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1. IMPACT FUNCTIONS AND PLÜNNECKE’S THEOREM

Let G be a finite group and denote by mG the normalized counting (Haar) measure on G, i.e.

mG(B)= |B|
|G| , for all B ⊂G.

Given non-empty subsets A,B ⊂G, we define the product set AB of A and B by

AB = {
ab : a ∈ A, b ∈ B

}
.

We say that a set A ⊂G is a basis of order k if

Ak = A · A · · ·A =G.

Note that a proper subgroup of G can never be a basis of any order.

Given a basis A of order k in G, we wish to understand in this lecture the rough behavior of
the associated impact function ρA which is defined by

ρA(t)=min
{
mG(AB) : mG(B)≥ t

}
for 0≤ t ≤ 1.

1.1. The Erdös-Raikov Inequality. Suppose that A ⊂ G contains at least two elements. We
may assume that one of these elements is the identity and we note that

mG(AB)≥ mG(B∪aB)= mG(B)+mG(aB \ B) for all a ∈ A.

Define the ejectivity function ζA by

ζA(t)= inf
{
εA(B) : B ⊂G such that mG(B)≥ t

}
,

where
εA(B)= sup

a∈A
mG(aB \ B),

1
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so that
mG(AB)≥ mG(B)+ζA(mG(B)).

In particular, we have
ρA(t)≥ t+ζA(t), for all 0≤ t ≤ 1.

The following basic result (see the papers [1] and [5])) is sometimes referred to as the Erdös-
Raikov Inequality.

Theorem 1.1. Let G be a finite group and suppose A ⊂G is a basis of order k in G. Then

ζA(t)≥ 1
k
· t · (1− t) for all 0≤ t ≤ 1.

To prove this theorem, we shall need two lemmata.

Lemma 1.1. For any A ⊂G and for every positive integer n, we have

ζAn (t)≤ n ·ζA(t)

for all 0≤ t ≤ 1.

Proof. First note that if X ,Y and Z are subsets of G, then

mG(X \Y )≤ mG(X \ Z)+mG(Z \Y ).

In particular, if we define the function

ξ(x)= mG(xB \ B), x ∈G,

then
ξ(xy)≤ ξ(x)+ξ(y) for all x, y ∈G.

For any x1, . . . , xn, we have

mG(x1 · · ·xnB \ B)= ξ(x1 . . . xn)≤ ξ(x1)+ . . .+ξ(xn)= mG(x1B \ B)+ . . .mG(xnB \ B)

which readily implies the lemma. �

Lemma 1.2. For every finite group G, we have

ζG(t)≥ t · (1− t),

for all 0≤ t ≤ 1.

Proof. One readily verifies that∫
G

mG(B∩ xB)dmG(x)= mG(B)2

for every B ⊂G and thus there exists at least one x ∈G such that

mG(B∩ xB)≤ mG(B)2,

and thus
mG(xB \ B)= mG(B)−mG(B∩ xB)≥ mG(B) · (1−mG(B)),

which finishes the proof. �

To prove Theorem 1.1: Let A ⊂G be a basis of order k. Then, by the lemmata above, we have

ζA(t)≥ 1
k
·ζG(t)≥ 1

k
· t · (1− t)

for all 0≤ t ≤ 1.
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1.2. Plünnecke’s Inequality. In the case when G is a finite abelian group, Plünnecke [4] was
able to provide a better lower bound on the impact function for a basis of order k. In this
subsection, we shall outline the recent argument by Petridis [3] to obtain this celebrated bound.

Theorem 1.2. Let G be a finite abelian group and suppose A and B are non-empty subsets of G.
Let K ≥ 1 be a constant such that

mG(AB)≤ K ·mG(B).

Then there exists a non-empty subset B′ ⊂ B such that

mG(AkB′)≤ Kk ·mG(B′), for all k.

In particular, if A ⊂G is a basis of order k, then

mG(AB)≥ mG(B)1− 1
k for all B ⊂G,

or equivalently, ρA(t)≥ t1− 1
k for all 0≤ t ≤ 1.

We shall need the following lemma.

Lemma 1.3 (Petridis, [3]). Let G be a finite abelian group and suppose A and B are non-empty
subsets of G. Let B′ ⊂ B be a non-empty subset such that

mG(AB′)
mG(B′)

=min
{mG(AB′′)

mG(B′′)
: ; 6= B′′ ⊂ B

}
.

Then, for every F ⊂G, we have

mG(F AB′)≤ mG(FB′) · mG(AB′)
mG(B′)

. (1.1)

Proof. Note that inequality (1.1) trivially holds whenever the set F consists of a single point.
Our argument now goes as follows. Fix a finite set F ⊂G for which (1.1) holds and pick g ∈G\F.
We shall prove that (1.1) then holds for the set F ′ = F ∪ {g}.

Since G is abelian, we have the inclusion

A(B′∩ g−1FB′)⊆ AB′∩ g−1F AB′,

and thus,

F ′AB′ = F AB′∪
(
gAB′ \ F AB′

)
= F AB′∪ g

(
AB′ \

(
AB′∩ g−1F AB′))

⊆ F AB′∪ g
(
AB′ \ A(B′∩ g−1FB′)

)
.

Since B′∩ g−1FB′ ⊂ B′ ⊂ B, we have

mG(A(B′∩ g−1FB′)
)≥ mG

(
B′∩ g−1FB′) · mG(AB′)

mG(B′)
,

and thus

mG
(
F ′AB′) ≤ mG(F AB′)+µ(AB′)−mG(A(B′∩ g−1FB′))

≤ mG(F AB′)+mG(AB′)−mG(B′∩ g−1FB′) · mG(AB′)
mG(B′)

≤ mG(F AB′)+
(
mG(B′)−mG(B′∩ g−1FB′)

)
· mG(AB′)

mG(B′)
.
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Since (1.1) is assumed to hold for the set F, we conclude that

mG
(
F ′AB′)≤ (

mG(FB′)+mG(B′)−mG(B′∩ g−1FB′)
)
· mG(AB′)

mG(B′)
.

Note that
mG(FB′)+mG(B′)−mG(B′∩ g−1FB′)= mG(F ′B),

which finishes the proof. �

Proof of Theorem 1.2. Let G be a finite abelian group and suppose A and B are non-empty sub-
sets of G. Fix a non-empty subset B′ ⊂ B such that

Ko = mG(AB′)
mG(B′)

=min
{mG(AB′′)

mG(B′′)
: ; 6= B′′ ⊂ B

}
≤ K .

We wish to prove that
mG(AkB)≤ Kk

o ·mG(B), for all k.
Clearly this inequality holds for k = 1. Assume that

mG(Ak−1B)≤ Kk−1
o ·mG(B), for some k ≥ 2.

Then, by Lemma 1.3 applied to the set F = Ak−1, we have

mG(AkB′)≤ Ko ·mG(Ak−1B′)≤ Kk
o ·mG(B′),

which finishes the proof of Theorem 1.2. �

In particular, if we apply Theorem 1.2 to the sets A = B for some non-empty subset B ⊂ G,
then we can find a non-empty subset B′ ⊂ B such that

mG(Bk)≤ mG(BkB′)≤ Kk ·mG(B′)≤ Kk ·mG(B),

whenever mG(B2)≤ K ·mG(B). We have thus proved:

Corollary 1.1. Let G be a finite abelian group and suppose

mG(B2)≤ K ·mG(B)

for some constant K. Then mG(Bk)≤ Kk ·mG(B) for all k.

1.3. Ruzsa’s Triangle Inequality.

Proposition 1.1. Let G be a finite group and suppose that A and B are non-empty subsets of G.
Let K ≥ 1 be a constant such that |AB| ≤ K · |B|. Then,

|Ak A−l | ≤ Kk+l · |B|, for all k, l ≥ 0.

Lemma 1.4.

1.4. Failure of Plünnecke’s inequality for non-abelian groups. We shall now see that if
we drop the assumption that G is an abelian group, then counterexamples to the conclusion of
Corollary 1.1 are easy to come by.

We say that a subgroup H <G is locally malnormal if

xHx−1 ∩H = {e} for some x ∈G \ H.

Note that abelian groups do not admit non-trivial locally malnormal subgroups.

Proposition 1.2. Let G be a finite group which contains a proper locally malnormal subgroup
H <G with at least 33 elements. Then, for every x ∈G \ H such that xHx−1 ∩H = {e}, we have

mG(B2
x)≤ 3 ·mG(B) and mG(B3

x)> 27 ·mG(Bx),

where Bx = {x}∪H.
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Proof. We first note that

B2
x = H∪Hx∪ xH∪ {x2} and B3

x ⊃ HxH,

for every x ∈G, so in particular

mG(B2
x)≤ 3 ·mG(Bx) and mG(B3

x)≥ mG(HxH).

Since H is a locally malnormal subgroup, there exists x ∈G such that xHx−1 ∩H = {e} and thus
the identity |HxH| = |H|2 holds. Indeed, one readily checks that the map q : H×H → HxH given
by

q(s, t)= sxt (s, t) ∈ H×H,

is bijective. In particular, if mG(B3
x)≤ 27 ·mG(Bx), then

27 · (|H|+1)≥ |H|2,

which does not have a solution if |H| ≥ 33. �

Typical examples of locally malnormal subgroups stem from semi-direct products. Let N and
L be finite groups and suppose there exists a homomorphism α : L → Aut(N). The semi-direct
product of N and L with respect to α shall be denoted by G = N oα L, and is given by the direct
product of the sets N and L equipped with the multiplication

(x, s) · (y, t)= (xα(s)y, st), for all (x, s), (y, t) ∈G.

One readily checks that the subgroup Noα {e} is normal in G and(
{e}oα L

)∩ (y, e) · ({e}oα L
) 6= {(e, e)}

for some y ∈ N \{e} if and only if α(s)y= y for some s ∈ L\{e}. In particular, if α(s)y 6= y for some
y and for all non-trivial s (in which case we shall refer to α as locally free), then {e}oαL is locally
malnormal in G.

We end this lecture by the following observation.

Proposition 1.3. Every finite group L admits an embedding into a finite group G such that its
image is locally malnormal in G.

To prove the proposition, it suffices to produce by the arguments above, for every finite group
L, a finite group N and a locally free homomorphism α : L → Aut(N). For this purpose, let N
denote the abelian group of all subsets of L equipped with the multiplication

A ·B = (
A \ B

)∪ (
B \ A

)
, for all A,B ⊂ N.

Clearly, every element in N has order two and the empty set is the identity element in N. We
can now choose

α(s)B = sB, for all s ∈ L and B ⊂ L.

One checks that α(s)(A ·B)=α(s)A ·α(s)B for all s ∈ L and A,B ⊂ L. In other words, each α(s) is
an automorphism of N, and α(s){e} = {s} 6= {e} for every non-trivial s ∈ L, which shows that α is
locally free, and thus {e}oα L is subnormal in G.
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2. SMALL PRODUCT SETS

The aim of this lecture is to understand the structure of pairs of subsets (A,B) of a finite
group G such that

mG(AB)≤ K ·mG(B) (2.1)

for small values of K . The following important result by M. Kneser allows us to gain some un-
derstanding in the case when K < 3

2 and G is abelian.

If G is a finite group and C ⊂ G is a non-empty subset, then the (left) stabilizer StabG(C) of
the set C is defined by

StabG(C)= {
g ∈G : gC = C

}
.

Theorem 2.1 (Kneser, Satz 1 in [2]). Let G be a finite abelian group and suppose that A,B ⊂G
are non-empty subsets. Then

mG(AB)≥min
(
1,mG(AH)+mG(BH)−mG(H)

)
,

where H denotes the stabilizer group of AB. In particular, if the stabilizer of AB is trivial, then

|AB| ≥min
(|G|, |A|+ |B|−1

)
, for all A,B ⊂G.

Remark 2.1. Since mG is a probability measure, it is clearly necessary to stress that the right
hand side in the first inequality above does not exceed one. However, we also note that if

mG(A)+mG(B)> 1,

then AB =G. Indeed, suppose this does not hold. Then there exists x ∉ AB and thus A−1x and
B are disjoint sets, which forces

1≥ mG(A−1x∪B)= mG(A)+mG(B)> 1,

which is a contradiction. Hence we may always assume that mG(A)+mG(B)−mG(H)< 1.

The proof of Theorem 2.1 is rather technical, so we first collect a few immediate consequences
of the theorem in order motivate it.

Since the finite abelian groups Z/pZ lack non-trivial proper subgroups when p is a prime
number, we conclude:

Corollary 2.1 (Cauchy-Davenport’s Theorem). Let p be a prime. Then,

|AB| ≥min
(
p, |A|+ |B|−1

)
, for all A,B ⊂Z/pZ.

We shall now show how Kneser’s Theorem can be used to deduce structural information about
pairs of subsets (A,B) as in (2.1) with K < 3

2 .

Corollary 2.2. Let G be a finite abelian group and suppose that A and B are subsets of G which
satisfy B ⊂ A and

mG(AB)< 3
2
·mG(B).

Then there exists a subgroup H <G with |H| < 3
2 · |B| such that B is contained in a coset of H.

Proof. Let H denote the stabilizer of AB and note that AB = (AH)(BH). Hence, by Theorem 2.1
and the inclusion B ⊂ A, we have

3
2
· |BH| > 3

2
· |B| > |AB| ≥ 2 · |BH|− |H|,
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which implies that |BH| < 2 · |H| and thus B must be contained in a coset of H. In particular,
this forces the bound

3
2
· |B| > 2|H|− |H|,

and we conclude that |H| < 3
2 · |B|. �

2.1. A local version of Theorem 2.1. The proof of Kneser’s Theorem is quite involved and
will use an elaborate form of induction. We formulate in this subsection a "local version" of this
theorem, which will immediately imply Theorem 2.1, and whose proof will occupy most of the
remaining part of this section.

Proposition 2.1 (Local version I of Kneser’s Theorem). Let G be a finite abelian group and
suppose A and B are non-empty subsets of G. For every non-empty subset X ⊂ AB, there exists a
subset C ⊂ AB, which contains X such that

mG(C)≥min
(
1,mG(A)+mG(B)−mG(StabG(C))

)
.

In particular, by taking X = AB = (AH)(BH) where H denotes the stabilizer of AB, we can
conclude that

mG(AB)≥min
(
1,mG(AH)+mG(BH)−mG(H)

)
,

for all A,B ⊂G.

2.2. Proof of Proposition 2.1. In this subsection we break down the proof of the local version
of Kneser’s Theorem into two parts.

We begin by stating the following special case (corresponding to the case when |X | = 1 in
Proposition 2.1), whose proof will be given in the next subsection.

Proposition 2.2 (Local version II of Kneser’s Theroem). Let G be a finite abelian group and
suppose A and B are non-empty subsets of G. For every x ∈ AB, there exists C ⊂ AB, which
contains x such that

mG(C)≥min
(
1,mG(A)+mG(B)−mG(StabG(C))

)
.

The following technical lemma will also be useful.

Lemma 2.1. Let G be a finite (not necessarily abelian) group and suppose that H1 and H2 are
two normal subgroups of G. If

C1 = F1H1 and C2 = F2H2,

for some subsets F1 ⊂ G/H1 and F2 ⊂ G/H2, and if neither C1 nor C2 is contained in the other,
then either

|C1 \ C2| ≥ |H2 \ H1| or |C2 \ C1| ≥ |H1 \ H2|.
We can now give the proof of the local version of Kneser’s Theorem.

Proof of Proposition 2.1. We shall use induction over the size of X ⊂ AB. For |X | = 1, then Propo-
sition 2.1 follows from Proposition 2.2.

Suppose that we have established Proposition 2.1 for all subsets X ⊂ AB with |X | ≤ k−1 for
some k ≥ 2. We wish to prove that it then holds for all sets with k elements.
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Pick X ⊂ AB with |X | = k and write X = X1 ∪ X2 with |X1|, |X2| < k. Then Proposition 2.2
produces

X1 ⊂ C1 ⊂ AB and X2 ⊂ C2 ⊂ AB
with

|C1| ≥ |A|+ |B|− |H1| and |C2| ≥ |A|+ |B|− |H2|,
where H1 and H2 denotes the stabilizers of C1 and C2 respectively (we assume henceforth that
the right hand sides are all strictly less than |G|). Furthermore, we can write

C1 = F1H1 and C2 = F2H2

for some subsets F1 ⊂G/H1 and F2 ⊂G/H2. Now, if C1 ⊂ C2, then we can choose C = C2 and

|C| ≥ |A|+ |B|− |H2|,
and similarly if C2 ⊂ C1. Hence the important case to consider is when neither C1 nor C2 is
contained in the other. By Lemma 2.1, we then have either

|C1 \ C2| ≥ |H2 \ H1| or |C2 \ C1| ≥ |H1 \ H2|.
If the first inequality holds, then we take C = C1 ∪C2 and note that

H =StabG(C)⊃ H1 ∩H2

which implies that

|C| = |C1 ∪C2|
= |C2|+ |C1 \ C2|
≥ |A|+ |B|− |H2|+ |H2 \ H1|
= |A|+ |B|− |H1 ∩H2| ≥ |A|+ |B|− |H|.

The argument for the second inequality is completely identical, which finishes the proof. �

2.3. Dyson transforms and the proof of Proposition 2.2. Given a pair (A,B) of non-empty
subsets of a finite abelian group G with e ∈ A ∩B and an element x ∈ A, we define the Dyson
transform (A′,B′) by

A′ = A∪Bx and B′ = x−1 A∩B.
One readily checks that A ⊂ A′ and ; 6= B′ ⊂ B and

A′B′ ⊂ AB and |A′|+ |B′| = |A|+ |B|.
Set Ao = A and Bo and x1 = x for some fixed element x ∈ A and define recursively the Dyson
transforms

Ak = Ak−1 ∪ xkBk−1 and Bk = x−1
k Ak−1 ∩Bk−1

for some choices of xk ∈ Ak−1. We note that

Ak−1 ⊂ Ak and Bk ⊂ Bk−1 and AkBk ⊂ AB

and
|Ak|+ |Bk| = |Ak−1|+ |Ak−1| = |A|+ |B|

for all k. Since G is finite, there exists an integer k such that

Bk = x−1 Ak ∩Bk for all x ∈ Ak,

or equivalently, Ak y = Ak for all y ∈ Bk. In other words, Bk is contained in the stabilizer of the
set Ak.

Hence, if we set C = Ak, then x ∈ C, and

|C| = |Ak| = |A|+ |B|− |Bk| ≥ |A|+ |B|− |StabG(C)|,
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which finishes the proof of Theorem 2.2. We note that Ak ⊂ AkBk ⊂ AB and thus the right hand
side is always strictly less than or equal to |G|.

3. FREIMAN’S THEOREM FOR FINITE GROUPS (LECTURE BY HEGARTY)

Theorem 3.1 (A special case of Freiman’s Theorem). Let G be a finite abelian group and suppose
that A and B are non-empty subsets. Let K ≥ 1 be a constant such that mG(AB)≤ K ·mG(B), and
set

β= mG(B)
mG(A)

.

Then there exists a subgroup H <G which contains A and such that

|H| ≤ K2 ·β · |G|K4·β · |A|.
See the proof of Theorem 2.1 in
http://www.math.cmu.edu/~af1p/Teaching/AdditiveCombinatorics/Additive-Combinatorics.

pdf

4. ROTH’S THEOREM (LECTURE BY ROGINSKAYA)

See Subsection 6.5.2 in:

http://staff.polito.it/danilo.bazzanella/PhD_files/Not%20always%20buried%20deep%
20(Pollack).pdf

5. SCHUR’S THEOREM

The aim of this lecture is to prove an old theorem of I. Schur from 1916 which asserts that
Fermat’s famous equations

sn + tn = un, n ≥ 1,

are always solvable in the finite fields Fp, provided that the characteristic p is large enough in
terms of n. More precisely:

Theorem 5.1 (Schur). For every n ≥ 1, there exists an integer Sn such that for every prime
number p > Sn, the equation

sn + tn = un

admits a solution (s, t,u) in Fp such that stu 6= 0.

Given n ≥ 1, we define the subgroup

Gn = {
sn : s ∈ F∗p

}
,

where F∗p denotes the multiplicative group of Fp which we shall sometimes identify with the
subset {1, . . . , p−1} in Fp. We note that

F∗p = {1, . . . , p−1}= a1Gn t . . .takGn,

for some elements a1, . . . ,ak ∈ F∗p. Schur’s Theorem is now an immediate consequence of the
following proposition.

Proposition 5.1. For every k ≥ 1, there exists a number Tk such that whenever N ≥ Tk and

{1, . . . , N}= A1 t . . .t Ak

is any k-partition, then there exists an index i = 1, . . . ,k such that the equation x+y= z is solvable
with x, y, z ∈ A i.

http://www.math.cmu.edu/~af1p/Teaching/AdditiveCombinatorics/Additive-Combinatorics.pdf
http://www.math.cmu.edu/~af1p/Teaching/AdditiveCombinatorics/Additive-Combinatorics.pdf
http://staff.polito.it/danilo.bazzanella/PhD_files/Not%20always%20buried%20deep%20(Pollack).pdf
http://staff.polito.it/danilo.bazzanella/PhD_files/Not%20always%20buried%20deep%20(Pollack).pdf
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Indeed, choose a prime number p larger than Tn > Tk. By the proposition, applied to the
partition A i = aiGn, with i = 1, . . . ,k, we can find an index i and x, y, z ∈ A i such that x+ y = z,
or equivalently,

aisn +ai tn = aiun

for some s, t,u ∈ F∗p and clearly, stu 6= 0 in Fp.

To prove Proposition 5.1, we shall need the following version of Ramsey’s Theorem.

Theorem 5.2. For every k,m ≥ 1, there exists a number n = n(k,m) such that for any k-coloring
of the complete graph with n vertices, there is a monochromatic complete subgraph on m vertices.

We note that if
{1, . . . , N}= A1 t . . .t Ak

is a partition, then | j− i| ∈ {1, . . . , N −1} for every 1≤ i, j ≤ N, and

c(i, j)= l if | j− i| ∈ Al

is a coloring of the complete graph on N vertices.

Suppose that N > n(k,3). Then, by Ramsey’s Theorem above, there exists a color, say l, and
three vertices i, j,m ∈ {1, . . . , N in color l with i < j < m. Hence, if we let

x = m− j and y= j− i and x = m− i,

then x, y and z belong to the partition element Al and

x+ y= z,

which proves Proposition 5.1.

5.1. Proof of Theorem 5.2. We shall first establish the following infinite version of Ramsey’s
Theorem:

Proposition 5.2. For every k ≥ 1 and for every k-edge-coloring of an infinite complete graph,
there exists an infinite monochromatic complete subgraph.

It is not hard to see that it suffices to prove this proposition for two colors, say green and red.

Proof for k = 2. We argue greedily. Let V be the vertex set of an infinite complete graph, whose
edges are colored in green and red, and pick a vertex v1 ∈ V = V1. Either this vertex has infin-
itely many outgoing green edges or it has infinitely many red outgoing edges. Suppose that we
are in the first case and let V2 denote the set of these vertices which are endpoints of gree edges
from v1. There are now two cases:

First case: There exists a vertex v2 ∈ V2 with infinitely many green edges to vertices in V2.
Let V3 denote this set. Continue inductively: If there exists a vertex v3 ∈V3 with infinitely many
green edges to vertices in V3, then we let V4 denote this set, and so forth. If this process can go
on indefinitely, then the complete subgraph with vertices v1,v2,v3, . . . is green.

Second case: Assume that the process described under the first case terminates after a finite
number of steps, i.e. there exists n such that every vertex in Vn only has finitely many green
edges emanating. Then we can change colors and run the first case. However, the "red" process
will not terminate since every vertex in Vn only has finitely many green outgoing edges. �
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5.2. Pushing to infinite sets. We now deduce the Theorem 5.2 from Proposition 5.2. For this
we shall need the following compactness observation.

Proposition 5.3. Let F be a family of finite subsets of N such that for any k-coloring of N, there
exists a monochromatic subset in F . Then there exists n = n(k) such that for every k-coloring of
{1, . . . ,n}, there is in F a monochromatic subset.

Proof. We argue by contradiction. For every n, let cn be a k-coloring of {1, . . . ,n} such that no
element in F is monochromatic with respect to cn. Let i1 be a color such that the set

I1 =
{
n ≥ 1 : cn(1)= i1

}
is infinite. Inductively, we can choose colors i2, i3, . . . such that the sets

Im = {
n ≥ m : cn(1)= i1, cn(2)= i2, . . . , cn(m)= im

}
are all infinite. If we set c(m) = im for all m ≥ 1, then c is a k-coloring of N, so by assumption,
there exists a color i and a set F ∈F such that

F ⊂ c−1(i).

Since F is finite, it must be contained in {1, . . . ,m} for some m. Fix n ∈ Im. Then c coincides
with cn on {1, . . . ,m}, but by assumption, cn does not admit a monochromatic subset in F , which
leads to a contradiction. �

6. VAN DER WAERDEN’S THEOREM

Read Subsection 6.2.2. in:

http://staff.polito.it/danilo.bazzanella/PhD_files/Not%20always%20buried%20deep%
20(Pollack).pdf

7. QUASI-RANDOMNESS AND GOWERS’ THEOREM

The aim of this lecture is to prove the following special case of a theorem by T. Gowers. Recall
that if F is a field, then PSL2(F) denotes the quotient of SL2(F) with its center, i.e. all matrices
of the form ±I.

Theorem 7.1 (Gowers’ Quasi-Randomness Theorem). For every prime number p > 3 and for
every subset A ⊂PSL2(Fp) with |A| > |PSL2(Fp)| 8

9 , we have A3 =G.

Let G be a finite group. A homomorphism ρ : G →GLn(C) for some n is often called a (linear)
representation of G. If V ⊂Cn is a linear subspace such that ρ(s)V =V for all s ∈G, then we say
that V is a sub-representation of ρ, and if ρ does not admit any non-trivial sub-representations
(i.e. different from the trivial subspace and the whole Cn), then we say that ρ is irreducible.

If ρ is a representation of G and 〈·, ·〉 denotes the hermitian inner product on Cn, then

〈u,v〉ρ := 1
|G|

∑
s∈G

〈ρ(s)u,ρ(s)v〉, u,v ∈Cn

is again a hermitian inner product on Cn with the property that

〈ρ(t)u,ρ(t)v〉ρ = 〈u,v〉ρ
for all t ∈G and u,v ∈Cn.

http://staff.polito.it/danilo.bazzanella/PhD_files/Not%20always%20buried%20deep%20(Pollack).pdf
http://staff.polito.it/danilo.bazzanella/PhD_files/Not%20always%20buried%20deep%20(Pollack).pdf
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We note that if V is a sub-representation of ρ, then its orthogonal subspace V⊥ with respect
to 〈·, ·〉ρ, i.e.

V⊥ = {
u ∈Cn : 〈u,v〉ρ = 0, for all v ∈V

}
,

is also a sub-representation of ρ, and Cn =V⊕V⊥. In particular, given any linear representation
ρ : G →GLn(C), we can write

Cn =
k⊕

i=1
Vi,

where this decomposition is orthogonal with respect to 〈·, ·〉ρ, and each Vi is an irreducible rep-
resentation of G. Here is a simple, yet important lemma.

Lemma 7.1. If G is abelian, then any irreducible representation ρ is one-dimensional.

Proof. Pick any non-trivial element s ∈ G, and let v be an eigenvector for ρ(s) with eigenvalue
λ. Hence, the linear subspace

Vλ =
{
w ∈Cn : ρ(s)w =λw

}
is non-trivial, and since G is abelian, Vλ is a sub-representation. Indeed, for any t ∈G, we have

ρ(s)ρ(t)w = ρ(t)ρ(s)w =λρ(t)w,

which shows that ρ(t)Vλ =Vλ for every t. This means that ρ(s) equals λ · I. Since s is arbitrary,
we conclude that there must exist a homomorphism λ : G →C∗ such that ρ(s)=λ(s) · I for every
s in G. We have assumed that ρ is irreducible, and thus we must conclude that n = 1, since
otherwise would any proper sub-space be invariant under this representation. �

We note that we can identify one-dimensional representations (which are of course automat-
ically irreducible) of a finite group G with homomorphisms χ : G →C∗. Indeed, we see that

ρχ(g)z = χ(g)z for all z ∈C
is a one-dimensional representation of G. In particular, if we take χ = 1, then we recover the
identity representation on C.

Gowers Theorem is a straightforward consequence of the following two lemmata. We denote
by d(G) to be the minimal dimension of a non-trivial (linear) representation of a G.

Lemma 7.2 (Frobenius). For every prime p > 3, we have d(PSL2(Fp))≥ p−1
2 .

Lemma 7.3 (Gowers expansion). For every finite group G and for all subsets A,B,C ⊂ G with
|A| · |B · |C| > |G|3/d(G), we have ABC =G.

Combining these two lemmata in the special case when A = B = C yields Gowers Theorem.

7.1. Proof of Lemma 7.2. A fundamental role will be played by the abelian subgroup

U =
{(

1 x
0 1

)
: x ∈ Fp

}
<PSL2(Fp),

which is clearly isomorphic to the additive group Fp. A straightforward calculations shows that

N(U)= {
g ∈PSL2(Fp) : gU g−1 =U

}= {(
α x
0 α−1

)
: α ∈ F∗p, x ∈ Fp

}
<PSL2(Fp),

where α and −α have been identified. In particular, we have∣∣N(U)/U
∣∣≥ p−1

2
.
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Suppose that ρ is a representation of PSL2(Fp) of dimension n, different from the identity rep-
resentation. We wish to show that n ≥ p−1

2 . We argue as follows. Since U is abelian, Lemma 7.1
tells us that we may write

Cn =
m⊕

i=1
Vχi ,

where χi are homomorphisms from U into C∗ and

Vχi =
{
v ∈Cn : ρ(u)v = χi(u)v for all u ∈U

}
.

We stress that Vχi will NOT be a sub-representation for ρ, but only for the restriction of ρ to U .
However, if g ∈ N(U) and v ∈Vχi , then

ρ(u)ρ(g)v = ρ(g)ρ(g−1ug)v = χi(g−1ug)ρ(g)v,

which shows that ρ(g)Vχi =Vρ(g)χi , where

(ρ(g)χi)(u)= χi(g−1ug), for u ∈U .

In other words, the restriction of ρ to the normalizer N(U) of U permutes the decomposition
above. In particular,

Cn ⊃ ⊕
T∈ρ(N(U))/ρ(U)

VTχi

for every i, (one has to check that the stabilizer of every χi equals U), which readily implies that

n ≥ ∣∣ρ(N(U)/U)
∣∣,

since each VTχi is at least one-dimensional.

What saves us now is:

Lemma 7.4. For every prime p > 3, the group PSL2(Fp) is simple, i.e. it does not admit any
non-trivial normal subgroups.

Hence, by this lemma, the kernel of ρ (which is a normal subgroup of G) must be either trivial
or the whole of G (in which case ρ is the identity representation). Since we have assumed that
ρ is not the identity representation we conclude that ρ is injective, and thus

n ≥ ∣∣ρ(N(U)/U)
∣∣= ∣∣N(U)/U

∣∣≥ p−1
2

.

7.2. Proof of Lemma 7.3. Given a function f : G → C and a linear representation ρ of G of
dimension n, we define the operator

ρ( f )v = ∑
s∈G

f (s)ρ(s)v, v ∈Cn.

In particular, if ρ denotes the identity representation, then

ρ( f )v = (∑
s

f (s)
) ·v

The convolution of two functions f1, f2 : G →Cn is defined by

( f1 ∗ f2)(g)= ∑
st=g

f1(s) f2(t).

Note that
ρ( f1 ∗ f2)v =∑

g

∑
st=g

f1(s) f2(t)ρ(s)ρ(t)v = ρ( f1)ρ( f2)v.

Denote by Ĝ the set of irreducible representations of G, and write dρ for the dimension of ρ. We
shall need the following lemma, which we leave as an exercise.
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Lemma 7.5. For every f : G →C, we have

f (g)= 1
|G|

∑
ρ∈Ĝ

dρ tr(ρ(g)∗ρ( f )),

where tr denotes the standard trace on n× n-matrices, and the transpose of ρ(g) is taken with
respect to the inner product 〈·, ·〉ρ. In particular, we have∑

g∈G
| f (g)|2 = 1

|G|
∑
ρ∈Ĝ

dρ · ‖ρ( f )‖2,

where ‖T‖2 = tr(T∗T).

In particular, we have

|A| = ∑
g∈G

|χA(g)|2 = 1
|G|

∑
ρ∈Ĝ

dρ · ‖ρ(χA)‖2,

for every subset A ⊂G, which means that

‖ρ(χA)‖ ≤
√

|A| · |G|
dρ

≤
√

|A| · |G|
d(G)

for every non-trivial ρ. Again, if ρ is the identity (trivial) representation, then ρ(χA)= |A|.

We wish to prove that if A,B,C ⊂ G with |A| · |B| · |C| ≥ |G|3/d(G), then ABC = G, or equiva-
lently

χA ∗χB ∗χC(g)> 0 for all g ∈G.

By Lemma 7.5 and the formulas above, we have, by the Cauchy-Schwartz inequality,

χA ∗χB ∗χC(g)≥ |A| · |B · |C|
|G| − 1

|G|
∑
ρ 6=id

dρ‖χ(χA)‖ ·‖ρ(χB)‖ ·‖ρ(χC)‖.

Plugging in the bounds above, and using Cauchy-Schwartz Inequality again,

χA ∗χB ∗χC(g) ≥ |A| · |B · |C|
|G| −

√
|A| · |G|

d(G)
· 1
|G|

∑
ρ 6=id

dρ · ‖ρ(χB)‖ ·‖ρ(χC)‖

≥ 1
|G| ·

(
|A||B||C|−

√
|A| · |G|

d(G)

( ∑
π 6=id

dρ · ‖ρ(χB)‖2
) 1

2 ·
( ∑
π 6=id

dρ · ‖ρ(χC)‖2
) 1

2
)

≥ 1
|G| ·

(
|A||B||C|−

√
|A| · |G|

d(G)
· |G| ·

√
|B| · |C|

)
,

where in the last inequality we used Lemma 7.5 to deal with the remaining ‖ρ(χB)‖ and ‖ρ(χC)‖.
For the last expression to be positive, it suffices that

|A||B||C| > |G|3/2
p

d(G)
·
√

|A||B||C|,

or equivalently |A| · |B| · |C| > |G|3/d(G), which finishes the proof of Lemma 7.3.

7.3. Proof of Lemma 7.4. A nice exposition of the proof (using a criterion by Iwasawa) can be
found under:

http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/PSLnsimple.pdf

http://www.math.uconn.edu/~kconrad/blurbs/grouptheory/PSLnsimple.pdf
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8. A SUM-PRODUCT THEOREM (LECTURE NOTES BY HEGARTY)

Throughout this lecture, unless otherwise stated, all sets are subsets of R+.

Recall that if A is any set of positive real numbers, then the sumset A + A, the product set
A · A and the quotient set A

A are defined as

A+ A = {a1 +a2 : a1, a2 ∈ A}, (8.1)
A · A = {a1a2 : a1, a2 ∈ A}, (8.2)

A
A

=
{

a1

a2
: a1, a2 ∈ A

}
. (8.3)

If A is a finite set, |A| = n say, then

2n−1≤ |A+ A| ≤ n(n+1)
2

, (8.4)

2n−1≤ |A · A| ≤ n(n+1)
2

, (8.5)

2n−1≤
∣∣∣∣ A
A

∣∣∣∣≤ n(n−1)+1. (8.6)

The right-hand inequalities are proven by considering the total number of possible sums, prod-
ucts resp. quotients and noting that addition and multiplication are commutative whereas
division is not. The left-hand inequality for the sumset is verified by observing that, if A = {a1 <
a2 < ·· · < an}, then there is a strictly increasing sequence of 2n−1 sums formed by

a1 +a1 < a1 +a2 < ·· · < a1 +an < a2 +an < ·· · < an +an. (8.7)

Similar arguments give the left-hand inequalities for the product and quotient sets.
We are interested primarily in the sum and product sets. The lower bound in (0.1) is attained

by an arithmetic progression and in (0.2) by a geometric progression. These are two quite
different types of sets, however. The core of the sum-product phenomenon is that the sumset
and product set cannot simoultaneously be small. The usual reference for a precise formulation
of this idea is the following famous conjecture:

Conjecture 1. (Erdős-Szemerédi conjecture, 1982) For every ε> 0 there exists an absolute
positive constant Cε such that, if A is a finite set of real numbers then

max{|A+ A|, |A · A|}≥ Cε|A|2−ε. (8.8)

Below we will prove the strongest result to date in this direction (Theorem 0.11). Firstly,
however, we show that one cannot take ε = 0 in the E-S conjecture, i.e.: there is no absolute
positive constant C0 such that max{|A+ A|, |A · A|}≥ C0|A|2.

Theorem 8.1. (Erdős Multiplication Table Theorem) Let A = {1, 2, . . . , n}. Then
|A · A| = o(n2).

The proof of this combines some estimates about prime numbers with a probabilistic method.
These “standard” results can be summarised in the following two lemmas:

Lemma 8.1. For any x ≥ 2, ∑
p≤x

1
p
= loglog x+b+O

(
1

log x

)
, (8.9)

where b is some constant.
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Proof. See Theorem 6.4 in the lecture notes for my course in number theory:

http://www.math.chalmers.se/∼hegarty/mma300 ht14.html �

Lemma 8.2. If X is a real-valued random variable with finite mean µ and finite variance σ2,
then for any λ> 0,

P(|X −µ| ≥λ)≤ σ2

λ2 . (8.10)

Proof. This is known as Chebyshev’s inequality and a proof can be found in any introductory
textbook on probability theory. For a good introduction specifically to the probabilistic method
in combinatorics, see the book “The Probabilistic Method”, by Noga Alon and Joel Spencer. �

Before proceeding, we note two immediate corollaries of Lemma 0.3:

Corollary 8.1. For any x ≥ 2,∑
pa≤x,a∈N

1
pa = loglog x+b′+O

(
1

log x

)
, (8.11)

where b′ is some constant.

Proof. One has ∑
pa≤x,a≥2

1
pa = ∑

pa,a≥2

1
pa − ∑

pa>x,a≥2

1
pa (8.12)

and it is easy to see that the first sum on the right is convergent, while the second is O(1/x). �

Corollary 8.2. ∑
pa, qb≤x

1
paqb ≤

(
loglog x+b′+O

(
1

log x

))2
. (8.13)

Proof. The sum on the left of (0.13) is bounded above by the square of the sum on the left of (0.9).
Note that the two are not identical, since cross-terms would be counted twice in the latter. �

For n ∈N defineΩ(n) to be the number of prime power divisors of n. So, for example,Ω(36)= 4
since the prime powers dividing 36 are 2, 3, 22 and 32. Note that Ω(1) = 0. The Fundamental
Theorem of Arithmetic implies that

Ω(ab)=Ω(a)+Ω(b), for all a, b ∈N. (8.14)

The main step in the proof of Theorem 0.2 is the following:

Proposition 8.1. For every ε > 0, there exists Nε ∈N such that, if N > Nε and the number n is
chosen uniformaly at random from {1, 2, . . . , N}, then

P ((1−ε) loglog N <Ω(n)< (1+ε) loglog N)> 1−ε. (8.15)

Proof. Fix N ∈ N, let X be a number from {1, 2, . . . , N} chosen uniformly at random and Y :=
Ω(X ). Thus Y is a non-negative integer valued random variable. The idea of the probabilstic
method is to compute the first and second moments of Y and then use Lemma 0.4. Regarding
the first moment one has

E(Y )= 1
N

N∑
n=1
Ω(n)= 1

N

N∑
n=1

∑
pa|n

1=

= 1
N

∑
pa≤N

b N
pa c =

∑
pa≤N

1
pa +O(1)= loglog x+O(1), (8.16)
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by Lemma 0.3. For the second moment,

E(Y 2)= 1
N

N∑
n=1

( ∑
pa|n

1

)2

= 1
N

N∑
n=1

∑
pa|n, qb|n

1=

= ∑
pa≤N, qb≤N

#{n ≤ N : pa|n, qb|n}.

We consider three different contributions to the double-sum:

CASE 1: p = q, a = b. Then the sum is just the first moment E(Y ).

CASE 2: p = q, a < b. This contribution will be

1
N

∑
qb≤N,b≥2

(b−1) · b N
qb c, (8.17)

where the factor b−1 comes from the fact that there are so many choices for qa, given qb and
a < b. It is easy to see that this sum is O(1). We will get an equal contribution from terms with
p = q and a > b.

CASE 3: p 6= q. Then the double sum becomes

1
N

∑
pa≤N, qb≤N, p 6=q

b N
paqb c ≤

∑
pa≤N, qb≤N

1
paqb ≤

(
loglog N +b′+O

(
1

log N

))2
, (8.18)

by Corollary 0.5. To summarise, we have shown that

E(Y 2)≤ E(Y )+O(1)+
(
loglog N +b′+O

(
1

log N

))2
. (8.19)

Combining this with (0.16), it follows that

Var(Y )= E(Y 2)− (E(Y ))2 = loglog N +O(1). (8.20)

Let µ := E(Y ) and σ2 := Var(Y ). Thus µ= loglog N +O(1) and σ2 = loglog N +O(1) also. For any
fixed ε> 0, by Lemma 0.4 with λ= εµ one has

P(|Y −µ| > εµ)≤ σ2

ε2µ2 .
1

ε2 loglog N
< ε, (8.21)

provided N is sufficiently large. This completes the proof of the proposition. �

Theorem 0.2 follows easily from the proposition. Basically, the point is that for n large, “most”
products of two numbers from {1, 2. . . , n} will, by (0.14) and the Proposition, result in numbers
with approximately 2loglogn prime power divisors, whereas “most” numbers in {1, 2, . . . , n2}
have approximately loglogn2 ∼ loglogn prime power divisors. Hence, “most” numbers in the
latter set cannot be such products. I leave it to the reader to fill in the details of a rigorous proof.

We now turn to positive results on the E-S conjecture. First, let me reformulate it in a more
convenient form:

Conjecture 2. For every δ ∈ (0, 1) there exists an absolute positive constant Cδ such that, if A is
a finite set of real numbers then

max{|A+ A|, |A · A|}≥ Cδ|A|1+δ. (8.22)
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There are basically six quantum leaps in progress which people refer to:

ERDŐS-SZEMERÉDI (1982): In their original paper, they proved that the conjecture holds for
some δ> 0, but they did not give any explicit constant.

NATHANSON (1997): Proved that the conjecture holds for δ = 1/31, by carefully analysing the
original argument of Erdős and Szemerédi.

FORD (1998): Proved the conjecture for δ = 1/15, by further modifying Nathanson’s presen-
tation.

ELEKES (1997): Proved the conjecture for δ= 1/4. The argument here is quite different and em-
ploys as a black box a fundamental result from incidence geometry called the Szemerédi-Trotter
theorem, see below.

SOLYMOSI (2005): Proved the conjecture for δ = 3/11. This proof also uses the Szemerédi-
Trotter theorem, but in a slightly more sophisticated way.

SOLYMOSI (2009): Proved the conjecture for δ = 1/3− ε and any ε > 0. This result surprised
people when it first appeared because, like previous works, it uses a geometrical argument
(points and lines in R2), but NOT the Sz-Tr theorem. Thus it showed that such point-line argu-
ments could be pushed further than people previously thought.

We will sketch the proof of Elekes, using Sz-Tr as a black box (his paper is 2 pages long !)
and then give a full proof of Solymosi’s 2009 result. The latter can also be found in [S].

The following is the form of the Sz-Tr theorem which was directly applied by Elekes:

Theorem 8.2. (Szemerédi-Trotter, 1983) There is an absolute constant C > 0 such that, for
all pairs n, k of positive integers, given n points in the plane, the number of lines each containing
at least k of them is at most C(n2/k3 +n/k).

Remark 8.1. The term n2/k3 can be thought of as the main term, since it will dominate for all
k ≤ p

n. The non-trivial thing here is that the power of k in the denominator is greater than
2. A bound of O(n2/k2) could be obtained by a simple double-count, upon noting that any two
points determine a line uniquely.

Proof. of Elekes result. Let A = {a1 < a2 < . . .an}. For each 1 ≤ j, k ≤ n let f j,k : R→ R be the
function

f j,k(x)= a j(x−ak). (8.23)

Note that, for any 1≤ i ≤ n, f j,k(ak +ai)= a jai. Thue the graph of each function

y= a j(x−ak) (8.24)

contains at least n points of the set P = (A+ A)× (A · A). Let N := |P |. Each such graph is of
course a line. We have n2 lines and thus, by Szemerédi-Trotter, there is a constant C such that
n2 ≤ C(N2/n3 +N/n). Since N ≥ (2n−1)2, by (0.1) and (0.2), we see that N2/n3 is the main term
and easily deduce that N ≥ C′n5/2 for some C′ > 0. By definition of the set P , it follows that

max{|A+ A|, |A · A|}≥ C′′|A|5/4, for some absolute C′′ > 0, v.s.v. (8.25)

�
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We now turn to Solymosi’s 2009 result. For a real number x, denote ddxee := bxc+1. What he
actually proved is

Theorem 8.3. (Solymosi 2009) If A is a finite set of positive real numbers then

|A · A| |A+ A|2 ≥ |A|4
4ddlog |A|ee . (8.26)

Note the immediate corollary that

max{|A+ A|, |A · A|}≥ |A|4/3

41/3ddlog |A|ee1/3 . (8.27)

The proof of Theorem 0.11 invokes the (well-known) concept of multiplicative energy1. Let A
be a set of positive reals. The multiplicative energy of A, denoted E×(A), is defined as

E×(A)= #{(a1, a2, a3, a4) ∈ A4 : a1/a2 = a3/a4}. (8.28)

Solymosi’s Lemma. If A is a set of positive reals, then
E×(A)

ddlog |A|ee ≤ 4 |A+ A|2. (8.29)

The lemma quickly implies the theorem. Let π1, . . . , πt be the distinct elements of the product
set A ·A, and let n1, . . . , nt respectively denote the number of representations of each element as
a product, i.e.: ni = #{(a1, a2) ∈ A2 : a1a2 = πi}. Thus, by definition, |A|2 = ∑t

i=1 ni and E×(A) =∑t
i=1 n2

i . By the Cauchy-Schwarz inequality,

E×(A)=
t∑

i=1
n2

i ≥
1
t

(
t∑

i=1
ni

)2

= |A|4
|A · A| . (8.30)

Plugging this into (0.29) immediately yields (0.26).
So it remains to prove Solymosi’s lemma.

Write

E×(A)=
blog |A|c∑

i=0

∑
2i≤|xA∩A|<2i+1, x∈A/A

|xA∩ A|2. (8.31)

Note that this is correct, since if x = a1/a2 say and a3 ∈ xA∩A, then it means there exists a4 ∈ A
such that a1

a2
a4 = a3, hence that a1/a2 = a3/a4. Thus, the double sum on the right counts every

4-tuple of elements of A contributing to E×(A) exactly once.
By the pigeonhole principle, there must be some I ∈ {0, . . . , blog |A|c} such that

E×(A)
ddlog |A|ee ≤

∑
2I≤|xA∩A|<2I+1, x∈A/A

|xA∩ A|2. (8.32)

Let D := {s ∈ A/A : 2I ≤ |sA ∩ A| < 2I+1} and let s1 < s2 < ·· · < sm denote the elements of D in
increasing order. First note that (0.32) immediately implies that

E×(A)
ddlog |A|ee < m ·22I+2. (8.33)

On the other hand, for each j = 1, . . . , m, let l j be the line y = s jx. Consider the Cartesian prod-
uct A×A as a set of points in R2. By definition, the number of points of A×A contained in each
l j is somewhere in the interval [2I ,2I+1). Let lm+1 be the vertical line through a1, the smallest
element of A. Thus lm+1 contains exactly |A| points from A × A, namely the points (a1,a j),

1There is an analogous concept of additive energy, defined exactly as you would expect given (0.28).
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j = 1, . . . , |A|. The point now is that

(i) for each 1≤ j < k ≤ m+1,

|(l j ∩ (A× A))⊕ (lk ∩ (A× A))| = |l j ∩ (A× A)| · |lk ∩ (A× A)|, (8.34)

were ⊕ denotes vector addition in R2.

(ii) the sumsets along consecutive line pairs are disjoint.

Both (i) and (ii) are seen most easily by drawing a picture - see [S]. The point is that all points
in the sumset (l j ∩ (A× A))⊕ (l j+1 ∩ (A× A)) lie in the segment of the plane bounded by l j and
l j+1, which implies (ii). For (i) we just need the fact that any two vectors along l j and l j+1 are
linearly independent.

Thirdly, by definition of vector addition one has

(iii) for all j, k,

(l j ∩ (A× A))⊕ (lk ∩ (A× A))⊆ (A+ A)× (A+ A). (8.35)

Putting (i), (ii) and (iii) together yields

m ·22I ≤
∣∣∣∣∣ m⋃

j=1

(
l j ∩ (A× A)

)⊕ (
l j+1 ∩ (A× A)

)∣∣∣∣∣≤ |A+ A|2. (8.36)

From this and (0.33) we deduce (0.29).

9. HOME WORK ASSIGNMENTS

Exercise 1. Let G be a finite group. Recall that a subset A ⊂G is a basis of order k if Ak =G.
Since we always have the bound |Ak| ≤ |A|k for any subset A ⊂ G, we see that a basis of order
k must necessarily satisfy |A| ≥ |G| 1

k . The aim of the first exercise is to show that this is essen-
tially sharp.

Fix 0 < p < 1 and let (εx) be a family of independent {0,1}-variables indexed by x ∈ G and
which attain the value 1 with probability p. Define the random subset

A = {
x ∈G : εx = 1

}⊂G.

Show that for every ε> 0, there exists a finite group G (e.g. G =Z/mZ for some integer m) and
a subset Ao ⊂G such that Ao A−1

o =G and

|Ao| ≤ |G| 1
2+ε.

Hint: Choose p = |G|−α and vary |G| and α.

Exercise 2. Apply a similar argument as in Exercise 1 to show that for any subset B ⊂G, there
exists F ⊂G such that FB =G with

|F| ≤ C · |G|
|B| · log |G|

for some constant C which is independent of G and B.

Now over to something completely different: Recall that Schur’s Theorem asserts that the
equations

xn + yn = zn
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are solvable in Fp, provided that p is large enough with respect to n. Our proof was completely
ineffective. The aim of the following exercise is to remedy this inefficiency by giving a more
direct Fourier-analytic proof.

We begin by setting up the terminology. Given a prime number p, we define

ep(x)= e2πi x
p , x ∈ Fp

and
S(k)= ∑

x∈Fp

ep(kxn), k ∈ Fp.

Show that
N = ∣∣{(x, y) ∈ Fp : xn = yn}∣∣= 1

p

∑
k∈Fp

|S(k)|2

and N ≤ 1+np.

Define
Mp = ∑

x,y,z∈Fp

1
p

∑
k∈Fp

ep(k(xn + yn − zn)

Exercise 3. Prove that

|Mp| ≥ 1
2

p2 if p ≥ 16n6 (or just something bounded below by n)

and show that this bound implies that there exists x, y, z ∈ Fp with xn + yn = zn and xyz 6= 0.

Hint: Prove that
Mp = 1

p

∑
k∈Fp

S(k)2S(k),

and
|S(k)| ≤

√
2p ·n, for all k 6= 0.

Exercise 4.
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