator is in
CHZ . Will see that essentially all CHZ of this form �

Remark 3.1 (Resolutions and dimension of subvarieties). In a res-
olution π : X̃ → X, the inverse image Ỹ of a variety Y in X is (usually)
a hypersurface in X̃ so any assumption about big codimension, e.g., an
assumption about complete intersection, will necessarily be destroyed.
However, it will be reflected on the pullback of a test form in the follow-
ing way. Any smooth (0, q)-form ψ can locally be written ψ =

∑
ν ψνω̄ν ,

where ων are holomorphic (0, q)-forms and ψν are smooth. Now assume
that the complex dimension of Y is smaller than q, so that (the pull-
back of) ψ vanishes of Y for degree reasons. Moreover, assune that s
is a local coordinate function in X̃ such that {s = 0} ⊂ Ỹ . Then π∗ων

is holomorphic and vanishes on the hyperplane {s = 0} and therefore
it is a sum of terms, each of which is either divisible by s or by ds. It
follows that ψ̃ is a sum of terms each of which is a smooth form times
s̄ or a smooth form times ds̄. �

Example 3.4. Let X = C2
z,w and Y = {0} and let X̃ be the blow-

up at 0, and assume that z = s, w = st, so that Ỹ = {s = 0}. Then
π∗dw̄ = d̄t̄+ s̄dt̄, so both kind of terms may appear. �



106 4. BASIC RESIDUE THEORY

3.4. The duality theorem. Let f = f1, . . . , fp be a complete in-
tersection on some complex manifold X and let µf be the associated
Coleff-Herrera product. It follows from Theorem 3.5 that the ideal
sheaf (f) generated by f is contained in the annihilator sheaf annµf .
We shall now prove that we in fact have equality (first proved inde-
pendently by Passare and Dickenstein-Sessa in 1985). This also follows
from Theorem 3.5 in combination with the exactness of the sheaf com-
plex

(3.12) 0 → O → C0,0 ∂̄→ C0,1 ∂̄→

and some homological algebra. However, to make the argument con-
ceptually ??? it is convenient to consider f as a section of a (trivial)
holomorphic vector bundle.

Thus E be a trivial vector bundle of rank p with global frame
e1, . . . , ep and let e∗j be its dual frame for the dual bundle E∗. If we con-
sider f =

∑
j fje

∗
j as a section of the dual bundle, it induces a mapping

δf on the exterior algebra ΛE. We will also consider differential forms
and currents with values in Λ. For instance E0,k(Λ

`E) is the sheaf of
smooth (0, k)-forms with values in Λ` which we consider as a subsheaf
of the sheaf of the bundle Λ(E ⊕ T ∗(X)). For the reader not familiar
with vector bundle formalism, a section of E0,k(Λ

`E) is just a formal
expression

v =
′∑

|I|=`

fI ∧ eI

where fI are smooth (0, k)-forms, and with the convention that dz̄j ∧
ej + −ej ∧ dz̄j etc. In the same way we have the sheaf C0,k(Λ`E) etc.
Notice that both ∂̄ and δf acts as anti-derivations on these sheaves,
i.e.,

∂̄(f ∧ g) = ∂̄f ∧ g + (−1)deg ff ∧ ∂̄g
if at least one of f and g is smooth, and similarly for δf . Moreover, it
is straight forward to check that

(3.13) δf ∂̄ = −∂̄δf .

This means that we have a so-called double complex, and the operator
on the total complex is

∇f = δf − ∂̄.

It is also an anti-derivation, and because of (3.13) we have that

(3.14) ∇2
f = 0.
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If Lk = ⊕jE0,j−k(Λ
jE), then ∇f : Lk → Lk+1. In view of the exactness

of (3.12), the double complex C0,k(Λ`E) is exact in the k-direction
except at k = 0 where we have the cohomology sheaf O(Λ`). Notice
that a holomorphic function φ is in the ideal J if and only if δfψ = φ
has a solution ψ ∈ O(Λ1E). By standard homological algebra it follows
that the natural mapping

Ker δf
O(Λp−kE)/δfO(Λp−k+1E) → Ker∇f

Lk/∇fLk−1

is an isomorphism. We can just as well replace E with C. In particular,
the case k = 0 has the following two useful implications.

Lemma 3.7. If there is a current solution V to ∇fV = φ, then
locally φ belongs to the ideal J = (f). If µ∧ e ∈ C0,p(ΛpE) and ∇f (µ∧
e) = 0, then there is a function ψ ∈ O, unique in O/J , such that
∇fV = ψ − µ has a solution.

For the reader’s convenience we supply a direct proof.

Proof. Let V = V1 + . . . + Vp, where Vk ∈ C0,k−1(ΛkE). Then
∂̄Vp = 0 and since (3.12) is exact locally we can solve ∂̄Wp = Vp. Now,
∂̄[Vp−1 + δfWp] = ∂̄Vp−1 − δf ∂̄Wp = ∂̄Vp−1 − δfVp = 0 and so we can
solve ∂̄Wp−1 = Vp−1 + δfWp. Continuing in this way we finally get that
ψ = V1 + δfW2 is a holomorphic solution to δfψ = φ. The second
statement is proved in a similar way. �

Consider the current

(3.15) V =
[ 1

f1

]
e1 +

[ 1

f2

∂̄
1

f1

]
∧ e1 ∧ e2+[ 1

f3

∂̄
1

f2

∧ ∂̄ 1

f1

]
∧ e1 ∧ e2 ∧ e3 + · · ·

A a simple computation, using Theorem 3.5, yields that

∇fV = 1− µf ∧ e,
where e = e1 ∧ . . . ∧ ep.

Proposition 3.8. Let f be a complete intersection and assume
that ∇fU = 1− µ ∧ e. Then annµ = J .

Proof. If φ ∈ annµ, then∇fUφ = φ−φµ∧e = φ and hence φ ∈ J
by Lemma 3.7. Conversely, if φ ∈ J , then there is a holomorphic ψ such
that φ = δfψ = ∇fψ and hence φµ = ∇fψ ∧ µ = ∇f (ψ ∧ µ) = 0. �

Theorem 3.9 (Duality theorem). If f is a complete intersection,
then annµf = (f).



108 4. BASIC RESIDUE THEORY

Remark 3.2. Assume that X is a Stein manifold. Then the com-
plex of global sections induced by (3.12) is exact, and hence the du-
ality result holds globally on X, i.e., a global holomorphic function φ
is in the ideal generated by f1, . . . , fm in the ring O(X) if and only if
φµf = 0. �

3.5. A uniqueness result. We shall now see that µf is the unique
current in CHZ such that µf ∧ e is ∇f -cohomologous to 1, but first we
need a simple but important lemma.

Lemma 3.10. If µ is in CHZ and for each neighborhood ω of Z
we have locally current W with support in ω such that ∂̄W = µ, then
µ = 0.

The proof will also provide a description of µ locally on Zreg. Later
on we will see that a similar description holds even across the singular
part.

Proof. In fact, locally on Zreg can choose coordinates (z, w) such
that Z = {w = 0}. Since w̄jµ = 0 and ∂̄µ = 0 it follows that dw̄j ∧µ =
0, j = 1, . . . , p, and hence µ = µ0dw̄1∧ . . .∧dw̄p. We claim that locally

(3.16) µ =
∑
|α|<M

aα(z)∂̄
1

wα1+1
1

∧ . . . ∧ ∂̄ 1

w
αp+1
p

,

where aα(z) are holomorphic functions. In fact, let aα be the push-
forwards of wαdw∧µ under the projection (z, w) 7→ z, i.e., if ψ(z)dz∧dz̄
is a test form, then

(3.17) aα.ψ(z)dz ∧ dz̄ = µ.wαdw ∧ ψ(z)dz ∧ dz̄.

To prove that (3.16) holds, it is enough to check the equality on test
forms of the type ξ(z, w)dw ∧ dz̄ ∧ dz. Applying the right hand side of
(3.16) to the test form we get

(3.18)

∫
z

∑
|α|<M

aα(z)
∂α

wξ(z, 0)

α!
dz ∧ dz̄.

On the other hand, by Taylor’s formula,

ξ(z, w) =
∑
|α|<M

∂α
wξ(z, 0)

α!
wα + · · ·+O(|w|M),

where · · · denote terms containing some factor w̄j, and if we apply µ
to ξdw ∧ dz̄ dz we again get (3.18) in view of (3.17). Since ∂̄µ = 0, it
follows that ∂̄aα = 0 and so aα are holomorphic.



3. COLEFF-HERRERA CURRENTS 109

Notice that by the ????? we have

∂̄
1

wα1+1
1

∧ . . . ∧ ∂̄ 1

w
αp+1
p

∧ dwα1+1
1 ∧ . . . ∧ dwαp+1

p /(2π)p = [Z].

We have (for |β| = M) that

∂̄(γ ∧ dwβ) = aββ1 · · · βp[V ].

However, if ν is the component of γ ∧ dwβ of bidegree (p, p− 1) in w,
then we must have

dwν = ∂̄wν = aββ1 · · · βp[V ].

Integrating with respect to w we now get that aβ(z) = 0. By finite
induction we can conclude that µ = 0. Thus µ vanishes on Zreg and
by the standard extension property follows that µ = 0. �

Theorem 3.11. Let f be a complete intersection. If ∇fU = 1−µ∧e
and µ ∈ CHZ, then µ is equal to the CH product µf .

It can of course also be stated: If ∇fW = τ ∧ e and τ ∈ CHZ , then
τ = 0.

Proof. Let ω be any neighborhood of Z and take a cutoff function
χ that is 1 in a neighborhood of Z and with support on ω. Let σ =∑

j(f̄j/|f |2)ej. Then

u =
σ

∇fσ

is smooth outside Z and clearly ∇fu = 1 there. Thus

g = χ− ∂̄χ ∧ u
is a smooth form in ω and ∇fg = 0. Moreover, g0 = 1 in a neighbor-
hood of Z. Therefore,

∇f [g ∧ (U − V )] = g0(µ
f − µ) ∧ e = (µf − µ) ∧ e,

and therefore we have a solution to ∂̄W = µf − µ with support in ω.
In view of Lemma 3.10 we have that µ = µf . �

Proposition 3.12. Let J = (f) be a complete intersection ideal
and assume that µ ∈ CHZ and that Jµ = 0. Then there is a holomor-
phic function ψ, unique in O/J , such that

µ = ψµf .

Proof. From the assumptions follows that ∇fµ = 0. In view of
Lemma 3.7 we have U such that ∇fU = ψ − µ ∧ e. Now take V such
that ∇fV = 1− µf ∧ e. Then ∇f (ψV ) = ψ − ψµf ∧ e. It now follows
from Theorem 3.11 that µ = ψµf . �
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3.6. Local structure of Coleff-Herrera currents.

Proposition 3.13. Suppose that Z has pure codimension p and Z ′

is a union of irreducible components of Z. Then CHZ′ is precisely the
currents in CHZ that have support on Z ′.

Proof. Clearly CHZ′ ⊂ CHZ . Conversely, if µ ∈ CHZ has sup-
port on Z and ψ ∈ IZ′ we have to check that ψ̄µ = 0. Let φ vanish
on Z \Z ′ but not identically on Z ′. Then φψ vanishes on Z and hence
φ̄ψ̄µ = 0. It follows that ψ̄µ = 0 has support on Z ′ ∩ {φ = 0}, and by
SEP it follows that it vanishes identically. �

allting r pa groddniva !!

Proposition 3.14. Let Z be a union of irreducible components of
Z ′. Then CHZ coincides with the set of currents µ in CHZ′ such that
µ has support on Z.

Proof. Clearly CHZ ⊂ CHZ′ . We must check that if µ ∈ CHZ′

has support on Z and ψ vanishes on Z then ψ̄µ = 0. However, ψ̄µ
clearly has support on Z, and moreover, it must vanish on Zreg so it
therefore has support on Z ′ \ Z ′

reg. Take h that vanishes on this set

but not identically on any irreducible component of Z ′. Then |h|2λψ̄µ
vanishes for Reλ >> 0, and hence at λ = 0, but on the other hand, by
SEP the value at 0 is equal to h̄µ. �

Any Z of pure codim p is subset of a complete intersection Zf ; this
follows from structure and balbala.

It now follows that any CH-current locally is a holomorphic function
times a Coleff-Herrera product, as was first noticed by Björk.

Theorem 3.15 (Local structure theorem). Let Z be any variety of
pure codimension p. Any µ ∈ CHZ is locally of the form ψµg where g
is complete intersection.

Proof. Any Z of pure codim p is subset of a complete intersection
Zf ; this follows from structure and balbala. For sufficiently large k,
g = (fk

1 , . . . , f
k
p ) will annihilate µ ∈ CHZ and hence µ = ψµg according

to Proposition 3.12. �

Example 3.5. It follows that there is a holomorphic (p, 0)-form A
such that

A ∧ µg = [Z].

�
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3.7. Exactness of the Koszul complex. Let now φ be a section
of O(ΛkE) such that δfφ = 0 and assume that k ≥ 1. If we let V be a
solution of ∇V = 1− µf ∧ e, then clearly

∇V ∧ φ = (1− µf ∧ e) ∧ φ = φ,

for simple degree reasons, and by (a simple variant of) Lemma 3.7 we
get a holomorphic solution of δfψ = φ. Thus we have

Proposition 3.16. If f is a complete intersection then the sheaf
complex

0 → O(ΛpE) → O(Λp−1E) → . . .→ O(Λ1E) → O → O/J → 0

is exact.

3.8. Bochner-Martinelli type residues. Kan ses som medel-
varden av olika CH !!

Let f =
∑
fje

∗
j . To begin with we do not assume that f is a

complete intersection. We now choose a Hermitian metric on E; if we
consider E as a vector bundle over X the metric may very well vary
with the point z. If we fix a basis e1, . . . , ep of E, (holomorphic frame if
we use the vector bundle point of view) we can take the trivial metric
with respect to this frame, i.e., balbla.

Let

σ =
∑

j

σjej

be the pointwise minimal solution to fσ = 1 in X \ Z. If the metric
on E∗ is given by the Hermitian positively definite matrix hjk, so that

|f |2 =
∑
jk

fj f̄khjk,

then it is easily checked that

σj =
∑

k

f̄khjk

|f |2
.

In X \ Z we define

u =
σ

∇fσ
= σ + σ ∧ ∂̄σ + . . . σ ∧ (∂̄σ)p−1.

It follows immediately that

∇fu = 1

in X \ Z.



112 4. BASIC RESIDUE THEORY

Theorem 3.17. The function λ 7→ |f |2λu has a current valued
analytic continuation to Reλ > −ε. The value at λ = 0,

U = |f |2λu|λ=0,

is a current extension of u across Z and

∇fU = 1−R,

where

R = ∂̄|f |2λ ∧ u|λ=0

is a current with support on Z. It is annihilated by h̄ and dh̄ for h ∈ IZ.
If codimZ = p′, then

R = Rp′ + · · ·+Rp.

If |φ| ≤ C|f |k, then φRk = 0.

Proof. If f = f0f
′ = f0(f

′
1, . . . , f

′
p), where f ′ 6= 0, then

σ =
1

f0

σ′

where σ′ is smooth across Z. In fact, f̄k = f̄0f̄
′
k and |f |2 = |f0|2|f ′|2 so

that σj =
∑

k f̄
′
khjk/f0. Thus

(3.19) uk = σ ∧ (∂̄σ)k−1 =
α

fk
0

,

where α is smooth.
Both the definition and the statement is clearly local and therefore

we can assume that the bundle E is trivial in U ⊂ X. Using a Hironaka
resolution π : Ũ → U followed by suitable toric resolutions πj : Ũ j →
πj(Ũj) ⊂ Ũ we have∫

U
|f |2λuk ∧ φ =

∫
Ũ

∑
j

|π∗f |2λ(π∗uk)ρj ∧ π∗φ =

∑
jk

∫
Ũj

|(πj)∗π∗f |(πj)∗π∗uk ∧ (πj)∗π∗φ.

If we for each j choose a suitable partition of unity ρjk we have a local
coordinate system t in a neighborhood of the support of each ρjk such
that (πj)∗π∗f = f0f

′ there, where f0 is a monomial in t and f ′ is
non-vanishing. In view of (3.19) each terms is like∫

|f0|2λ|f ′|2λαj

fk
0

∧ (πj)∗π∗φ,

and thus the proposed analytic continuation exists.
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there, where f0 is a monomial in t and f ′ is non-vanishing. In
view of ??? it is now clear that the analytic continuation exists and
moreover, that ∫

U
|f |2λuk ∧ φ|λ=0 =

∑
`

τ` ∧ (πj)∗π∗φ,

where each τ` has the form

τ =
α

ta1
1 · · · tar

r

in suitable local coordinates t, where α has compact support. Thus we
have that

(3.20) Uk =
∑

`

π∗π
`
∗τ`.

Moreover,

τ = ∂̄
1

ta1
1

∧ α

ta2
2 · · · tar

r

Since

(3.21) ∇(|f |2λu) = |f |2λ − ∂̄|f |2λ ∧ u

and clearly |f |2λ has a continuation to Reλ > −ε which is 1 for λ = 0,
the desired continuation of the last term follows, and if we define the
currents U and Rf as the values of the corresponding terms at λ = 0,
then (??) follows from (3.21). In particular, it follows that Rf has
support on Y .

Follows that Rk is in PM and hence since support on Y must vanish
if balbalbal

Thus we have that

(3.22) Rk =
∑

`

π∗π
`
∗τ`.

τ = ∂̄
1

ta1
1

∧ α

ta2
2 · · · tar

r

It now follows that

Finally; if |h| ≤ C|f |k, then in a resolution where π∗f = f0f
′ and

π∗h, where f0 and π∗h are monomials, we must have that fk
0 divides h

and hence blabla vanishes. �

Corollary 3.18. If φ ∈ O and φR = 0, then φ ∈ (f).

The algebraic meaning and generalizations will be discussed in ????
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Theorem 3.19 (Briançon-Skoda). Suppose that f = (f1, . . . , fm)
and φ are germs at 0 such that |φ| ≤ |f |min(m,n). Then φ ∈ (f).

Notice that if f is a complete intersection then R = Rp and ∂̄R = 0.
Moreover, it is easily checked precisely as for the CH product, that Rp

has SEP. In view of Theorem ??? we thus have

Theorem 3.20. If f is a complete intersection then

R = Rp = µf ∧ e1 . . . ∧ ep,

where µf is the CH product

µf = ∂̄
1

fp

∧ . . . ∧ ∂̄ 1

f1

.

We can now use the invariance of the current R to get

Proposition 3.21 (Transformation law). If g is a holomorphic
invertible p× p matrix and f ′ = gf , then

∂̄
1

f ′p
∧ . . . ∧ ∂̄ 1

f ′1
= det g∂̄

1

fp

∧ . . . ∧ ∂̄ 1

f1

.

Proof. In fact, let e′ the frame such that e∗f = (e′)∗gf . Then
e′ = egT and hence, since by the invariance

µf ∧ e1 ∧ . . . ∧ ep = µgf ∧ e′1 ∧ . . . ∧ e′p
and e′1 ∧ . . . ∧ e′p = det gT e1 ∧ . . . ∧ ep, the proposition follows. �

Now fix a frame ej and choose the trivial metric. (Kommer att kika
pa invarianta versioner langre fram)

3.9. Factorization of Lelong currents.

Theorem 3.22. Let f = f1e
∗
1 + · · · + fpe

∗
p be a holomorphic and

df = df1 ∧ e∗1 + · · · dfp ∧ e∗p, and R wrt trivial metric. Then

Rk · (df)k/(2πi)
k = (ddc log |f |)k1Z ,

where · denote the natural contraction between ΛkE and ΛkE∗.

Corollary 3.23. If codimZ = p, then

Rp · (df)p/(2πi)
p =

∑
j

αj[Z
p
j ]

If f is a complete intersection, then R = µf ∧e1 . . .∧ep and (df)p =
df1 ∧ . . . ∧ dfp ∧ ep ∧ . . . ∧ e1 and by ??? we therefore have
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Corollary 3.24. If f is complete intersection, then

∂̄
1

fp

∧ . . . ∧ ∂̄ 1

f1

∧ df1 ∧ . . . ∧ dfp

(2πi)p
=
∑

j

αj[Zj].

Proof. Obs that Rk is the value at λ = 0 of

∂̄|f |2λ ∧ ukdbar|f |2λ ∧ f̄ · e ∧ (df̄ · e)k−1

|f |2k

Notice that the contraction means that each occurrence of ej in uk is
replaced by dfj. Since σ =

∑
j f̄jej etc we have that it is the value at

λ = 0 of

∂̄|f |2λ ∧ ∂|f |2

|f |2
∧
(
∂̄
∂|f |2

2πi|f |2
)k−1

.

However, this is precisely Af
k,λ so the statement follows from Lemma

??? �

3.10. Restrictions of pseudomeromorphic currents. Let T ∈
PM and Z any subvariety. If h is a tuple

3.11. Various definitions of the CH product. Obs that all the
abstrct stuff about CHZ only uses SEP to ensure that µ is determined
by its values on Zreg. Hence we can just as well start with the BM
current Rf and prove that any abtract CH current of the form αRf .

Theorem 3.25. Let µ be BM-current. Then

limχ(|h|/ε)µ = µ

if either χ is a smooth cutoff or h is any such that h, f complete inter-
section, or χ charact function, and h = 0 contains Z \ Zreg.

Proposition 3.26. Let χ be a fixed function as above. The class
of ∂̄-closed (0, p)-currents µ with support on Z that are annihilated by
ĪZ and satisfy (??) coincides with our class CHZ.

Sketch of proof. Let f be a complete intersection such that
Z is a union of irreducible components of Zf , and let µf

BM be the
Bochner-Martinelli residue current. We first show that this current
satisfies (??). In fact, µf

BM is the push-forward of simple current of the
form (??) above.

We may also assume where h = τ b1
i1
· · · τ bk

ik
. However, by a standard

argument the push-forward of this term will vanish if τ1 is one of τi` .
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Therefore, the existence of the product in (??) and the equality follow
from the simple observation that

(3.23)

∫
|s1,...,sµ

χ(|sc1
1 · · · scµ|/ε) ψ(s)

sγ1

1 · · · s
γµ
µ
→ pv

∫
s1,...,sµ

ψ(s)

sγ1

1 · · · s
γµ
µ
.

Let temporarily CHclass
Z denote the class of current defined in the

proposition. Clearly any current αµf
BM where α is holomorphic and

vanishing on Zf \ Z, belongs to this class. Moreover, it is clear that
if a current in this class vanishes on Zreg then it vanishes identically.
Therefore, the uniqueness theorem above holds for this class as well,
as is easily checked. As before it therefore follows that any current in
CHclass

Z can be written αµf
BM . It follows that CHclass

Z = CHZ . �

3.12. Noetherian differential operators.

Theorem 3.27 (Björk). Let V be a germ of an analytic variety
of pure codimension p at 0 ∈ Cn. Then there is a neighborhood Ω
of 0 such that for each µ ∈ CHV (E∗

0) in Ω, there are holomorphic
differential operators L1, . . . ,Lν in Ω such that for any φ ∈ O(E0),
µφ = 0 if and only if

(3.24) L1φ = · · · = Lνφ = 0 on V.

Proof. Let V be a germ of a variety of pure codimension p at
0 ∈ Cn. It follows from the local normalization theorem that one
can find holomorphic functions f1, . . . , fp in an open neighborhood Ω,
forming a complete intersection, such that V is a union of irreducible
components of Vf = {f = 0}, and such that

df1 ∧ . . . ∧ dfp 6= 0

on V \W where W is a hypersurface not containing any component
of Vf . By a suitable choice of coordinates (ζ, ω) ∈ Cn−p × Cp we may
assume that W is the zero set of

h = det
∂f

∂ω
.

Let
z = ζ, w = f(ζ, ω).

Since
d(z, w)

(ζ, ω)
= det

[
I 0

∂f/∂ζ ∂f/∂ω

]
= det

∂f

∂ω

so locally outside W (z, w) is a local holo coordinate system. From
???? we know that there is an M such that

µ = A
[
∂̄

1

fM
1

∧ . . . ∂̄ 1

fM
p

]
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locally in Ω \W so that

µ.ξ =

∫
w=0

∑
α<M

∂M−αA(z, 0)

∂wM−α
cα
∂αξ

∂wα

It follows that

φµ.ξ =

∫
w=0

∑
`≤M

Q`φ
∂`

∂w`
ξ,

where

Q` =
∑

`≤α≤M

∂M−αA

∂wM−α

∂α−`

∂wα−`

If this holds for all ξ ∈ D(Ω) we must have ?? that Q`φ = 0 on Z ∩ Ω
for all ` ≤M .

Now we notice that[
∂ζ
∂z

∂ζ
∂w

∂ω
∂z

∂ω
∂w

]
=

[
I 0
∂f
∂ζ

∂f
∂ω

]−1

=

[
I 0

−
(

∂f
∂ω

)−1 ∂f
∂ζ

(
∂f
∂ω

)−1

]
and hence

∂ω

∂w
=
(∂f
∂ω

)−1
=

1

h
γ,

where γ is holomorphic. It follows that

(3.25)
∂

∂wj

=
∑

k

∂ωk

∂wj

∂

∂ωk

=
1

h

∑
k

γjk
∂

∂ωk

.

It follows from (3.25) that Q` are (semi-)global differential operators
of the form Q` = L`/h

N , where L` are holomorphic. Now, φµ = 0 iff
φµ = 0 on X \W by the SEP, and this holds iff L`φ = 0 on Z \W
which by continuity holds iff L`φ = 0 on Z. �

It follows from the proof that if

Q =∼α≤M
∂M−αA

∂wM−α
cα

∂α

∂wα

then Q = L/hN for some N and hence

(3.26) µ.ξ =

∫
Z

1

hN
Lξ

for ξ with support outeside W . We now define

µ.ξ =

∫
Z

1

hN
Lξ = µ.ξ =

∫
Z

|h|2λ 1

hN
Lξ|λ=0

for general ξ.

Proposition 3.28. Then (3.26) holds across W .
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Proof. The existence of the anal cont as before. Let the rigt hand
side τ . Then T = µ− τ has support on Z ∩W . Thus |h|2λ(µ− τ) = 0
for Reλ >> 0 so enough to see that

|h|2λτ |λ=0 = τ.

However ∫
Z

1

hN
L(|h|2λξ) =

∫
Z

|h|2λ 1

hN
Lξ + · · · ,

so must see that · · · vanishes when λ = 0. Take for instance L = ∂/∂ω,
so we get a term like

λ

∫
Z

|h|2λ 1

hN+1

∂h

∂ω
Lξ

which certainly vanishes when λ = 0. �

3.13. Vanishing of Coleff-Herrera currents. If µ ∈ CHZ(X)
and X Stein, then we can solve ∂̄V = µ in X.

Theorem 3.29. Assume that X is Stein and Z ⊂ X has pure
codimension p. If µ ∈ CHZ(X) and ∂̄V = 0 in X the following are
equivalent:

(i) µ = 0.
(ii) For all ψ ∈ Dn,n−p(X \ Z) such that ∂̄ψ = 0 in some nbh of Z

we have that ∫
V ∧ ψ = 0.

(iii) There is a solution to ∂̄w = V in X \ Z.
(iv) For each neighborhood ω of Z there is a solution to ∂̄w = V in

X \ ω.

Proof. It is easy to check that (i) implies all the other conditions.
Assume that (ii) holds. Since µ = αµf by the structure theorem it
follows from the strong duality principle, [?] and [?], that α belongs to
the ideal (f) and so µ = 0. A direct argument is obtained by mimicking
the proof of Lemma 3.10 above: Locally on Zreg = {w = 0} we have
(3.16), and by choosing ξ(z, w) = ψ(z)χ(w)dwβ ∧ sz ∧ dz̄ for a suitable
cutoff function χ and test functions ψ, we can conclude successively
from (ii) that all the coefficients aα vanish, so that µ = 0 there. Hence
µ = 0 globally by the SEP. Another possible way to proceed is to use
a local ∂̄-formula to see that (ii) implies a (iv) locally.

Clearly (iii) implies (iv). Finally assume that (iv) holds. Given ξ
in (ii) we can choose ω such that ∂̄ξ vanishes in a neighborhood of ω̄.
Then ∫

V ∧ ∂̄ξ =

∫
d(w ∧ ∂̄ξ) = 0
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by Stokes’ theorem, so (ii) holds. Alternatively, given ω ⊃ Z choose
ω′ ⊂⊂ ω and a solution to ∂̄w = V in X \ω′. If we extend w arbitrarily
across ω′ the form U = V − ∂̄w is a solution to ∂̄U = µ with support
in ω. In view of Lemma 3.10 thus µ = 0. �

Notice that V defines a Dolbeault cohomology class ωµ in X\ that
only depends on µ, and that conditions (ii)-(iv) are statements about
this class.

For an interesting application, fix a current µ ∈ CHZ . Then the
theorem gives several equivalent ways to express that a given φ ∈ O
belongs to the annihilator ideal of µ. In the case when µ = µf for a
complete intersection f , one gets back the equivalent formulations from
[?] and [?].

Remark 3.3. If µ is an arbitrary (0, p)-current with support on Z
and ∂̄V = µ we get an analogous theorem if condition (i) is replaced
by:
(i)’ µ = ∂̄γ for some γ with support on Z.

This follows from the Dickenstien-Sessa decomposition µ = µCH +
∂̄γ, where µCH is in CHZ . See [?] for the case Z is a complete inter-
section and [?] for the general case. �

3.14. Local cohomology. Let J be an ideal sheaf in X of pure
codimension p and let Z be its zero set. We let C0,k

J denote the sheaf

och (0, k)-current such that Jµ = 0 and C0,k
Z the sheaf of (0, k)-current

with support on V . If the current µ is annihilated by J , then it is
clear that the support of µ must be contained in Z, i.e., C0,k

J ⊂ C0,k
Z .

Moreover, if µ has support on Z, then locally it has finite order, and
hence it must be annihilated by some power of J , see,e.g., Hö ????, so
we have

C0,k
V = ∪`C0,k

J` .

We introduce the local cohomology sheaves sheaves

Hk
J =

Ker ∂̄C
0,k
J

∂̄C0,k−1
J

and

Hk
Z =

Ker ∂̄C
0,k
Z

∂̄C0,k−1
Z

.

Let CHJ be the subsheaf of CHV of currents that are annihilated by
J . We have the following basic result.

Theorem 3.30. Let J be an ideal sheaf in X of pure codimension
p and let Z be its zero set. Then we have
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(a) Hk
Z = Hk

J = 0 for k < p.
(b) CHZ ' Hp

Z and CHJ ' Hp
J .

We will only consider the case when J is a complete intersection
here, and postpone the general case until Ch ???.

The basic ingredient in the proof is the stalkwise injectivity of the
sheaf C, due to Malgrange. More precisely: Take a current ν ∈ C(ΛkE)
and suppose that δfν = 0. If k = p this precisely means that ν = µ∧ e
where µ ∈ CJ . It is the more suprising that

Theorem 3.31 (Malgrange). If f is a complete intersection, ν ∈
C(ΛkE), k < p, and δfν = 0, then locally one can find γ ∈ C(Λk+1E)
such that δfγ = ν.

We provide a direct proof here by means of integral formulas.

Proof. �

Proof of DS1. Again consider our double sheaf complex C0,k(Λ`E).
Since we know now that it is locally (i.e., stalkwise) exact also in `-
direction, except at ` = p, we get canonical isomorphisms

(3.27)
Ker δf

O(ΛkE)

δfO(Λk+1E)
' Hp−k

J

such that ψ corresponds to ν if and only if ∇fV = ψ − ν. In view of
Proposition 3.16 the first part of (a) follows. The second part follows
by choosing high powers of J .

Now assume that k = p. We now have

(3.28) O/J → CHJ → Hp
J

where the first mapping is ψ 7→ ψµf ∧ e. The composed mapping then
coincides with the isomorphism in (3.27) since ψ − ψµf ∧ e = ∇fV ψ.
However, the second mapping in (3.28) is injective by Lemma 3.10, and
hence both mappings are isomorphisms. �

4. Exercises

Exercise 31. Show that the functions of λ in Lemma 1.4 are mero-
morphic in the whole plane with simple poles at −1,−2,−3, . . ..


