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Abstract. This paper describes and analyzes the cost approximation algorithm. This class of
iterative descent algorithms for nonlinear programs and variational inequalities places a large number
of algorithms within a common framework and provides a means for analyzing relationships among
seemingly unrelated methods. A common property of the methods included in the framework is
that their subproblems may be characterized by monotone mappings, which replace an additive part
of the original cost mapping in an iterative manner; alternately, a step is taken in the direction
obtained in order to reduce the value of a merit function for the original problem. The generality of
the framework is illustrated through examples, and the convergence characteristics of the algorithm
are analyzed for applications to nondifferentiable optimization. The convergence results are applied
to some example methods, demonstrating the strength of the analysis compared to existing results.
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1. Introduction. Let u : <n 7→ < ∪ {+∞} be lower semicontinuous (l.s.c.),
proper, and convex and f : <n 7→ < ∪ {+∞} be continuously differentiable on an
open neighborhood of dom u. Consider the nondifferentiable optimization problem

[NDP] min
x∈<n

T (x) := f(x) + u(x).

This problem is generic in mathematical programming and encompasses the prob-
lem of minimizing a convex and/or continuously differentiable real-valued function
over a nonempty, closed, and convex set in <n.

The most common approach to solving [NDP] is to construct a sequence {xt} of
iterates in dom u such that the sequence {T (xt)} is strictly monotonically decreasing;
typically, the sequence {xt} converges to a solution x∗ to the generalized equation
[Rob79]

[GE] ∇f(x∗) + ∂u(x∗) 3 0,

which, under the mild assumption below (cf. [Roc66]), constitutes the necessary opti-
mality conditions of x∗ in [NDP] and further is sufficient for the global optimality of
x∗ in [NDP] whenever either f is convex or u is an indicator function of a nonempty,
closed, and convex set and f is pseudoconvex.

The directional derivative of u in the direction of d is

u′(x; d) := lim
λ↓0

1

λ
[u(x+ λd)− u(x)].
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Assumption 1.1 (lower semicontinuity of u′(x; ·)). For any x ∈ domu and d ∈ <n,

u′(x; d) = lim inf
e→d

u′(x; e).(1)

Note that (1) is fulfilled for any x ∈ rint (domu) [Roc70a, Thm. 23.4]. A direct
consequence of the assumption is that for any x ∈ domu and d ∈ <n the directional
derivative may be calculated as ([Roc66] and [Roc70a, Thm. 23.2])

u′(x; d) = sup{ ξu(x)Td | ξu(x) ∈ ∂u(x) }.(2)

We let Ω denote the set of solutions to [GE], and assume that it is nonempty;
a sufficient condition for this to be the case is that T is coercive, that is, dom T is
bounded or

lim
‖x‖→∞

{T (x)/‖x‖} = +∞.(3)

Moreover, Ω is a singleton set if it is nonempty and if T is strictly convex on its
effective domain. Note that strong convexity of T , that is, there exists a constant
mT > 0 such that for any ξT (x) ∈ ∂T (x) and ξT (y) ∈ ∂T (y), x, y ∈ dom T ,

[ξT (x)− ξT (y)]T(x− y) ≥ mT ‖x− y‖2,(4)

implies both strict convexity and coercivity of T and hence ensures the existence of a
unique solution to [NDP]. (The expression (4) actually states that the subdifferential
mapping ∂T is strongly monotone on dom T ; we may use it as a definition of convexity
of T by allowingmT = 0.) Introducing some additional terms, a mapping Π is maximal
monotone [Min62, Bro68] if it is monotone and its graph is not properly contained in
the graph of any other monotone operator; its inverse mapping is denoted by Π−1.
Further, a mapping Π is Lipschitz continuous on dom Π (with modulus MΠ ≥ 0) if

‖Π(x)−Π(y)‖ ≤MΠ‖x− y‖ ∀x, y ∈ dom Π.

An interesting application of [NDP] results from letting u be the indicator function
of a nonempty, closed, and convex subset X of <n, that is, u ≡ δX , where

δX(x) :=

{
0, x ∈ X,

+∞, x /∈ X.

The subdifferential mapping of δX is the normal cone operator associated with the
set X,

NX(x) :=

{ {z ∈ <n | zT(y − x) ≤ 0 ∀y ∈ X}, x ∈ X,

∅, x /∈ X.
(5)

(This is an example of a maximal monotone operator.) The problem [GE] then reduces
to the problem of finding a vector x∗ such that

∇f(x∗) +NX(x∗) 3 0,

which (without the need for Assumption 1.1) describes the first-order necessary con-
ditions for the optimality of x∗ ∈ X in the constrained differentiable program

[CDP] min
x∈X

f(x).
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We also note that the problem [NDP] encompasses dual formulations of convex
programs (e.g., [FHN96]).

A large amount of literature has been devoted to the study of computational
methods for [NDP]. The present paper provides a framework of algorithms for [NDP]
which includes many methods previously analyzed and provides a convergence analysis
which unifies and improves upon existing ones. The analysis includes investigations of
inexact solutions of the auxiliary problems, different step length rules, and convergence
rate results.

2. The cost approximation algorithm. The term cost approximation (CA)
was coined in the author’s Ph.D. thesis [Pat93a] to describe a framework of descent
algorithms for nonlinear programs and variational inequality problems. In this section
we present the algorithm framework for the solution of [NDP]. The main idea is to
iteratively approximate the cost mapping ∇f in order to obtain a problem which is
more easily solved in the sense that a (possibly) nonmonotone mapping is replaced
by a monotone one. (The term cost mapping is taken from applications of [GE] in
equilibrium problems, where ∇f usually represents a cost vector.) The solution to
this problem defines a search direction in which a step is taken to decrease the value
of T .

2.1. The subproblem phase. Let x ∈ dom u. We introduce a continuous
and monotone cost approximating mapping Φ : dom u 7→ <n. If the mapping ∇f is
replaced by Φ, then the error made in the approximation is obviously Φ−∇f . This
error is taken into account by subtracting from Φ the fixed error term Φ(x)−∇f(x).
The approximation may alternatively be interpreted as a fixation of the second term
of the original cost [Φ + ∂u] + [∇f − Φ] at x.

Thus, we arrive at a generalized equation in which a point y is sought such that

[GEΦ] Φ(y) + ∂u(y) +∇f(x)− Φ(x) 3 0.

We let Y (x) denote the set of solutions y to [GEΦ]. (Note that a fixed term may
be added to Φ without affecting this subproblem.)

By construction, the approximation is exact at x. This fact is important since it
provides a termination criterion for the algorithm: if x solves the subproblem [GEΦ],
then it immediately follows that x also solves [GE]. The reverse is also true, and the
subproblem thus provides a reformulation of [GE] as a fixed point problem in the
(possibly point–to–set) mapping x 7→ Y (x).

Remark 2.1. The descent property of the search direction requires the mapping Φ
to be monotone; this crucial property is, seemingly, not possible to relax within this
framework.

In several known instances of CA algorithms, the corresponding mapping Φ may
be identified as an approximation of ∇f (cf. Newton-type methods); the properties
of ∇f in a given application may hence, implicitly through the requirements on Φ,
restrict the possible choices of CA methods.

The convergence analysis provided in this paper concentrates on approximations
made of the differentiable (and possibly nonconvex) function f and does not cover
approximations of the convex function u, although such algorithms are easily devised
within the framework; examples are subgradient optimization methods (e.g., [Sho85])
and the methods in [CoZ84]. Note that in such methods, however, the corresponding
subproblems need not yield directions of descent with respect to T without proper
modifications.
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If Φ is chosen as the gradient mapping of a function ϕ : dom 7→ <, which then is
convex and continuously differentiable on dom u, then the subproblem [GEΦ] reduces
to solving the convex subproblem

[NDPϕ] min
y∈<n

Tϕ(y, x) := ϕ(y) + u(y) + f(x)− ϕ(x) + [∇f(x)−∇ϕ(x)]T(y − x).

To give an example, assume that f is a convex function in C2 on dom u and
choose ϕ(y, x) := 1

2 (y−x)T∇2f(x)(y−x), from which one obtains Tϕ(y, x) := u(y)+
{f(x)+∇f(x)T(y−x)+ 1

2 (y−x)T∇2f(x)(y−x)}; an extension of Newton’s method
to nondifferentiable optimization is obtained, in which only the differentiable part of
the objective is approximated. The choice ϕ(y, x) := 1

2γ ‖y − x‖2, γ > 0, leads to
extensions of steepest descent, gradient projection, and proximal point algorithms.

The construction of this subproblem may be given an alternative interpretation
as a partial linearization [Pat93a] of T ; expressing it as [ϕ+u] + [f −ϕ], the function
Tϕ is obtained from a first-order approximation (or linearization) of the second term
at x.

Thus, by applying the CA concept, the problem [NDP] can be solved through
a sequence of convex optimization problems. Indeed, in most of the iterative meth-
ods for the solution of [NDP] that one may identify as special cases from the class
of CA algorithms, subproblems of the form [NDPϕ] are solved. (Examples where
the subproblem [GEΦ] does not reduce to the convex optimization problem [NDPϕ]
include some matrix splitting methods for quadratic programs [CPS92] and Gauss–
Seidel/SOR methods [OrR70].)

2.2. The line search phase. In general, we cannot expect the original problem
to be solved by the subproblem solution y. An improved solution is therefore defined
through a step taken in the direction of d := y − x such that the value of a merit
function for [NDP] is reduced sufficiently. Although any merit function with sufficient
continuity properties will do (such as the Euclidean distance to Ω), we choose T as
the merit function. (In the solution of asymmetric variational inequality problems,
gap functions associated with the CA subproblem [NDPϕ] are available; see [Pat93c,
LaP94, Pat94a, Pat94b, Pat97, Pat98] for further details.)

At the new point, the original mapping is again approximated—perhaps using
another mapping Φ—and the algorithm proceeds until some stopping criterion is
fulfilled.

2.3. The conceptual algorithm. A description of the CA algorithm is given in
Table 1. A sequence {Φt} of monotone mappings is assumed to be given. (Note, how-
ever, that each mapping may also be constructed adaptively, given xs, s = 1, 2, . . . , t,
instead of being chosen a priori.)

It will be made clear in the rest of the paper how accurately the steps 1 and 3
need to be performed.

2.4. Conventions and assumptions. In the convergence analysis of the CA
algorithm, three forms of the cost approximating mapping will be used. In the most
general case, a sequence {Φt} of continuous and monotone mappings on dom u is used;
the mappings in this sequence are neither assumed to be dependent on each other nor
to form a limit function (that is, equicontinuity is not assumed). In the second case,
it is assumed that there exists a known continuous mapping Φ : dom u×dom u 7→ <n
which is monotone on dom u in its first argument; each individual cost approximating
mapping Φt in the sequence {Φt} then has the form Φ(·, xt). (This form will be
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TABLE 1
The CA algorithm.

0. (Initialization). Choose an initial point x0 ∈ dom u, and let t := 0.
1. (Search direction generation). Find a solution yt to

[GEΦt ]

Φt(yt) + ∂u(yt) +∇f(xt)− Φt(xt) 3 0.(6)

The resulting search direction is dt := yt − xt.
2. (Termination criterion). If xt solves [GEΦt ] → Stop (xt ∈ Ω). Otherwise, continue.
3. (Line search). Choose a step length, `t, such that xt + `tdt ∈ dom u and the value of T is

reduced sufficiently.
4. (Update). Let xt+1 := xt + `tdt and t := t + 1.
5. (Termination criterion). If xt is acceptable → Stop. Otherwise, go to Step 1.

required whenever we do not wish to impose strong monotonicity conditions on Φ.)
The third, and most simple, form of mapping to be used is the iteration independent
form, that is, Φt ≡ Φ for all t for a given continuous and monotone mapping Φ :
dom u 7→ <n. (The latter form will only be used in the linear convergence Theorem 4.6
and its Corollary 5.1.) Whenever the iteration dependency of Φt is insignificant in the
context, the superscript will be suppressed. (This applies especially to the technical
lemmas in section 3.)

In general, the CA algorithm is only asymptotically convergent. (Finite conver-
gence is obtained when the problem enjoys a sharpness property; see [Pat93c, Pat98]
for further details.) Therefore, we shall implicitly presume that the sequence of it-
erates is infinite. Further, we do not study the behavior of the algorithm when a
solution does not exist.

The remainder of the paper is organized as follows. In the next section, we
provide some properties of the search directions and the step length rules considered
for different assumptions on the mappings Φt. In section 4, a convergence analysis is
made. Some consequences of this analysis are described in section 5, demonstrating
its strength compared to previous analyses of algorithms included in the framework.

3. Preliminaries.

3.1. Analysis of the search directions.
LEMMA 3.1 (characterizations of the search directions). Let x ∈ dom u, Y (x) be

the (possibly empty) set of solutions to [GEΦ], y ∈ Y (x), and d := y − x.
(a) (A fixed point characterization of Ω).

(1) x ∈ Ω ⇐⇒ x ∈ Y (x).
(2) Let Φ ≡ ∇ϕ. Then, x ∈ Ω ⇐⇒ x ∈ Y (x) ⇐⇒ Tϕ(y, x) = Tϕ(x, x).

(b) (A characterization of Y (x)). Let Φ be maximal monotone. Then, Φ + ∂u is
maximal monotone and

Y (x) = [Φ + ∂u]−1[Φ−∇f ](x).(7)

(c) (A well-posedness characterization).
(1) Let Φ be maximal monotone. Then, the set Y (x) is nonempty and locally

bounded if

Φ(x)−∇f(x) ∈ int (dom ([Φ + ∂u]−1)).(8)
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(2) Let Φ ≡ ∇ϕ. Then, the set Y (x) is nonempty and bounded if and only
if

∇ϕ(x)−∇f(x) ∈ int (dom ([ϕ+ u]◦)),(9)

where [ϕ+ u]◦ is the conjugate function of ϕ+ u.
(d) Let Φ : dom u × dom u 7→ <n be a continuous mapping on dom u × dom u

of the form Φ(y, x) and monotone on dom u with respect to y. Let S ⊆ dom u be an
arbitrary, closed set in <n. Then, the mapping x 7→ D(x) := Y (x)−x is closed on S.

(e) Let u be strictly convex on dom u or Φ strictly monotone on dom u. If Y (x)
is nonempty, then it is a singleton.

Proof.
(a) (1) Follows immediately from the construction of [GEΦ].

(2) The second equivalence follows immediately from the construction of
[NDPϕ].

(b) The first result follows from [Roc70b, Roc70c]; the second result then follows
by direct calculation.

(c) (1) The set Y (x) is characterized by (7). Let Π := Φ + ∂u. Since, by
definition, range Π = dom Π−1, the set Y (x) is nonempty if and only if
[Φ−∇f ](x) ∈ dom Π−1; further, it is locally bounded if [Φ−∇f ](x) ∈
int (dom Π−1) [Roc69].

(2) From [Roc70a, Cor. 23.5.1 and Thm. 27.1.b], the set Y (x) is character-
ized by Y (x) = ∂([ϕ + u]◦)(∇ϕ(x) − ∇f(x)). By [Roc70a, Thms. 23.4
and 27.1.d], Y (x) is nonempty and bounded if and only if (9) holds.

(d) Let {xt} ⊆ S and {yt} be sequences in dom u with yt ∈ Y (xt), {xt} → x
and {yt} → y. By the continuity of Φ and ∇f and the convexity of u,
Theorem 24.4 of [Roc70a] yields that y ∈ Y (x). Hence, the mapping x 7→
Y (x) is closed on S. The graph of the mapping D is obtained from that of
Y through an affine transformation; it then follows from [Ber63, p. 111] that
x 7→ D(x) is closed on S, as desired.

(e) Follows from the strict monotonicity of Φ + ∂u.
Remark 3.1. The fixed point property in (a) validates the termination criterion

of Step 2 of the CA algorithm; the result (a)(2) shows that it is also easily checked
whenever Φ is a gradient mapping.

The characterization (7) of the set Y (x) made in (b) bears resemblance to iterative
formulas describing proximal point methods [Mar70, Roc76] and forward–backward
splitting methods [Bre73, EcB92] for finding a zero of the sum of two maximal mono-
tone mappings. The class of CA algorithms is actually far more general; for example,
the mapping Φ is not necessarily affine or strongly monotone and can be chosen to
adapt to problem structures (such as separability in u and f), and a (possibly inex-
act) line search is embedded in the algorithm. We also note that a monotone and
single-valued mapping on <n is automatically maximal monotone.

The properties of Y (x) characterized in the result (c) are natural well-posedness
requirements on the subproblem [GEΦ]. A sufficient condition for (8) to hold is
that Φ + ∂u is weakly coercive [Zei90, Def. 32.34.b], since this condition implies that
dom ([Φ + ∂u]−1) = <n (see [Zei90, Cor. 32.35] and [Bro68]). The corresponding
sufficient condition in the case where Φ is a gradient is that ϕ+u is coercive (cf. (3)),
since ϕ + u then is cofinite [Roc70a, pp. 116 and 259] and dom ([ϕ + u]◦) = <n
holds [Roc70a, Cor. 13.3.1]. All these conditions are satisfied if dom u is bounded; an
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important special case is when u includes, as an additive term, an indicator function
of a compact set.

A function ϕ : dom u × dom u 7→ < of the form ϕ(y, x), continuous on dom u ×
dom u and convex and differentiable on dom u with respect to y, automatically has
the continuity property of the mapping Φ = ∇yϕ required in the result (d). Note
that dom u is not closed in general [Roc70a, p. 52], in which case it cannot take the
role of the set S.

LEMMA 3.2 (descent properties). Let x ∈ dom u\Ω, Y (x) be the (possibly empty)
set of solutions to [GEΦ], y ∈ Y (x), and d := y − x.

(a) If either u is strictly convex on dom u and ∂u(x) is bounded, or Φ is strictly
monotone on dom u, then T ′(x; d) < 0.

(b) Let Φ ≡ ∇ϕ, y ∈ <n be any point such that Tϕ(y, x) < Tϕ(x, x), and d := y−x.
Then, T ′(x; d) < 0. Especially, T ′(x; d) < 0.

(c) Let u be strongly convex on dom u or Φ strongly monotone on dom u. Let
y ∈ <n be an approximate solution to [GEΦ] in the sense that for some vector r ∈ <n,

Φ(y) + ∂u(y) +∇f(x)− Φ(x) 3 r,(10)

and d := y − x. If ‖r‖ < (mu + mΦ)‖d‖, then T ′(x; d) < 0. Especially, Y (x) is
nonempty and singleton and

T ′(x; d) ≤ −(mu +mΦ)‖d‖2.(11)

(d) Let Φ be strongly monotone on dom u and Lipschitz continuous on dom u.
Then, there exists a ξu(y) ∈ ∂u(y) such that

− T ′(x; d)

‖∇f(x) + ξu(y)‖ · ‖d‖ ≥ ρ,(12)

where ρ := mΦ/MΦ.
Remark 3.2. The reader should note here that in (11) we make use of the con-

vention that if a mapping Π is monotone, then it satisfies (4) with mΠ = 0.
Proof.
(a) If u is strictly convex, then for all ξu(x) ∈ ∂u(x), [−Φ(y) −∇f(x) + Φ(x) −

ξu(x)]Td > 0 holds, which, from the monotonicity of Φ, yields

[∇f + ξu(x)]Td < 0 ∀ξu(x) ∈ ∂u(x).(13)

If ∂u(x) is bounded, then the supremum of the left-hand side of the above
inequality over ξu(x) ∈ ∂u(x) is attained, and the result follows.

If Φ is strictly monotone, then the monotonicity of ∂u [Roc70a, Cor. 31.5.2]
yields [∇f+ξu(x)]Td ≤ [Φ(x)−Φ(y)]Td < 0, which implies the desired result.

(b) By the convexity of ϕ, Tϕ(y, x) < Tϕ(x, x) implies that ∇f(x)Td < u(x) −
u(y). Then, from (2),

T ′(x; d) = ∇f(x)Td+ sup{ ξu(x)T(y − x) | ξu(x) ∈ ∂u(x) }
< u(x)− u(y) + sup{ ξu(x)Td | ξu(x) ∈ ∂u(x) },(14)

and the right-hand side of (14) is nonpositive since u is convex. The point y
is just a special case of such a y.
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(c) We obtain from (10) that

[∇f(x) + ξu(x)]Td ≤ −(mu +mΦ)‖d‖2 + ‖r‖ · ‖d‖

holds for all ξu(x) ∈ ∂u(x), from which the result easily follows.
(d) By [GEΦt ] and the Lipschitz continuity of Φ, there exists a ξu(y) ∈ ∂u(y)

such that ‖∇f(x) + ξu(y)‖ ≤MΦ‖d‖. Together with (11), with mu = 0, (12)
follows.

Remark 3.3. The second result of (a) requires that Φ is strictly monotone if it is
not a gradient mapping (cf. the result (b)); that nonstrict monotonicity is not sufficient
is clear from the following example: take u := δX , where X := {x ∈ <2 | 0 ≤ x ≤ 2 },
and f(x) := 1

2 (x2
1 + x2

2). Let further x := (2, 2)T, which clearly is nonoptimal, and

Φ(x) :=

(
0 −1
1 0

)
x,

which is a nonstrictly monotone and asymmetric mapping. By simple calculations,
y = (0, 4)T can be shown to solve [GEΦ], but ∇f(x)T(y − x) = 0.

The result (b) establishes that descent properties hold under very mild assump-
tions if Φ is a gradient mapping and validates inexact solutions of [NDPϕ]. (In the
above example, choose, for example, Φ := 0; then y = (0, 0)T solves [GEΦ], and
∇f(x)T(y − x) = −8.)

The result (c) establishes the descent property under conditions on the accuracy
of the solution of [GEΦ]. While solving [GEΦ] with some iterative procedure, the
validity of (10) for a given value of r can often be checked easily.

The vector r appearing in (10) need not be associated only with a measure of
the distance from y to Y (x). The vector can include (or be equal to) an error in
the calculation of ∇f(x); the result (c) thus provides conditions for obtaining descent
when the value of ∇f(x) is observed in the presence of noise. See [Pol87, Chap. 4] for
discussions on such errors and their effect on gradient methods.

The inequality (12) in (d) generalizes the property of gradient relatedness of search
directions used in unconstrained differentiable optimization [OrR70, Def. 14.3.1].

3.2. Step length rules. This subsection presents and validates the step length
rules considered in the realization of Step 3 of the CA algorithm. Four different step
length rules are used; the first is a conceptual one.

DEFINITION 3.3 (exact line search). Let x ∈ dom u, y ∈ Y (x), and d := y − x.
(E) Choose ` as a solution to min {T (x+ `d) | ` ≥ 0 }.
We next define a new step length rule, which generalizes the Armijo [Arm66] rule

from differentiable optimization. The original statement of the Armijo rule cannot
be applied here due to the nondifferentiability of T ; the fact that the generalized
gradient cannot be Lipschitz continuous makes it necessary to replace the directional
derivative used in the original Armijo rule with a monotonicity measure in Φ. Also,
the unit step is the largest for which the modified Armijo rule can be validated (see
Lemma 3.5 below); we therefore choose a unit first trial step length. Further, Φ must
be chosen strictly monotone.

DEFINITION 3.4 (Armijo step length). Let Φ be strictly monotone on dom u. Let
x ∈ dom u \ Ω, Y (x) := {y}, and d := y − x. Further, let α, β ∈ (0, 1).

(A′) Let ` := β ı̄, where ı̄ is the smallest nonnegative integer i such that

T (x+ βid)− T (x) ≤ αβi[Φ(x)− Φ(y)]Td.(15)
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To see that this step length rule generalizes the Armijo rule, let u ≡ 0 in [NDP].
Then a subproblem solution y is characterized by the system of nonlinear equations
∇f(x) = Φ(x) − Φ(y) (cf. (6)); using this relationship in (15) yields that Rule A′

reduces to the original Armijo rule, with a unit first trial step. (Note that Rule A′

uses an over-estimating model of T , since T ′(x; d) ≤ [Φ(x)− Φ(y)]Td holds.)
The Armijo Rule A′ is validated below.
LEMMA 3.5 (validity of the Armijo rule). Let Φ be strictly monotone on dom u.

Let x ∈ dom u \ Ω, Y (x) := {y}, and d := y − x. Further, let α, β ∈ (0, 1).
(a) There exists a nonnegative integer ı̄ satisfying (15).
(b) Assume further that ∇f is Lipschitz continuous on dom u. Then, either a

unit step satisfies (15) or

β ı̄ > 2β(α− 1)
[Φ(x)− Φ(y)]Td

M∇f‖d‖2 .(16)

Proof.
(a) Taylor’s formula yields, for ` ∈ [0, 1],

f(x+ `d)− f(x) = `∇f(x)Td+ o(`).(17)

Further, for ` ∈ [0, 1] (cf. [Roc70a, Cor. 24.2.1 and Thm. 24.1], [Roc66]),

u(x+ `d)− u(x) =

∫ `

0

u′(x+ sd; d) ds ≤ −`u′(x+ d;−d)

= ` inf{ ξu(y)Td | ξu(y) ∈ ∂u(y) }
≤ `ξu(y)

Td ∀ξu(y) ∈ ∂u(y).(18)

In (18), let ξu(y) ∈ ∂u(y) be given by (6). Then, combining (17) and (18),

T (x+ `d)− T (x) ≤ `[Φ(x)− Φ(y)]Td+ o(`).

For any value of α ∈ (0, 1), there must therefore be an ` > 0 such that, for all ` ∈ (0, `),
T (x+ `d)− T (x) ≤ α`[Φ(x)− Φ(y)]Td holds, from which we get the result.

(b) We begin by showing that for ` ∈ [0, 1],

T (x+ `d)− T (x) ≤ `[Φ(x)− Φ(y)]Td+
M∇f

2
`2‖d‖2(19)

holds. Taylor’s formula and the Lipschitz continuity of ∇f yields, for ` ∈ [0, 1],

f(x+ `d)− f(x) =

∫ `

0

∇f(x+ sd)Td ds ≤ `∇f(x)Td+

∫ `

0

M∇f‖d‖2s ds

= `∇f(x)Td+
M∇f

2
`2‖d‖2.(20)

Combining (20) with (18), the latter obtained as in (a) from [GEΦt ], we obtain (19).
Using (19) and the strict monotonicity of Φ, by choosing ` ≤ 2(α − 1)([Φ(x) −
Φ(y)]Td)/(M∇f‖d‖2), we obtain

T (x+ `d)− T (x) ≤ α`[Φ(x)− Φ(y)]Td.(21)
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Replacing ` with β ı̄, we see that ı̄ is the smallest integer i to satisfy

βi ≤ 2(α− 1)
[Φ(x)− Φ(y)]Td

M∇f‖d‖2 .(22)

From (22) then follows the desired result.
Remark 3.4. From (22) we may find conditions under which the unit step, that

is, ı̄ = 0, is accepted by Rule A′. Assume that Φ is strongly monotone on dom u.
Then, a unit step is obtained if

2(1− α)mΦ

M∇f
≥ 1.(23)

Note that, from (16), the step length given by Rule A′ always satisfies ` ≥ min{1, 2β(1−
α)([Φ(y)− Φ(x)]Td)/(M∇f‖d‖2)}, which reduces to

` ≥ min

{
1,

2β(1− α)mΦ

M∇f

}
(24)

whenever Φ is strongly monotone.
If the calculation of T is expensive, then a step length formula which does not

require its calculation is of interest. Such a rule is described next.
DEFINITION 3.6 (relaxation step length). Assume that ∇f is Lipschitz continuous

on dom u, and let Φ be strongly monotone on dom u. Further, let 0 < εi < mΦ/M∇f ,
i = 1, 2.

(R) Choose ` in the closed interval (ε1,min{1, 2mΦ/M∇f − ε2}).
Remark 3.5. The inverse of the quotient mΦ/M∇f appearing in the description

of the maximal step length is in some cases an approximate condition number of the
Hessian of f ; consider, for example, Newton’s method.

The step length rule is validated below.
LEMMA 3.7 (validity of the relaxation step). Assume that ∇f is Lipschitz con-

tinuous on dom u, and let Φ be strongly monotone on dom u. Let x ∈ dom u \ Ω,
Y (x) := {y}, and d := y−x. If ` is chosen according to Rule R, then T (x+`d) < T (x).

Proof. The inequality (19), together with the strong monotonicity of Φ, yields,
for all ` ∈ [0, 1], that

T (x+ `d)− T (x) ≤ `

(
−mΦ +

M∇f
2

`

)
‖d‖2,(25)

from which the result easily follows.
Note that if

2mΦ

M∇f
> 1(26)

holds, then a unit step yields descent. (This condition is implied by (23).)
The relaxation step length has the advantage of being very simple, but it requires

the knowledge of (an estimate of) the Lipschitz constant of ∇f . (In certain cases,
such as when f is quadratic or separable, estimates of the Lipschitz constant M∇f are
available; see, for example, [WoZ96]. The maximal step length is usually determined
through experiments.) The last step length rule introduced yields descent eventu-
ally and does not require the knowledge (or estimation) of any problem or method
parameters.
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DEFINITION 3.8 (divergent series step length).
(D) Let the sequence {`t} satisfy

[0, 1] ⊃ {`t} → 0,
∞∑
t=0

`t = ∞.(27)

Remark 3.6. The requirements of the relaxation and divergent series step length
rules need not be viewed as defining step length formulas per se, but can instead be
viewed as conditions that some arbitrary step length rule must satisfy in order to yield
convergence. The almost complete relaxation strategy described in [DeV85, Sec. 3.4],
for example, allows for the utilization of an arbitrary step length selection rule through
the (almost never used) upwards or downwards rounding of a tentative step length in
order to fall between two step lengths (very small and very large, respectively) defined
by preselected formulas both satisfying (27).

4. Convergence results.

4.1. The conceptual method. In our first convergence result, we will assume
that the mappings Φt are monotone only. In order to ensure the convergence of the
CA algorithm, this will require that the sequence {Φt} is constructed by a given
function ϕ on dom u × dom u (that is, that Φt ≡ ∇ϕ(·, xt) for each t), and that the
line search is performed exactly.

THEOREM 4.1 (convergence under Rule E). Assume that u is continuous on
dom u. Let the sequence {Φt} of cost approximating mappings be constructed such
that, for each t, Φt ≡ ∇ϕ(·, xt) for a given function ϕ : dom u × dom u 7→ < of
the form ϕ(y, x), continuous on dom u × dom u, and convex and in C1 on dom u
with respect to y. Assume that x0 ∈ dom u is such that the lower level set L(x0) :=
{x ∈ dom u | T (x) ≤ T (x0) } is bounded, and further that the problem [NDPϕ] is well
defined in the sense that (9) holds for every x ∈ L(x0). Let Rule E be used. Then,
{T (xt)} → T (x) for some x ∈ Ω, any accumulation point of the sequence {xt} (at
least one such point exists) lies in Ω, and{

inf
x∈Ω∩L(x0)

‖xt − x‖
}
→ 0.(28)

Proof. In order to apply Zangwill’s Theorem A [Zan69, Sec. 4.5], we first identify
the solution set with Ω, the descent function with T , and the algorithmic map with
the composite mapping A := ED, where D is the direction finding mapping and E
is the exact line search map. To fulfill the assumptions of Theorem A, we next show
that (1) the sequence {xt} lies in a compact set, (2) T (xt+1) < T (xt) if xt /∈ Ω and
the algorithm terminates if xt ∈ Ω, and (3) the mapping A is closed at all points in
L(x0) \ Ω.

(1) From the boundedness assumption and [StW70, p. 134], the set L(x0) is
compact; the descent property then ensures that the sequence {xt} lies in a
compact set.

(2) The descent property follows from Lemma 3.2(b). The termination property
(xt ∈ Ω) follows from Lemma 3.1(a)(2).

(3) The mapping D is closed on L(x0) by Lemma 3.1(d) (identifying S with
L(x0)), and the same is true for the mapping E, since T is continuous on
dom u [Zan69, Lem. 5.1]. The mapping ∂([ϕ(·, x) + u]◦) is monotone, and
therefore, by (9) and [Zei90, Prop. 32.33], locally bounded at ∇ϕ(x, x) −
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∇f(x). From (7), the mapping Y is therefore locally bounded on L(x0). From
(1), the sequence {xt} is bounded. The local boundedness of Y implies that
the sequence {yt} is also bounded. This sequence then has an accumulation
point. Then, [Zan69, Lem. 4.2] ensures that the composite map A is closed
on L(x0).

The assumptions of Theorem A are thus fulfilled, and we conclude that {T (xt)}
converges to T (x) for some x ∈ Ω, and any accumulation point of {xt} lies in Ω. (The
existence of at least one such point follows from the boundedness of {xt}.) The last
statement follows from [OrR70, Thm. 14.1.4].

Note that it is essential that u is continuous on L(x0), since otherwise the line
search mapping E need not be closed. (In the special case where u ≡ δX , the line
search is made with respect to f , and the continuity assumption on umay be removed.)

4.2. A truncated algorithm. In this section we provide one example of the
many possibilities for constructing realizations of truncated CA algorithms. The basis
for the algorithm described and validated here is Lemma 3.2(b). (Another truncated
CA algorithm, based on Lemma 3.2(c), is presented in section 4.3.) The idea be-
hind a truncated CA method is to reduce the work performed on [NDPϕ] by limiting
the number of iterations performed when solving it using a descent algorithm. This
strategy introduces a trade-off between the computational effort spent on solving the
subproblem and the quality of the search direction obtained. (Examples of such meth-
ods are extensions of truncated Newton methods for systems of nonlinear equations,
in which a limited number of steps of an iterative scheme is performed on the linear
systems.)

The following assumption is made on the algorithm used for solving [NDPϕ].
Assumption 4.1 (properties of a truncated algorithm). Given an x ∈ dom u, the

problem [NDPϕ] is solved, starting from x, with an iterative algorithm where one
iteration may be described by a mapping G : dom u × dom u 7→ 2domu × dom u
having the following properties.

(1) Fixed point. z ∈ Y (x) ⇐⇒ (z, x) ∈ G(z, x), in which case the algorithm
terminates.

(2) Descent. If x /∈ Ω and z /∈ Y (x), then Tϕ(y, x) < Tϕ(z, x) for all y with
(y, x) ∈ G(z, x).

(3) Closedness. The mapping G is upper semicontinuous, closed, and compact
valued on dom u× L(x0).

(4) Finite termination. The number of iterations performed is bounded from
below by 1 and from above by a positive integer k.

Remark 4.1. The condition (1) ensures that the fixed point property of the original
algorithm is preserved and that the algorithm terminates whenever a solution to
[NDPϕ] has been obtained. The condition (2), together with the lower bound in (4)
on the number of iterations performed and Lemma 3.2(b), ensures that the resulting
approximate solution y defines a direction of descent with respect to T . Condition
(3) ensures the closedness of the mapping describing the overall algorithm. Whenever
dom u is bounded, it can be replaced by the assumption that the mapping G is closed
on dom u×dom u. Condition (4), finally, limits the work done in each main iteration
of the CA algorithm, and, together with (3), it ensures that any sequence {y} of
approximate solutions generated over a compact set is bounded.

If dom u is bounded, then the mapping G describing any truncated CA algorithm
based on a function ϕ̂ : dom u × dom u 7→ < of the form ϕ̂(y, x), together with any
closed updating step which guarantees descent (such as Rule E or a fixed relaxation
step), satisfies (1)–(3).
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The truncated CA algorithm is obtained from replacing Step 1 of the CA algo-
rithm (see Table 1) by the following.

1′. Search direction generation. Apply 1 ≤ kt ≤ k iterations of the algorithm
described by G, starting from xt; that is, let

(yt, xt) ∈ G ◦ · · · ◦G︸ ︷︷ ︸
kt times G

(xt, xt).

The resulting search direction is dt := yt − xt.
Note that the value of kt need not be determined a priori and could instead be

regarded as a product of the algorithm and the termination criteria chosen for [NDPϕ].
THEOREM 4.2 (convergence of a truncated algorithm). Replace Step 1 by Step 1′

in the CA algorithm. In Theorem 4.1, replace the assumption that (9) holds for every
x ∈ L(x0) with Assumption 4.1. Then, the conclusions of Theorem 4.1 hold for the
truncated CA algorithm.

Proof. The proof utilizes Zangwill’s theorem and the Spacer Step theorem [Lue84,
p. 231]. We begin by identifying the algorithmic mapping A. We assume that {xt} is
infinite (otherwise, by Assumption 4.1(1), with z = x, the algorithm is terminated at
a point in Ω). By Assumption 4.1(4), there must be at least one positive integer, say
k, that occurs an infinite number of times in the sequence {kt}. We define

Y (x) := { y ∈ <n | (y, x) ∈ G ◦ · · · ◦G︸ ︷︷ ︸
k times G

(x, x) }.

The algorithmic mapping is A := E ◦ D, where D := Y − · and E is the exact line
search map.

We next establish that this mapping has the properties desired (boundedness,
adaption, closedness). We first note that Assumption 4.1(2), together with Lemma 3.2(b),
yields that the mapping D has the descent property. From the use of Rule E, it then
follows that T (x) < T (x) for any x ∈ E ◦D(x), and therefore A satisfies the second
condition (adaption). The boundedness assumption on the set L(x0) then implies
that the sequence {xt} is bounded, thereby satisfying the first condition of Zangwill
(boundedness).

We now establish the third condition (closedness). The mapping G is closed on
dom u × L(x0) (Assumption 4.1(3)). By the upper semicontinuity and compactness
of G (Assumption 4.1(3) again), the image ∪x∈L(x0)G(x, x) of G on the compact set
L(x0) is compact [Nik68, Lem. 4.5]. Lemma 12 of [Mey79] then implies that if y∞ is
an accumulation point of a sequence {yt} given by (yt+1, x) ∈ G(yt, x), then the set
{ y | (y, x) ∈ G ◦G(y∞, x) } contains an accumulation point of {yt}. We are then in
the position of using Lemma 4.2 of [Zan69] to conclude that the composite mapping
G ◦G is closed on dom u × L(x0). This result used repeatedly then establishes that
the mapping Y , and therefore also D, is closed on L(x0). Applying Lemma 4.2 of
[Zan69] again, we may conclude that the mapping E ◦D is closed on L(x0). Moreover,
the boundedness of L(x0) and the descent property of E ◦D ensures that the range
of this mapping over L(x0) is a compact set. We invoke Corollary 4.2.1 of [Zan69] to
conclude that the algorithmic mapping A is closed on L(x0).

The algorithmic mapping identified by extracting the value k from the choices in
the sequence {kt} is clearly of the form

C(x) = { y ∈ dom u | T (y) ≤ T (x) }, x ∈ dom u.

We may therefore invoke the Spacer Step theorem [Lue84, p. 231], which guarantees
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that the result holds, thanks to the properties of the mapping A. The rest of the
proof follows that of Theorem 4.1.

A natural sufficient condition for the boundedness of {yt} is that dom u is bounded;
the special case u ≡ δX for a nonempty, compact, and convex set X is covered in
[Pat93b].

4.3. Implementable step length rules.
THEOREM 4.3 (convergence under Rule A′). Let Φ : dom u × dom u 7→ <n be

a continuous mapping on dom u × dom u of the form Φ(y, x), maximal and strictly
monotone on dom u with respect to y. Assume that the point x0 is chosen so that the
lower level set L(x0) is bounded, and assume further that the problem [GEΦ] is well
defined in the sense that (8) holds for every x ∈ L(x0). Let Rule A′ be used. Then,
any accumulation point of the sequence {xt} (at least one such point exists) lies in Ω,
and (28) holds.

Proof. Let x∞ be any accumulation point of the sequence {xt}; the existence
of such a point follows from the boundedness of L(x0) and the descent property.
Likewise, the sequence {yt} must be bounded by the well-posedness assumption (8);
let y∞ be an arbitrary accumulation point. Hence, {dt} is bounded.

We will next show that {dt} → 0 must hold; the proof is by contradiction.
By Lemma 3.5(a),

T (xt+1)− T (xt) ≤ α`t[Φ(xt, xt)− Φ(yt, xt)]Tdt < 0, t = 0, 1, . . . .

If {dt} 6→ 0, then as {T (xt+1) − T (xt)} → 0 holds, there must be a subsequence T
such that {`t}T → 0. There must then be an index t such that for every t ≥ t in T ,
the step length produced by Rule A′ is less than the initial trial step; that is,

T (xt + (`t/β)dt)− T (xt) > α(`t/β)[Φ(xt, xt)− Φ(yt, xt)]Tdt, t ≥ t, t ∈ T .(29)

By the convexity of u, we obtain in the limit of T in the characterization of
yt that [Φ(x∞, x∞) − Φ(y∞, x∞)]Td∞ ≥ [∇f(x∞) + ξu(x

∞)]Td∞ holds for any sub-
gradient ξu(x

∞) of u at x∞. Hence, [Φ(x∞, x∞) − Φ(y∞, x∞)]Td∞ ≥ T ′(x∞; d∞)
holds. Dividing the inequality (29) by `t/β, and taking the limit of T , we obtain,
taking into account the above inequality, Assumption 1.1, and [Roc81, Prop. 3G],
that T ′(x∞; d∞) ≥ 0 holds.

A contradiction is now reached in the limit of the inequality (cf. Lemma 3.2(a))
T ′(xt; dt) ≤ [∇f(xt) + ξu(y

t)]Tdt = [Φ(xt, xt)− Φ(yt, xt)]Tdt < 0. We conclude that
{dt} → 0. Using this result in the characterization of y∞ then yields that x∞ ∈ Ω.

The result (28) follows as in Theorem 4.1.
In order to introduce simpler step length rules, we assume that the mappings Φt

are strongly monotone; we then automatically reach a large freedom of choosing their
form; for example, they are not necessarily determined by a continuous mapping on
dom u× dom u.

THEOREM 4.4 (convergence under strongly monotone mappings Φt). Assume that
T is bounded from below on <n and ∇f is Lipschitz continuous on dom u. For each
t, let Φt be strongly monotone and Lipschitz continuous on dom u. Assume further
that mΦ := lim inft→∞{mΦt} > 0 and MΦ := lim supt→∞{MΦt} < +∞.

(a) From any starting point x0 ∈ dom u and under Rule E, A′, or R, any accu-
mulation point of {xt} lies in Ω.

(b) If further {xt} is bounded and Ω is nonempty, then under Rules E, A′, or R,
(28) holds. Further, under Rule D, at least one accumulation point of {xt}
lies in Ω.
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(c) If further Ω is finite, then under Rule A′ or R, {xt} converges to one point
in Ω. The same conclusion holds for Rule E whenever {`t} is bounded above.

Proof.
(a) We begin by showing that for each of the three step length rules, {dt} → 0

must hold. From (25) and the use of Rule E follows that, for ` ∈ [0, 1],

T (xt+1) ≤ T (xt + `dt) ≤ T (xt) + `

(
−mΦt +

M∇f
2

`

)
‖dt‖2, t = 0, 1, . . . .

Minimizing the right-hand side of this inequality, we obtain

`∗t = min{1,mΦt/M∇f}.

Hence,

T (xt+1)− T (xt) ≤ −ρ‖dt‖2, t = 0, 1, . . . ,(30)

with ρ := min{m2
Φ/(2M∇f ),M∇f/2}. The Armijo rule satisfies (30) with ρ :=

(2βα(1− α)m2
Φ)/M∇f , so does the relaxation rule, with ρ := ε1ε2M∇f/2.

Since T is lower bounded and, from the above, {T (xt)} is decreasing, {T (xt+1)−
T (xt)} → 0. Thus, by (30), in each of the three rules we obtain that {dt} → 0.

From (6) and the upper bound on MΦt , as {dt} → 0,

{∇f(xt) + ξu(y
t)} = {Φt(xt)− Φt(yt)} → 0.(31)

Assume now that {xt} has an accumulation point, x∞, corresponding to a convergent
subsequence {xt}t∈T . Since {yt−xt} = {dt} → 0, we have that {yt}t∈T → x∞. From
the closedness of ∂u [Roc70a, Thm. 24.4] and the continuity of ∇f , (31) yields that
{ξu(yt)}t∈T → ξu(x

∞) ∈ ∂u(x∞), and, again appealing to (31), ∇f(x∞) + ξu(x
∞) =

0. Thus, x∞ ∈ Ω.
(b) The result (28) follows from (a) and [OrR70, Thm. 14.1.4]. Since {`t} → 0

in Rule D, it holds for all t ≥ t (cf. (25)) that, for some σ > 0, T (xt+1) − T (xt) ≤
−`tσ‖dt‖2. Hence, eventually {T (xt)} is decreasing, and by the lower boundedness as-
sumption, it converges to a finite value. We therefore must have that σ

∑∞
t=t `t‖dt‖2 <

∞. But
∑∞

t=0 `t = ∞ holds, from which it follows that lim inft→∞ ‖dt‖ = 0 must
hold. The corresponding accumulation point of {xt} must then, by the construction
of [GEΦ], lie in Ω.

(c) The result follows from the equality ‖xt+1 − xt‖ = `t‖dt‖, the result of (a)
that {dt} → 0, the upper bound on `t, and [OrR70, Thm. 14.1.5].

The proof for Rule A′ shows that convergence is guaranteed for any step length
rule that results in a larger reduction of T at each iteration than the Armijo rule.

The above result can be improved to require Lipschitz continuity only for Rules R
and D [Pat98].

It is to be observed that although the strong monotonicity property of Φ implies
that (8) holds for every x ∈ dom u, neither {xt} nor {yt} are necessarily bounded.
Since {T (xt)} converges and {dt} → 0, however, boundedness of {xt} and {yt} is
ensured if the lower boundedness of T is replaced by the stronger condition of weak
coercivity (dom T is bounded or lim‖x‖→∞{T (x)} = +∞).

The maximal allowed step length in Rule R is bounded by the constant 2mΦt/M∇f .
Now, suppose that f may be written as f := f1 + f2, where f1 and f2 are convex
with Lipschitz continuous gradients, and that f1 is strongly convex. For the sake
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of this example, we further assume that f1 is quadratic. To enhance the speed of
convergence of the CA algorithm, we consider redefining ϕt as ϕt := ϕt + f1. (This
operation corresponds to applying a cost approximation to the function [u+ f1] + f2,
instead of to u+ f .) Indeed, this operation yields an increased maximal allowed step
length since

2m(ϕt+f1)

M∇f2
=

2(mϕt +mf1)

M∇(f−f1)
>

2mϕt

M∇f
.

It also yields a faster convergence for the other step length rules; for Rule A′, observe
the change in the linear convergence ratio in Theorem 4.6 below.

From this example, we are lead to conclude that, in order to achieve the best
possible rate of convergence, the function ϕt := ϕt+f1 should be constructed such that
f2 := f − f1 is not strongly convex. (The desire to obtain a high rate of convergence
must of course be weighed against the computational difficulty of the subproblems.)

Chen and Rockafellar [ChR92] study splitting methods for the problem of finding
a zero of the sum of two maximal monotone operators. They argue that all the
strong monotonicity inherent in the problem mapping should be kept in the mapping
defining the forward step; their result corresponds to the above for this special case
of CA method.

We conclude this section by combining inexact solutions of [GEΦt ] and inexact
line searches into an implementable algorithm.

THEOREM 4.5 (an implementable algorithm). Let the assumptions of Theorem 4.4
hold. In the CA algorithm, let Step 1 be performed inexactly, in the sense that, for

each t, the approximate solution yt satisfies (10), with ‖rt‖ ≤ ω‖dt‖ for some ω < mΦ.
Then, all the conclusions of Theorem 4.4 hold, with the exception that in step length
Rule R, the constant mΦ should be replaced by mΦ − ω.

The proof of this result is very similar to that of Theorem 4.4; its basis is a
modification of the inequality (25) resulting from (10), in which mΦ is replaced by
mΦ − ω.

A slightly weaker result can be established wherein the condition ‖rt‖ ≤ ω‖dt‖ is
replaced by the requirement that {‖rt‖} → 0 holds; the argument is, roughly, that if

‖rt‖ ≥ mΦ‖dt‖ holds for infinitely many t, then {‖dt‖} → 0 must hold; if not, then

Lemma 3.2(c) establishes that d
t

eventually is a direction of descent.

4.4. Linear convergence. For affine mappings Φ, it is possible to show that
the CA algorithm converges Q-linearly to an element x∗ of Ω, that is, that

lim sup
t→∞

‖xt+1 − x∗‖
‖xt − x∗‖ =: q < 1.(32)

Convergence rests on a nonexpansiveness result for a part of the mapping x 7→
Y (x).

Let Φ(x) := Bx for some positive definite matrix B ∈ <n×n. Then, from the
characterization [GEΦt ] of the set Y (x), for any x ∈ dom u,

y(x) = [B + ∂u]−1[B −∇f ](x).(33)

We then rewrite (33) as y(x) := VW (x), where

V :=

[
1

mΦ
(B + ∂u)

]−1

, W :=

[
1

mΦ
(B −∇f)

]
,

and mΦ is the modulus of strong monotonicity of Φ.
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This rewriting of the characterization of y(x) is done because the operator V can
be shown to be nonexpansive on dom u; that is,

‖V (x)− V (y)‖ ≤ ‖x− y‖, ∀x, y ∈ dom u.

Indeed, from the monotonicity of ∂u and the positive definiteness of B we have, for
all x, y ∈ dom u, and ξu(x) ∈ ∂u(x), ξu(y) ∈ ∂u(y),

[ξu(x)− ξu(y)]
T(x− y) ≥ 0,

(x− y)TB(x− y) ≥ mΦ‖x− y‖2.
Dividing both the above inequalities by mΦ and adding them, we obtain([

1

mΦ
(B + ξu)

]
(x)−

[
1

mΦ
(B + ξu)

]
(y)

)T

(x− y) ≥ ‖x− y‖2.

But this inequality yields that the operator V is firmly nonexpansive and therefore
nonexpansive [Roc76, EcB92].

The importance of this result is that the convergence analysis is simplified since,
using Lemma 3.1(a)(1), we immediately have that for any x∗ ∈ Ω,

‖y(x)− x∗‖ = ‖VW (x)− VW (x∗)‖ ≤ ‖W (x)−W (x∗)‖,
and it suffices to study the operator norm of W in the vicinity of x∗.

THEOREM 4.6 (linear convergence). Assume that ∇f is Lipschitz continuous on
dom u. Let Φ(x) := Bx, where B ∈ <n×n is positive definite. Assume that, using
Rule A′ or Rule R, {xt} → x∗ ∈ Ω, where f is twice continuously differentiable and
∇2f(x∗) is positive definite. If

σ :=
MΦ

mΦ
‖I −B−1∇2f(x∗)‖ < 1,(34)

then {xt} converges Q-linearly with the ratio

q ≤ max
{
σ, 1− 2β(1−α)mΦ

M∇f
(1− σ)

}
, for Rule A′, and

q ≤ max {σ, 1− `(1− σ)} for Rule R,

where ` := inft{`t} ≥ ε1.
Proof. From Lemma 3.1(a)(1) and the nonexpansiveness property of V , we

have ‖yt − x∗‖ = ‖VW (xt) − VW (x∗)‖ ≤ ‖W (xt) −W (x∗) − ∇W (x∗)(xt − x∗)‖ +
‖∇W (x∗)(xt − x∗)‖, where ∇W (x∗) := (1/mΦ)(B −∇2f(x∗)).

Let ε > 0 be arbitrary. Since {xt} → x∗, we have for a sufficiently large t that
‖W (xt)−W (x∗)−∇W (x∗)(xt− x∗)‖ ≤ ε‖xt− x∗‖. We also have that ‖∇W (x∗)‖ ≤
(MΦ/mΦ)‖I−B−1∇2f(x∗)‖ =: σ, so that ‖yt−x∗‖ ≤ (σ+ε)‖xt−x∗‖. Then, ‖xt+1−
x∗‖ = ‖xt + `td

t−x∗‖ ≤ `t‖yt−x∗‖+(1− `t)‖xt−x∗‖ ≤ [1− `t(1−σ− ε)]‖xt−x∗‖.
For Rule A′, from (24), we then have, for a large enough t,

‖xt+1 − x∗‖ ≤ qε‖xt − x∗‖,(35)

where qε := max{σ + ε, 1 − 2β(1 − α)mΦ/M∇f (1 − σ − ε)}, while, for Rule R, (35)
holds for large enough t with qε := max{σ+ ε, 1− `(1−σ− ε)}. Since ε was arbitrary
we have asymptotically that

q := lim sup
t→∞

‖xt+1 − x∗‖
‖xt − x∗‖ ≤ q0,
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where q0 := max{σ, 1 − 2β(1 − α)mϕ/M∇f (1 − σ)} in the case of Rule A′, and
q0 := max{σ, 1 − `(1 − σ)} for Rule R. If σ < 1, then q0 < 1, and the theorem is
proved.

If (26) holds, then `t ≡ 1 is a valid step length in Rule R, and q ≤ σ holds. Hence,
if B := ∇2f(x∗), then superlinear convergence is obtained; that is, q = 0 in (32). For
Rule A′, the same conclusion may be drawn, provided that (23) holds.

The result of Theorem 4.4 suggests a means to choosing a matrix B to obtain
linear convergence in practice; choosing Φt of the form x 7→ Btx for some positive
definite matrix Bt which, at least asymptotically, approaches the Hessian ∇2f(xt),
eventually the requirement (34) will be fulfilled. Any matrix Bt generated after this
occurrence will be an appropriate choice for the fixed matrix B in the above theorem.
Further, the longer this choice is postponed, the closer the value of σ will be to
zero; therefore, a convergence rate close to superlinear may be obtained. (In fact,
it is possible to extend the above result to incorporate general iteration-dependent
mappings Φt [Pat98].)

We have not been able to establish linear convergence for Rule E or D, since no
lower bound on the respective step length is available.

5. Applications of the convergence analysis. We illustrate in this section
further examples of the generality of the framework and demonstrate the strength of
the convergence analysis. We demonstrate that the results strengthen those previously
obtained for special cases of CA methods and introduce a flexibility in the realizations
of existing methods under the same convergence conditions.

5.1. On the linear convergence of CA algorithms. Despite the fact that the
linear convergence Theorem 4.6 is here established only for iteration independent and
affine cost approximation mappings, it is strong enough to reproduce some well-known
linear convergence results in differentiable optimization, as we illustrate below.

COROLLARY 5.1 (linear convergence). Let the assumptions of Theorem 4.6 hold,
and let B := (1/γ)I, γ > 0.

(a) Let Rule R be applied, using unit steps. If the method converges, then it
converges with a linear rate. Further, the convergence ratio is

q ≤ max {|1− γm|, |1− γM |} ,(36)

where m and M are the smallest and largest eigenvalues of ∇2f(x∗), respec-
tively.

(b) Let further u ≡ δX , where X is a nonempty, closed, and convex set in <n.
Then, the algorithm is equivalent to the Goldstein–Levitin–Polyak gradient
projection algorithm [Gol64, LeP66]. Moreover, the convergence criterion (26)
and the linear convergence ratio (36) coincide with those of this algorithm.

(c) Let further X := <n. Then, the algorithm is equivalent to the steepest descent
method with fixed step length γ [Pol63], with the corresponding convergence
criterion and linear convergence ratio.

Proof.
(a) We first note that mΦ = MΦ = 1/γ. The condition (26) for convergence

using unit steps then reduces to γ < 2/M∇f , and since ‖∇2f(x∗)‖ ≤ M∇f
and for any symmetric matrix A, ‖I − γA‖ < 1 if γ < 2/‖A‖, (34) follows.

With ` := 1 we have that q ≤ σ := ‖I−γ∇2f(x∗)‖ = max{|1−m|, |1−M |},
where m and M are, respectively, the smallest and the largest eigenvalues of
γ∇2f(x∗).
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(b) Straightforward calculations yield yt = PX(xt − γ∇f(xt)), where PX(z) de-
notes the Euclidean projection of z onto X. Since `t ≡ 1, xt+1 = yt follows,
and we obtain the Goldstein–Levitin–Polyak gradient projection algorithm.
The convergence criterion (γ < 2/M∇f ) and linear convergence ratio (36) can
be found in [LeP66].

(c) Follows from (b), with X = <n.

5.2. Improvements of existing results. We provide a few examples of previ-
ous convergence analyses of special cases of CA algorithms and demonstrate that the
analysis in this paper improves upon them.

Application 1. In the CA algorithm, choose the following: ϕt := 0; each sub-
problem [NDPϕ] is solved exactly; and the conceptual step length Rule E is used. We
then obtain the method of Mine and Fukushima [MiF81]. Comparing their conver-
gence results to that of Theorem 4.1, their convergence conditions include an unnec-
essary strict convexity assumption on u; further, they do not recognize that u needs
to be continuous. Needless to say, our convergence analysis also allows for a larger
flexibility in the realization of this method under the same convergence conditions;
for example, using inexact solutions of [NDPϕ] is optional (see Theorem 4.2).

When u ≡ δX for a closed, convex set X in <n, this algorithm reduces to the
Frank–Wolfe method. For this algorithm, the validation of truncated subproblems
(Theorem 4.2) is new, and its successful use in several applications (where it is often
referred to as an heuristic procedure; see, e.g., [LHB85]) is thus supported in theory.
Further, in this special case of [NDP], the original Armijo step length rule can be
used in place of Rule A′, and convergence is established without the need for Φ to
be strictly monotone (see [Pat93c, Pat98]). As far as the author is aware, previous
convergence results for Armijo step length rules within the Frank–Wolfe algorithm
have always assumed that ∇f is Lipschitz continuous (e.g., [PsD78, Chap. III.3]),
which, however, is unnecessary (cf. Theorem 4.3).

Application 2. In the CA algorithm, choose the following: α > 0; ϕt(x) :=
1/(2γt)‖x‖2, where {γt} is chosen so that inft{γt} > 0 and supt{γt} < 1/α holds;
each subproblem [NDPϕt ] is solved exactly; and the Armijo step length rule A′ is
used. We then obtain the method of Fukushima and Mine [FuM81]. The condition
that supt{γt} < 1/α holds is unnecessary in the presence of the standard assumption
that the acceptance parameter satisfies α ∈ (0, 1), as evidenced by Lemma 3.5 and
Theorem 4.4. Further, the enforced dependency of α on the possible choices of γt
in their method has detrimental effects both in terms of allowing less flexibility in
the realization of the method, and in terms of the convergence rate, which becomes
arbitrarily poor if γt is chosen close to 1/α. Optional realizations of this algorithm
include the use of inexact solutions of [NDPϕt ] as well as the use of the step length
Rules R and D (cf. Theorems 4.4 and 4.5). Moreover, the larger flexibility with which
the function ϕ can be chosen introduces possibilities to improve the convergence rate
of the method, as the next application establishes.

Application 3. Assume that f ≡ 0; replacing Rule A′ with Rule R using unit
steps reduces the above method to the proximal point algorithm [Mar70, Roc76]. If
u is also differentiable, then by the results of Rockafellar [Roc76] the proximal point
algorithm can be made superlinearly convergent by letting {γt} → +∞. Superlinear
convergence is not possible to obtain in the method of [FuM81] in the nondifferen-
tiable case, since letting {γt} → +∞ would destroy the validity of their step length
rule. The discussion following Theorem 4.6, however, demonstrates that also in the
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nondifferentiable case, a convergence rate as close to superlinear as desired can be
obtained in the CA algorithm by introducing second-order information from f into
Φ; we conjecture that the method which is obtained if the matrix Bt is never fixed is
actually superlinearly convergent. We note that this result is consistent with the re-
sults for gradient related methods in unconstrained differentiable optimization, where
superlinear convergence is characterized by the convergence of the search directions
toward Newton directions.

Application 4. In the CA algorithm, choose the following: ϕt is strongly convex
with a Lipschitz continuous gradient; and Rule R is used. We then obtain the auxiliary
problem principle of Cohen [Coh78, Coh80] (see, e.g., [Pat93c, LaP94, Pat98] for
detailed comparisons). The convergence results of this scheme correspond essentially
to that of Theorem 4.4(b) for this special choice of CA algorithm. There are several
optional realizations of the algorithm with the same convergence conditions, including
the use of step length Rule A′, the use of mappings Φt that are not gradients, and
the use of truncated subproblem solutions.

In the case where u ≡ δX for a closed, convex set in <n, we may identify several
other algorithm frameworks that are included in that defined by the CA method, and
the convergence analyses are, in all cases, more limited and weaker than ours; ex-
amples of such frameworks include those in [DFL86, LaM90, Tse91, Mig94, ZhM95].
Applications of the convergence analysis of the CA method to differentiable optimiza-
tion can be found in [Pat93b, Pat93c, Pat98].

5.3. Concluding remarks. The class of CA algorithms is very general; some
examples of methods that are included have been mentioned. What we have not
mentioned is that the generality present allows one to adapt the algorithm to problem
structures (such as choosing Φ to adapt to a separability in u or f); further, the
analysis provides convergence results for new methods.

In this paper a convergence analysis was made for the class of CA algorithms
when applied to a nondifferentiable optimization program; consequences of the anal-
ysis were illustrated, which resulted in several improvements of previous analyses. A
convergence analysis is performed for the special case of differentiable, constrained,
and unconstrained optimization problems in the author’s Ph.D. thesis [Pat93c]; in
several instances, in particular concerning the requirements on Φt and the conver-
gence rate, the results reached in this paper are improved upon. These, and new
developments, will be reported elsewhere in the future [Pat98].
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