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1. TOPOLOGICAL ERGODICITY AND MINIMALITY

Let G be a topological group.

Definition 1.1 (G-space). A Hausdorff space X is called a G-space if it is endowed with a jointly
continuous action of G by homeomorphisms, which we write as

(g, x) 7→ gx, for g ∈G and x ∈ X .

We say that
• X is topologically ergodic if for all non-empty open sets U ,V ⊂ X ,

gU ∩V 6= ;, for some g ∈G.

• X is minimal if there are no non-empty proper closed G-invariant subsets of X .
Clearly every minimal G-space is topologically ergodic.

Proposition 1.2 (Fundamental Theorem in Topological Dynamics). Every compact G-space X
admits at least one closed G-invariant subset such that the restriction of the G-action to this
subset is minimal.

Proof. Zorn’s Lemma. �

1.1. Basic notation. Given A ⊂G and B ⊂ X we define the action set of A and B by

AB = ⋃
a∈A

aB ⊂ X .

Given x ∈ X , we define the return set to B by

Bx =
{
g ∈G : gx ∈ B

}⊂G.

We note that

ABx = (AB)x and Bgx = Bx g−1, for all g ∈G, A ⊂G, x ∈ X and B ⊂ X .

1.2. Topological ergodicity and existence of dense orbits. Let X be a G-space and let ν
be a Borel probability measure on X . We say that ν is G-invariant if

ν(gB)= ν(B), for all g ∈G and Borel sets B ⊂ X ,

and (measurably) ergodic if it is G-invariant and ν(B)= 1 for every G-invariant Borel set B ⊂ X
with positive ν-measure. Recall that the support of ν, here denoted by supp(µ), is defined as
the set of x ∈ X such that ν(U) > 0 for every open neighborhood U of x. One readily checks that
supp(ν)⊂ X is always closed and if ν is G-invariant, then supp(ν) is G-invariant.

Proposition 1.3. Suppose that X is a G-space and there exists an ergodic G-invariant Borel
probability measure ν on X with full support. Then X is topologically ergodic.

Proof. Since ν has full support, ν(U)> 0 for every non-empty open set U ⊂ X , and thus we have
ν(GU)= 1 and ν(GU ∩V )= ν(V )> 0 for every non-empty open set V ⊂ X which shows that X is
topologically ergodic. �
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Recall that a Baire space is a Hausdorff space with the property that every countable inter-
section of open dense sets is non-empty. Baire’s Category Theorem asserts that every completely
metrizable space is Baire.

Proposition 1.4 (Topological Zero-One Law). Suppose that X is a second countable Baire G-
space and define the set

Xo := {
x ∈ X : X =Gx

}⊂ X .

Then,

X is topologically ergodic ⇐⇒ Xo is a dense Gδ-set.

Proof. Let (Un) be a countable basis for the topology on X , and note that Xo = ⋂
n GUn, which

shows that Xo is always a Gδ-set.

• If X is topologically ergodic, then GUn is dense for every n, and thus Xo is dense, by our
assumption that X is a Baire space.

• If Xo is dense, then GUn must be dense for every n, and thus GUn∩V 6= ; for every open
set V ⊂ X . Since every non-empty open set U contains at least one open set of the form
Un, we conclude that X is topologically ergodic.

�

Remark 1.5. There are examples of compact, but not second countable, topologically ergodic
G-spaces without any points with dense orbits. For instance, let G be any countable group and
suppose that Y is a compact G-space with an ergodic G-invariant Borel probability measure
ν without atoms. Let X denote the Gelfand spectrum of the C*-algebra L∞(Y ,ν), and view
X as a compact G-space under the dual action equipped with a G-invariant Borel probability
measure µ of full support, which is defined as the push-forward of ν under the Gelfand map.
Since L∞(Y ,ν) is not norm separable, X is not second countable by Urysohn’s Lemma. We leave
it as an exercise to prove that µ is non-atomic and

µ(Bo)=µ(B), for all Borel sets B ⊂ X .

In particular, µ(Gx) = µ(Gx) = 0, since G is countable and µ is non-atomic. Since µ is ergodic
and has full support on X , we conclude that X is topologically ergodic by Proposition 1.3.

In the presence of an ergodic measure, the set of points with dense orbits is also "measurably"
large.

Proposition 1.6 (Zero-One Law). Suppose that

• X is second countable.
• ν is G-invariant and ergodic.

Then,

supp(ν)=Gx, for ν-a.e. x ∈ X .

Proof. Since supp(ν) is again a second countable G-space, we may assume that µ has full sup-
port. Let (Un) be a countable basis for the topology on X and note that⋂

n
GUn = {

x ∈ X : Gx = X
}
.

Since ν has full support and is ergodic, we have ν(GUn)= 1 for every n and thus the intersection
above is ν-conull. �
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1.3. Existence of ergodic measures. Let X be a compact G-space and let P (X ) denote the
convex set of Borel probability measures on X . We write PG(X ) for the (possibly empty) convex
set of G-invariant elements in P (X ). We note that PG(X ) is weak*-compact once viewed as a
subset of C(X )∗. An element ν ∈PG(X ) is extreme if it cannot be written on the form

ν= pµ+ qη, for some µ 6= η ∈PG(X ) and 0< p, q < 1 such that p+ q = 1.

By Krein-Milman’s Theorem, the set PG(X )ext of extreme points in PG(X ) is always non-empty.
If X is compact and second countable, then PG(X )ext is a Gδ-set and thus Borel measurable. If
the second countability assumption is dropped, then PG(X )ext need not be Borel measurable.

We now connect extreme points to ergodic measures.

Proposition 1.7 (Ergodicity vs. Extremality). If X is a compact G-space and PG(X ) 6= ;, then

PG(X )ext =P
erg
G (X ).

In particular,

• P
erg
G (X ) 6= ;.

• if PG(X )= {ν}, then ν is ergodic.

Proof. Suppose that ν ∈ PG(X ) is ergodic, but not an extreme point in PG(X ). Then we can
write ν = pµ+ qη for two distinct G-invariant Borel probability measures µ and η on X for
some real numbers 0 < p, q < 1 such that p+ q = 1. This forces both µ and η to be absolutely
continuous with respect to ν, and their Radon-Nikodym derivatives with respect to ν are G-
invariant. Since ν is ergodic, this further forces them to be ν-essentially equal to one, and thus
µ= η, which contradicts our assumption.

Suppose that ν ∈ PG(X ) is not ergodic and let B ⊂ X be a G-invariant Borel set such that
0< ν(B)< 1 and define the G-invariant Borel probability measures µ and η on X by

µ(A)= ν(A∩B)
ν(B)

and η(A)= ν(A∩Bc)
ν(Bc)

, for Borel sets A ⊂ X .

Since ν= ν(B)µ+ (1−ν(B))η is a non-trivial decomposition of ν in PG(X ) we conclude that ν is
not an extreme point in PG(X ). �

2. AMENABLE GROUPS

We shall now confine our attention to those topological groups for which ergodic measures
exist for any compact G-space.

Definition 2.1 (Amenable group). A topological group G is amenable if PG(X ) is non-empty for
every compact G-space X .

Recall that a topological group is solvable if there exist closed subgroups G i < G, i = 1, . . . ,n,
such that

{e}=Go =/G1/G2 . . ./Gn =G

and G i+1/G i is abelian for every i. We mention without proof:

Theorem 2.2 (Markov-Kakutani). Every solvable group is amenable.

Theorem 2.3. Suppose that G is a locally compact group which contains a closed free subgroup
on two generators. Then G is not amenable.
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Remark 2.4. If the assumption that G is locally compact is dropped, then the last theorem
does not necessarily hold. For instance, suppose that G is the free group on two generator and
let U(`2(G)) denote the group of unitary operators on `2(G) equipped with the strong operator
topology. Then the embedding of G into U(`2(G)) via the left regular representation is discrete,
and thus the image of G is closed, but it can be shown that U(`2(G)) is amenable.

Let G be a topological group and let E be a Banach space equipped with a jointly continuous
isometric action of G. Then G also acts jointly continuously on E∗ by

gλ(u)=λ(g−1u), for u ∈ E and λ ∈ E∗.

If K ⊂ E∗ is a weak*-compact G-invariant convex subset, then we refer to K as an affine G-
space. We denote by KG the (possibly empty) set of G-fixed elements. One example to have in
mind is when X is a compact G-space and the regular representation of G on C(X ). In this case,

E = C(X ) and K =P (X ) and KG =PG(X ).

Proposition 2.5. A topological group G is amenable if and only if KG 6= ; for every non-empty
affine G-space K.

Proof. The "only if"-direction follows from taking

E = C(X ) and K =P (X )⊂ E∗,

where X is a compact G-space. For the "if"-direction, if G is amenable, then PG(K) is non-empty.
Pick η ∈PG(K), and define its barycenter by

x =
∫

K
ydη(y) ∈P (X ).

Since η is G-invariant, we see that x ∈ KG . �

Proposition 2.6 (Unique ergodicity vs. minimality). Suppose that
• G is an amenable group.
• X is a compact G-space and PG(X )= {ν}.

Then Y := supp(ν)⊂ X is a minimal G-space.

Proof. Suppose that Z ⊂Y is a non-empty proper closed G-invariant subset. Since G is amenable,
there exists µ ∈PG(Z)⊂PG(Y ) such that µ(Z)= 1. However, by assumption, µ= ν, and thus we
have Z = supp(ν)=Y , which is a contradiction. �

Proposition 2.7. Suppose that
• G is an amenable group.
• X and Y are compact G-spaces.
• β : X →Y continuous surjective G-map.

Then the induced map β∗ : PG(X )→PG(Y ) is surjective.

Proof. Fix ν ∈PG(Y ). We wish to prove that the set

K = {
µ ∈P (X ) : β∗µ= ν}⊂P (X )

is non-empty. Since K is obviously a closed G-invariant and convex subset of C(X )∗, amenability
of G will imply that KG is non-empty, which is what we would like to prove.

Let V := β∗C(Y ) ⊂ C(X ), which is a G-invariant sub-space, and we may view ν as a positive
linear functional on V . By Hahn-Banach’s Theorem, there is µ ∈ C(X )∗ which extends ν with
the same norm. Hence,

‖ f ‖∞−µ( f )=µ(‖ f ‖∞− f )≤ ‖‖ f ‖∞− f ‖∞ ≤ ‖ f ‖∞,

which shows that µ is non-negative, and thus µ ∈ K . �
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Remark 2.8. If the assumption that G is amenable is dropped, then the last proposition need
no longer be true. There are examples of compact G-spaces X and Y , where G is the free group
on two generators, and a continuous G-map β : X → Y such that PG(X ) is empty, while PG(Y )
is not.

3. ERGODIC THEOREMS

Let G be a locally compact group with right Haar measure m. Suppose that (H ,π) is a
strongly continuous unitary representation of G on a Hilbert space H . Given a sequence (Ft)⊂
G of pre-compact subsets with positive m-measures, we define the operators

Atv = 1
m(Ft)

∫
Ft

π(s)v dm(s), for v ∈H .

For instance, if X is a G-space and ν is a G-invariant Borel probability measure on X , then

π(g) f (x)= f (g−1x), for f ∈ L2(X ,ν) and g ∈G, (3.1)

defines a unitary representation on the Hilbert space L2(X ,ν).

We say that (Ft)⊂G is
• a norm-good sequence for (H ,π) if the limits

A∞v := lim
t

Atv,

exist in the norm topology on H for all v ∈ H . If it is norm-good for every unitary
representation of G, then we simply say that (Ft) is norm-good.

• a pointwise good sequence for (X ,ν) if the limits

A∞ f (x) := lim
t

At f (x),

exist for ν-almost every x ∈ X for all f ∈ L2(X ,ν), where X and π are as in (3.1). If it is
pointwise good for every (X ,ν), then we simply say that (Ft) is pointwise good.

• an invariant sequence if it is norm-good and A∞v is π(G)-invariant for every v ∈H and
unitary representation (H ,π).

It is not hard to show that if (Ft) is pointwise good, then it is automatically norm-good.

We state without proofs:

Proposition 3.1. Suppose that G is amenable. Then,
• There exist a sequence (Ft)⊂G of compact subsets with positive m-measures such that

lim
t

m(FtK∆Ft)
m(Ft)

= 0, for every compact subset K ⊂G. (3.2)

• Every sequence (Ft) in G for which (3.2) holds is norm-good and invariant, and there is
a sub-sequence (F ′

t) such that for some constant C, we have

m
( ⋃

s<t
F ′

sF
′−1
t

)
≤ m(F ′

t), for all t. (3.3)

• If a sequence (Ft)⊂G satisfies both (3.2) and (3.3) then it is pointwise good.

In particular, suppose that
• X is a G-space.
• ν is an ergodic measure.
• B ⊂ X is a Borel set with positive ν-measure
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• (Ft)⊂G satisfies (3.2) and (3.3).
Then,

lim
t

m
({

g ∈G : gx ∈ B
})

m(Ft)
= ν(B), for ν-almost every x ∈ X .

4. THE DUALITY PRINCIPLE

Proposition 4.1. Let G be a topological group and L <G a dense subgroup. Then,

L æG is minimal ⇐⇒ L is dense,

where L is assumed to act on G by left translations.

Proof. Fix g ∈G. Its L-orbit in G is Lg. If U ⊂G is a non-empty open set, then

Lg∩U = (L∩U g−1)g 6= ;,

since L is dense and U g−1 is open. If L is not dense, then the L-orbit of e never meets the
non-empty open set U = L

c ⊂G. �

The following result can be used to establish minimality in certain cases.

Proposition 4.2 (Duality principle). Suppose that
• G is a topological group.
• Λ,∆<G are closed subgroups.

Then,
ΛæG/∆ is minimal ⇐⇒ ∆æΛ\G is minimal.

Proof. We note that both assertions are equivalent to saying that the double sets Λx∆ ⊂ G are
dense for all x ∈G. �

In particular, suppose that L and H are topological groups and Γ< L×H a closed subgroup.
If we apply the previous proposition to

G = L×H and Λ= L× {e} and ∆=Γ,

together with the observation that ∆æ G/Λ is the same action as projH(Γ) æ H, then we con-
clude:

Corollary 4.3. Suppose that
• L and H are topological groups.
• Γ< L×H is a closed subgroup.

Then,
L æ L×H/Γ is minimal ⇐⇒ H = projH(Γ).

5. GOTTSCHALK-HEDLUND’S THEOREM

Let G be a topological group.

Definition 5.1 (Syndetic sets). A set V ⊂G is left syndetic if there exists a finite set F ⊂G such
that FV =G, and we say that V is right syndetic if V−1 is left syndetic.

If G is abelian, then every left syndetic set is of course right syndetic. This property almost
characterizes abelian groups as the following proposition shows.

Proposition 5.2. Suppose that G has a conjugacy class which is not pre-compact. Then there
exists a left syndetic subset C ⊂ G which is not right syndetic. If G is σ-compact, then C can be
chosen to be σ-compact as well.
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Proof. We fix
• an increasing exhaustion (Kα) of G by compact subsets.
• an element x ∈G with a non-compact conjugacy class.

If G is σ-compact, then the exhaustion can be indexed by a countable set.

We shall prove that there exists a net (tα) in G such that the set

T :=⋃
α

tαKα ⊂G

satisfies xT ∩T =;. Once such a net has been constructed, we observe that the set C := T c ⊂G
has the properties:

{e, x}C =G and (CF)c = ⋂
f ∈F

T f 6= ;, for every finite set F ⊂G,

since every finite (compact) subset of G is eventually properly contained in (Kα), which shows
that C is a left, but not right, syndetic subset of G.

We shall now inductively construct the net (tα). For simplicity, we assume that that the
directed set can be chosen to be (N,≤). Let to = e and suppose that we have defined (tk) for all
k < n. Since the conjugacy class is not pre-compact, but each Kn is compact, we can find tn ∈G
such that

xtnKn ∩
( n⋃

k=1
tkKk

)
=; and x−1tnKn ∩

( n⋃
k=1

tkKk

)
=;.

This implies that
xtnKn ∩ tmKm =;, for all m,n ≥ 1,

and thus xT ∩T =;. �

The following result of Gottschalk and Hedlund provides a dynamical construction of left
syndetic sets.

Proposition 5.3 (Gottschalk-Hedlund’s Theorem). Suppose that
• X is a compact G-space.
• xo ∈ X is an arbitrary point with a dense G-orbit.

Then,

X is minimal ⇐⇒ Uxo ⊂G is left syndetic for every open neighborhood U of xo.

Proof. Suppose that X is minimal. For every non-empty open set, we have GU = X . By com-
pactness, we can find a finite set F ⊂G such that FU =G, and thus FUxo = (FU)xo =G.

Suppose that X is not minimal and let Y ⊂ X be non-empty proper closed G-invariant subset
of X . Let U ⊂ Y c be a non-empty open neighborhood of xo whose closure V is a proper subset
of Y c. Suppose that there exists a finite set F ⊂ G such that FUxo = (FU)xo = G. Since xo
has a dense G-orbit, we conclude FU ⊂ X is dense, and thus FV = X , which contradicts our
assumption that V is a proper subset of Y c. Hence Uxo ⊂G is not left syndetic. �

6. SAT*-SPACES

Definition 6.1. Let G be a topological group and X a G-space. Suppose that there exists a
Borel probability measure ν on X with the properties that if B ⊂ X is a Borel set, and

• if ν(B)= 0, then ν(gB)= 0 for all g ∈G.
• if ν(B)> 0 and ε> 0, then there exists g ∈G such that ν(gB)> 1−ε.

If for every g ∈G, the Radon-Nikodym derivative dgν
dν is ν-essentially bounded, then we refer to

the pair (X ,ν) as a SAT*-space.
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We state without proof:

Proposition 6.2. Suppose that
• (X ,ν) is a SAT*-space.
• B ⊂ X is a Borel set which is not ν-conull.

Then there exists a ν-conull subset X ′ ⊂ X such that Bx ⊂G is not right syndetic for any x ∈ X ′.

We can combine the proposition above with Gottschalk-Hedlund’s Theorem and conclude:

Corollary 6.3. Suppose that
• X is a compact and second countable minimal G-space
• ν ∈P (X ) is a SAT* Borel probability measure.

Then there exists a ν-conull subset X ′ ⊂ X with the property that for any non-empty open set
U ⊂ X which is not ν-conull, we have

Ux ⊂G is left syndetic, but not right syndetic, for every x ∈ X ′.
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