A BRIEF INTRODUCTION TO TOPOLOGICAL DYNAMICS

MICHAEL BJÖRKLUND

1. TOPOLOGICAL ERGODICITY AND MINIMALITY

Let G be a topological group.

Definition 1.1 (*G*-space). A Hausdorff space *X* is called a *G*-space if it is endowed with a *jointly continuous* action of *G* by homeomorphisms, which we write as

$$(g,x) \mapsto gx$$
, for $g \in G$ and $x \in X$.

We say that

• *X* is *topologically ergodic* if for all non-empty open sets $U, V \subset X$,

 $gU \cap V \neq \emptyset$, for some $g \in G$.

• X is *minimal* if there are no non-empty proper closed G-invariant subsets of X.

Clearly every minimal *G*-space is topologically ergodic.

Proposition 1.2 (Fundamental Theorem in Topological Dynamics). Every compact G-space X admits at least one closed G-invariant subset such that the restriction of the G-action to this subset is minimal.

Proof. Zorn's Lemma.

1.1. **Basic notation.** Given $A \subset G$ and $B \subset X$ we define the *action set* of A and B by

$$AB = \bigcup_{a \in A} aB \subset X.$$

Given $x \in X$, we define the *return set to B* by

$$B_x = \{g \in G : gx \in B\} \subset G.$$

We note that

 $AB_x = (AB)_x$ and $B_{gx} = B_x g^{-1}$, for all $g \in G$, $A \subset G$, $x \in X$ and $B \subset X$.

1.2. Topological ergodicity and existence of dense orbits. Let X be a G-space and let v be a Borel probability measure on X. We say that v is G-invariant if

v(gB) = v(B), for all $g \in G$ and Borel sets $B \subset X$,

and *(measurably) ergodic* if it is *G*-invariant and v(B) = 1 for every *G*-invariant Borel set $B \subset X$ with positive *v*-measure. Recall that the *support of v*, here denoted by $supp(\mu)$, is defined as the set of $x \in X$ such that v(U) > 0 for every open neighborhood *U* of *x*. One readily checks that $supp(v) \subset X$ is always closed and if *v* is *G*-invariant, then supp(v) is *G*-invariant.

Proposition 1.3. Suppose that X is a G-space and there exists an ergodic G-invariant Borel probability measure v on X with full support. Then X is topologically ergodic.

Proof. Since *v* has full support, v(U) > 0 for every non-empty open set $U \subset X$, and thus we have v(GU) = 1 and $v(GU \cap V) = v(V) > 0$ for every non-empty open set $V \subset X$ which shows that X is topologically ergodic.

MICHAEL BJÖRKLUND

Recall that a *Baire space* is a Hausdorff space with the property that every countable intersection of open dense sets is non-empty. Baire's Category Theorem asserts that every completely metrizable space is Baire.

Proposition 1.4 (Topological Zero-One Law). Suppose that X is a second countable Baire G-space and define the set

$$X_o := \{ x \in X : X = \overline{Gx} \} \subset X.$$

Then,

X is topologically ergodic
$$\iff X_o$$
 is a dense G_{δ} -set.

Proof. Let (U_n) be a countable basis for the topology on X, and note that $X_o = \bigcap_n GU_n$, which shows that X_o is always a G_{δ} -set.

- If X is topologically ergodic, then GU_n is dense for every n, and thus X_o is dense, by our assumption that X is a Baire space.
- If X_o is dense, then GU_n must be dense for every n, and thus $GU_n \cap V \neq \emptyset$ for every open set $V \subset X$. Since every non-empty open set U contains at least one open set of the form U_n , we conclude that X is topologically ergodic.

Remark 1.5. There are examples of *compact*, but not second countable, topologically ergodic G-spaces without any points with dense orbits. For instance, let G be any countable group and suppose that Y is a compact G-space with an *ergodic* G-invariant Borel probability measure v without atoms. Let X denote the Gelfand spectrum of the C*-algebra $L^{\infty}(Y, v)$, and view X as a compact G-space under the dual action equipped with a G-invariant Borel probability measure μ of full support, which is defined as the push-forward of v under the Gelfand map. Since $L^{\infty}(Y, v)$ is not norm separable, X is not second countable by Urysohn's Lemma. We leave it as an exercise to prove that μ is non-atomic and

$$\mu(B^{o}) = \mu(B)$$
, for all Borel sets $B \subset X$.

In particular, $\mu(\overline{Gx}) = \mu(Gx) = 0$, since G is countable and μ is non-atomic. Since μ is ergodic and has full support on X, we conclude that X is topologically ergodic by Proposition 1.3.

In the presence of an ergodic measure, the set of points with dense orbits is also "measurably" large.

Proposition 1.6 (Zero-One Law). Suppose that

- X is second countable.
- v is G-invariant and ergodic.

Then,

$$supp(v) = Gx$$
, for v-a.e. $x \in X$.

Proof. Since supp(v) is again a second countable *G*-space, we may assume that μ has full support. Let (U_n) be a countable basis for the topology on *X* and note that

$$\bigcap_n GU_n = \{x \in X : \overline{Gx} = X\}.$$

Since *v* has full support and is ergodic, we have $v(GU_n) = 1$ for every *n* and thus the intersection above is *v*-conull.

 $\mathbf{2}$

1.3. Existence of ergodic measures. Let X be a compact G-space and let $\mathscr{P}(X)$ denote the convex set of Borel probability measures on X. We write $\mathscr{P}_G(X)$ for the (possibly empty) convex set of *G*-invariant elements in $\mathscr{P}(X)$. We note that $\mathscr{P}_G(X)$ is weak*-compact once viewed as a subset of $C(X)^*$. An element $v \in \mathcal{P}_G(X)$ is *extreme* if it cannot be written on the form

 $v = p\mu + q\eta$, for some $\mu \neq \eta \in \mathcal{P}_G(X)$ and 0 < p, q < 1 such that p + q = 1.

By Krein-Milman's Theorem, the set $\mathscr{P}_G(X)^{\text{ext}}$ of extreme points in $\mathscr{P}_G(X)$ is always non-empty. If X is compact and second countable, then $\mathscr{P}_G(X)^{\text{ext}}$ is a G_{δ} -set and thus Borel measurable. If the second countability assumption is dropped, then $\mathscr{P}_G(X)^{\text{ext}}$ need not be Borel measurable.

We now connect extreme points to ergodic measures.

Proposition 1.7 (Ergodicity vs. Extremality). If X is a compact G-space and $\mathcal{P}_G(X) \neq \phi$, then

$$\mathcal{P}_G(X)^{ext} = \mathcal{P}_G^{erg}(X).$$

In particular,

• $\mathcal{P}_{G}^{erg}(X) \neq \emptyset$. • if $\mathcal{P}_{G}(X) = \{v\}$, then v is ergodic.

Proof. Suppose that $v \in \mathscr{P}_G(X)$ is ergodic, but not an extreme point in $\mathscr{P}_G(X)$. Then we can write $v = p\mu + q\eta$ for two distinct G-invariant Borel probability measures μ and η on X for some real numbers 0 < p, q < 1 such that p + q = 1. This forces both μ and η to be absolutely continuous with respect to v, and their Radon-Nikodym derivatives with respect to v are Ginvariant. Since v is ergodic, this further forces them to be v-essentially equal to one, and thus $\mu = \eta$, which contradicts our assumption.

Suppose that $v \in \mathscr{P}_G(X)$ is not ergodic and let $B \subset X$ be a *G*-invariant Borel set such that 0 < v(B) < 1 and define the *G*-invariant Borel probability measures μ and η on X by

$$\mu(A) = \frac{\nu(A \cap B)}{\nu(B)}$$
 and $\eta(A) = \frac{\nu(A \cap B^c)}{\nu(B^c)}$, for Borel sets $A \subset X$.

Since $v = v(B)\mu + (1 - v(B))\eta$ is a non-trivial decomposition of v in $\mathcal{P}_G(X)$ we conclude that v is not an extreme point in $\mathcal{P}_G(X)$.

2. Amenable groups

We shall now confine our attention to those topological groups for which ergodic measures exist for any compact G-space.

Definition 2.1 (Amenable group). A topological group G is *amenable* if $\mathcal{P}_G(X)$ is non-empty for every *compact G*-space *X*.

Recall that a topological group is *solvable* if there exist *closed* subgroups $G_i < G$, i = 1, ..., n, such that

$$\{e\} = G_o = \triangleleft G_1 \triangleleft G_2 \dots \triangleleft G_n = G$$

and G_{i+1}/G_i is abelian for every *i*. We mention without proof:

Theorem 2.2 (Markov-Kakutani). Every solvable group is amenable.

Theorem 2.3. Suppose that G is a locally compact group which contains a closed free subgroup on two generators. Then G is not amenable.

Remark 2.4. If the assumption that G is locally compact is dropped, then the last theorem does not necessarily hold. For instance, suppose that G is the free group on two generator and let $U(\ell^2(G))$ denote the group of unitary operators on $\ell^2(G)$ equipped with the strong operator topology. Then the embedding of G into $U(\ell^2(G))$ via the left regular representation is discrete, and thus the image of G is closed, but it can be shown that $U(\ell^2(G))$ is amenable.

Let G be a topological group and let E be a Banach space equipped with a jointly continuous isometric action of G. Then G also acts jointly continuously on E^* by

$$g\lambda(u) = \lambda(g^{-1}u), \text{ for } u \in E \text{ and } \lambda \in E^*.$$

If $K \subset E^*$ is a weak*-compact *G*-invariant convex subset, then we refer to *K* as an *affine G*-space. We denote by K^G the (possibly empty) set of *G*-fixed elements. One example to have in mind is when *X* is a compact *G*-space and the regular representation of *G* on *C*(*X*). In this case,

$$E = C(X)$$
 and $K = \mathscr{P}(X)$ and $K^G = \mathscr{P}_G(X)$.

Proposition 2.5. A topological group G is amenable if and only if $K^G \neq \emptyset$ for every non-empty affine G-space K.

Proof. The "only if"-direction follows from taking

$$E = C(X)$$
 and $K = \mathscr{P}(X) \subset E^*$,

where X is a compact *G*-space. For the "if"-direction, if *G* is amenable, then $\mathscr{P}_G(K)$ is non-empty. Pick $\eta \in \mathscr{P}_G(K)$, and define its *barycenter* by

$$x = \int_K y \, d\eta(y) \in \mathscr{P}(X).$$

Since η is *G*-invariant, we see that $x \in K^G$.

Proposition 2.6 (Unique ergodicity vs. minimality). Suppose that

- G is an amenable group.
- X is a compact G-space and $\mathcal{P}_G(X) = \{v\}$.

Then $Y := \operatorname{supp}(v) \subset X$ is a minimal *G*-space.

Proof. Suppose that $Z \subset Y$ is a non-empty proper closed *G*-invariant subset. Since *G* is amenable, there exists $\mu \in \mathscr{P}_G(Z) \subset \mathscr{P}_G(Y)$ such that $\mu(Z) = 1$. However, by assumption, $\mu = \nu$, and thus we have $Z = \text{supp}(\nu) = Y$, which is a contradiction.

Proposition 2.7. Suppose that

- G is an amenable group.
- X and Y are compact G-spaces.
- $\beta: X \to Y$ continuous surjective *G*-map.

Then the induced map $\beta_* : \mathscr{P}_G(X) \to \mathscr{P}_G(Y)$ is surjective.

Proof. Fix $v \in \mathscr{P}_G(Y)$. We wish to prove that the set

$$K = \{\mu \in \mathscr{P}(X) : \beta_* \mu = \nu\} \subset \mathscr{P}(X)$$

is non-empty. Since K is obviously a closed G-invariant and convex subset of $C(X)^*$, amenability of G will imply that K^G is non-empty, which is what we would like to prove.

Let $V := \beta^* C(Y) \subset C(X)$, which is a *G*-invariant sub-space, and we may view v as a positive linear functional on *V*. By Hahn-Banach's Theorem, there is $\mu \in C(X)^*$ which extends v with the same norm. Hence,

$$\|f\|_{\infty} - \mu(f) = \mu(\|f\|_{\infty} - f) \le \|\|f\|_{\infty} - f\|_{\infty} \le \|f\|_{\infty}$$

which shows that μ is non-negative, and thus $\mu \in K$.

Remark 2.8. If the assumption that *G* is amenable is dropped, then the last proposition need no longer be true. There are examples of compact *G*-spaces *X* and *Y*, where *G* is the free group on two generators, and a continuous *G*-map $\beta : X \to Y$ such that $\mathscr{P}_G(X)$ is empty, while $\mathscr{P}_G(Y)$ is not.

3. ERGODIC THEOREMS

Let *G* be a locally compact group with right Haar measure *m*. Suppose that (\mathcal{H}, π) is a strongly continuous unitary representation of *G* on a Hilbert space \mathcal{H} . Given a sequence $(F_t) \subset G$ of pre-compact subsets with positive *m*-measures, we define the operators

$$A_t v = \frac{1}{m(F_t)} \int_{F_t} \pi(s) v \, dm(s), \quad \text{for } v \in \mathcal{H}.$$

For instance, if X is a G-space and v is a G-invariant Borel probability measure on X, then

$$\pi(g)f(x) = f(g^{-1}x), \text{ for } f \in L^2(X, v) \text{ and } g \in G,$$
(3.1)

defines a unitary representation on the Hilbert space $L^2(X, v)$.

We say that $(F_t) \subset G$ is

• a *norm-good sequence* for (\mathcal{H}, π) if the limits

$$A_{\infty}v := \lim_{t} A_{t}v,$$

exist in the norm topology on \mathcal{H} for all $v \in \mathcal{H}$. If it is norm-good for *every* unitary representation of *G*, then we simply say that (F_t) is *norm-good*.

• a pointwise good sequence for (X, v) if the limits

$$A_{\infty}f(x) := \lim A_t f(x),$$

exist for *v*-almost every $x \in X$ for all $f \in L^2(X, v)$, where *X* and π are as in (3.1). If it is pointwise good for *every* (*X*, *v*), then we simply say that (*F*_t) is *pointwise good*.

• an *invariant sequence* if it is norm-good and $A_{\infty}v$ is $\pi(G)$ -invariant for every $v \in \mathcal{H}$ and unitary representation (\mathcal{H}, π) .

It is not hard to show that if (F_t) is pointwise good, then it is automatically norm-good.

We state without proofs:

Proposition 3.1. Suppose that G is amenable. Then,

• There exist a sequence $(F_t) \subset G$ of compact subsets with positive m-measures such that

$$\lim_{t} \frac{m(F_t K \Delta F_t)}{m(F_t)} = 0, \quad \text{for every compact subset } K \subset G.$$
(3.2)

• Every sequence (F_t) in G for which (3.2) holds is norm-good and invariant, and there is a sub-sequence (F'_t) such that for some constant C, we have

$$m\left(\bigcup_{s < t} F'_s F'_t^{-1}\right) \le m(F'_t), \quad \text{for all } t.$$
(3.3)

• If a sequence $(F_t) \subset G$ satisfies both (3.2) and (3.3) then it is pointwise good.

In particular, suppose that

- X is a G-space.
- *v* is an ergodic measure.
- $B \subset X$ is a Borel set with positive *v*-measure

MICHAEL BJÖRKLUND

• $(F_t) \subset G$ satisfies (3.2) and (3.3).

Then,

$$\lim_{t} \frac{m(\{g \in G : gx \in B\})}{m(F_t)} = v(B), \quad \text{for } v\text{-almost every } x \in X.$$

4. The Duality Principle

Proposition 4.1. Let G be a topological group and L < G a dense subgroup. Then,

 $L \cap G$ is minimal $\iff L$ is dense,

where L is assumed to act on G by left translations.

Proof. Fix $g \in G$. Its *L*-orbit in *G* is *Lg*. If $U \subset G$ is a non-empty open set, then

$$Lg \cap U = (L \cap Ug^{-1})g \neq \emptyset,$$

since L is dense and Ug^{-1} is open. If L is not dense, then the L-orbit of e never meets the non-empty open set $U = \overline{L}^c \subset G$.

The following result can be used to establish minimality in certain cases.

Proposition 4.2 (Duality principle). Suppose that

- *G* is a topological group.
- $\Lambda, \Delta < G$ are closed subgroups.

Then,

$$\Lambda \cap G/\Delta$$
 is minimal $\iff \Delta \cap \Lambda \backslash G$ is minimal.

Proof. We note that both assertions are equivalent to saying that the double sets $\Lambda x \Delta \subset G$ are dense for all $x \in G$.

In particular, suppose that *L* and *H* are topological groups and $\Gamma < L \times H$ a closed subgroup. If we apply the previous proposition to

 $G = L \times H$ and $\Lambda = L \times \{e\}$ and $\Delta = \Gamma$,

together with the observation that $\Delta \cap G/\Lambda$ is the same action as $\operatorname{proj}_H(\Gamma) \cap H$, then we conclude:

Corollary 4.3. Suppose that

- L and H are topological groups.
- $\Gamma < L \times H$ is a closed subgroup.

Then,

 $L \cap L \times H/\Gamma$ is minimal $\iff H = \overline{\operatorname{proj}_{H}(\Gamma)}$.

5. GOTTSCHALK-HEDLUND'S THEOREM

Let G be a topological group.

Definition 5.1 (Syndetic sets). A set $V \subset G$ is *left syndetic* if there exists a finite set $F \subset G$ such that FV = G, and we say that V is *right syndetic* if V^{-1} is left syndetic.

If G is abelian, then every left syndetic set is of course right syndetic. This property almost characterizes abelian groups as the following proposition shows.

Proposition 5.2. Suppose that G has a conjugacy class which is not pre-compact. Then there exists a left syndetic subset $C \subset G$ which is not right syndetic. If G is σ -compact, then C can be chosen to be σ -compact as well.

Proof. We fix

- an increasing exhaustion (K_{α}) of *G* by compact subsets.
- an element $x \in G$ with a non-compact conjugacy class.

If *G* is σ -compact, then the exhaustion can be indexed by a countable set.

We shall prove that there exists a net (t_{α}) in *G* such that the set

$$T:=\bigcup_{\alpha}t_{\alpha}K_{\alpha}\subset G$$

satisfies $xT \cap T = \emptyset$. Once such a net has been constructed, we observe that the set $C := T^c \subset G$ has the properties:

$$\{e,x\}C = G$$
 and $(CF)^c = \bigcap_{f \in F} Tf \neq \emptyset$, for every finite set $F \subset G$,

since every finite (compact) subset of G is eventually properly contained in (K_{α}) , which shows that C is a left, but not right, syndetic subset of G.

We shall now inductively construct the net (t_{α}) . For simplicity, we assume that the directed set can be chosen to be (\mathbb{N}, \leq) . Let $t_o = e$ and suppose that we have defined (t_k) for all k < n. Since the conjugacy class is *not* pre-compact, but each K_n is compact, we can find $t_n \in G$ such that

$$xt_nK_n\cap \left(\bigcup_{k=1}^n t_kK_k\right)= \emptyset$$
 and $x^{-1}t_nK_n\cap \left(\bigcup_{k=1}^n t_kK_k\right)=\emptyset.$

This implies that

$$xt_nK_n \cap t_mK_m = \emptyset$$
, for all $m, n \ge 1$,

and thus $xT \cap T = \emptyset$.

The following result of Gottschalk and Hedlund provides a dynamical construction of *left* syndetic sets.

Proposition 5.3 (Gottschalk-Hedlund's Theorem). Suppose that

- X is a compact G-space.
- $x_o \in X$ is an arbitrary point with a dense G-orbit.

Then,

X is minimal $\iff U_{x_0} \subset G$ is left syndetic for every open neighborhood U of x_0 .

Proof. Suppose that X is minimal. For every non-empty open set, we have GU = X. By compactness, we can find a finite set $F \subset G$ such that FU = G, and thus $FU_{x_0} = (FU)_{x_0} = G$.

Suppose that X is not minimal and let $Y \subset X$ be non-empty proper closed *G*-invariant subset of X. Let $U \subset Y^c$ be a non-empty open neighborhood of x_o whose closure V is a proper subset of Y^c . Suppose that there exists a finite set $F \subset G$ such that $FU_{x_o} = (FU)_{x_o} = G$. Since x_o has a dense *G*-orbit, we conclude $FU \subset X$ is dense, and thus FV = X, which contradicts our assumption that V is a *proper* subset of Y^c . Hence $U_{x_o} \subset G$ is not left syndetic. \Box

6. SAT*-SPACES

Definition 6.1. Let *G* be a topological group and *X* a *G*-space. Suppose that there exists a Borel probability measure v on *X* with the properties that if $B \subset X$ is a Borel set, and

- if v(B) = 0, then v(gB) = 0 for all $g \in G$.
- if v(B) > 0 and $\varepsilon > 0$, then there exists $g \in G$ such that $v(gB) > 1 \varepsilon$.

If for every $g \in G$, the Radon-Nikodym derivative $\frac{dgv}{dv}$ is *v*-essentially bounded, then we refer to the pair (X, v) as a *SAT**-*space*.

MICHAEL BJÖRKLUND

We state without proof:

Proposition 6.2. Suppose that

- (X, v) is a SAT*-space.
- $B \subset X$ is a Borel set which is not v-conull.

Then there exists a v-conull subset $X' \subset X$ such that $B_x \subset G$ is not right syndetic for any $x \in X'$.

We can combine the proposition above with Gottschalk-Hedlund's Theorem and conclude:

Corollary 6.3. Suppose that

- X is a compact and second countable minimal G-space
- $v \in \mathscr{P}(X)$ is a SAT* Borel probability measure.

Then there exists a v-conull subset $X' \subset X$ with the property that for any non-empty open set $U \subset X$ which is not v-conull, we have

 $U_x \subset G$ is left syndetic, but not right syndetic, for every $x \in X'$.

DEPARTMENT OF MATHEMATICS, CHALMERS, GOTHENBURG, SWEDEN *E-mail address*: micbjo@chalmers.se