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The contribution of the paper is a complete analysis of the sensitivity of elastic demand traffic (Wardrop)equilibria. The existence of a directional derivative of the equilibrium solution (link flow, least travel cost,
demand) in any direction is given a characterization, and the same is done for its gradient. The gradient, if it
exists, is further interpreted as a limiting case of the gradient of the logit-based SUE solution, as the disper-
sion parameter tends to infinity. In the absence of the gradient, we show how to compute a subgradient. All
these computations (directional derivative, (sub)gradient) are performed by solving similar traffic equilibrium
problems with affine link cost and demand functions, and they can be performed by the same tool as (or one
similar to) the one used for the original traffic equilibrium model; this fact is of clear advantage when applying
sensitivity analysis within a bilevel (or mathematical program with equilibrium constraints, MPEC) application,
such as for congestion pricing, OD estimation, or network design. A small example illustrates the possible
nonexistence of a gradient and the computation of a subgradient.
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Introduction
Performing a sensitivity analysis of traffic equilibria
means evaluating the directions of change that occur
in the flows and travel costs as parameters in the cost
and demand functions change. A sensitivity analy-
sis is particularly useful in control and pricing appli-
cations because if we can anticipate the effects of
a change in, say, the traffic infrastructure, on the
behaviour of the travellers, then we can utilize this
knowledge to optimize these changes according to
some goal fulfillment, like a reduction in flows, a
higher revenue from congestion tolls, etc. The subject
for now is not the applications of sensitivity analyses
per se, but instead the foundations of them. In partic-
ular, we provide for the first time a characterization
of when such an analysis can be performed, including
when the gradient of the equilibrium link flows, least
travel costs, and demands with respect to a vector of
parameters does exist. From this analysis, we can then
develop new computational algorithms that take into
consideration that the gradient does not always exist,
and it can also lead to more efficient implementations
of already existing algorithms. To this end, the chapter
provides computational formulas for the directional
derivative, the gradient, and a subgradient in the
latter’s absence.
All previous analyses have drawbacks or limita-

tions that this paper tries to mitigate. Some analyses
are based on the notion that the gradient does exist,
and heuristically based formulas are provided for cal-
culating it; the effect is that sometimes the formula

provides a value that cannot be interpreted as a gradi-
ent, either because it does not exist or because the for-
mula gives the wrong value, or the formula can break
down and therefore does not provide a value, even in
the case that it does exist (see the discussion in Bell
and Iida 1997, §5.4). This type of analysis, represented
by Tobin and Friesz (1988) and Cho et al. (2000), fur-
ther has the limitation—in our opinion—that the com-
putational formulas are based on complicated matrix
calculations that are far removed from the original
problem’s form. We show that directional derivatives
and (sub)gradients are naturally associated with the
solution of traffic equilibrium problems that are simi-
lar to the original one, and the sensitivity information
sought can therefore be efficiently computed by using
the same, or only slightly modified, traffic equilibrium
software.
The other analyses are similar to ours in the choice

of underlying theory but are still limited for other rea-
sons. The papers by Qiu and Magnanti (1989), Yen
(1995), Outrata (1997), and Patriksson and Rockafellar
(2003), which together with the above two references
comprise the whole body of literature on the subject
of the theoretical development of sensitivity analysis
of traffic equilibria, provide sufficient conditions for
the existence of directional derivatives. In all cases,
the conditions given are stronger than necessary.
Some of these papers deal only with the link-route
representation of traffic flows, thus failing to show
that also link-node based models can provide sensi-
tivity information, of importance when the number of
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routes is very large. Further, and most importantly,
the analysis of this paper not only presents a char-
acterization of the existence of the directional deriva-
tive and formulas for calculating it, but also a char-
acterization of the existence of the gradient, as well
as a formula for the calculation of a subgradient in
the absence of the gradient, under weak conditions
that are almost always satisfied when the directional
derivative exists.
We also indicate how the analysis changes if the

model is appended with additional constraints. The
fact that the sensitivity analysis is performed by solv-
ing a network flow problem, in contrast to doing a
matrix analysis, is of great importance in this con-
text: The network flow problem is simply appended
with additional constraints to accommodate the new
information, and it seems much more troublesome to
extend a matrix formula to accomplish the same task.
The paper illustrates, by means of an example, that

the equilibrium solution is not differentiable every-
where, and provides the directional derivative in one
direction as well as one subgradient, in terms of both
the link flows and the origin-destination (OD) travel
costs.
The analysis is made both for the link-route and

link-node flow representation, although the former
occupies the most space; the two analyses are so
similar that only one needs to be performed; the
(minor) differences between the analyses for the two
representations are reported.
The models are studied in the form of variational

inequalities and nonlinear (mixed) complementarity
problems, and the analysis tool which is utilized
throughout the paper is that of variational analysis,
that is, the extension of differential analysis and con-
vex analysis to situations where neither differentiabil-
ity nor convexity might be present, which is indeed
the one we face.
The rest of the paper is organized as follows. In the

next section, we present the parameterized problem
in the framework of Wardrop equilibrium models and
provide formulations for the link-route and link-node
representations of traffic flows. Parameters may be
present both in the travel cost and demand function,
although analyses of special cases will be considered.
Section 2 gives an overview of the subject of sensitiv-
ity analysis, in particular that of previous work done
for traffic equilibrium models. Section 3 provides a
characterization of the existence of directional deriva-
tives of the equilibrium link flow, demand, and OD
travel costs. Some special cases—such as the cases of
fixed, unperturbed, or invertible demand functions—
will be studied especially. The characterization of dif-
ferentiability of the equilibrium solution is taken up
in §4. In this section, we also show that the gradi-
ent, whenever it exists, can be obtained numerically,

at least in principle, by performing the sensitivity
analysis of the logit-based stochastic user equilibrium
(SUE) model as the value of the dispersion parameter
tends to infinity. Section 5 provides an illustration of
a case where the equilibrium link flow is not differ-
entiable, although the most popular gradient calculus
formula does produce a “gradient” vector. We then
show in §6 that in the absence of a gradient and
under an additional regularity assumption, a compu-
tation similar to that of the directional derivative of
the equilibrium solution in each coordinate direction
supplies a subgradient. We also provide one subgra-
dient for the numerical example. Finally, §7 illustrates
how the analysis can be extended to the case of addi-
tional, side, constraints on traffic flows and discusses
prospects for future research in the area.

1. The Wardrop Conditions
Let � = �� ��� be a transportation network, where �
and � are the sets of nodes and directed links,
respectively. For certain ordered pairs of nodes,
�p� q� ∈ �, where node p is an origin, node q is a
destination, and � is a subset of � × � , there is a
transport demand, which may be given by a function
of the travel cost. We assume that the network is
strongly connected, that is, at least one route joins
each OD pair.
Wardrop’s user equilibrium principle states that for

every OD pair �p� q� ∈�, the travel costs of the routes
utilized are equal and minimal for each individual
user. We denote by �pq the set of simple (loop-free)
routes for OD pair �p� q�, by hr the flow on route
r ∈�pq , and by cr the travel cost on the route as expe-
rienced by an individual user.
We introduce the parameter to be present in the

sensitivity analysis: It is denoted 	 and is assumed to
be of dimension d. This parameter could be present
in one or both of the travel cost and demand func-
tions. We assume that the travel cost function has
the form c�	� ·� � ����

+ �→ ���� given a value of 	,
where ��� denotes the total number of routes in the
network. Further, the demand function is given by
g�	� ·� � ���� �→����

+ . (We introduce the notation �+ �=
x ∈� � x≥ 0� and �++ �= x ∈� � x > 0�.)
In an application to OD estimation, d is in the order

of ���, while d ≈ ��� holds in equilibrium network
design, pricing, and control models.
We also introduce the matrix � ∈ ����×���, which is

the route-OD pair incidence matrix (i.e., the element
�rk is 1 if route r joins OD pair k = �p� q� ∈ �, and
0 otherwise). Then, demand-feasibility is described by
the conditions that h ∈����

+ and

�Th= g�	��� (1)
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holds, while the Wardrop equilibrium conditions for
the route flows are that

hr > 0=⇒ cr �	�h�=�pq� r ∈�pq� �p� q� ∈�� (2a)

hr = 0=⇒ cr �	�h�≥�pq� r ∈�pq� �p� q� ∈� (2b)

holds, where the value of �pq �= �pq�	�h� is the min-
imal (i.e., equilibrium) route cost in OD pair �p� q�.
By the nonnegativity of the route flows, the system
(1)–(2) can more compactly be written as the mixed
complementarity problem (MCP)

0��� ≤ h⊥ �c�	�h�− ���≥ 0���� (3a)

�Th= g�	���� (3b)

where a⊥ b, for two arbitrary vectors a� b ∈�n means
that aTb = 0. (By nonnegativity, this implies that
aj · bj = 0 for all j .)
Because we shall be interested in the sensitivity

of link flows, we will assume that the route cost
is additive. For each link l ∈ �, the travel cost has
the form tl�	�v�, where v ∈ ���� is the vector of link
flows. The route and link travel costs and flows are
related through a route-link incidence matrix, � ∈
0�1����×���, whose element �lr equals one if route
r ∈� utilizes link l ∈ �, and zero otherwise. Route r
has an additive route cost cr �	�h� if it is the sum
of the costs of using all the links defining it. In
other words, cr �	�h�= ∑

l∈� �lr tl�	�v�. In short, then,
c�	�h� = �Tt�	�v�. Also, implicit in this relationship
is the assumption that the pair �h�v� is consistent, in
the sense that v equals the sum of the route flows:
v = �h. We shall use the representation in terms of
v, because it is an entity for which we can introduce
conditions ensuring that uniqueness holds at equilib-
rium.
A more familiar representation of the parameter-

ized Wardrop conditions (3) is that of a variational
inequality problem (VIP),

−f �	�x� ∈NC�x�� (4)

where x ∈ �n, C ⊆ �n is a closed and convex set,
f �	� ·� � C �→�n is smooth, and where

NC�x�=
{
z ∈�n � zT�x− y�≤ 0� ∀y ∈C�� x ∈C�
�� x �C

denotes the normal cone to C at x. Letting

x �=

h�
v


 ∈���� ×���� ×�����

f �	�x� �=


�Tt�	�v�− ��

�Th− g�	���

v−�h


 � and

C �= ����
+ ×���� ×����� (5)

we obtain an equivalent VIP formulation from (3),
where f is parameterized by 	. The equivalence
between a nonlinear complementarity problem (NCP)
(that is, (3a)) and a VIP over the nonnegative orthant
(that is, −#c�	�h�−��$ ∈N

�
���
+
�h�) was established by

Karamardian (1969, 1972). That (3b) is equivalent to
the statement that −#�Th−g�	���$ ∈N������� follows
trivially, because N���� is identically zero. Similarly,
the equation v=�h comes out as the last row of (5):
−#v − �h$ ∈ N�����v�. Solutions exist to the problem
(4), (5) whenever g�	� ·� is upper bounded by some
nonnegative vector.
We note that the familiar form of VIP,

x ∈C% f �	�x�T�y− x�≥ 0� y ∈C
is equivalent to (4) that we, however, prefer because
it is more compact and also lends itself better to the
immediate application of the variational analysis the-
ory that we will employ in this paper.
We may also formulate the Wardrop conditions in

terms of link flows only. We introduce the link-node
incidence matrix, E ∈ −1�0�1��� �×���, whose element
eil equals −1 if node i is the origin node of link l, 1
if node i is the destination node of link l, and zero
otherwise. The link-node version of Wardrop’s equi-
librium conditions states that at an equilibrium link
flow v, being the aggregate of commodity (OD pair)
volumes wk ∈ ����, k �= �p� q� ∈ �, there exist vectors
*k ∈��� � of node prices such that

0��� ≤wk ⊥ (
t�	�v�−ET*k

) ≥ 0���� k ∈C%
for a link �i� j� ∈ �, this means that 0 ≤ wijk ⊥
�tij �	�v�− #*jk−*ik$�≥ 0, k ∈�. The set of feasible vol-
umes is the set of vectors wk ≥ 0��� for which Ewk =
ikgk�	��� holds.1 We write this formulation in terms
of the VIP (4) by letting

x �=


�wk�k∈�
�*k�k∈�
v


 ∈����·��� ×����·�� � ×�����

f �	�x� �=



�t�	�v�−ET*k�k∈�
�Ewk − ikgk�	����k∈�

v−∑
k∈�wk


 �

(6a)

C �=����·���
+ ×����·�� � ×����+ (6b)

This problem has solution whenever, in addition to
what has already been stated, the link cost t�	� ·� is
cycle-wise nonnegative.

1 The vector ik ∈ −1�0�1��� � is an indicator vector that is zero in all
positions but two, where by the sign convention introduced ear-
lier, the element with value 1 (−1) corresponds to the sink (source)
node. The vector ik also relates the OD node price vectors *k ∈��� �

and the OD least cost value �k ∈� through the relation �k = iTk *k.
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Although the formulations introduced here are
somewhat abstract, we will later show how more
familiar formulations, such as the optimization mod-
els of Beckmann et al. (1956) for traffic assignment
come out as special cases. The sensitivity analysis
concentrates on the two general models (5) and (6),
however, because the sensitivity analysis framework
that we will use depends on the VIP having this
form, where the feasible set C is a nonempty polyhe-
dron and where the parameter is present only in the
smooth mapping f .

2. An Overview of Sensitivity
Analysis for Traffic Equilibria

Recall that our model is of the form

−f �	�x� ∈NC�x�� (7)

where 	 ∈ �d is the parameter, x ∈ �n is the solu-
tion, f � �d × �n �→ �n is a smooth function, and
C ⊆ �n is a nonempty polyhedral set. Our attention
is focused on the generalized differentiation of the
solution mapping

S � 	 �→ S�	� �= x � −f �	�x� ∈NC�x�� (8)

at a pair �	∗�x∗� with x∗ ∈ S�	∗�, that is, the set of
solutions to the variational inequality (7) at 	 = 	∗.
The study of the continuity and differentiability of the
mapping S, with respect to variations in 	 that one
encounters in the literature on traffic equilibria, have
roughly been of three different kinds. We shall first
briefly review them before we turn to our analysis of
the model.

2.1. Braess’s Paradox-Type Analyses
One type of analysis of traffic equilibria sensitivity is
qualitative; often, such analyses have been performed
in conjunction with studies of traffic flow paradoxes.
It all started with Braess’s (1968) famous illustrative
example of a network in which the travellers real-
ize a higher cost when a link is improved, and the
practical case reported by Knödel (1969). Following
these examples, Fisk (1979) showed that, analogously,
an increase in one OD pair’s demand may result in
a decrease in another OD pair’s travel costs on some
routes. The continuity and local Lipschitz continu-
ity of the travel costs, with respect to changes in the
demands, were studied by Hall (1978) and Dafermos
and Nagurney (1984b, c), respectively. (Incidentally,
similar but stronger results, in fact characterizations,
will be brought out automatically from the analysis
to follow, under weaker assumptions than in these
references.) In line with Braess’s paradox, work was
done studying the direction of change in the travel
costs to changes in the data—showing, in particular,

that when one OD pair’s demand increases, the equi-
librium travel cost increases in that OD pair (Hall
1978; Fang 1980; Dafermos and Nagurney 1984b, c),
as well as results on average changes (Dafermos and
Nagurney 1984b, c).
Related to these sensitivity results are the studies

on the prevalence of Braess’s paradox for networks
with special topologies. Steinberg and Zangwill (1983)
studied the effect of the addition of a route, and in
Dafermos and Nagurney (1984a) the effect of changes
in the demand on the travel costs; the prevalence of
Braess’s paradox was ultimately found to depend on
the ratio of the determinants of two very large matri-
ces. See also Hagstrom and Abrams (2001) for more
recent developments on the subject.

2.2. The Heuristic Calculation of a “Gradient”
The mapping S defined in (8) is differentiable only
for some parameter values 	∗, and especially so when
the set C is defined in part by inequality constraints.
Further, the calculation of the gradient, when it exists,
is nontrivial. Here, we provide a discussion of the
heuristics utilized to date in the calculation of an
approximation to the gradient.
A vector taking the role of the gradient, whether

it exists or not, is necessary to obtain when applying
gradient-based algorithms for bilevel programs, or
mathematical programs with equilibrium constraints
(MPEC), cf. Luo et al. (1996) and Outrata et al. (1998).
These are models in which the vector x is opti-
mized with respect to an (upper-level) objective of the
parameter 	:

Minimize
	

-�	�x��

subject to 	 ∈ P�
− f �	�x� ∈NC�x��

where -� �d × �n �→ � is a smooth function and
P ⊆�d is a nonempty and closed, typically also
convex, set.
Heuristic constructions of “gradients” are grouped

in two categories. In the first we place linear
equations-based methods; the second refers to meth-
ods based on direct approximations of the mapping S.
The first category is primarily represented by the

work of Tobin and Friesz (1988) and its extension in
Cho et al. (2000). Its basis is the classic implicit func-
tion theorem (e.g., Clarke 1983, §7.1; Bertsekas 1995,
Proposition A.25): If a system of the form /�	�x�= 0n,
with /� �d × �n �→ �n being continuous, is such
that at �	∗�x∗� with /�	∗�x∗� = 0n, / has a continu-
ous and nonsingular gradient matrix 0	/�	∗�x∗� in
an open neighbourhood of �	∗�x∗�, then there is a
function 1 � U	 �→ Ux from an open neighbourhood
of 	∗ to an open neighbourhood of x∗ that is con-
tinuous, and for which it holds that x∗ = 1�	∗� and
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/�	�1�	�� = 0n on U	; further, if / is p times con-
tinuously differentiable, then so is 1, and 01�	� =
−0	/�	�1�	��#0x/�	�1�	��$−1 on U	.
To utilize this result in the present context, Tobin

and Friesz make two simplifying assumptions.

Assumption a. The above system contains no inequal-
ity constraints. One must therefore assume that every route
is used, or alternatively, reduce the problem to one where
only the routes being of minimum cost are included, and
assume that all of them are used. (The positivity condition
is spelled out explicitly in Cho et al. 2000.)

As we will show in §5, there are cases where there
does not exist a set of equilibrium route flows in
which all shortest routes are used. In such a case,
the result from the application of the above gradi-
ent formula does not necessarily contain the informa-
tion sought. (In general, one cannot even interpret the
resulting vector as a subgradient; see §6 for an analy-
sis of subgradients.)

Assumption b. For the Jacobian matrix 0	/�	
∗�

1�	∗�� to be invertible, Tobin and Friesz suggest choos-
ing one of the route flow equilibrium solutions that are
extremal in the equilibrium set, that is, a feasible basis in
the polyhedron H∗�	∗�.

However a closer look at this matrix reveals that
the existence of its inverse relies on the invertibility of
the (smaller) matrix 0hc�	∗�h∗�; this matrix will not,
however, be invertible in general, especially not for
deterministic models where the travel cost is addi-
tive, because the link-route incidence matrix � will
not have full row rank when the number of routes is
larger than the number of links. (See also the discus-
sion made in Bell and Iida 1997, §5.4.) (A case where
this technique is ensured to work, however, is the
(nonadditive) logit-based stochastic user equilibrium
model of Fisk 1980. Further, as we shall show, the gra-
dient of the logit solution provides useful results for
the (limiting) deterministic model precisely when the
latter’s solution is differentiable.)
To summarize, this gradient formula may pro-

vide a result when the implicit function theorem is
not applicable and may not provide a result even
when the equilibrium link-flow solution is differen-
tiable. However, the technique has been applied in
a wide spectrum of areas in transportation research,
such as in network design (Kim and Suh 1990), tran-
sit network optimization (Miyagi and Suzuki 1995),
traffic control (Yang and Yagar 1995, Chiou 1999,
Wong et al. 2001), OD estimation (Denault 1994, Yang
1995), car ownership studies (Tam and Lam 2000),
bicriterion traffic equilibrium (Leurent 1998), and con-
gestion pricing (Yang and Lam 1996). Some of the
experiments conducted seem to have been successful,
which implies that (a) the cases where the equilibrium
link flow is not differentiable is small (it is indeed

a set with Lebesgue measure zero, although opti-
mal solutions to MPEC problem tend to be nondif-
ferentiable), or, in the experiments conducted to date,
the algorithms implemented have not been able to
encounter (near-)optimal solutions; (b) the problems
solved so far have been very small and the number
of routes sufficiently small, such that the result’s
applicability has not yet been challenged by the
topological dependency described earlier. The only
numerical comparison reported between the matrix-
based heuristic of Tobin and Friesz (1988) and a varia-
tional analysis based approach (in this case the report
by Drissi-Kaïtouni and Lundgren 1992; see below) has
been performed in Denault (1994) for OD estimation
models, with the conclusion that the latter was more
easy to use and provided more reliable results.
In the solution of OD estimation/adjustment prob-

lems, approximations of the mapping S defined in (8)
have also been used. From the relation �h = v we
have that

vl =
∑

�p� q�∈�

∑
r∈�pq

�lrhr = ∑
�p� q�∈�

	pq
∑
r∈�pq

�lr�r� l ∈��

where 	pq is the OD demand parameter [g�	� ≡ 	],
and �r �= hr/	pq is interpreted as the route flow
probability. (Unless H∗�	∗�—the set of equilibrium
route flows—is a singleton, this value is not uniquely
defined, and it is further clearly dependent on the
value of 	.)
Spiess (1990) makes the approximation that �r does

not vary locally around the current value of 	. In that
case, the “partial derivative” of the equilibrium value
of vl with respect to the value of 	pq is

∑
r∈�pq

�lr�r .
Based on this approximate value of 0	v (which may
or may not exist), an approximate “gradient” of the
upper-level function in the MPEC problem can be
obtained.
Drissi-Kaïtouni and Lundgren (1992) replace Spiess’

linear approximation by a quadratic one. The
“Jacobian” of the link cost vector with respect to the
demand vector is calculated as follows. For each OD
pair �p� q� ∈�, the directional derivative of v at v∗ in
the unit direction of epq is approximately obtained by
solving the problem to

minimize
v′

1
2
�v′�T0t�v∗�v′� (9a)

subject to �Th′ = epq� (9b)

v′ =�h′+ (9c)

The traffic equilibrium problem is solved with the
DSD algorithm of Larsson and Patriksson (1992),
which provides the equilibrium link flow v∗ and a
consistent route flow, the data for which are a sub-
set �� of � that is explicitly stored and utilized also
in the solution of (9). As we shall show, this problem
provides an approximation of the correct value of the
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directional derivative which is correct (for the route
subset generated) when the equilibrium link flow is
differentiable (cf. §4).
The OD estimation algorithm of Codina and

Barceló (2000) is different in that it is based on
the generation of approximate subgradients of v, and
the use of a subgradient-based descent algorithm.
Because it does not fit into the sensitivity analysis
framework of this paper, we shall not mention its
workings in more detail here, but remark that the idea
of generating approximate subgradients is an inter-
esting line of research also for more general bilevel
optimization problems in transport. It is an espe-
cially intriguing technique, because subgradients exist
even at values of 	∗ where the gradient does not.
(See further §6 for an analysis of the calculation of
subgradients.)

2.3. Sensitivity Analysis by
Directional Derivatives

The third approach to sensitivity analysis is based
on studying the direction of change of the solution x
from directional changes of the parameter 	, that is, the
(vector-valued) directional derivative of x at 	∗ with
respect to a direction 	′. We shall use the notation
DS�	∗ � x∗��	′� in our application.
Sensitivity analysis in the form of directional

derivatives is, like the gradient, based on a kind
of implicit function theorem—and in fact general-
izes it. The directional derivative exists under much
milder conditions than the gradient; when the gradi-
ent exists, its value can be obtained component-wise
through calculating the directional derivative along
all the coordinate directions of 	 from 	∗.2

For the sake of the discussion, we introduce the
vector-valued function /� O �→ �n, where O ⊆ �d is
open. We also introduce one particular notion of a
derivative, the B(ouligand)-derivative, below.
Definition 1 (B-Derivative, Robinson 1985). The

function / is B-differentiable at 	∗ ∈ O if there is a
positively homogeneous function D/�	∗� � �d �→ �n,
the B-derivative, such that

/�	�=/�	∗�+D/�	∗��	−	∗�+ o��	−	∗���
where o�·� is such that o�t�/t converges to zero
as t→ 0.
We note that, if the function D/�	∗� exists, then it

is unique (e.g., Robinson 1991), and a B-differentiable
function is directionally differentiable. When / is

2 The difference is most directly explained by the fact that the direc-
tional derivative, D/�	∗��	′�, say, of a function /� �d �→�n is asso-
ciated with a mapping that is positively homogeneous—that is,
D/�	∗��9	′� = 9D/�	∗��	′� holds for all 9 ≥ 0 and 	′ ∈ �d—and
piecewise linear, while the gradient is associated with a mapping
that is linear, namely 	′ �→ 0/�	∗�T	′.

locally Lipschitz at 	∗ (that is, there exists a positive
constant L such that

�/�	1�−/�	2�� ≤ L�	1−	2�
holds for all pairs �	1�	2� in a neighbourhood of 	∗),
then not only does the B-derivative exist at 	∗, but
it is then also equivalent to several other forms of
derivatives, as analyzed by Shapiro (1990a). (It is also
equivalent to the semi-derivative of Rockafellar and
Wets 1998 and Dontchev and Rockafellar 2002 (cf.
Rockafellar and Wets 1998, Theorem 7.21, p. 295),
which was utilized in the sensitivity analysis of
elastic demand traffic equilibria by Patriksson and
Rockafellar 2003, even in the absence of Lipschitz
continuity.) We note also that the differentiability
of / at 	∗ entails precisely that D/�	∗� is linear.
Further properties of the B-derivative are given in
Pang (1990a, b) and Rockafellar and Wets (1998). We
need later to introduce, in particular, regularity con-
ditions on the traffic equilibrium problem so that the
solution mapping S defined in (8) is single-valued and
locally Lipschitz continuous.
We return now to problem (7). The B-derivative of x

at 	∗ in the direction of 	′ will be shown to be the
solution to a kind of linearization of (7). To this end,
we define first the critical cone (Robinson 1985)

K �= TC�x
∗�∩ f �	∗�x∗�⊥+ (10)

The set K defines the set of variations around x∗

that retain first-order feasibility and optimality. The
set TC�x∗� is the tangent cone to C at x∗. When C is
described by linear constraints, we have

C = x ∈�n �Ax≥ b% Bx= d�

=⇒ TC�x
∗�= z ∈�n � �Az≥ 0% Bz= 0��

where �A consists of the rows Ai of A correspond-
ing to the binding inequality constraints at x∗, that is,
the indices i with Aix

∗ = bi. Further, for any vector
z ∈�n, z⊥ �= y ∈ �n � zTy = 0� is the orthogonal sub-
space associated with the vector z.
Sensitivity analysis centers around the solution to

the following problem, which is a variational inequal-
ity defined by a first-order approximation of the orig-
inal cost function over the set K.

DS�	∗ � x∗��	′� �= x′ ∈�n � r�	′�x′�+NK�x
′� � 0n��

where

r�	′�x′� �= 0	f �	
∗�x∗�	′ +0xf �	

∗�x∗�x′+ (11)

From now on, we will assume that the function f is
differentiable in a neighbourhood of �	∗�x∗� with x∗ ∈
S�	∗�, so that (11) is defined.
The central question is under which conditions

DS�	∗ � x∗��	′� exists and equals the B-derivative of
the solution. We begin by introducing the strong reg-
ularity condition (SRC) of Robinson (1980).
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Definition 2 (Strong Regularity, Robinson 1980,
1985). The problem (7) is strongly regular at 	∗ if the
solution mapping S defined in (8) is single-valued
and locally Lipschitz continuous in a neighbourhood
of 	∗. In the present setting where C is polyhedral,
this is equivalent to the following: The affine varia-
tional inequality

z ∈ 0xf �	∗�x∗�y+NK�y�

has a unique solution y �= y�z� for every z ∈�n.
The following result provides a characterization of

the existence of the B-derivative of S, in terms of the
B-derivative itself. (For more general feasible sets, an
excellent account of characterizations of strong regu-
larity is found in Dontchev and Rockafellar 1998.)

Theorem 3 (Characterization of B-Differentia-
bility, Dontchev and Rockafellar 2002). Assume
that the parameterization is such that rank 0	f �	∗�x∗�=
n. Suppose that S is convex-valued around 	∗, in the sense
that S�	� is a convex set for all 	 in some neighbour-
hood of 	∗. (This is, in particular, satisfied when f �	� ·� is
monotone on C in this neighbourhood.) Then the following
properties are equivalent:
(a) S is single-valued and Lipschitz continuous on some

neighbourhood of 	∗, hence strongly regular at 	∗;
(b) DS�	∗� is single-valued.

Moreover, then S is B-differentiable at 	∗, and DS�	∗� is
not only Lipschitz continuous and positively homogeneous
but also piecewise linear.

We remark that the first result is valid without
the convex-valuedness because it is a straightforward
application of the definition of strong regularity (note
that the matrix 0	f �	∗�x∗� has full rank). See also
Dontchev and Rockafellar (1998, Corollary 2.3). The
full rank condition can always be fulfilled by adding
dummy parameters to 	 if necessary.
We also remark already at this stage that we will

utilize Theorem 3 in such a way that we select the
entities among the elements of x for which the condi-
tions in (a) and (b) hold simultaneously; that is, that
for those entities, both the equilibrium solution and
the perturbation is unique. This means that the vec-
tor x for which we will apply the theorem will never
contain the commodity variables h or wk.
Kyparisis (1990b, Lemma 2.1) established that if

strong regularity holds at 	∗, then the function y �→
0xf �	

∗�x∗�y is nonsingular on the subspace

K ∩ �−K�= z ∈�n � �Ax∗ = 0%Bz= 0�∩ f �	∗�x∗�⊥%

if the set K defined in (10) is a subspace, that is, if
K =K∩ �−K� holds, then the converse is true also. He
also showed (in Kyparisis 1988, Lemma 2.1) that the
condition that

0xf �	
∗�x∗� is positive definite on K−K (12)

implies SRC at 	∗. (The set K − K is the subspace
consisting of all vectors of the form > − / with
>�/ ∈K.) The condition (12) has been used by several
researchers in reaching sensitivity analysis results;
see, e.g., Qiu and Magnanti (1989), Pang (1990b),
Patriksson and Rockafellar (2003).
Differentiability, a stronger property than direc-

tional differentiability, can be established to hold
under an additional condition on the properties of the
mapping DS at 	∗:

Theorem 4 (Characterization of Differentia-
bility, Kyparisis 1990b). Suppose that SRC holds at x∗.
Then, the mapping S is differentiable at 	∗ if and only if

DS�	∗ � x∗��	′� ∈ −K� 	′ ∈�d+ (13)

If further K is a subspace, that is, if K = K ∩ �−K�, then
the gradient can be represented as

0	x�	
∗�= −Z#ZT0xf �	∗�x∗�Z$−1ZT0	f �	

∗�x∗�� (14)

for any n× @ matrix Z such that ZTZ is nonsingular and
z ∈K∩�−K� if and only if z=Zy for some y ∈�@, where @
is the dimension of K ∩ �−K�.
Independently, Pang (1990b) established this equiv-

alence result with SRC replaced by the stronger con-
dition (12). Note that DS�	∗ � x∗��	′� ∈K always holds
when the former exists. This result is an extension
of the differentiability result provided by the implicit
function theorem, as it relies on neither strict com-
plementarity nor linear independence of the binding
constraints. The latter part of the result shows that
under particular circumstances, it is itself a kind of
implicit function theorem; note also that (14) is similar
to the formula stated in Tobin and Friesz (1988).
Because the analysis of the generalized Jacobian

of S, that is, the calculation of subgradients, is more
complex, we wait until §6 to explain it.

2.4. An Outline of Previous Sensitivity Analyses
of Traffic Equilibria

Sensitivity results of the form given here have been
applied to traffic equilibrium problems only to a
limited extent, and then to establish the existence
of directional derivatives only. (Surprisingly, what
appears to be the most interesting result for compu-
tational purposes, namely the result of Theorem 4,
has not seen the light of day in traffic applications
until now.) The results, which are given in Qiu
and Magnanti (1989), Yen (1995), Outrata (1997), and
Patriksson and Rockafellar (2003), have also been
published mostly in journals outside of the trans-
portation science domain. A short summary of them
is given below. More details and a comparison with
our results will be given later.
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Qiu and Magnanti (1989, Theorem 4.1.1) studied
an elastic demand model using the inverse d �→
g−1�	�d� of the demand function and established
that the mapping S is strongly regular at 	∗, if
(a) in a neighbourhood of �	∗�v∗�d∗� (for �v∗�d∗� ∈
S�	∗� where d∗ ∈ ���� is the equilibrium demand),
�	�v�d� �→ #t�	�v��−g−1�	�d�$ is continuous and
further Lipschitz continuous with respect to 	 at
�v∗�d∗�, and differentiable with respect to �v�d� at
�v∗�d∗�; (b) its Jacobian at �v∗�d∗� is positive definite
on the subspace K − K, that is, the condition (12).
Although they stated the solution mapping S in the
link-flow space, they concluded that because the equi-
librium route flows are not unique, Robinson’s theory
of strong regularity could not be applied directly, and
they selected a (uniquely determined) representative
equilibrium route flow solution by means of solving
a strictly convex quadratic projection problem; a pro-
cess similar to that made in Tobin and Friesz (1988)
and which is also used in Yen (1995).
Tobin and Friesz (1988) noted that the choice of

any particular route flow (or, indeed, any commod-
ity link flow), was immaterial to the result of the
sensitivity analysis in the link-flow space. Patriksson
and Rockafellar (2003) established the fundamental
property that lies behind this fact: The tangent cone
in the space of v is the sum of the tangent cones in
the commodity link-flow spaces, whence the choices
made in the latter has no effect on the appearance
of the former, aggregated set. We will use this fact
also in this paper. Our approach is simpler than all
of the above in that we simply choose the solution
vector x in S�	� such that x satisfies the condi-
tions of Theorem 3; this is also a type of projec-
tion. Patriksson and Rockafellar also established the
existence of directional derivatives of the demand and
link-flow vectors under conditions similar to those in
Qiu and Magnanti (1989), but for both the link-route
and link-node representations.
Outrata (1997, Proposition 1.2) established strong

regularity for a general class of variational prob-
lems, under conditions which here would translate
to strong monotonicity of the mapping �v�d� �→
#t�	�v��−g−1�	�d�$ on the feasible set, and a matrix
condition like the one in Qiu and Magnanti (1989) but
for a larger subspace. He also has a special application
to the cost-perturbed fixed demand traffic equilibrium
model, for which he devises a subgradient formula.
A similar strong regularity result is also reached
independently by Yen (1995, Theorem 4.1), where,
however, the inelastic demand is also parameterized.
As remarked in Patriksson and Rockafellar (2003),

the B-differentiability of S implies the semismooth-
ness of S, which will enable the use of bundle-type
descent approaches in applications to bilevel opti-
mization. (See Patriksson and Rockafellar 2002 for

detailed discussions on this topic and Mifflin 1977
for a definition of semismoothness and the conclusion
section.)
We are now ready to establish the existence of,

and formulas for calculating, the directional deriva-
tive and gradient of the equilibrium link-flow solution
and the corresponding equilibrium route costs.

3. Directional Differentiability of
Traffic Equilibria

3.1. The Sensitivity Problem
The sensitivity problem is first developed for the link-
route representation.
Let 	∗ be given, and let S�	∗� be given by the set{

v∗ ∈����
∣∣∣∣∃

(
h∗
�∗
v∗

)
� which solves (7), (5)

}
+

For an arbitrary choice of 	′, we develop DS�	∗�v∗��	′�,
as follows. Let h∗ be an arbitrary equilibrium route
flow, consistent with v∗, and let �∗ be the vector of
least route costs given �	∗�v∗�. The cone K defined in
(10) is the following. First,

TC�x
∗�

=
{(

h′
� ′
v′

)
∈����×����×����

∣∣∣∣ h′
r ≥0 if h∗

r =0
#r ∈�pq� �p�q�∈�$

}
�

while

f �	∗�x∗�⊥

=
{(

h′
� ′
v′

)
∈���� ×���� ×����

∣∣∣∣ #�Tt�	∗�v∗�− ��∗$Th′ = 0
}

=
{(

h′
� ′
v′

)
∈���� ×���� ×����

∣∣∣∣ ∑
r∈�� cr �	∗�h∗�>�∗

pq

#cr �	
∗�h∗�−�∗

pq$h
′
r = 0

}
+

Hence, the set of directions that retain feasibility and
optimality at h∗ is

K �= TC�x
∗�∩ f �	∗�x∗�⊥

=





h

′

� ′

v′


 ∈���� ×���� ×����

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h′
r free if h∗

r > 0

h′
r ≥ 0 if h∗

r = 0 and
cr �	

∗�h∗�=�∗
pq

h′
r = 0 if h∗

r = 0 and
cr �	

∗�h∗� > �∗
pq

#r ∈�pq� �p� q� ∈�$



+

(15)
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The cost mapping of DS�	∗ � x∗��	′� is

r�	′�x′� =


�T0	t�	

∗�v∗�
−0	g�	∗��∗�

0


	′ +


 0
�T

−�


h′

+

 −�

−0�g�	∗��∗�
0


� ′ +


�T0vt�	∗�v∗�

0
I


v′

=


�T#0	t�	

∗�v∗�T	′ +0vt�	∗�v∗�Tv′$−�� ′

�Th′ −#0	g�	∗��∗�T	′ +0�g�	∗��∗�T� ′$
v′ −�h′


�

reaching the sensitivity problem

−


�T#0	t�	

∗�v∗�T	′ +0vt�	
∗�v∗�Tv′$− �� ′

�Th′ − #0	g�	
∗��∗�T	′ +0�g�	

∗��∗�T� ′$
v′ −�h′




∈NK�h
′�� ′�v′�� (16)

where K is given by (15).
Comparing the above with the original model (5),

we see that the sensitivity problem has affine
link travel costs, v′ �→ 0	t�	

∗�v∗�T	′ + 0vt�	
∗�v∗�Tv′,

an affine demand function, � ′ �→ 0	g�	
∗��∗�T	′ +

0�g�	
∗��∗�T� ′, and that the nonnegativity restrictions

on the route flows are here replaced by the sign
restrictions in (15); the problem is a special affine
traffic equilibrium problem.
We develop a few special cases before turning to

the node-link representation.
First, we take a look at the fixed demand case. The

equilibrium model then is equivalent to

−t�	�v� ∈N �F �	��v�� (17a)

where

�F �	� �= v ∈���� � ∃h ∈H�	� with v=�h�� (17b)

and
H�	� �= h ∈����

+ � �Th= g�	��+ (17c)

Noting that the set K is independent of the appear-
ance of the demand function, let

H ′
W =

{
h′ ∈����

∣∣∣∣∃(� ′

v′
)

∈���� ×���� with

(
h′
� ′
v′

)
∈K

}
�

(18a)

H ′�	′�=H ′
W ∩ {

h′ ∈���� � �Th′ = 0g�	∗�	′}� (18b)

and

�F ′�	′�= {
v′ ∈���� � ∃h′ ∈H ′�	′� with v′ =�h′}+ (18c)

By the cone decomposition results in Patriksson and
Rockafellar (2003), the set �F ′�	′� is independent of the
choice of h∗ in the set H∗�	∗� of equilibrium route

flows. The statement that −r�	′�x′� ∈ NK�x
′� holds is

therefore equivalent to the VIP of finding v′ ∈ ����,
such that

−#0	t�	∗�v∗�T	′ +0vt�	
∗�v∗�Tv′$ ∈N �F ′�	′��v

′�+ (19)

This problem then is DS�	∗ � v∗��	′�. The cost changes
� ′ are precisely the Lagrange multipliers for the
demand constraints �Th′ = 0g�	∗�	′.
To illustrate the connection to the original fixed

demand traffic equilibrium model, we assume for
now that g�	�= ḡ + 	, where ḡ ∈ ����

++, in which case
0g�	∗�	′ = 	′ holds, and further that the link travel
cost function t�	∗� ·� is separable. Then, the above
variational inequality is the first-order optimality con-
ditions for the problem to

minimize
v′

∑
l∈�

∫ v′
l

0

Dtl�	
∗�v∗

l �

Dvl
s ds+ #0	t�	

∗�v∗�	′$Tv′

= ∑
l∈�

(
1
2
Dtl�	

∗�v∗
l �

Dvl
�v′

l�
2+ 9lv

′
l

)
� (20a)

subject to �Th′ = 	′� (20b)

h′ ∈H ′
W� (20c)

v′ =�h′� (20d)

where 9l is element l of the vector 0	t�	
∗�v∗�	′.

Compared with the original fixed demand model, we
notice that it is similar; some of the routes in (20)
are restricted to be zero, while others are not sign
restricted. Further, the original cost is replaced by an
affine one, so that the objective function in (20) is
quadratic.
In the case that the demand further is unperturbed

(g�	� ≡ ḡ ∈ ����
++), 0g�	∗� = 0��� holds, so the right-

hand side of (20b) is zero, whence this particular sen-
sitivity problem is defined over a flow circulation
subspace. Also, it follows that the set �F ′�	′� in (18c)
then is independent of 	′, and is given by

�F ′ �= v′ ∈���� � ∃h′ ∈H ′
W with v

′ =�h′% �Th′ = 0�����

so the sensitivity problem is

−#0	t�	∗�v∗�T	′ +0vt�	
∗�v∗�Tv′$ ∈N �F ′�v′�+ (21)

Next, we address the special case of the model (5)
wherein the demand function � �→ g�	��� has an
inverse, d �→ F�	�d�, on ����. Then, we can write the
disaggregated model equivalently as

−
(
c�	�h�

−F�	�d�
)

∈NHd
�h�d��

where Hd is given by

Hd �=
{(

h
d

)
∈����

+ ×����
∣∣∣ �Th= d

}
+
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We provide the sensitivity problem for this model as
well. Looked upon in the aggregated space of link
flows and demands, the sensitivity problem is to find
�v′�d′� ∈ �F ′

d�	
′� such that

−
(

0	t�	
∗�v∗�T	′ +0vt�	

∗�v∗�Tv′

−0	F�	∗�d∗�T	′ −0dF�	
∗�d∗�Td′

)
∈N �F ′

d
� (22)

where

�F ′
d �=

{(
v′

d′

) ∣∣∣ ∃h′ ∈H ′
W with �h

′ = v′% �Th′ = d′
}
+

The sensitivity problem (22) is equivalent to the
aggregated form (16) of the sensitivity problem for
the general elastic demand model.
From Theorem 3 it follows that the sensitivity prob-

lem (16) defines the B-derivative—therefore also the
directional derivative—of the link-flow solution, in
the direction defined by any vector 	′ if and only if the
solution v′ is unique. Then also the shortest route cost
changes, � ′, will be unique and therefore have the
interpretation as the B-derivative of � in the direction
of 	′.
The sensitivity problem for the link-node formu-

lation is developed similarly and is, for an arbitrary
choice of commodity link flows w∗

k , k ∈� and match-
ing OD travel costs and node prices ��∗

k � *
∗
k �, k ∈ �,

the following:

−



�#0	t�	
∗�v∗�T	′ +0vt�	

∗�v∗�Tv′$−ET*′
k�k∈�

�Ew′
k − ik#0	gk�	

∗��∗�T	′ +0�gk�	
∗��∗�T� ′$�k∈�

v′ −∑
k∈�w′

k




∈NKw



�w′

k�k∈�
�*′

k�k∈�
v′


 � (23a)

where Kw is given by

Kw =





 �w′

k�k∈�
�*′

k�k∈�
v′




∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w′
ijk free if w

∗
ijk > 0

w′
ijk ≥ 0 if w∗

ijk = 0 and
tij �	

∗�v∗�= *∗
jk − *∗

ik

w′
ijk = 0 if w∗

ijk = 0 and
tij �	

∗�v∗� > *∗
jk − *∗

ik

#�i� j� ∈�� k ∈�$



+ (23b)

This sensitivity problem has the same link costs and
demand function as the one for the link-route repre-
sentation, and the flow conservation constraints are
almost identical to the original model’s, except for
the sign restrictions on the commodity link flow vari-
ables: The flow change allowed for a given link �i� j�
in an OD pair k depends on whether it lies on a short-
est route for the OD pair or not, and whether there is
already a commodity flow on it. The sensitivity prob-
lems (16) and (23) are equivalent, inasmuch as the

two equilibrium models (4), (5) and (4), (6) are equiv-
alent. Given the equivalence between the two flow
representations in the traffic equilibrium model and
its perturbation, we do not need to reiterate the sensi-
tivity results, once we have established them for one
of the representations. We have chosen to work with
the link-route formulation.

3.2. Directional Differentiability of
Traffic Equilibria

Throughout this section, we assume that the func-
tions t � �d ×���� �→ ���� and g � �d ×���� �→ ���� are
smooth (in C1) on sufficiently large neighbourhoods
of the sets involved in the calculations, in particular
of �	∗��∗�v∗�. We could reduce this assumption to
differentiability properties that are milder and that,
in particular, are valid only in a neighbourhood of
�	∗��∗�v∗�, but because these results are to be used
in situations where, for example, the value 	∗ may
change due to a bilevel optimization, we have opted
to leave this generality aside.

Theorem 5 (Characterizations of Directional
Differentiability, Elastic Demand Case). The fol-
lowing two statements are equivalent, and they imply the
third.
(a) The pair �v∗��∗� of equilibrium link flows and OD

pair travel costs solving the problem (5) is single-valued
(that is, unique) and locally Lipschitz continuous in a
neighbourhood of 	∗.
(b) Either of the following two equivalent statements

(i)–(ii) is true.
(i) The matrices 0	t�	∗�v∗� and 0	g�	

∗��∗� have
full rank. Further, the solution �v′�� ′� to the model (16) is
unique.

(ii) The linear traffic equilibrium problem

−


�T#zv +0vt�	

∗�v∗�Ty′
v$− �y′

�

�Ty′
h − z� −0�g�	

∗��∗�Ty′
�

y′
v −�y′

h


 ∈NK�y

′
h� y

′
��y

′
v�

has a unique solution y′ = �y′
v� y

′
�� �= y′�z� for every z=

�zv� z�� ∈���� ×���� and 	′ ∈�d.
(c) The pair �v∗��∗� of equilibrium link flows and

OD pair travel costs is directionally differentiable, in fact
B-differentiable, at 	∗, in any direction 	′, and the direc-
tional derivative is given by the unique solution pair
�v′�� ′� to the model (16). Further, the directional deriva-
tive function DS�	∗ � �v∗��∗�� is Lipschitz continuous and
piecewise linear.

Proof. The result in (a) is precisely strong reg-
ularity, as defined in Definition 2. As applied to
the model (5), strong regularity is equivalent to the
statement (b)(ii). The equivalence between (a) and
(b)(i) follows from Theorem 3, and the same result
establishes the implication (c). �
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Theorem 6 (Characterizations of Directional
Differentiability, Fixed Demand Case). Suppose that
the demand function g is independent of �. In the state-
ment (a) and (c) of Theorem 5, replace the model (5) by
(17); in the statement (b)(i), remove the condition on the
matrix 0	g�	∗��∗� and replace (16) by (19); finally, in the
statement (b)(ii), replace the affine variational inequality
by the following:

−[
zv +0vt�	

∗�v∗�Ty
] ∈N �F ′�	′��y�� zv ∈����+

Then, the conclusions of Theorem 5 are valid for the fixed
demand model (17).

Proof. The result follows by tracing the proof of
Theorem 5. �

We next provide sufficient conditions in terms of
the original data for directional differentiability to fol-
low. We will utilize the fact that the property (12)
implies strong regularity, translating it to the problem
at hand and its special cases. The first result concerns
the general model (5) and the directional differentia-
bility of the equilibrium link flow, travel cost, and
demand.
Let

K0 �=





 h′

� ′

v′


∈���� ×���� ×����

∣∣∣∣∣∣∣∣
h′
r free if h∗

r >0
h′
r =0 if h∗

r =0
and cr �	∗�h∗�>�∗

pq

#r ∈�$



�

which is the set �K−K�, and

H ′
W0

=
{
h′ ∈����

∣∣∣∣∣∃
(
� ′

v′

)
∈����×���� with


h′

� ′

v′


∈K0

}
+

Corollary 7 (Sufficient Conditions for Direc-
tional Differentiability, Elastic Demand Case).
The following property implies the statement (b)(i), and
therefore also the statement (c), in Theorem 5, guarantee-
ing the directional differentiability of the equilibrium link
flow, OD travel cost, and equilibrium demand: The matrix(

0vt�	
∗�v∗� 0
0 −0�g�	∗��∗�

)
(24)

is positive definite on the subspace

�F d
0 �=

{(
v′
d′

)
∈���� ×����

∣∣∣ ∃h′ ∈H ′
W0

with

v′ =�h′% �Th′ = d′
}
+

Proof. First, we study the matrix 0xf �	
∗�x∗�

appearing in (12). In the model (5), in the space of
�h���v�, this matrix is

�T0vt�	
∗�v∗� −�T 0
0 −0�g�	∗��∗� �
I 0 −�T


 +

We are interested in the result in the space of �v���,
because uniqueness resides only in this space. The
transformation between the space of �h���v� to the
space of �v��� is provided by the matrix

� 0 0
0 I 0
0 0 0


 %

the matrix of interest therefore is the matrix (24).
As was remarked above, in the space of �h���v�,

the set �K−K� equals K0. The remaining components
in the definition of the subspace �F d0 define both the
aggregation to the link-flow space, and the restric-
tion to the subspace of demand-feasible perturbations.
This completes the proof. �

We next supply the corresponding results for the
fixed demand case for both perturbed and unper-
turbed demands. In the unperturbed case, the sensi-
tivity problem is an affine variational inequality over
the set of feasible circulations of flows where some
route flows are restricted in sign. The positive defi-
niteness condition can in this case be reduced some-
what because the demand change is zero.

Corollary 8 (Sufficient Conditions for Direc-
tional Differentiability, Fixed Demand Case).
(a) Suppose that the demand function g is independent

of �. Then, the following property implies the directional
differentiability of the equilibrium link flow and OD travel
cost: The matrix 0vt�	

∗�v∗� is positive definite on the
subspace

�F0 �=
{
v′ ∈���� � ∃h′ ∈H ′

W0
with v′ =�h′}+

(b) Suppose further that the demand function is
unperturbed, that is, g�	�≡ ḡ ∈����

++. Then, the following
property implies the directional differentiability of the
equilibrium link flow and OD travel cost: The matrix
0vt�	

∗�v∗� is positive definite on the (smaller) subspace

�F00 �=
{
v′ ∈���� � ∃h′ ∈H ′

W0
with v′ =�h′% �Th′ = 0���}+

Proof. In the absence of the elastic demand term
in the cost, the variable � ′ disappears, and the matrix
of interest clearly is 0vt�	∗�v∗�.
(a) In the case of perturbed demands, the set over

which we solve the sensitivity problem is �F ′�	′�. As 	′

varies in �d, h′ cannot a priori be restricted to a sub-
space smaller than ����. The smallest subspace that
contains the range of �F ′�	′� as 	′ varies in �d therefore
is the set F0.
(b) In the case of unperturbed demands, the sensi-

tivity problem reduces to (21). The range of link flow
perturbations is therefore contained in the subspace
defined by �F00. �
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In the case of fixed and unperturbed demands, the
condition (b)(ii) in the above theorem is a statement
about the uniqueness of the solutions to the affine VIP

−#zv +0vt�	
∗�v∗�Ty$ ∈N �F ′�y�� zv ∈�����

which is independent of 	′ and is more simple to
verify.
Remark 9 (Is the Case of Standard TAP One

Where Directional Differentiability Is Guaran-
teed to Hold?). The answer turns out not to be
so simple. Consider the separable cost model. Nor-
mally, when modelling the traffic network, dummy
links with zero costs are needed to model certain parts
of the network, like the presence of centroid nodes
for the OD pairs and certain turning movements, so
not all links will in fact have strictly increasing costs;
some of the dummy links may therefore not have
unique equilibrium values. Nevertheless, consider a
case where the real network links have BPR cost func-
tions, where some of those are parameterized:

vl �→ tl�	�vl�= Gl+	1+0+15·
(
vl/	2
cl

)4
� Gl > 0� cl > 0+

Here, the value of 	1 ∈� could play the role of a link
toll, while 	2 > 0 is a network design parameter. These
links will have a unique flow.
Consider now the perturbed problem, which in our

setting is (21). This problem is further one where the
cost function is the gradient of a convex function. The
characterization of directional differentiability is that
the solution to the perturbed problem is unique. We
will utilize the possibility to choose what “solution”
means. Let S denote the mapping which assigns the
optimal value of the link flows for which the travel
costs are strictly increasing. Given the optimal solu-
tion v∗

l , the perturbed link cost is the sum of a con-
stant and the term

0+6
�c4l 	2�

·
(
v∗
l

	2

)3
· v′

l+

Clearly, this affine cost function is strictly increasing
whenever v∗

l > 0, whence we will have a unique value
of v′

l provided that link a has a positive flow.
A link that has a strictly increasing travel cost with-

out parameters will give rise to a strictly increasing
(respectively, increasing) perturbed link cost if its flow
is positive (respectively, zero), and dummy links will
have links with zero cost also in the perturbed prob-
lem. All these links will therefore have convex or
strictly convex terms in the objective of the perturbed
problem.
In general, then, if we project our problem for the

given values of the parameters, such that S lies in
the space of congested links for which the flow is

positive, directional differentiability follows for those
links. This is a positive result, because presumably
they are the links for which we are indeed interested
in the effects of perturbations in the data.
To summarize the above development, under con-

ditions that imply the uniqueness of the equilibrium
link flows and demands, the sensitivity problem pro-
vides unique link flow and travel cost perturbations
that have interpretations as directional derivatives.

4. Differentiability of
Traffic Equilibria

4.1. Main Results
As stated in Theorem 4, once we have established
directional differentiability, differentiability is equiv-
alent to the condition (13), which we therefore need
to analyze in detail. Complementarity has a crucial
role here; we will show that the classic strict comple-
mentarity condition—that all the shortest routes are
actually used—is a sufficient but unnecessarily strong
condition to obtain differentiability.
Consider the set K defined in (15). Keeping in mind

that this set depends on the choice of h∗ ∈H∗�	∗�, we
have that

K∩�−K�

=




 h′

� ′

v′


∈����×����×����

∣∣∣∣∣∣
h′
r free if h

∗
r >0

h′
r =0 if h∗

r =0
#r ∈�pq� �p�q�∈�$


+

As we consider the aggregated version in the space
of v′, we note as earlier that the set is independent of
the choice of equilibrium route flow. The aggregated
set in the space of v′ in fact is the set of vectors v′ ∈
���� for which there exists an h′ ∈ ���� with v′ =�h′,
and

h′
r free if h∗

r > 0 for some h∗ ∈H∗�	∗��
r ∈�pq� �p� q� ∈��

h′
r = 0 if h∗

r = 0 for every h∗ ∈H∗�	∗��
r ∈�pq� �p� q� ∈�+

Hence, each route r belongs to precisely one of these
two sets; a methodology for determining this partition
of � is given in §4.2.
The difference between this set and the set K is that

in the set K, a variable h′
r which is associated with

a shortest route that is forced to be zero on H∗�	∗�
because the consistency with v∗ requires it, is allowed
to become positive, whereas in the set K ∩ �−K�, it
is forced to be zero. Because this condition must
hold for every choice of perturbation 	′, according to
Theorem 4, we can state the condition corresponding
to (13) as follows.
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Theorem 10 (Characterization of Differentia-
bility of Traffic Equilibria). For the case of elastic
and fixed demands, respectively, let the assumptions of
Theorem 5, statement (a) or (b), be satisfied or the corre-
sponding assumptions in Theorem 6. Then the following
two statements are equivalent.
(a) The pair �v∗��∗� of equilibrium link flows and OD

pair travel costs is differentiable at 	∗.
Further, DS�	∗ �v∗�· �	′�=0	v�	∗�T	′, and the corre-

sponding formula holds for the derivative of �∗ also.
In particular, 0	v�	∗� is composed by the d elements
DS�	∗ �v∗��ei�, i=1�+++�d, where ei is the ith unit d-vector.
(b) Let 	′ ∈�d be arbitrary. Let r ∈� be a route for

which h∗
r =0 holds on the set H∗�	∗�. On the set of route

flow changes h′ consistent with the vector v′ uniquely
solving the sensitivity problem (16) (the case of elastic
demands), respectively (19) (the case of fixed demands),
h′
r =0 holds.
Proof. Follows by appealing to Theorem 4, and the

above remarks. �

The presence of differentiability hinges on whether
changes in the value of the parameter vector 	
changes the set of equilibrium routes. As “h≥0���” are
the only inequality constraints present in any of the
models discussed in this paper so far, it is not surpris-
ing that the conditions for differentiability are equiv-
alent among them. In extensions to traffic equilibrium
models where inequality side constraints on the flows
are present, the situation will, of course, change.
An interesting application of the differentiability

result presented above is that of the differentiation of
the projection of a vector 	∗ ∈���� onto the fixed and
unperturbed demand flow polyhedron. This case cor-
responds to the minimization of the function 12�v−	∗�
over �F , which one places in the framework of the
traffic model by setting t�	∗�v� �=v−	∗. The sen-
sitivity problem has a special form—in particular,
r�	′�v′�=v′ −	′ holds; it is therefore also a projec-
tion problem, of the vector 	′ onto the intersection
of the tangent cone and the subspace perpendic-
ular to the vector v∗−	∗. (Strong regularity obvi-
ously holds for the projection problem, so directional
derivatives of Euclidean projections always exist on
polyhedral sets.) The differentiability of this projec-
tion mapping at a limit point is at the heart of
the convergence analysis of the descent algorithm of
Patriksson and Rockafellar (2002) for an MPEC model
in traffic management, and its characterization has
also been the subject of several theoretical studies
(see, e.g., Haraux 1977; Shapiro 1990b, 1994; Bonnans
et al. 1998; and Bonnans and Shapiro 2000), mostly
for more general sets and spaces. The convergence
theorem of Patriksson and Rockafellar (2002) utilizes
the sufficient condition of strict complementarity
discussed below.

The classic condition for the differentiability of the
solution mapping S at a reference value 	∗ is that the
solution x∗ is (a) strictly complementary (or, nonde-
generate), meaning that the Lagrange multiplier for
a constraint is positive if and only if the constraint
is binding, (b) that the binding constraint gradients
(normals) are linearly independent (that is, the mul-
tiplier values are unique), and (c) that a second-order
sufficiency condition is satisfied, which is a positive
definiteness condition on a Jacobian matrix on a par-
ticular subspace. This is typically what is needed
for problems posed over nonpolyhedral constraints
(cf. the surveys by Kyparisis 1990a and Dontchev and
Rockafellar 1998). As Theorem 4 shows, for polyhe-
dral constraints that do not include parameters, these
conditions can be relaxed substantially.
In particular, as a corollary to Theorem 10, we can

establish that strict complementarity is a sufficient—
but not necessary—condition for the differentiability
of the solution to the traffic equilibrium problem:
Under the assumptions of that theorem, suppose that
there exists a strictly complementary solution to the
problem (5), that is, that for some h∗ ∈H∗�	∗�, it holds
that for all r ∈�, h∗

r >0 if and only if cr �	
∗�h∗�=

�∗
pq . This condition implies that the set K equals −K,
which means that the condition (13) is automatically
satisfied. Theorem 4 then yields the result that the pair
�v∗��∗� of equilibrium link flows and OD pair travel
costs is differentiable at 	∗.
The calculus formula for the gradient adopted in

Tobin and Friesz (1988), which we discussed earlier in
§2.2, is precisely the one that is contained in the sec-
ond half of Theorem 4, and which is valid whenever
K=−K (and the matrix Z having the properties stated
exists!). The gradient calculus of Tobin and Friesz
(1988) relies on strict complementarity, although this
condition is not a necessary one for differentiability.

4.2. Sensitivity Analysis of Stochastic
User Equilibria

The logit-based stochastic user equilibrium (SUE)
model of Fisk (1980) is interesting in our context
because it is one in which all the routes are used—by
definition, because of the presence of the logit func-
tion. Therefore, strict complementarity is satisfied,
and the SUE link and route flow solutions are differen-
tiable whenever they are uniquely determined, which
they are if, for example, t�	∗�·� is monotone on �F �	∗�.
(We limit ourselves in this section to the fixed demand
model.) Moreover, if the function t�	∗�·� is strictly
monotone on �F �	∗�, we know that as the dispersion
parameter tends to infinity, the SUE solution tends
to the unique equilibrium link-flow solution solving
(17) and the sequence of route flow solutions tends
to a special equilibrium route flow solution, namely
one which is strictly complementary in H∗�	∗� if there



Patriksson: Sensitivity Analysis of Traffic Equilibria
Transportation Science 38(3), pp. 258–281, © 2004 INFORMS 271

is one (see Proposition 11). It is therefore natural to
ask whether a sensitivity analysis of the SUE model
can aid in the sensitivity analysis of the determinis-
tic model (17). As it turns out, the answer is in the
affirmative precisely when the deterministic link-flow
solution is differentiable.
Given the dispersion parameter H>0, and assuming

for simplicity for now that tl�	∗�v�≡ tl�	∗�vl�, l∈�,
all are differentiable and strictly increasing functions
of vl for every choice of 	, the stochastic user equilib-
rium model of Fisk (1980) extends the deterministic
optimization model as follows:

Minimize
�v�h�

∑
l∈�

∫ vl

0
tl�	

∗�s�ds+ 1
H

∑
r∈�

hr loghr� (25a)

subject to �Th=g�	∗�� (25b)

h≥0���� (25c)

v=�h+ (25d)

Thanks to the Cartesian product structure of the feasi-
ble set, there exists a strictly positive route flow solu-
tion, whence the unique optimal route flow also is
strictly positive. Due to this property, the sensitivity
analysis of this problem is somewhat easier than that
of the deterministic model (17), as the route flow solu-
tion is strictly complementary; the optimal route flow
is hence guaranteed to be differentiable in 	 under the
same conditions as for the directional differentiability
of the deterministic solution. We provide the sensitiv-
ity analysis for this problem, after which we relate it
in detail to that of the model (17). (We note in passing
that the sensitivity analyses in Davis 1994 and Ying
and Miyagi 2001 are quite unrelated to ours.)
For H>0, we denote the optimal route flow solution

to (25) by hH�	∗�. From now on, we assume for illus-
tration purposes that g�	�= ḡ+	, with g�	∗�∈����

++.
Noting that hH�	∗�>0, the critical cone K=TC�x∗�∩
f �	∗�x∗�⊥ =����×����×����, so that not only is K a
subspace, it is the entire space. Further,

r�	′�x′�=



�T#0	t�	

∗�v∗�T	′ +0vt�	∗�v∗�Tv′$
+�1/H�diag�1/hHr �	∗��h′ −�� ′

�Th′ −	′

v′ −�h′


�

where diag�1/hHr �	
∗�� denotes the diagonal matrix

with diagonal entries 1/hHr �	
∗�, r ∈�.

By the assumptions on the link cost function t�	∗�·�,
the sensitivity problem is therefore equivalent to the
problem to

minimize
�v′�h′�

∑
l∈�

(
1
2
Dtl�	

∗�v∗
l �

Dvl
�v′

l�
2+9lv′

l

)

+ 1
2H

∑
r∈�
loghHr �	

∗��h′
r �
2� (26a)

subject to �Th′ =	′� (26b)

v′ =�h′� (26c)

where 9 is defined as in (20).
Note that the Jacobian of the cost mapping in (26)

with respect to h′ is

�T0vt�	
∗�v∗�+ 1

H
diag

(
1

hHr �	
∗�

)
%

the matrix diag�1/hHr �	
∗�� is positive definite on ����,

whence we satisfy the condition (12) and therefore
also the conditions for the differentiability Theorem 4
to be applicable.
Before we turn to the relations between the sensi-

tivity analysis of the SUE and the deterministic solu-
tion, we cite an important result in this context on
the relations between the solution hH�	∗�, H>0, to the
SUE model and the set of equilibrium route flows in
the deterministic model (17) as the value of H tends
to infinity.
The most probable equilibrium route flow solution

(see, e.g., Rossi et al. 1989 and Jansson 1993) is
the unique equilibrium route flow in the set H∗�	∗�,
denoted h+�	∗�, which solves the problem to

minimize
h

∑
r∈�

hr loghr� (27a)

subject to h∈H∗�	∗�+ (27b)

Proposition 11 (the Limit of the SUE Solution,
Larsson et al. 2001). Under the condition that each
link cost tl�	∗�·� is positive and strictly monotonically
increasing,

lim
H→�

hH�	∗�=h+�	∗�

holds.

This result implies that if and only if there exists a
strictly complementary solution in the set H∗�	∗�, then
so is h+�	∗�. As strict complementarity is sufficient for
the differentiability of the deterministic equilibrium
link-flow solution, a study of the limit of the sequence
of solutions to the SUE model as H→� could there-
fore provide a proof that the deterministic solution is
differentiable. The result is, in fact, even better, in that
strict complementarity is not a necessary property for
the analysis to carry over from the nondeterministic
case.
The question then is whether we can use the fact

that the SUE solution is differentiable to produce gra-
dients for the deterministic model by studying the
SUE model for large values of H. We therefore study
the sensitivity problem (26) as H tends to infinity, and
its relation to the sensitivity problem (20).
The two problems clearly are related, although the

problem (26) lacks the sign constraints on h′ of (20),
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as H tends to infinity the additional term in the objec-
tive (26) seems to work as an interior penalty for h′

becoming negative. Indeed, that is the case.
Consider first a route r for which h+

r >0 holds.
Then, in the limit as H→�, the constant term
loghHr �	

∗�/�2H� tends to zero, so the second term in
the objective of (26) disappears. This case is in line
with the problem (20), where for such a route, h′

r is a
variable with no sign restrictions.
Next, let’s consider a route r for which h+

r =0. (We
note that such a route exists if and only if there does
not exist a strictly complementary route flow solution
in H∗�	∗�.) Notice that the logit formula gives that

hHr �	
∗� = gpq�	

∗�
exp�−Hcr �	∗�hH�	∗���∑

@∈�pq
exp�−Hc@�	∗�hH�	∗���

�

r ∈�pq� �p�q�∈�+

We analyze the term 2H/loghHr �	
∗�, the inverse of the

term investigated, as a function of H. The derivative
formula for one-variable quotient functions then gives
that the limit of this function as H→� equals that of
the function

2cr �	
∗�hH�	∗��hHr �	

∗�
∑
@∈�pq

exp�−Hc@�	∗�hH�	∗���

−2hHr �	∗�
∑
@∈�pq

c@�	
∗�hH�	∗��exp�−Hc@�	∗�hH�	∗����

the limit of which is zero. Hence, the coefficient
loghHr �	

∗�/�2H� of h′
r tends to infinity with H, and it

is clear that for these variables, the additional objec-
tive term of (26) acts as a penalty for having h′

r �=0. In
summary, in the limit, the problem (26) tends to the
following problem as H tends to infinity:

Minimize
�v′�h′�

∑
a∈�

(
1
2
Dtl�	

∗�v∗
l �

Dvl
�v′

l�
2+9lv′

l

)
� (28a)

subject to �Th′ =	′� (28b)

h′
r =0� r ∈� with h+

r =0� (28c)

v′ =�h′+ (28d)

This is a restriction of the problem (20) because in that
problem, h′

r ≥0 is allowed for routes that have a zero
flow but are minimum-cost routes. Consider then the
result of Theorem 10. According to its statement, dif-
ferentiability holds precisely when the solution to (20)
is such that h′

r =0 for routes r ∈� with h+
r =0! There-

fore, while the limit sensitivity problem (28) is not
equivalent—in the sense of its feasible set—to the
deterministic one, (20), their optimal solutions are
identical precisely when the deterministic solution is
differentiable. This result is summarized below.

Theorem 12 (Sensitivity Analysis from the SUE
Solution). Assume that each link cost tl�	∗�·� is positive
and strictly monotonically increasing. Then, the following
two statements are equivalent.
(a) The deterministic equilibrium link-flow v∗ is differ-

entiable at 	∗, with the gradient 0v∗�	∗�.
(b) The optimal solutions v′ to the sensitivity problems

(28) and (20) coincide.
Further, then

lim
H→�

�0hH�	∗�= lim
H→�

0vH�	∗�=0v∗�	∗��

where 0hH�	∗� #0vH�	∗�$ is the gradient of the SUE route
[link] flow solution at 	∗. The same equivalence applies to
the equilibrium shortest route costs �∗.

Proof. The result follows from Theorem 10 and the
above remarks. �

Although the above development was made under
the assumption that the traffic equilibrium model is
equivalent to a convex optimization problem, it can be
reproduced for a general variational inequality model.
The SUE model (25) then is replaced by its varia-
tional inequality foundation, and the link cost map-
ping t�	∗�·� is assumed to be strictly monotone on
the set of feasible flows. Under this condition, the
conclusion of Proposition 11 is still valid, as it is a
result on the limiting effect of a strictly monotone
regularization; the below proposition establishes that
strictly monotone regularizations provide the result
sought. As the logit formula remains valid, the rest of
the argument goes through with no alterations, and
the conclusion of Theorem 12 follows for the general
model.

Proposition 13 (On Strictly Monotone Regu-
larizations of Monotone Variational Inequality
Problems). Consider the variational problem −f �x∗�∈
NX�x

∗�, where X⊂�n is nonempty, convex, and compact,
and f � X �→�n is monotone on X. Let X∗ denote the (con-
vex and compact) set of solutions to this problem. Suppose
that r � X �→�n is strictly monotone on X, and consider the
trajectory xJ�, where xJ is the unique solution to the reg-
ularized problem −#f +Jr$�xJ�∈NX�xJ�. Then, as J �→0,
the sequence xJ� converges to a limit, x∗

r , which is the
unique point in X∗ satisfying −r�x∗

r �∈NX∗�x∗
r �.

Proof. Let x̂ be an arbitrary limit point of the
sequence xJ�; at least one such point exists by the
boundedness of X. By the continuity of f and r , it
follows that x̂∈X∗.
Let x∗ ∈X∗ be arbitrary. This solution can equiva-

lently be characterized as follows:

f �x∗�T�x−x∗�≥0� x∈X�
while the solution xJ to the regularized problem, for
J>0, is equivalently characterized as follows:

#f �xJ�+Jr�xJ�$T�x−xJ�≥0� x∈X+
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Summing these two inequalities, with x �=xJ and
x �=x∗, respectively, we obtain that

r�xJ�
T�x∗−xJ�≥

1
J
#f �x∗�−f �xJ�$T�x∗−xJ�≥0�

where the last inequality follows by the monotonicity
of f .
By the continuity of r , in the limit of the subse-

quence of xJ� converging to x̂, this yields that

r�x̂�T�x∗− x̂�≥0�

and because x∗ ∈X∗ was arbitrary, we thus have that

r�x̂�T�x∗− x̂�≥0� x∗ ∈X∗+

Because r is strictly monotone and x̂∈X∗, x̂ is
the unique solution to this problem, which implies
that the sequence xJ� converges. This completes the
proof. �

More general demand functions can of course be
considered in the above development for the SUE
model, with little changes in the analysis.
We return now to the heuristic “gradient” calcula-

tion made in the OD matrix adjustment method of
Drissi-Kaïtouni and Lundgren (1992) in §2.2. The for-
mula (9) for the �p�q�th element of the gradient, that
is, the �p�q�th coordinate-wise directional derivative,
can be compared to the problem (28). In the OD esti-
mation model, there is no parameter in the travel
costs. Therefore, the two objective functions coincide
in this case. Further, the problem (9) includes (in prin-
ciple) only the set of routes that are active at v∗ (the
set ��), while the problem (28) omits routes that are
forced to be zero at v∗. Under the assumption that
every route that is active at some route flow solu-
tion in H∗�	∗� (that is, all routes r ∈� for which
h+
r >0 holds) is stored in the set ��, the difference
between their optimal solutions disappears precisely
when Theorem 12 applies, that is, when the fixed
demand traffic equilibrium link flow is differentiable;
under this particular circumstance, the heuristic calcu-
lation in Drissi-Kaïtouni and Lundgren (1992) is exact.

5. An Illustrative Example
The following numerical example is on the fixed
demand model, where the perturbation vector 	 is
present in the demand vector. It illustrates a case
in which the equilibrium link-flow solution is not
differentiable.
Consider the network in Figure 1.
For this network, we have the data in Table 1.

21

5

4

3

Figure 1 A Traffic Network

At 	∗ �= �	∗
1�	

∗
2�
T= �0�0�T, the solution to (17) is

v∗ =




0
2
0
0
1
0
1



� t�v∗�=




10
1
3
1
1
2
1



� �∗ =

(
2
2

)
+

The following routes are identified:

�1�2���2�4��� �1�2���2�5���5�4��� �1�5���5�4���

for OD pair �1�4�, with the associated route flow
variables h11, h12, and h13, and

�3�1���1�5��� �3�1���1�2���2�5��� �3�2���2�5���

for OD pair �3�5�, with corresponding route flow
variables h21, h22, and h23. The equilibrium route flow
solution is unique in this case, with

h∗
11�	

∗�=0� h∗
12�	

∗�=0� h∗
13�	

∗�=1�
and

Table 1 Network Data

Link tij �vij � OD pair gpq �
�

1: �1�2� 10v12 1: �1�4� 1+
1
2: �1�5� 1

2 v15 2: �3�5� 1+
2
3: �2�4� 3+10v24
4: �2�5� 1+10v25
5: �3�1� v31
6: �3�2� 2+v32
7: �5�4� v54
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h∗
21�	

∗�=1� h∗
22�	

∗�=0� h∗
23�	

∗�=0�

respectively. This solution therefore also solves the
problem (27). This solution is not strictly complemen-
tary, as we can see from a calculation of the route
costs:

c11�	
∗�h∗�=13� c12�	

∗�h∗�=2� c13�	
∗�h∗�=2�

and

c21�	
∗�h∗�=2� c22�	

∗�h∗�=2� c23�	
∗�h∗�=3�

respectively. We see that in each OD pair, there is one
route of least cost, but which is forced to have a zero
flow (the second route in each pair). The link flow
is clearly directionally differentiable in any direction
	′, as the Jacobian matrix 0t�v∗� is positive definite
on ����.
Assume now that �	′

1�	
′
2�= �1�1�. In the sensitivity

problem, we have the following data: the link cost
mapping is

v′ �→0t�v∗�v′ =




10v′
12

1
2v

′
15

10v′
24

10v′
25

v′
31

v′
32

v′
54




+

The sensitivity problem is to

minimize
�v′�h′�

5�v′
12�
2+ 1
4
�v′
15�
2+5�v′

24�
2+5�v′

25�
2+ 1
2
�v′
31�
2

+ 1
2
�v′
32�
2+ 1
2
�v′
54�
2�

subject to �Th′ =	′�

h′
11=0% h′

12≥0% h′
13 free�

h′
21 free% h

′
22≥0% h′

23=0�
v′ =�h′+

The unique solution to this problem is the direc-
tional derivative

v′ =




0+0488
1+9512
0

0+0488
1
0
1



� � ′ =

(
1+976
1+976

)
�

and a consistent, feasible route flow change is

h′ =




0
0+0488
0+9512
1
0
0



+

As stated already, the differentiability of the link-
flow solution is equivalent to the statement that every
route r ∈� for which h∗

r =0 holds on the set H∗�	∗�
also satisfies h′

r =0 in every solution to the sensitivity
problem. Here, however, h′

12=0+0488>0; hence, the
present case is one where differentiability does not
hold. (Had we applied sensitivity analysis for SUE in
this context, we would have forced h′

12=0 to hold,
and obtained an erroneous result.) We also remark
that the calculus formula in Tobin and Friesz (1988)
does produce a result for this instance, but its conclu-
sion is incorrect as it cannot be given the interpreta-
tion of a gradient. The question whether it is a sub-
gradient is a matter that merits further studies; one
means to calculate a subgradient is given next.

6. Subgradients of Traffic Equilibria
If we would like to consider finding an optimal value
of the parameter 	 by solving the bilevel program-
ming model mentioned in §2.2, then in the absence
of a gradient, devising a descent algorithm is, poten-
tially, quite a lot more complicated. In nonsmooth
analysis and optimization (see, e.g., Rockafellar and
Wets 1998 and Hiriart-Urruty and Lemaréchal 1993,
respectively), subgradients (or, generalized gradients)
have been shown to be very useful because they can
be used in place of a gradient in specially constructed
algorithms, for example in bundle methods.
A subgradient of S at 	∗ is defined as follows: It is

any member of the generalized Jacobian, DS�	∗�, of S
at 	∗, with

DS�	∗� �=conv
{
lim
@→�

0S�	@� �	@�→	∗ and 	@∈KS
}
�

where KS is the set on which S is differentiable. Hence,
the set of subgradients is the convex hull of the set of
all limits of gradients of S at points converging to 	∗.
(This set is always nonempty, as soon as S is locally
Lipschitz at 	∗, cf. Clarke 1983.)
For many nonsmooth problems, generating a

descent direction is much more complicated than
to generate just one subgradient, as an arbitrary
subgradient is not guaranteed to provide a descent
direction. Bundle algorithms work by generating a
collection of subgradients at nearby points and gen-
erating a search direction from their convex hull. We
refer to the book by Outrata et al. (1998) for a general
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discussion of such algorithms in the context of bilevel
programming.
In this section, we will focus on the basic question

of when and how a subgradient can be calculated,
and how its calculation is related to the directional
derivative and gradient calculus. Throughout this sec-
tion, we work with the perturbed elastic demand
model (5) in link-route space, assuming that the con-
dition of Theorem 5, statement (a) or (b), holds, so
that v∗ is directionally differentiable.
In the case of a real-valued function S (rather than

the vector-valued function S that we are considering
in this paper), the generalized Jacobian (or subdif-
ferential) is characterized by, and generated by, the
set of directional derivatives of S; cf. Rockafellar and
Wets (1998, Chapter 8). In our case, however, subgra-
dients are more complicated to calculate in general,
and additional assumptions will have to be made in
order for the directional derivatives to generate the
generalized Jacobian. We will briefly sketch one pos-
sibility to generate a subgradient of S, being aware
that there may also be others. (If S is differentiable at
	∗, then our subgradient formula will reduce to that
of the gradient, as any such formula should.)
We now turn to the question of when and how

a subgradient can be calculated in the absence of a
gradient. Let 	∗ be given, and likewise �h∗��∗�v∗�,
where h∗ is arbitrary in H∗�	∗�. At 	∗ and this equi-
librium solution, two regularity conditions are next
introduced under which a calculus formula to be
given later will provide one subgradient. The first,
and weakest, condition states that there is a subset
of the routes with zero flow at equilibrium, the flows
in which will remain at zero after some infinitesimal
perturbation in 	, and such that the resulting flow is
strictly complementary.
We introduce the index sets

��	∗�h∗��∗� �= r ∈� �cr �	∗�h∗�>�∗
pq��

��	∗�h∗��∗� �= r ∈� �h∗
r >0��

	�	∗�h∗��∗� �= r ∈� �cr �	∗�h∗�=�∗
pq and h

∗
r =0��

of, respectively, the nonequilibrium routes, the routes
with positive flow, and the equilibrium routes with
zero flow, at h∗. Recall that strict complementarity
amounts to the condition that 	�	∗�h∗��∗�=�, in
which case differentiability follows (see the discus-
sion following Theorem 10). The below condition is
derived from Outrata and Zowe (1995).
Definition 14 (Regularity Properties of the

Equilibrium Solution, I). There exists a set

�0�	
∗�h∗��∗�⊂��	∗�h∗��∗�∪	�	∗�h∗��∗�� (29)

for which the following holds: There exists a vector
	̄′ ∈�d such that for all sufficiently small 9 >0, there
is an equilibrium flow h∗�	∗+9	̄′� with

�0�	
∗�h∗��∗�=��	∗+9	̄′�h∗�	∗+9	̄′���∗�	∗+9	̄′���

(30)
and

	�	∗+9	̄′�h∗�	∗+9	̄′���∗�	∗+9	̄′��=�+ (31)

In other words, there exists a perturbation 	̄′ and a
subset of the routes with zero flow at equilibrium at
	∗ with the properties that after perturbation, (i) their
flow remains at zero, (ii) they become nonequilibrium
routes, and (iii) the equilibrium flow becomes strictly
complementary.
This condition does not rely on performing any

sensitivity analysis. However, there is no method
inherent in it to find the vector 	̄′ ∈�d, or a means
to investigate its “approximate” fulfillment for use in
practice. Moreover, as can be seen in the proof of
Theorem 17 below, it may not extend very far in terms
of applicability to more general traffic equilibrium
models, in particular to those including additional
flow constraints like capacities, as it relies on a lin-
ear independence assumption on the active inequality
constraints. (Linear independence is fulfilled for the
elastic demand model (5).) The second condition that
we introduce is stronger but is also more practical.
We introduce the vector 	′, and let �h′�� ′�v′� be the

result of solving the sensitivity problem (16), where
h′ is arbitrary in the solution. We further let

	1�h
′� �= r ∈	�	∗�h∗��∗� �c′

r �	
∗�h∗�h′�>� ′

pq��

	2�h
′� �= r ∈	�	∗�h∗��∗� �h′

r >0��

where the vector c′�	∗�h∗�h′� is defined by
�T�0	t�	

∗�v∗�T	′ +0vt�	∗�v∗�Tv′�, that is, the route
cost changes in the solution of (16). We recall that
the characterization of differentiability of v at 	∗

given in Theorem 10 amounts to the condition that
	2�h

′�=� for all h′ solving (16), clearly a less strong
assumption than strict complementarity, as we have
already concluded.
The condition stated below says that the solution

to some sensitivity problem should behave nicely, in
the sense that there exists a strictly complementary
solution to it; this condition is derived from Outrata
(1997, Theorem 2.3).
Definition 15 (Regularity Properties of the

Equilibrium Solution, II). There exists a vector, 	̄′ ∈
�d, for which some solution h̄′ to the sensitivity
problem (16) satisfies

	1�h̄
′�∪	2�h̄

′�=	�	∗�h∗��∗� and

	1�h̄
′�∩	2�h̄

′�=�+
In other words, the sets 	1�h̄

′� and 	2�h̄
′� partition

	�	∗�h∗��∗�, and so h̄′ is strictly complementary.
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Proposition 16 (Definition 15 Implies Defini-
tion 14). Suppose that there is a vector 	̄′ ∈�d such that
the property in Definition 15 holds. Then, for the same
value of 	̄′, and with

�0�	
∗�h∗��∗� �=��	∗�h∗��∗�∪	1�h̄

′�� (32)

the property in Definition 14 holds.

Proof. With Definition 15 in force, it follows that
for the same 	̄′, for every sufficiently small value of
9 >0, (31) is satisfied. Let �0�	∗�h∗��∗� be given by
(32); this is the set of routes that were either more
expensive at 	∗ or becomes expensive at 	∗+9	̄′ for
small enough 9 >0. With this choice, we satisfy (29)
and (30). The result follows. �

In the case of strict complementarity at h∗, both
of the above definitions are in force, as in that case,
	�	∗�h∗��∗�=�. It may be, however, that neither of
the two conditions hold when we satisfy the mildest
possible condition for differentiability, as given in
Theorem 10.
The condition in Definition 15 is based on the use

of sensitivity analysis to find a proper value of 	̄′.
There are two advantages of this condition over the
one given in Definition 14. First, as can be seen in the
proof of Theorem 17, its validity does not rely on a lin-
ear independence assumption, which is important for
the application of sensitivity analysis to some exten-
sions of the original model (see the conclusion sec-
tion); second, and most important, it is possible to use
it in practice, as the set �0�	∗�h∗��∗� can naturally be
approximated. Before turning to an example of how
this can be done, we provide the calculus formula for
a subgradient. The formula has the same appearance
in both cases, except for a difference in the definition
of the subset of the routes in 	�	∗�h∗��∗� which are
forced to remain at zero.
Let 
�	∗�h∗��∗� be a route index set, which is

equal to either �0�	∗�h∗��∗� or ��	∗�h∗��∗�∪	1�h̄
′�,

depending on whether we work under Definition 14
or 15.
Let

"K �=
{(

h′
� ′
v′

)
∈����+���+���

∣∣∣∣ h′
r =0 if r ∈
�	∗�h∗��∗�
#r ∈�$

}
+

For a given 	′ ∈�d, consider the problem

−r�h′�� ′�v′�∈N"K�h
′�� ′�v′�� (33)

where the mapping r is the same as in the sensitivity
problem (16).
We note that the variational inequality problem (33)

is equivalent to a linear system uniquely solvable
in v′, which is also quite similar to the directional
derivative problem (16), and hence then also to the

definition of the gradient, when it exists; the differ-
ence is that the nonnegativity restrictions on some
routes are removed and replaced by the restriction
that h′

r be zero for r ∈
�	∗�h∗��∗�. Interestingly, both
the linear system (33) and the sensitivity problem (16)
are really network flow problems, which should make
it possible to devise, for example, a bundle algorithm
that is feasible also for large-scale problems.
Before establishing that the formula (33) provides

the result sought, we discuss its possible application
in practice, based on Definition 15 and the link-route
formulation. Clearly, it is the set 
�	∗�h∗��∗� that
requires our attention. Assume that the model (5)
has been solved by the use of the DSD algorithm
(Larsson and Patriksson 1992), that is, an algorithm
that explicitly keeps the set ��	∗�h∗��∗� and possibly
also a subset of 	�	∗�h∗��∗�. If this subset �� of � is
rich enough, then the solution to the problem (33) is
possible to find with the route data available. In par-
ticular, if 	�	∗�h∗��∗�⊂ ��, then once we have identi-
fied the vector 	̄′, the subset 	1�h̄′� is identified and
can be removed from ��. We note that differentiability
follows precisely when 	1�h̄

′�=	�	∗�h∗��∗�, whence
the whole set of unused routes can be stricken. This
suggests the following heuristic:

when solving the problem (33), keep only the
route set in ��	∗�h∗��∗�+

This heuristic is exact whenever the equilibrium link
flow is differentiable and is equivalent to the assump-
tion that 	2�h̄′� is empty. Outrata (1997) concludes
from computational experience with a bundle algo-
rithm for bilevel programming that he had no diffi-
culties when using this heuristic. The conclusion was
however drawn from solving small-scale problems.
We are now ready to establish that the formula (33)

provides a subgradient, under the conditions of either
Definition 14 or 15. The proof is mainly an exercise in
identification and will not be given in full detail, to
save space.

Theorem 17 (A Subgradient Formula). Let the as-
sumptions of Theorem 5, statement (a) or (b), be satisfied.
Let further the conditions of Definition 14 or 15 be satisfied.
Define the single-valued and linear operator L that, for
each 	′, gives a (unique) solution in v′ to the problem (33).
Then, L∈DS�	∗�.
Consequently, the collection of d solutions v′ to the prob-

lem (33) for 	′ =ei, i=1�2�+++�d, is a subgradient of S
at 	∗. The corresponding solution in � ′ is a subgradient of
�∗ at 	∗.

Proof (Definition 14). To put our model into the
form of the problem in Outrata and Zowe (1995,
p. 116), we note that it is a special case of the prob-
lem (7) in which

C �=y∈�n �∃z∈�m with Ay+Bz≤b�+
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An identification of our set C in (5) is made from

y=
(
�
v

)
% z=h% A=0% B=−I% and b=0+

Their condition �LI�′ is fulfilled by our model because
the only inequality constraints are the conditions that
h≥0���, so any active such constraints are linearly
independent. As is also remarked (Outrata and Zowe
1995, p. 116), the conditions (A1)–(A3) imposed in
their Proposition 3.4 are there to ensure the local
Lipschitz continuity of the mapping S, which we
instead ensure by our assumptions of Theorem 5. The
rest of their Proposition 3.4 of is a restatement of our
result in (a), where we identify the set Q with our � ,
their M with �∪	, and where we may remove the
projection argument of that theorem, as we have ear-
lier concluded that the choice of route flow solution
is immaterial to the sensitivity analysis.
(Definition 15.) The problem studied by Outrata

(1997) is the special case of the problem (7) in which

C �=y∈�n �∃z≥0m with Ay−Bz=d�+
We put our problem (5) into this framework by
identifying

y=
(
�
v

)
% z=h% A=

(
0 0
0 I

)
% B=

(
0
�

)
%

and d=
(
0
0

)
+

Outrata’s (1997, Theorem 2.3) theorem is established
under the assumption that two conditions ((A1) and
(A2) in that paper) are fulfilled. These conditions are
stronger than our conditions of Theorem 5, statement
(a) or (b), but they are used in Outrata (1997) only to
establish the local Lipschitz continuity and directional
differentiability of S, and we have already established
that our conditions of Theorem 5 then are sufficient.
The rest of the statement of the theorem is identical to
that of Outrata (1997, Theorem 2.3), with the identifi-
cations made above, whence the result follows. �

The formula (33) reduces to the one for the gradi-
ent, cf. for example, (28), whenever 
�	∗�h∗��∗�=r ∈
� �h+

r =0�. With 
�	∗�h∗��∗� given by �0�	
∗�h∗��∗�,

this equality is satisfied for every choice of vector
	̄′ ∈�d precisely when the equilibrium link-flow solu-
tion is differentiable. Hence, (33) is the formula to
use because it automatically provides a gradient if it
exists, and a subgradient if it does not.
It is unknown whether a subgradient can be gener-

ated from an explicit calculus formula under milder
assumptions than those stated in the above defini-
tions. Subgradient formulas for more general feasible
sets are found, for example, in Outrata and Zowe
(1995) and Outrata et al. (1998).

With reference to the numerical example in §5, we
remark that the route flow change h′ given there is
not the only one; an alternative that also aggregates
to v′ is

h′ =




0
0
1

0+9512
0+0488
0



+

We note that in this solution, h′
22>0 holds whereas

h′
12>0 holds in the first alternative solution. Taking
any positive convex combination of these two alter-
native route flow changes, for example with equals
weights of 12 giving the perturbation �0�0+0244�0+9756�
0+9756�0+0244�0�T, we reach a route flow change, h̄′, in
which both the degenerate routes mentioned receive
a positive flow. In other words, in such a solution,
	1�h̄

′�=	�	∗�h∗��∗� holds; therefore, this is a case
where indeed we satisfy the conditions of the above
theorem, based on Definition 15.
With 
�	∗�h∗��∗� consisting of the two routes

defining the variables h11 and h23, solving the prob-
lem (33) for 	′ being the two coordinate directions,
respectively, yields

	′ =
(
1
0

)
� v′ =




0+0244
0+9756
0

0+0244
0
0
1



% � ′ =

(
1+4878
0+4878

)
�

and

	′ =
(
0
1

)
� v′ =




0+0244
0+9756
0

0+0244
1
0
0



% � ′ =

(
0+4878
1+4878

)
+

The reader is asked to compare these solutions, which
yield the partial subgradients(

0+0244 0+9756 0 0+0244 0 0 1
0+0244 0+9756 0 0+0244 1 0 0

)
and

(
1+4878 0+4878
0+4878 1+4878

)

of the equilibrium solution with respect to v and �,
respectively, to the result of the sensitivity analysis
in §5; the directional derivative for 	′ = �1�1�T is in fact
the sum of the respective subgradient components.
The route flow changes received from our subgra-
dient computation were h′ = �0�0+2622�0+7378�0+2378,
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−0+2378�0�T, for the case of 	′ = �1�0�T, and h′ =
�0�−0+2378�0+2378�0+7378�−0+2622�0�T, for the case of
	′ = �0�1�T, respectively, which sum up to the convex
combined perturbation above.
We finally note that in the link-node representa-

tion, the conditions in Definitions 14 and 15 have their
counterparts in conditions on the degenerate links in
a commodity that lie on a shortest route and yet have
no flow. The corresponding subgradient formula has
the same appearance as the directional derivative for-
mula in (23), except that for a given subset of the
degenerate links, flow is forced to remain at zero.
Whether it is an advantage to work with this formula
rather than (33) depends largely on the size of the
problem under study.

7. Conclusions, Extensions,
and Further Research

This paper offers characterizations of when direc-
tional derivatives and gradients of the link flow and
OD travel costs exist, in the context of the elastic (and
also fixed) demand traffic equilibrium model. In the
case of directional derivatives of link flows, the results
established here are the strongest possible, and they
improve upon the results previously stated. In the
case of gradients, the paper provides the first gener-
ally valid results, which at the same time also are the
strongest possible. Moreover, we have remarked that
the most popular gradient formula may not produce
the gradient value when used in at least two circum-
stances because it does not provide the gradient value
when the network topology makes the formula break
down (as was observed by Bell and Iida 1997, §5.4),
and when the first part of the differentiability The-
orem 4 applies but not the second; according to the
numerical example, it can also supply a value when
the gradient does not exist, and it can also possibly
fail to yield a subgradient.
Apart from these technical results, we remark that

the statements of the calculus formulas show that a
sensitivity analysis can be performed by solving one
(in the case of a directional derivative) or d (in the
case of a gradient or a subgradient) network flow
problem(s), similar to the original network model; the
main difference is in the definition of the network
itself, which imposes further restrictions on the sign
of the commodity flow variables. The structure of the
problems being so similar, we anticipate that in the
case of the link-route formulation, for example, effi-
cient projection-type column generation algorithms
based on route flows, such as DSD (Larsson and
Patriksson 1992), could be adjusted to not only solve
the original model but also provide the sensitivity
analysis sought. Whether it is possible to incorporate

an efficient sensitivity analysis package within trans-
portation planning software is an interesting subject
for further study.
The advantage of using the general framework of

variational analysis in deriving sensitivity analysis
results, rather than performing specialized matrix-
based studies of the network equilibrium model,
should be apparent from the our analysis, but it
becomes even more pronounced when we wish to
extend the analysis to more general traffic models.
While a specialized analysis could easily break down,
the general technique used here would incorporate
model extensions quite readily. To illustrate this fact,
let us consider an extension to the model (17) in which
we further impose upper bounds on the link flows. In
other words, to the constraints defining the set �F �	∗�
we further add capacity constraints of the form

v∈G�=v∈���� �vl≤ul� l∈���

where ul∈ #0��$, l∈�. (Applications and properties
of the capacitated model are found in Hearn 1980 and
Larsson and Patriksson 1995, 1999.) What happens in
the sensitivity analysis when adding such constraints?
According to the properties of tangent cones, we have
that T �F �	∗�∩G�v

∗�=T �F �	∗��v
∗�∩TG�v∗�, where the tangent

cone T �F �	∗��v
∗� was already analyzed as part of the

description of the critical cone in the simpler model,
and where

TG�v
∗�=v′ ∈���� �v′

l≤0� l∈� with v∗
l =ul�+

So, incorporating such an extension has only the
effect of adding constraints to the sensitivity problem.
Needless to say, it will be more difficult to solve a sen-
sitivity model in which both individual disaggregated
(that is, commodity) flow �h′�w′

k� and aggregated link-
flow �v′� changes are sign constrained, because the
Cartesian product structure no longer is present, but
that is to be anticipated because the capacitated model
itself lacks this favourable product structure. What
this example brings to light, however, is that the
change in the analysis is much smaller than one per-
haps might think. It is known that the multipliers
for the capacity constraints are not unique in gen-
eral (cf. Larsson and Patriksson 1999), but whether
binding constraints are linearly independent or not
has already been deemed immaterial earlier in this
paper, with the strong sensitivity analysis theory that
we are using. Apart from the relatively small and
easily derived change in the sensitivity problem itself,
what is left to check is the conditions for the existence
of directional derivatives and gradients. According to
Theorem 5, uniqueness of the solution to the sensi-
tivity problem is enough for directional derivatives to
exist, and as the current model is more constrained,
so is the critical cone, whence the conditions for the
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original model are sufficient also for this model. The
existence of a gradient is slightly more complicated,
but not much: The corresponding change in the set
K∩�−K� is a further condition of the form “v′

l=0
if v∗

l =ul,” meaning that differentiability, according
to the results of Theorem 10, follows if, in addition
to the conditions stated in (b) in that theorem, a
link l∈� that was used to full capacity in the orig-
inal model will remain at capacity after all possible,
infinitesimally small, perturbations. In the case of sub-
gradients, we resort to the use of the condition in
Definition 15, because linear independence among the
active inequality constraints may fail to hold.
If the capacity u is a smooth function of 	—

which could model traffic signal control optimiza-
tion, for example—the extension of the sensitivity
analysis becomes no more complicated. Like the case
of demand fulfillment, in which the right-hand side
depends on 	, we incorporate the constraint v≤u�	�
within the function f , as follows. We introduce a mul-
tiplier vector R∈����

+ , and then obtain a model of the
form (7), with

x=



h

�

v

R


% f �x�=



�Tt�	�v�−��
�Th−g�	���

v−�h
u�	�−v


%

C=����
+ ×����×����×����

+ +

The added model component describes the comple-
mentarity condition

0��� ≤R⊥ �u�	�−v�≥0����

which, in the case of a delay-based model, states that
there is no queue where the equilibrium flow is not
at capacity (cf. Larsson and Patriksson 1999). Direc-
tional differentiability follows as above, although the
formulas will have an added cost term from the
derivative of u; the (sufficient) positive definiteness
conditions for directional differentiability in the above
two models will differ slightly, as was the case
for unperturbed/perturbed demand as analyzed in
Corollary 8. The question of the differentiability of the
equilibrium link flow becomes more complex because
of the explicit presence of the Lagrange multipliers;
this is because the differentiability Theorem 4 is in
fact not independent of the representation of the fea-
sible set. However, subgradient formulas based on
Definition 15 should be readily constructed, at least
heuristically.
Another, and in fact much simpler, extension is to

combine traffic models, where the demand side is
disaggregated further into different classes of traffic,
perhaps with additional side constraints on the total
demand between traffic zones. This is a case of the

addition of linear equalities to the original elastic
demand model, and the analysis of this type of model
is straightforward.
To which traffic models the framework used in this

paper may be applied in sensitivity analyses in the
future is still open, but at least the above examples
show that it is relatively straightforward to apply sen-
sitivity analysis to the most basic models and even go
beyond them.
On the issue of existence of directional derivatives,

the analysis in Remark 9 shows that even in the case
of the simplest and most classic traffic assignment
model, directional derivatives of the link flows may
not exist for the entire network. Although this may
seem to limit the use of the analysis, the example does
show that the sensitivity analysis is valid for any link
with positive flow. However, recent research (which
must be reported in detail elsewhere) shows that even
in this case, directional derivatives at least exist in
terms of all the travel costs entities, t, c, and � (and
in the case of � therefore improves upon the result
stated in Corollary 7); in an application to MPEC
where the travel cost is the entity which we wish
to influence rather than the flow itself, an analysis
shows that the properties of the classic TAP model are
sufficient.
Finally, we mention that the subject of utiliz-

ing subgradients in algorithms for bilevel program-
ming models in this area is an interesting subject
for future research. It has been shown (see, e.g.,
Michalevish et al. 1987, Dempe and Vogel 1997) that
a constraint qualification (CQ), similar to the two reg-
ularity conditions that we have introduced, will be
satisfied at any point almost surely, so that a sub-
gradient for use in bundle methods can be calcu-
lated by means of a linear system. Further, even if
the direction found fails to be a subgradient at cer-
tain points because a CQ is not satisfied there, we
can always reach a point that is stationary for the
MPEC, although “stationarity” will be understood in
a weaker sense if we fail too frequently.
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