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SUMMARY

We consider structural topology optimization problems including unilateral constraints arising from
non-penetration conditions in contact mechanics. The resulting non-convex non-smooth problems are
instances of mathematical programs with equilibrium constraints (MPEC), or bi-level programs. Ap-
plying nested (implicit programming) algorithms to this class of problems is problematic owing to
the singularity of the feasible set. We propose a perturbation strategy combining the relaxation of the
equilibrium constraint with the restriction of the design domain to its regular part only. This strategy
allows us to attack the problem numerically using standard non-linear programming algorithms.

We rigorously study the optimality conditions for the original singular problem as well as the
convergence of stationary points and globally optimal solutions to approximating problems towards
respective stationary points and globally optimal solutions to the original problem. A limited numerical
benchmarking of the algorithm is performed. Copyright � 2005 John Wiley & Sons, Ltd.

KEY WORDS: topology optimization; �-perturbation; local optimality; stress singularity; MPEC;
smoothing

1. INTRODUCTION

The optimum design of trusses is concerned with the distribution of the available material
among structural members (bars) in order to carry a given set of loads as efficiently as
possible, subject to mechanical and technological constraints. The distinguishing feature of
structural optimization problems is the presence of the complicating equilibrium constraint,
relating design variables (i.e. those controlling the material distribution) with state variables
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18 A. EVGRAFOV AND M. PATRIKSSON

(e.g., nodal displacements and stresses in the structural members). Verbally, the relation between
the two sets of variables can be formulated as follows: the state variables solve a parametric
optimization problem with design variables as parameters. Therefore, the problem belongs to
a class of difficult optimization problems known as mathematical programs with equilibrium
constraints (MPEC), or generalized bi-level programming problems.

In the framework of topology optimization (as opposed to sizing optimization), the topology
of a truss may change as a result of the optimization process, that is, if a zero amount
of material is allocated to some parts; this possibility significantly enlarges the design space
and, at the same time, increases the computational complexity of the problem. The former
implies the possibility to obtain optimal designs that perform much better than their ‘sizing’
counterparts [1]; the latter places significant requirements on algorithms for solving topology
optimization problems.

In most cases, ‘standard’ algorithms for differentiable non-linear programming problems
can be applied directly to sizing optimization problems. Therefore, one natural approach to
topology optimization is to introduce a small but positive lower bound � on the bar volumes,
thus converting the problem into a sizing one. Solving a sequence of sizing problems for �
converging to zero produces a sequence of designs, whose limit points one hopes are optimal
in the original topology optimization problem.

Unfortunately, some important constraints produce design domains that violate standard non-
linear programming constraint qualifications; in particular, some optimal solutions cannot be
reached as limits of any sequence of strictly positive feasible designs. The stress singularity
phenomenon appearing in topology optimization problems with constraints on the maximal
effective stresses in the structural members is probably the one most studied and the one that
has attracted the most recent interest—we mention the work in References [2–5], just to name
a few references. Similarly, local (Euler) buckling constraints [6], and global (system) stability
constraints [7] are known to exhibit a singular behaviour.

Sizing approximations, studied in the cited papers, are all concerned with approximations of
the globally optimal solutions. In computational practice, however, it is very difficult to solve
the non-convex approximating problems to global optimality. Since most numerical non-linear
optimization algorithms can only find stationary points of the approximating sizing problems, in
this paper we study the limit points of such sequences. We show that they are indeed stationary,
in some sense, in the limiting (that is, original) topology optimization problem as well.

1.1. Equilibrium problem

We consider a truss with m bars and n degrees of freedom. There are r designated nodes of
the truss that may come into frictionless unilateral contact with rigid obstacles.

Given the positions of the nodes, the design (and topology in particular) of a truss can be
described by prescribing for each bar i, i = 1, . . . , m, the amount of material xi � 0 allocated to
this bar. For convenience we collect all the design variables in a vector x = (x1, . . . , xm)t ∈ Rm+.
We introduce an index set of the present (or, active) members in the structure I(x) =
{i = 1, . . . , m | xi>0}, and denote by Ic(x) the complement of I(x) in {1, . . . , m}.

Given a particular design x, the equilibrium status of a truss can be described by specifying

• a pseudo-force si (also known as the normalized stress, which is in fact a stress in the bar
times its volume) for each bar i ∈I(x) present in the structure. To simplify the notation
we collect all values si , i = 1, . . . , m, into one vector s ∈ Rm, assuming si = 0 for i /∈I(x);
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• a contact force �j for each of the potential contact nodes j = 1, . . . , r . These values are
collected in a vector � ∈ Rr+; and

• a displacement uk for each of the structural degrees of freedom k = 1, . . . , n. These values
are collected in a vector u ∈ Rn.

The triple (s, �, u) will be referred to as state variables.
For a vector v ∈ Rq , and an index set I = {i1, . . . , i|I |} ⊆ {1, . . . , q}, we denote by vI the

subvector (vi1, . . . , vi|I |)
t .

The values of the state variables for a specific design x are determined using various energy
principles. Therefore, we define the complementary energy of the structure as

E(x, s, �) := 1

2

∑
i∈I(x)

s2
i

Exi

+ gt�

where E is the Young modulus of the structural material, and g ∈ Rr is a vector of gaps
between the contact nodes and rigid obstacles. We also define the linearized strain energy:

�(x, u) := 1
2 utK(x)u

where K(x) is the stiffness matrix of the structure. The latter matrix is defined as

K(x) := ∑
i∈I(x)

xiKi

where Ki = EBt
iBi is the local stiffness matrix for the bar i = 1, . . . , m, and Bi ∈ R1×n is a

kinematic transformation matrix for the bar i = 1, . . . , m.
In this notation the equilibrium state of the structure under the external load f ∈ Rn can be

characterized using a primal–dual pair of convex quadratic programming problems:

(C)x(f)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min
(s,�)

E(x, s, �)

s.t. Ct� + ∑
i∈I(x)

Bt
i si= f, (P)x(f)

⎧⎨⎩min
u

�(x, u) − f tu

s.t. Cu � g
� � 0

where C ∈ Rr×n is a kinematic transformation matrix. We have implicitly assumed that the
matrix C is quasi-orthogonal, that is, that CCt = I. The problem (C)x(f) is known as the
principle of minimum complementary energy, and the problem (P)x(f) is the principle of
minimum potential energy.

Equivalently, the equilibrium problem can be written as a KKT system for the pair (C)x(f)
and (P)x(f). Define

Q(x) :=

⎛⎜⎜⎝
Bt Ct 0

0 0 −C

I 0 −D(x)B

⎞⎟⎟⎠ , q(f) :=

⎛⎜⎜⎝
−f

g

0

⎞⎟⎟⎠
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and Y := Rm × Rr+ ×Rn, where B ∈ Rm×n is the matrix with rows B1, . . . , Bm, and D(x) = E−1

diag(x) ∈ Rm×m. Then, the pair (s, �) solves (C)x(f) and u solves (P)x(f) if and only if the
vector y∗ = (st, �t, ut)t ∈ Y solves the affine variational inequality problem AVI(q(f), Q(x), Y )

[see, e.g., Reference [8] for the definition]:

[Q(x)y∗ + q(f)]t(y − y∗) � 0 for all y ∈ Y

For the rest of the paper, we make the blanket assumption that for all positive designs x it
holds that

null K(x) ∩ rc{u ∈ Rn | Cu � g} = ∅ (1)

where null(·) denotes the null space of a given matrix, and rc(·) is the recession cone of a
given set (cf. Reference [9]). This assumption is necessary in order to guarantee the feasibility
of the topology optimization problems we are going to consider, and is weaker than assuming
non-singularity of K(x) for positive designs (the latter assumption is ‘standard’ for contact-less
problems, and then essentially equivalent to (1) because the recession cone involved equals Rn

in the contact-less case). Assumption (1) does not exclude problems where the structure is
supported on rigid obstacles only (see Figure 3).

Either of the equilibrium problem formulations (C)x(f), (P)x(f), or AVI(q(f), Q(x), Y ) has
its advantages and disadvantages. For example, the problem (C)x(f) possesses at most one
optimal solution for every design x ∈ Rm+; at the same time, the objective function E is only
lower semicontinuous (and may be infinite) for some x ∈ �Rm+ (cf. Reference [10]).

Our ultimate goal in this paper is to establish stationary conditions that must be verified by
limit points of certain sequences of positive designs. We cannot use the equilibrium formulation
given by the problem (C)x(f) for this purpose, because its objective function violates such a
basic condition for sensitivity analysis as continuity. Neither is the problem (P)x(f) suitable for
us, because the design-to-state mapping it induces is not closed [10]. Therefore, we will use
the primal–dual characterization of the equilibrium given by AVI(q(f), Q(x), Y ) in the sequel.

We close the subsection by defining the feasible set generated by the equilibrium constraint:

F(f) := {(x, s, �, u) ⊂ Rm+ × Rm × Rr+ × Rn | (s, �, u) ∈ SOL(q(f), Q(x), Y )} (2)

1.2. Weight minimization problem

We use a stress constrained weight minimization problem of a truss subject to unilateral
frictionless contact with some rigid obstacles as a representative of the difficult structural
optimization problems. To skip one index and simplify the notation we consider a single-load
case only; this does not affect the applicability of our results to multiple-load cases in any
way.

The weight minimization problem can be written as follows:

(W)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min

(x,s,�,u)
w(x) :=

m∑
i=1

xi

s.t. (x, s, �, u) ∈F(f)

�ixi � si � �ixi, i = 1, . . . , m
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where �i �0 and �i �0 are the stress bounds in compression and tension for the bar i=1, . . . , m,
and F(f) is given by (2).

The results of the present paper are of course applicable to a wider class of problems
than (W). For example, more general objective functions can be considered as long as they
are reasonably regular [differentiable, or Lipschitz continuous w.r.t. (x, s, �, u)]; additional con-
straints may be considered (such as bounds on admissible displacements, local buckling con-
straints, or global stability constraints). However, to keep the notation simple we do not discuss
such straightforward generalizations in detail.

1.3. Singularity

For illustrational purposes here we reproduce an academic example introduced in Reference [4].
Consider a simple 2-bar structure shown in Figure 1. Assume that E = 1, f = 1, −�1 =

�1 = 1, −�2 = �2 = 1/2. In this case, the weight minimization problem is formulated as follows:

min
(x,s,�,u)

x1+x2,

s.t. x1 � 0, x2 � 0

−x1 + s1 � 0, −x2 + s2/2 � 0

−x1 − s1 � 0, −x2 − s2/2 � 0

s1 − x1u = 0, s2 + x2u = 0

s1 − s2 = 1

The unique globally optimal solution to this problem is (x∗
1 , x∗

2 , s∗
1 , s∗

2 , u) = (1, 0, 1, 0, 1). It
is easy to verify that while the KKT conditions are satisfied at this point, MFCQ (hence,
LICQ) is violated. This situation in structural optimization is rather typical, despite the fact
that LICQ generically holds in non-linear programming. For our developments it also means
that, in the presence of contact conditions, we cannot assume that the resulting MPEC problem
satisfies MPEC-LICQ, despite the corresponding generic result [11]. (We also note that while

Figure 1. Two-bar truss structure.
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22 A. EVGRAFOV AND M. PATRIKSSON

weight minimization problems in a single-load case may be cast using linear programming
techniques [12], we do not use this simplification since, arguably, single-load case problems
rarely appear in practical situations.)

In what follows we will concentrate on constructing approximation problems that are (at
least under some mild assumptions) qualified in the sense of Mangasarian and Fromowitz,
and allow us to approximate both globally optimal solutions and stationary points of singular
problems arising in truss topology optimization.

2. PREVIOUS RESULTS

2.1. �-perturbation of Cheng and Guo and variations

The so-called �-perturbation of structural topology optimization problems, or approximation
with a sequence of sizing optimization problems, has become a classic topic. Convergence
results of this type allow one, at least in principle, to compute optimal solutions to structural
topology optimization problems by solving a sequence of smooth non-convex approximating
problems. Such approximations do not suffer from many numerical difficulties possessed by
the original model problem (W), so that efficient solvers are readily available.

For some truss topology optimization problems (such as, e.g., compliance minimization,
possibly with so-called ‘strong’ stress constraints [13]) the naïve replacement of the lower
bound 0 on design variables with a small positive value �>0 tending to zero (whence the
name, �-perturbation) is sufficient. Such a strategy has been rigorously studied for trusses,
without [13] and with [10] unilateral constraints.

On the other hand, there are many other classes of topology optimization problems including
important mechanical constraints (e.g., stress constraints [2], local buckling constraints [6], and
global buckling constraints [7]) where the simple strategy outlined above leads to erroneous
results, owing to the complicated singular structure of the design domain near the points
where the truss topology changes. Historically, the study of singularity phenomena for truss
topology optimization problems started with problems including stress constraints only. Sved
and Ginos [2] observed that such problems may have singular solutions, and the properties of
the feasible region were further investigated by Kirsch [14], Cheng and Jiang [15], and Rozvany
and Birker [16]. Cheng and Guo [3] were the first to propose a more sophisticated restriction-
relaxation procedure, where not only lower bounds but also stress constraints were perturbed.
They established the convergence of the optimal values of the perturbed problems to the optimal
value of the original problem, while Petersson [4] (using the continuity of certain design-to-state
parameterized mappings) has established the convergence of optimal solutions. Since then, the
�-perturbation has been extended by many authors in many ways: Duysinx and Bendsøe [17]
and Duysinx and Sigmund [18] considered continuum structures; Guo et al. [6] included local
buckling constraints into the problem; Patriksson and Petersson [10] generalized the result
for trusses including unilateral constraints; Evgrafov et al. [19] considered the possibility of
stochastic forces; and Evgrafov [7] studied the linearized elastic stability constraint.

Despite the clear advantage of approximating the non-smooth, singular optimization prob-
lem with a sequence of smooth and regular ones, all the sizing approximations considered
above suffer from the same difficulty. While the underlying theoretical results are concerned
with the approximation of the globally optimal solutions, in computational practice it is
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impossible to solve the non-convex approximating problems to global optimality. There are
also negative results regarding this issue: the �-perturbation approach may fail to find a glob-
ally optimal solution even for topology optimization problems with only 2 design variables
(see Reference [5]).

The analysis of the convergence of stationary points to the approximating problems towards
stationary points of the limiting (that is, original) problem is difficult; for example, the de-
pendence of the equilibrium state of the structure upon the design near the points where the
topology changes is non-smooth, and even non-Lipschitz continuous.

In constructing a new �-perturbation we try to address these issues, concentrating on the
convergence of both globally optimal solutions and stationary points towards the respective
limits.

2.2. The extended formulation of Stolpe and Svanberg

Recently, Stolpe and Svanberg [20] proposed an alternative method for the solution of the
truss topology optimization problems including stress and local buckling constraints, which
is based on the Karush–Kuhn–Tucker (KKT) formulation of the equilibrium constraint. In
this formulation the state variables are treated equally to the design variables, and artificial
lower bounds on the design are unnecessary. In the absence of unilateral constraints, the
formulation is suitable for any SQP algorithm, and for some numerical examples Stolpe and
Svanberg report that such an algorithm has a better performance than an �-perturbation based
approach. Later, a branch-and-cut algorithm based on this formulation has been developed [21];
furthermore, Achtziger [22] has made the conjecture that every globally optimal solution to a
topology optimization problem including stress and local buckling constraints (but not including
unilateral constraints) is a KKT point in the extended formulation.

Unfortunately, the KKT formulation of the lower-level equilibrium problem for trusses with
unilateral constraints includes complementarity conditions, which are known to violate standard
non-linear programming constraint qualifications. Therefore, the extended formulation cannot be
used directly to solve topology optimization problems for trusses in contact with rigid obstacles,
or including tensile-only members (ropes or cables).

We therefore propose a new approximation scheme, which allows for the violation of the
lower-level equilibrium conditions, and thus does not include the complicating complementarity
constraints.

3. PREVIOUS METHODS FOR GENERAL MPEC PROBLEMS

Among iterative algorithms for MPEC problems, our �-perturbation method is special in that
it combines relaxation (of the equilibrium conditions) and restrification (of the design space).
Most iterative algorithms for general MPEC problems belong to the relaxation category, wherein
constraints are penalized or complementarity conditions are smoothed. In the latter category,
the methods of Facchinei et al. [23] and Scholtes [11] have relations to ours that are interesting
to explore, in order to analyse the strength of our convergence results. Due to the stronger
regularity properties of the problems considered in References [11, 23], their convergence results
are shown to be stronger; we then seek to explain why local, iterative methods for our problem
are unlikely to yield better convergence characteristics than those that we reach in this paper.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:17–44



24 A. EVGRAFOV AND M. PATRIKSSON

3.1. The smoothing algorithm of Facchinei et al. [23]
Consider the problem to

(M)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
(x,y)

f (x, y)

s.t.

{
x ∈ X

y solves VI(F(x, ·), C(x))

where f : Rn+m �→ R is continuously differentiable, X ⊂ Rn is non-empty and compact, and,
for each x ∈ X and for a continuously differentiable function F : Rn+m �→ Rm, VI(F(x, ·), C(x))

denotes the variational inequality defined by the pair (F(x, ·), C(x)),

y ∈ C(x); F(x, y)t(z − y) � 0, z ∈ C(x)

where C(x) = {y ∈ Rm | gi(x, y) � 0, i = 1, . . . , �}, g : Rn+m �→ R� being twice continuously
differentiable and concave in the second argument.

For the lower-level VI, we assume that C(x) 	= ∅ for all x in an open set A contain-
ing X, that C(x) is uniformly compact on A (with C(x) ⊂ B for some open bounded set
B ⊂ Rm), that F(x, ·) is uniformly strongly monotone on B for all x ∈ A, and that for every
pair (x, y) for which x ∈ X and y solves VI(F(x, ·), C(x)), the partial gradients ∇y gi(x, y),
i ∈I(x, y) := {i = 1, . . . , � | gi(x, y) = 0}, are linearly independent (that is, the linear indepen-
dence CQ, LICQ).

By these assumptions, VI(F(x, ·), C(x)) has a unique solution for each x ∈ X, and each
lower-level VI is equivalent to the existence of a (unique) multiplier vector � ∈ R� such that

F(x, y) − ∇yg(x, y)� = 0m (3a)

0� � g(x, y) ⊥ � � 0� (3b)

Let

H0(x, y, z, �) :=

⎛⎜⎜⎝
F(x, y) − ∇y g(x, y)

g(x, y) − z

−2 min(z, �)

⎞⎟⎟⎠ , (x, y, z, �) ∈ Rn+m+2�

The KKT system (3) is equivalent to the statement that H0(x, y, z, �) = 0m+2�. We therefore
write

(P)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
(x,y)

f (x, y)

s.t.

{
x ∈ X

H0(x, y, z, �) = 0m+2�

which is an equivalent, non-smooth, restatement of (M), in the sense that the two problems
share global as well as local optimal solutions in x (cf. Reference [23, Proposition 1]).
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Facchinei et al. [23] consider a smooth reformulation of the problem (P), as follows. We
introduce the function � : R2 �→ R by

��(a, b) :=
√

(a − b)2 + 4�2 − (a + b), (a, b) ∈ R2

For this function, we have that [23, Proposition 2]
��(a, b) = 0 ⇐⇒ a � 0, b � 0, ab = �2

For � = 0, ��(a, b) = −2 min(a, b); for � 	= 0, �� is in C∞; and for every pair (a, b),
lim�→0 ��(a, b) = −2 min(a, b). The function �� therefore serves as a smooth perturbation
of the min function. We consider replacing the operator H0 in the problem (P) above with
the smooth operator H�, defined by

H�(x, y, z, �) :=

⎛⎜⎜⎝
F(x, y) − ∇yg(x, y)

g(x, y) − z

��(z, �)

⎞⎟⎟⎠ , (x, y, z, �) ∈ Rn+m+2�

where �(z, �) := (�(z1, �1), . . . ,�(z�, ��)), thus defining the smoothing problem

(P�)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min
(x,y)

f (x, y)

s.t.

{
x ∈ X

H�(x, y, z, �) = 0m+2�

While (P0) coincides with the non-smooth problem (M), the problem (P�) for � 	= 0 is
a smooth optimization problem. We denote the feasible set to (P�) by F� ⊂ Rn+m+2�. The
function H� is not only locally Lipschitz continuous for every � but also regular (in the
sense that the directional derivative exists in all directions and equals the Clarke derivative; cf.
Reference [23, Lemma 1]), and its generalized Jacobian with respect to (y, z, �) is non-singular
for every � and feasible point of the problem (P�), cf. Reference [23, Proposition 3]. Further,
for every x̄ ∈ X and � ∈ R there exists a unique point in F� such that its x-part equals x̄, and
this vector,

w̄� := (x̄, y�(x̄), y�(x̄), ��(x̄)) (4)

is continuous in �. The feasible sets F� of the problem (P�) are non-empty and uniformly
compact, whence the problems (P�) have optimal solutions.

The first-order optimality conditions for the problem (P�) can be written as follows: with
L(x, y, �) := F(x, y)−∇yg(x, y)�, if (x, y, z, �) is a locally optimal solution to (P�), then there
exist vectors (�, �, �) ∈ Rm+2� and s ∈ NX(x) × Rm+2� such that (cf. Reference [23, Theorem 2])

0n+m ∈ ∇f (x, y) + ∇L(x, y, �)� + ∇(g(x, y) − z)� +
�∑

i=1
���(zi, �i )�i + M‖(1, �, �, �)‖s (5)

where M is a Lipschitz constant for (f, H�) around (x, y, z, �). Since the multiplier for ∇f (x, y)

is non-zero (it then equals 1, without any loss of generality), this condition is stronger than the

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:17–44
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Fritz–John conditions, and is in fact the KKT conditions for the problem. While one may then
refer to this condition for � = 0 as the KKT conditions for the MPEC problem (M), Facchinei
et al. [23] refer to it is as strong C-stationarity (SCS).

A global version of the smoothing algorithm is immediate. A more practical algorithm is
obtained by replacing, in the algorithm above, global optimality in (P��

) of the vector w� by
stationarity in the sense of the KKT system (5). For this algorithm, it is shown in Reference [23,
Theorem 4] that the sequence {w�} of KKT points in (P��

) is bounded and every limit point
is an SCS point in (P). A crucial part of the proof is the continuity property of any sequence
of KKT points in the problem (P�) as � tends to zero (cf. Reference [23, Proposition 4]).
The proof of the convergence result also establishes the important result that the sequence
{(��, ��, ��)} of KKT multipliers is bounded. This is a crucial part of any analysis of the
stationarity property of a limit point.

A yet more practical algorithm is also devised, in which the sequence {w�} of vectors is
allowed to be defined by near-feasible and approximate KKT points. In other words, in each
iteration �, the distance from the vector w� to the feasible set F� of the problem (P��

) is
bounded by ��>0, and the Euclidean length of the vector defining the right-hand side of the
inclusion (5) is also bounded above by this value. Theorem 5 in Reference [23] then states
that if {��} ↓ 0 as {��} → 0, then the sequence {w�} of approximate KKT points is bounded
and every limit point is, again, a SCS point in (P).

The latter algorithm was coded and tested in Reference [23] on some small and medium-size
MPEC problems; each problem (P��

) was then solved by utilizing an SQP algorithm. They
report that it compares favourably with, for example, the implicit programming algorithms
proposed in References [24, 25].
3.2. The regularization algorithm of Reference [11]
Scholtes [11] considers the parameterized problem to

(NLP(t))

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x

f (x)

s.t. g(x) � 0p

h(x) = 0q

G(x) � 0m

H(x) � 0m

Gi(x)Hi(x) � t

where f, g, h, G, and H are continuously differentiable. The original problem, (NLP(0)), is
ill-posed, whence it is natural to consider solving (NLP(t)) for t ↓ 0. An MPEC-LICQ is in-
troduced by which, disregarding the (relaxed) complementarity conditions, the active constraints
are all linearly independent. Three stationarity conditions are introduced, which, in addition to
the weak stationarity condition

∇f (x̄) + ∑
i∈Ig(x̄)

�̄i∇gi(x̄) + ∑
j∈Ih(x̄)

�̄j∇hj (x̄) − ∑
k∈IG(x̄)

�̄k∇Gk(x̄)

− ∑
�∈IH (x̄)

�̄�∇H�(x̄) = 0n
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impose the following additional conditions on the complementarity part:

• C-stationarity: m ∈ IG(x̄) ∩ IH (x̄) implies that �̄m�̄m � 0;
• M-stationarity: either �̄m�̄m = 0 for all m ∈ IG(x̄) ∩ IH (x̄), or �̄m�̄m>0 for all m ∈ IG(x̄) ∩

IH (x̄);
• strong stationarity: m ∈ IG(x̄) ∩ IH (x̄) implies that �̄m � 0 and �̄m � 0.

The latter is, under MPEC-LICQ, equivalent to a B-stationarity condition introduced by the
author. Based on these conditions, Scholtes establishes that for an arbitrary sequence {t�} ↓ 0
and a corresponding sequence {x�} of stationary points to (NLP(t�)), a limit point x̄ of {x�}
satisfies the following [11, Theorems 3.1 and 3.3]:

• x̄ is C-stationary;
• x̄ is B-stationary if and only if �̄m = �̄m = 0 for every m ∈ IG(x̄) ∩ IH (x̄) ∩ I0, where

I0 := {m | m ∈ IGH (x�, t�) for infinitely many �};
• if a second-order sufficiency condition holds at each x� then x̄ is M-stationary.

Randomly generated problems with f quadratic and the constraint functions all being affine
were tested against a smoothing type method wherein the last constraint in (NLP(t)) was
replaced by the corresponding equality constraint.

Solving 100 problems, all 100 problems were successful in the sense that the last problem
(with t = 10−16; the starting value was always unity) was solvable. (The solver for each problem
was based on Matlab:s fmincon function.) In the case of the smoothing algorithm, 85 problems
were successful, and in 66 cases the solver encountered solvability problems somewhere between
the initial and terminal value of t . The smoothing algorithm was not only less robust but also
produced worse solutions in some cases: in 47 of the 85 problems mentioned above, the two
methods produced the same solution, while in the 36 cases the regularization method produced
better solutions (at most 12% better).

Scholtes, conclusion is that regularization by means of relaxation, as in the construction
of (NLP(t)) is a sensible way of stabilizing existing NLP codes when extended to MPEC
problems. He also remarks that thanks to the fact that problems constructed and solved in a
relaxation/regularization method encompasses the original feasible set, while smoothing methods
do not, which may imply the possibility to faster encounter active sets among the complemen-
tarity conditions.

4. A NEW SMOOTHING APPROACH TO TOPOLOGY OPTIMIZATION

4.1. Motivation

The smoothing algorithm described in Section 3.1 may unfortunately not be applied to truss
topology optimization problems, out of which (W) is a typical example. The latter problem
violates several assumptions that are vital for the smoothing algorithm of Facchinei et al. [23],
the most important being the lack of the uniform strong monotonicity by the lower-level problem
AVI(q(f), Q(x), Y ). In addition, some of the variables (that is, u) may not be uniformly
bounded, and upper-level joint constraints (such as stress constraints) are essential in the
problem (W).
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In the same spirit, the regularization scheme described in Section 3.2 does not suite us either,
since MPEC-LICQ is not likely to be satisfied for the problems we are trying to solve (see
Section 1.3).

In order to overcome the difficulties outlined we introduce an alternative perturbation scheme
for solving stress constrained weight minimization problems for trusses including unilateral con-
straints. It resembles the �-perturbation approach of Cheng and Guo [3] (cf. Section 2.1) by
the fact that we introduce positive lower bounds on the design variables, thus restricting the
design domain. There are important differences, however: instead of relaxing the technolog-
ical constraints (e.g., stress constraints in the original paper [3]) we relax the equilibrium
constraint; to accomplish this, we formulate the optimization problem using both the design
and the state variables, similarly to the extended formulation of Stolpe and Svanberg [20]
(cf. Section 2.2).

4.2. Relaxed equilibrium problem

Formally, fix an arbitrary � � 0 and consider the following perturbation of the feasible set F(f)
(cf. (2)):

F�(f) := {(x, s, �, u) ∈ Rm+ × Rm × Rr+ × Rn | x � o(�)1m

E(x, s, �) + �(x, u) − f tu � �

Bts + Ct� = f

Cu � g }
where o(�) is a positive function of � such that lim�↓0 o(�)/� = 0. Of course, the weak duality
theorem for convex problems implies that F0(f) =F(f); for positive values of � the ‘state’
variables (s, �, u) (which in the extended formulation play a role equal to that of the design
variables x, and do not correspond to an equilibrium state of the truss anymore) are required
to be primal–dual feasible, but only �-optimal.

Finally, for every �>0 we consider the following perturbed version of the stress constrained
weight minimization problem:

(W�)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
min

(x,s,�,u)
w(x)

s.t. (x, s, �, u) ∈ F�(f)

�ixi � si � �ixi, i = 1, . . . , m

From the theoretical point of view, allowing for �-optimal solutions to the lower-level equi-
librium problem means that we ‘regularize’ the bi-level programming problem (W), in the
sense defined by Lignola and Morgan [26]; this will allow us to obtain the convergence of
both globally optimal solutions and stationary points (see below).

At least of equal importance is the following practical interpretation of the method. If we
apply typical ‘standard’ non-linear programming methods to the original non-relaxed prob-
lem (W), in many cases it is reasonable to assume that the underlying numerical method does
in fact solve somewhat relaxed problem. For example, in methods based on implicit program-
ming, we typically solve the equilibrium problem only approximately (especially for designs x
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close to the boundary of Rm+, when the stiffness matrix K(x) becomes ill-conditioned); at the
same time it is easy to keep (linear) feasibility of the state variables in the equilibrium problem.
Even if we do not use implicit programming and treat all variables involved in (W) as indepen-
dent, sometimes it is reasonable to require that the linear constraints [primal–dual feasibility of
(s, �, u) and stress constraints] are satisfied with higher accuracy than the non-linear constraints
expressing optimality of the state, which again results in a feasible set similar to F�(f). In
particular, this may explain the success of SNOPT in solving the weight minimization problem
with stress and local buckling constraints reported in Reference [20].
Remark 4.1
In the multiple-load case, the problem (W�) will have several constraints of the form (x, sk, �k,

uk) ∈F�(fk), where fk is a vector of external forces corresponding to the load case k, and
the triple (sk, �k, uk) ∈ Rm × Rr+ × Rn represents the ‘state’ variables for the load case k,
k = 1, . . . , �.

In the rest of the section, we study the theoretical properties of the point-to-set mapping
�⇒F�(f) which will allow us to establish the convergence of globally optimal solutions as
well as stationary points as � ↓ 0.

4.3. Properties of �⇒F�(f)

In this section we show that the point-to-set mapping �⇒F�(f) enjoys most of the nice
properties one can expect from a point-to-set mapping: under some mild conditions it has
compact (although, unfortunately, non-convex) images, and is closed and lower semicontinuous
at zero [27, Chapter 1]. Furthermore, in Proposition 4.6 we demonstrate the continuity of
the design-to-force ‘sub-mapping’ x⇒(s, �) (see Proposition 4.6 for the formal definition), a
property originally established for the unperturbed feasible set F by Petersson [4] for trusses
without unilateral constraints, and later generalized by Patriksson and Petersson [10].

We formulate the results as a sequence of short propositions.

Proposition 4.2 (Closed images)
For each � � 0 the set F�(f) is closed.

Proof
The claim follows easily from the lower semicontinuity of E(·, ·, ·) (cf. Reference
[10, Lemma 3.2]) together with the continuity of the other functions defining F�(f), � � 0.

�

Proposition 4.3 (Lower semicontinuity)
The multi-function �⇒F�(f) is lower semicontinuous at zero.

Proof
Let (x, s, �, u) ∈F(f). Then, {(x + o(�)1m, s, �, u)} ∈F�(f) for all enough small �>0, where
1m = (1, . . . , 1)t ∈ Rm+. �

Remark 4.4
The same construction establishes the lower semicontinuity of the multi-functions � → (F�∩K),
where (independent of �) the closed set K may represent stress, stiffness, or global stability
constraints, or any combination thereof.
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We stress that the classic �-perturbation of Cheng and Guo [3] results in a l.s.c. mapping
including design variables only; i.e. there might be some displacement vectors corresponding
to the limiting design that cannot be approximated with the displacements corresponding to
positive designs.

Proposition 4.5 (Closedness)
The multi-function �⇒F�(f) is closed at zero.

Proof
The claim follows from the lower semicontinuity of E(·, ·, ·) (cf. Reference [10, Lemma 3.2])
together with the continuity of the other functions, defining the sets F�(f), � � 0. �

Proposition 4.6 (Continuity of the design-to-force mapping)
Let {�k} be a positive sequence, converging to zero. Assume that (xk, sk, �k, uk) ∈F�k (f), and
that {xk} → x. Suppose further that for each k = 1, 2, . . ., i = 1, . . . , m, the stress constraints
�ix

k
i � sk

i � �ix
k
i constraints are satisfied. Then, {(sk, �k)} → (s, �), this limit vector solves

(C)x(f), and there is a vector u solving (P)x(f). [In particular, (x, s, �, u) ∈F.]

Proof
The additional stress constraints imply the uniform boundedness of the sequence of complemen-
tary energies {E(xk, sk, �k)}, as has been established in Reference [10]. Therefore, the sequence
{(sk, �k)} is bounded, owing to the coercivity of E, which is locally uniform with respect to
the design. Let (s, �) be an arbitrary limit point of this sequence. The lower semicontinuity of
E and the uniform boundedness of energies yield that

E(x, s, �) � lim inf
k→∞ E(xk, sk, �k) < ∞

Therefore, the problem (C)x(f) is feasible and thus possesses a unique optimal solution (cf.
Reference [10, Theorem 2.1]).

Now, let (s̃, �̃) be an arbitrary force distribution that is feasible in (C)x(f). Then, from the
�k-optimality of (sk, �k) and feasibility of (s̃, �̃) in (C)xk (f) it follows that

E(x, s, �) � lim inf
k→∞ E(xk, sk, �k) � lim

k→∞ E(xk, s̃, �̃) + �k =E(x, s̃, �̃)

where the equality follows from the continuity of E(·, s̃, �̃) (cf. Reference [10, Lemma 3.2]).
Therefore, (s, �) is optimal in (C)x(f). It follows that (s, �) must be the only limit point of
the sequence {(sk, �k)}.

The existence of at least one dual optimal solution u to (P)x(f) follows. �

Proposition 4.7 (Compact images)
For every �>0 and every constant M>0 the set {(x, s, �, u) ∈F� | ‖x‖ �M} is compact.

Proof
The function E(x, s, �)+�(x, u)− f tu is continuous as well as coercive in (s, �, u), uniformly
in x for all x � o(�)1m, with ‖x‖ �M . �

In the subsections that follow we apply the continuity results we have just established to
show that the �-perturbed problems can indeed be used as approximating problems for small
�, both if we are interested in globally optimal solutions and stationary points.
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4.4. Regularity of (W�)

To be of practical use, every approximating problem (W�) should be easier to solve than the
original problem (W). Clearly, the functions defining the constraints of (W�) are continuously
differentiable on some neighbourhood of the feasible set F� for every � > 0; therefore, the
smooth Fritz–John conditions must hold at optimal points. The following (purely academic)
example shows that the feasible sets of the optimization problems (W�) do not in general
verify MFCQ, and therefore we cannot expect the KKT conditions to be satisfied at every
point of local minimum. On the other hand, in Proposition 4.9 we show that under rather mild
additional conditions MFCQ is verified, so that standard non-linear programming algorithms
can be used to find locally optimal solutions of (W�).

Example 4.8
Consider the simple 1-bar structure shown in Figure 2 that is made of (academic) material with
the Young modulus E = 1. Let f = 3, g = 2, � = 1, � = (2 − √

2), and consider the point of
global minimum (x, s, �, u) = (1, 2 − √

2, 1 + √
2, 2). At this feasible point in (W�) the active

constraints are: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s + � = f,

−x � − �2,

u � g,

s � �x,

s2

2x
+ g� + 1

2
u2x − f u � �

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s + � = 3

−x � − 1

u � 2

s � (2 − √
2)x

s2

2x
+ 2� + 1

2
u2x − 3u � 1

It is easy to verify that there is no direction d ∈ R4 such that

(0 1 1 0)d = 0⎛⎜⎜⎝
−1 0 0 0

0 0 0 1

−� 1 0 0

⎞⎟⎟⎠ d � 03

(
− s2

2x2
+ u2

2

s

x
g xu − f

)
d < 0

so that MFCQ is violated at (x, s, �, u).

While MFCQ is violated at the point of global minimum in the Example 4.8, this does not
prevent the KKT conditions to hold at this point, because the more basic Abadie’s CQ is still
verified. While for realistic trusses the latter CQ is close to impossible to verify, the following
result resolves the problem of verifying a CQ in most practical situations.
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Figure 2. One-bar truss structure.

Proposition 4.9
Let (x, s, �, u) be a point of local minimum for (W�), � > 0. Suppose that any of the following
conditions are verified:

(i) E(x, s, �) + �(x, u) − f tu<�;
(ii) r = 0, that is, no rigid obstacles are present;

(iii) u is not the equilibrium displacement corresponding to x.

Then, Abadie’s CQ hold at (x, s, �, u). In particular, the KKT-conditions for (W�) hold at this
point.

Proof
Suppose that (i) holds. Then the relaxed equilibrium constraint is passive, and the feasible set
of the problem (W�) is locally around (x, s, �, u) defined by affine constraints only, which
guarantees Abadie’s CQ.

Alternatively, assume that there are no rigid obstacles, i.e. (ii) holds. Consider the direction
d = (	x, 0m, 0r , −
u), where 	 > 0, 
 � 0 are parameters to be determined. This direction is
feasible with respect to all linear constraints of (W�). Furthermore, an easy calculation shows
that

∇[E(x, s, �) − �(x, u) − f tu]td = −	[E(x, s, �) − �(x, u)] − 
[2�(x, u) − f tu]<0

for some 	 > 0, 
 � 0, owing to the inequality

0 < � = [E(x, s, �) − �(x, u)] + [2�(x, u) − f tu]
Thus, the MFCQ is verified, implying Abadie’s CQ.

At last, assume that (iii) is verified. Similarly to the case (ii) we can show that the direction
d = (	x, 0m, 0r , 
[u(x)− u]) satisfies the requirements of MFCQ for some 	 > 0, 
 � 0, where
u(x) is the equilibrium displacement, corresponding to x. �

Naturally, all three assumptions of Proposition 4.9 are violated by Example 4.8.
It is interesting to note that topology optimization problems for trusses without unilateral

constraints are always qualified in the sense of Mangasarian–Fromowitz; it is probably even
more interesting to see that the violation of MFCQ may happen even for ‘nice’ feasible points
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that verify a strict complementarity assumption for MPEC problems (like the point considered
in Example 4.8).

4.5. Optimality conditions for (W)

Motivated by the description of the feasible sets of the approximating problems (W�), � > 0,
in terms of differentiable inequalities which lead to at least Fritz–John necessary optimality
conditions (see Example 4.8 and Proposition 4.9), we may use the same description with � = 0
in order to develop non-smooth necessary optimality conditions for (W). The biggest difficulty
we encounter is the loss of continuity (not to mention differentiability) of the complementary
energy function E. Indeed, if we look at the constraint involving E:

E(x, s, �) + �(x, u) − f tu � 0 (6)

we note that the function on the left-hand side of the inequality is neither Lipschitz continuous
nor convex, and therefore the classic subdifferentials of such functions are not defined. On
the other hand, we may use the structure of this function: it is continuously differentiable
everywhere except when x ∈ �Rm+, and it is a sum of convex and Lipschitz continuous functions.
Therefore, the notion of limiting subdifferential �a is well defined for such functions (see
Reference [28]). In particular, it holds that

�a[E(x, s, �) + �(x, u) − f tu] = �aE(x, s, �) + ∇[�(x, u) − f tu]
As a result, we obtain the following non-smooth Fritz–John-type optimality conditions.

Proposition 4.10
Let (x, s, �, u) be a point of local minimum for (W). To simplify notation we write all
inequality and equality constraints of (W), except the relaxed equilibrium, constraint in the
form:

Ai (xt, st, �t, ut)t � bi

Ae(xt, st, �t, ut)t = be

where Ai ∈ RNi×(m+m+r+n), Ae ∈ RNe×(m+m+r+n), bi ∈ RNi , and be ∈ RNe are matrices and
vectors of appropriate sizes. Then, the non-smooth Fritz–John optimality conditions hold at
(x, s, �, u), that is, there are vectors �i ∈ R

Ni+ , �e ∈ RNe , and numbers �0, � ∈ R+ not all equal
to zero such that:

0m+m+r+n ∈ �0∇w(x) + At
i�i + At

e�e + �[�aE(x, s, �) + ∇(�(x, u) − f tu))]
and

0 = �t
i[Ai (xt, st, �t, ut)t − bi] (7)

In general, we cannot expect the KKT conditions to be satisfied at every point of local
minimum, because the problem (W) is usually much less regular than its approximation (W�),
� > 0, and even the latter problem may violate the standard non-linear programming constraint
qualifications (see Example 4.8). In fact, in Problem 2, Section 5.2, we obtained a locally
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optimal solution that satisfies the system (7) only with �0 = 0. It is sad to note that this example
does not contain any contact conditions, and the optimal solution we obtained is non-singular
(in particular, no bars were removed), yet it is only a FJ point in our formulation. On the
positive side, at least if unilateral condition are absent, conditions (7) imply the fulfillment of the
KKT conditions for a related optimization problem that has a clear engineering interpretation.
Namely, the stationary point obtained is a KKT point for a ‘semifixed topology’ optimization
problem, in which the given subset of the bars is removed from the ground structure; formally,
the following result holds.

Proposition 4.11
Assume that the unilateral constraints are absent and that the point (x̂, ŝ, û) ∈ Rm+ × Rm × Rn

satisfies the FJ optimality conditions (7). Let Î= {i = 1, . . . , m | x̂i = 0}. Then, the point (x̂, ŝ, û)

is a KKT-point for the following problem:

(Ŵ)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(x,s,u)

w(x)

s.t. Bts = f

E(x, s, �) + �(x, u) − f tu = 0

�ixi � si � �ixi, i ∈ {1, . . . , m} \ Î
xi = si = 0, i ∈ Î

Proof
Clearly, the point (x̂, ŝ, û) is feasible in the problem (Ŵ). Furthermore, it is easy to check
that the feasible set of the problem (Ŵ) verifies a Mangasarian–Fromowitz-type constraint
qualification at (x̂, ŝ, û) [one can, for example, take the direction d = (x̂, 0, −u) ∈ Rm+×Rm×Rn

to verify that], and thus the FJ conditions (7) [that can be viewed as FJ conditions for (Ŵ)]
also imply the KKT conditions. �

There are of course other approaches to optimality conditions for MPEC. For example,
Reference [29, Theorem 7.2] establishes non-smooth KKT-type conditions for a problem rather
similar to (W). However, the strong regularity condition on the lower-level problem assumed
in Reference [29, Theorem 7.2] is violated by our problem, because the displacements u are
in general not uniquely determined for designs x ∈ �Rm+.

4.6. Global convergence

Convergence of globally optimal solutions to relaxed weight minimization problems with stress
constraints (W�) towards globally optimal solutions to the limiting problem (W) as � ↓ 0
follows easily, given the results of the previous subsections.

Proposition 4.12
Consider a positive sequence {�k} converging to zero. Let {(x�k , s�k , ��k , u�k )} be a corresponding
sequence of globally optimal solutions to {(W�k )}. Then, an arbitrary limit point of this sequence
is a globally optimal solution to the limiting problem (W).
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Proof
The fact that globally optimal solutions to the sequence of problems {(W�k )} exist follows
by the coercivity of the objective w.r.t. the design variables (Proposition 4.7, and Weierstrass’
Theorem).

Without any loss of generality, assume that limk→+∞ (x�k , s�k , ��k , u�k ) = ( x̃, s̃, �̃, ũ). Then,
owing to Proposition 4.5, the point ( x̃, s̃, �̃, ũ) is feasible in (W). Together with Remark 4.4
and the continuity of the objective functional this proves the claim. �

In general, the displacement component {uk} of the sequence of global optimal solutions we
study in Proposition 4.12 need not to have any limit points. However, we may use the fact
that our objective function is independent of the displacements and utilize Proposition 4.6 to
establish the following result.

Proposition 4.13
Consider a positive sequence {�k} converging to zero. Let {(x�k , s�k , ��k , u�k )} be a corresponding
sequence of globally optimal solutions to {(W�k )}. Then, an arbitrary limit point (x0, s0, �0) of
the sequence {(x�k , s�k , ��k )} (and there is at least one) corresponds to some globally optimal
solution (x0, s0, �0, u0) to the limiting problem (W).

Proof
Similar to the proof of Proposition 4.12, but uses Proposition 4.6 instead of Proposition 4.5.

�

4.7. Convergence of stationary points

The main result of this paper, Theorem 4.14, uses the fact that stress constraints are imposed.
Furthermore, we need to make an assumption that the sequence of displacements {u�} produced
by the smoothing procedure is bounded as � ↓ 0. We cannot guarantee the latter property without
imposing explicit bounds on the displacements; however, our computational experience with
the smoothing approach we introduce in this paper confirms that convergence of displacements
takes place in practice. In any case, Proposition 4.3 asserts that it is at least possible to
approximate every equilibrium state using the relaxation approach we propose; this is contrary
to traditional �-relaxation, where some equilibrium displacements cannot be approximated.

Theorem 4.14
Consider a positive sequence {�k} converging to zero. Let {(x�k , s�k , ��k , u�k )} be a sequence
of KKT-points to {(W�k )}. Then, every limit point of this sequence is feasible in the limiting
problem (W), and in addition it verifies the non-smooth FJ stationarity conditions (7).

Proof
Without loss of generality we assume that {(x�k , s�k , ��k , u�k )} → (x, s, �, u) as k converges to
infinity. Owing to Proposition 4.5, the point (x, s, �, u) is feasible in (W).

The stress constraints imply that the gradients ∇E(x�k , s�k , ��k ) are uniformly bounded for
k = 1, 2, . . . Therefore, the sequence {∇E(x�k , s�k , ��k )} has at least one limit point that by
definition is a member of �aE(x, s, �). It is now an easy exercise to verify that the point
(x, s, �, u) satisfies system (7). �
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Again, the optimality conditions we obtain in Theorem 4.14 are rather weak, but we cannot
expect more from points of local minima for (W) in general; see the discussion in Section 4.5.

5. NUMERICAL EXPERIMENTS

While a substantial amount of theoretical studies of topology optimization problems for trusses
including unilateral frictionless contact has been carried out (see, e.g., References [10, 19, 30]),
surprisingly little numerical experience has been reported. Therefore we use a comprehensive
numerical study of Stolpe [21] (who was interested in finding globally optimal solutions using
a branch-and-cut algorithm) as a rich and authoritative source of benchmark problems, unfor-
tunately, however, for trusses without contact. We also compare our algorithm against a few
tests of ‘classic’ MPEC algorithms (implicit programming-based algorithm, IMPA, [31, Section
6.3], and penalty interior point algorithm, PIPA, [31, Section 6.1]), MMA [32] (see also Ref-
erence [33]), as well as the smoothing algorithm [23], made by Hilding [9, 34]. Unfortunately,
the latter studies are not concerned with topology optimization (i.e. a strictly positive bound
on the bar volumes is imposed) and stress constraints are not included.

Below we present some preliminary numerical experience with an academic implementation
of our approximation method.

5.1. Implementation issues

A sequence of smooth optimization subproblems {(W�k )} has been solved using the SQP-solver
SNOPT [35]. The optimal solution obtained at step k was used as a starting point for the step
k + 1. We used a simple update rule for �: �k+1 = ��k , where � ∈ [0.25, 0.75].

The biggest computational difficulty we have noted is that the projected gradient of the
potential energy with respect to displacements is close to zero for all points feasible in (W�)

when � is small, resulting in rather slow progress of the optimization procedure based on the
first-order information only. The use of second-order information in this case seems essential
for improving the performance.

Another problem is that the complementary energy has a rather unusual scaling when the
design variables x are close to the boundary �Rm+. While we obtained satisfactory results with
automatic scaling in SNOPT, a specific scaling of the relaxed equilibrium constraint may be
necessary for more robust convergence of the algorithm.

5.2. Numerical results: topology optimization, contact-less case

A number of ‘classic’ weight minimization problems for trusses without frictionless contact but
including stress, and possibly local buckling constraints and bounds on displacements have been
solved to global optimality by Stolpe [21]. We benchmark our relaxation algorithm against the
results reported in the cited paper and find that in many cases our local algorithm is capable of
finding globally optimal solutions. We keep the problem numbers assigned by Stolpe [21] and
report the results we obtained on a subset of these problems in Tables I (only stress and/or
displacement constraints) and II (stress and local buckling constraints).

Since we use a local algorithm to solve non-convex optimization problems, starting the
optimization procedure from different starting points may result in obtaining different optimal
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Table I. Results of numerical experiments: weight minimization under stress and/or
displacement constraints.

Problem m n k wour w[21] Source

2 5 4 2 39.9856 33.5000 [3]
5 4 2 2 185.597 185.667 [36]
9 10 8 1 4896.95 4898.31 [37]

11 10 8 1 1583.99 1584.00 [37]
13 10 8 1 4425.16 4426.52 [37]
15 10 8 1 1655.99 1656.00 [37]∗17 25 18 5 510.157 545.264 [37]
18 10 8 1 1583.99 1584.00 [3]
23 5 4 1 24.0000 24.0000 [15]
24 10(6) 8 1 18199.4 18211.8 [14]
25 10(6) 8 1 20021.8 20035.3 [14]
26 10(6) 8 1 22799.7 22817.3 [14]
27 10 8 1 1979.99 1980.00 [6]
28 5 4 2 79.9713 79.9716 [6]

Table II. Results of numerical experiments: weight minimization under stress and local
buckling constraints.

Problem m n k wour w[21] Source

5 4 2 2 408.312 408.628 [36]
27 10 8 1 8553.44 8553.44 [6]
28 5 4 2 105.831 105.831 [6]

solutions. We started the algorithm from the design obtained by uniformly distributing structural
material among bars, and calculating the corresponding equilibrium forces/displacements.

Some comments are in order. In problems 24–26 the number of bars in the structure is
m = 10, but the volumes of 4 of them are fixed, which leaves us only 6 design variables. In
addition, these are the only problems with displacement constraints, and the optimal weight
we report differs from the known globally optimal solution despite the small value of the
relaxation parameter � we used. The reason for such a behaviour is that the potential energy
�(x, u)−f tu becomes rather insensitive to some components of the displacements for designs x
that are close to the boundary �Rm+. In problems 24–26 this allows the optimization procedure
to choose displacements that are reasonably far from the equilibrium displacements (compared
to the size of the relaxation parameter �) but are feasible with respect to the imposed bounds
on the displacements. (Recall that Proposition 4.6 does not guarantee the convergence of the
displacements as designs converge.) This may or may not be a problem in practice, depending
on how stringent the displacement constraints are, if present. In particular, we guarantee the
convergence of forces, and always keep the stress (and local buckling) constraints satisfied,
which means that the structure will not suffer from destructive stresses. (Even though stress
constraints are imposed not on the ‘equilibrium’ stresses, stress bounds are usually chosen far
from the point where plastic deformation occurs.) In any case, our algorithm successfully finds
the optimal topology, which is of major importance in many applications.
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In problem 17 our algorithm indeed finds a better solution to the classic 25-bar truss problem
stated in Reference [37] than the one reported in References [21, 37]. The reason for this small
victory of a local optimization algorithm over a global one is that the branch-and-cut method
developed in Reference [21] may be applied only to problems with bounds imposed on all
variables involved. In the original formulation of problem 17 taken from Reference [37] there
are no upper bounds on the volumes of the bars, and the optimal weight of the truss we obtained
for the original formulation is 510.157. On the other hand, Stolpe [21] imposes artificial bounds
on the design variables for the branch-and-cut method to function, which leads to a globally
optimal solution with the weight 545.264; in fact, the newly introduced bounds are inactive
at the latter solution but owing to the non-convexity of the problem they cannot be safely
removed without changing the optimal solution. The last comment about problem 17 is that
in the original formulation there are only 2 load scenarios and many linear constraints on the
design variables related to the required symmetry of the truss. Instead, we consider all design
variables to be independent and obtain a symmetric solution by introducing additional load
cases.

5.3. Numerical results: sizing optimization of trusses in contact

Hilding et al. [9] (see also Reference [34]) were interested in minimizing the maximal contact
force, that is, to achieve as uniform contact pressures as possible. The formal problem statement
can be written as follows:

(�)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(x,s,�,u,�max)

�max

s.t. (x, s, �, u) ∈ F(f)

xi � xi � xi, i = 1, . . . , m

w(x) �w

�� � �max, � = 1, . . . , r

where xi , xi , w are given positive numbers, i = 1, . . . , m. In general, allowing lower bounds
on the design variables to be zero results in an ill-posed optimization problem, unless bounds
on the compliance of the structure or stress constraints are added (see Reference [10]).

The problem (�) is thus not a topology optimization problem and does not suffer from the
difficulties outlined in Section 4.1; in particular, the smoothing method of Facchinei [23] out-
lined in Section 3.1 is directly applicable to this problem (see Reference [34], where smoothing
was used for ‘the heuristic avoiding of local minima’) and we use it as one of the benchmarks
for our new smoothing algorithm.

On some instances of the problem (�) Hilding et al. [9] also implemented and tested some
classic MPEC algorithms (IMPA [31, Section 6.3] and PIPA [31, Section 6.1]) on the family of
structures shown in Figure 3. Also, they tested on (�) a very popular method in the structural
optimization community: the method of moving asymptotes, MMA, [32], even though it is not
guaranteed to work on this problem.
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We apply SNOPT to the following relaxation of the problem (�):

(��)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(x,s,�,u,�max)

�max

s.t. (x, s, �, u) ∈ F�(f)

xi � xi � xi, i = 1, . . . , m

w(x) �w

�� � �max, � = 1, . . . , r

where � > 0 is a relaxation parameter. We report the results we obtained for trusses of different
sizes (see Figure 3) in Table III along with the results found in References [9, 34].

We report the size of the structure, the number of bars (design variables) and the optimal
values obtained by PIPA and IMPA/MMA as reported in Reference [9] (the two latter algorithms

Figure 3. Test problem found in Reference [34]. 5 × 5 case is shown.

Table III. Results of numerical experiments: contact force minimization.

Truss size m PIPA IMPA/MMA Smooth.+IMPA Smooth.+MMA New smoothing

3×3 58 — 3.0 1.0 1.0 1.0
4×4 113 — 2.0 1.0 1.0 1.0
5×5 190 1.67 2.5 1.0 1.25 1.07

10×10 875 2.5 5.0 — — 2.0
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are reported to produce the same optimal values); the optimal values produced by IMPA and
MMA as applied to the smoothed MPEC using the methodology introduced in Reference [23],
as reported in Reference [34]; and the optimal values obtained using our new smoothing
procedure. The ‘–’ sign in the table columns means that the corresponding algorithm has not
been applied to a given problem instance.

One can see that our algorithm favourably competes with classic MPEC algorithms on these
test problems. As we already mentioned, general MPEC algorithms cannot be applied to truss
optimization problems if we remove strictly positive lower bounds on the design variables, i.e.
consider topology optimization problems.

5.4. Numerical results: topology optimization of trusses in contact

Results found in References [9, 34] are all obtained using (arguably) outdated methods for
solving MPEC problems. Therefore, we benchmark our algorithm against a similar relaxation
strategy proposed by Scholtes [11] (see Section 3.2). We used the same strategy for updating
the relaxation parameters in both methods (except for the fact that Sholtes’ method does not
require positive lower bounds on design variables), and SNOPT as an underlying NLP solver.
We tested both methods on a family of weight minimization problems with unilateral contact
and stress constraints; see Figure 4. We used the stress bounds � = −� = 0.5 for all bars in
all problems. Two problems in a family differ by the number N of structural nodes in the
horizontal direction, and number M of nodes in the vertical direction. The radius R of the
rigid ball, on which the structure resides, equals N in all problems. We apply a pressure-like

Figure 4. A structure supported by a rigid ball. N ×M = 4×3 for the
case shown in the figure; R = N , f = 1.
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force on top of the structure, that is, at every ‘top’ node we apply a nodal force (0, −1).
Results of benchmarking on these problems are shown in Table IV.

We also tested the same algorithms on a different set of problems; see Figure 5. From the
previous case, the problems differ only by different support and contact conditions. We used
�N/2� rigid obstacles for a structure of size N × M , numbered from right to left, and the
initial gap gi to an obstacle i equals ip, p ∈ {2, 3}. Results of benchmarking on these problems
are shown in Table V.

We may conclude that the two methods (which are based on rather similar ideas) show
similar performance in terms of quality of the solutions found. For quite a few problems our
method finds much lighter designs, while for a few problems they are a bit heavier. We note
that even though the weight of the designs found by the two methods is the same in many

Table IV. Optimal weights found by the algorithm proposed in the present paper, and the one
proposed by Scholtes [11], for the problems sketched in Figure 4.

N × M 3 × 3 4 × 4 5 × 5 6 × 6

w∗[our] 1.624E + 01 3.196E + 01 5.435E + 01 8.063E + 01
w∗[Scholtes] 1.624E + 01 3.196E + 01 5.413E + 01 1.024E + 02

N × M 7 × 7 8 × 8 9 × 9 10 × 10
w∗[our] 1.165E + 02 1.554E + 02 2.099E + 02 2.511E + 02
w∗[Scholtes] 1.138E + 02 1.512E + 02 2.003E + 02 2.448E + 02

N × M 6 × 5 7 × 5 8 × 5 9 × 5
w∗[our] 6.863E + 01 8.809E + 01 1.032E + 02 1.259E + 02
w∗[Scholtes] 9.843E + 01 9.557E + 01 1.032E + 02 1.229E + 02

Figure 5. A structure supported by a roller and a number of rigid supports.
N × M = 4 × 3 for the case shown in the figure; f = 1.
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Table V. Optimal weights found by the algorithm proposed in the present paper, and the one
proposed by Scholtes [11], for the problems sketched in Figure 5.

p = 2

N × M 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10

w∗[our] 4.646E + 01 6.629E + 01 9.609E + 01 1.239E + 02 1.621E + 02 2.055E + 02
w∗[Scholtes] 7.628E + 01 6.629E + 01 1.614E + 02 1.483E + 02 1.621E + 02 1.980E + 02

p = 3

N × M 5 × 5 6 × 6 7 × 7 8 × 8 9 × 9 10 × 10

w∗[our] 4.646E + 01 7.160E + 01 1.026E + 02 1.385E + 02 1.802E + 02 2.277E + 02
w∗[Scholtes] 7.628E + 01 6.629E + 01 1.614E + 02 1.483E + 02 1.621E + 02 1.980E + 02

cases, the respective topologies might be quite different. We also notice that the designs found
by Scholtes’ algorithm for the two cases p = 2 and 3 always have the same weight.

Unfortunately, our algorithm as it is implemented right now is inferior to Scholtes’ algorithm
in terms of computational efficiency. In some cases the number of iterations required to find
a design of similar quality differs by a factor of 10–20, even though, from the theoretical
point of view, we work with ‘better’ (in terms of constraint qualifications) problems in our
case. One should definitely try to work with second-order numerical methods, various scalings,
or perhaps some alternative relaxations of an equilibrium constraint to improve the numerical
performance.

6. CONCLUSIONS AND FURTHER RESEARCH

In this paper we proposed a new algorithm for solving MPEC problems arising from the
topology optimization of trusses with unilateral contact conditions. The algorithm is based
on the approximation of topology optimization problems with sizing-type problems, where
in addition we relax the equilibrium constraint. We studied the convergence of global optimal
solutions and stationary points to approximating problems towards, respectively, globally optimal
solutions and stationary points to the original, singular problem. We have also performed some
numerical testing of the proposed method.

Many open problems remain. On the numerical side, we need a better implementation
(probably utilizing second-order information); also, a much more thorough numerical testing
should be done, especially for trusses with unilateral contact. However, in our opinion, the most
challenging task is to improve the optimality conditions we obtained in this paper. To do that,
a comparative analysis of modern KKT-type optimality conditions for general MPEC problems
(see, e.g., References [38–41]) and the FJ-type optimality conditions we obtained needs to be
performed. We hope to address these questions in our future research.
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