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Abstract

10 We present a column generation procedure for the side constrained traffic equilibrium problem. A dual

11 stabilization scheme is introduced to improve the computational performance. Computational experiments

12 for the case of linear side constraints are presented. The test problems are well known traffic equilibrium

13 instances where side constraints of link flow capacity type and general linear side constraints are added. The

14 computational results are promising especially for instances with a relatively small number of side con-

15 straints.
16 � 2002 Published by Elsevier Science Ltd.

17 Keywords: Traffic assignment; Column generation; Stabilization techniques

18 1. Introduction

19 Our main motivation for studying the side constrained traffic equilibrium model is its usefulness
20 in the context of strategic traffic management. The functionality of a traffic system can often be
21 measured in terms of the traffic flows (or travel times) on the links in the network. By formulating
22 management goals as restrictions on link flows and solving the resulting side constrained traffic
23 equilibrium problem we obtain link flows that satisfy the formulated goals and which are equi-
24 librium flows for a set of adjusted link travel times. The adjustments may be utilized in a strategic
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25 traffic management procedure for finding appropriate measures and placements thereof in the
26 traffic network.
27 Another application of the side constrained traffic equilibrium problem is for the refinement of
28 the basic traffic equilibrium model. A traffic equilibrium model where the travel delay is modelled
29 with link separable travel delay functions does not capture complex relationships between flows
30 and travel times well in all situations. This is often the case in operational planning where more
31 detailed analyses are made. One way of refining the model is to extend it to include more complex
32 travel delay functions. This type of extension often results in an asymmetric traffic equilibrium
33 problem. A complementary way of refining the traffic equilibrium model is to introduce side
34 constraints on the flows in the network. The use of the side constrained traffic equilibrium
35 problem for refined traffic modeling is discussed in, for example, Hearn (1980); Ferrari (1995) and
36 Larsson and Patriksson (1999).
37 We study the side constrained traffic equilibrium problem for the special case where the travel
38 demand is fixed for each origin and destination in the network. Further, the travel delay functions
39 are assumed to be strictly increasing, positive, continuous and separable in the link flows. With
40 these assumptions, and given the link flow solution to the side constrained traffic equilibrium
41 problem, one set of travel time adjustments is easily computed through the use of Lagrange
42 multipliers (e.g., Larsson and Patriksson, 1999). The use of the adjustments of the travel times in
43 the context of traffic management is further discussed in Larsson et al. (2000).
44 In this paper, a column generation procedure for the side constrained traffic equilibrium
45 problem is presented. The procedure is based on a relaxation of the side constraints, resulting in a
46 nonlinear column generation sub-problem which is a traffic equilibrium problem. The columns
47 generated are weighted together in a linear master problem. The basic column generation scheme
48 presented is an application of the scheme given for example in Dantzig (1963, Chapter 24). To
49 increase the stability and to improve the performance of the procedure, a Boxstep restriction
50 (Marsten et al., 1975) is introduced. In Section 2, the side constrained traffic equilibrium is stated.
51 Related work on the side constrained traffic equilibrium problem is reviewed in Section 3. In
52 Section 4, the column generation procedure for the problem is outlined along with a description of
53 a stabilization technique. The section also summarizes the algorithm and establishes its conver-
54 gence. A initialization heuristic is described in Section 5. In Section 6, implementation details are
55 given together with computational results for three types of linear side constraints.

56 2. The side constrained traffic equilibrium problem

57 Let the traffic network be defined by the nodes N and the directed links A. Assume that
58 network is strongly connected and that the travel demand in the network is known and inde-
59 pendent of the travel times and let dpq denote the fixed travel demand from the origin p to the
60 destination q. Let C be the set of origin–destination pairs (p; q). Let Rpq denote the non-empty set
61 of simple routes in pair (p; q) and let hr denote the flow on route r 2 Rpq. The compact set of
62 feasible route flows can now be defined as the solutions to the systemX

r2Rpq

hr ¼ dpq; ðp; qÞ 2 C; ð1aÞ
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hr P 0; r 2 Rpq; ðp; qÞ 2 C: ð1bÞ
65 Let dra ¼ 1 if route r includes link a, and 0 otherwise. Let fa denote the flow on link a. The link
66 flow on link a is calculated as a function of the route flows

faðhÞ ¼
X

ðp;qÞ2C

X
r2Rpq

drahr; a 2 A: ð1cÞ

68 Let F denote the set of link flows that satisfy (1). We wish to describe a traffic equilibrium which
69 follows the Wardrop conditions (e.g., Patriksson, 1994). These conditions state that every travler
70 chooses his/her fastest route. Let cr represent the travel time on route r 2 Rpq. The Wardrop
71 conditions may be stated as

hr > 0 ) cr ¼ ppq; ðp; qÞ 2 C; r 2 Rpq; ð2aÞ
hr > 0 ) cr Pppq; ðp; qÞ 2 C; r 2 Rpq; ð2bÞ

74 subject to (1), where ppq can be interpreted as the minimum route travel time in pair (p; q). We
75 presume that the travel time on link a, ta, is a separable, continuous, positive and strictly in-
76 creasing function. Assuming additive link travel times, the travel time of a route r 2 Rpq is cal-
77 culated as crðhÞ ¼

P
a2A drataðfaÞ for any pair (h; f ) satisfying (1c). Given convex functions gk on

78 f 2 F let

gkðf Þ6 bk; k 2 K; ð3Þ
80 define the side constraints.
81 The side constrained traffic equilibrium problem is

min T ðf Þ,
X
a2A

Z fa

0

taðsÞds; ð4aÞ

83 subject to

f 2 F; ð4bÞ
gkðf Þ6 bk; k 2 K: ð4cÞ

86 The side constrained traffic equilibrium problem is a nonlinear multicommodity network flow
87 problem with side constraints. The problem (4) is convex. We make the assumption that a link
88 flow solution f 2 F exists for which gkðf Þ < bk for all k 2 K, holds. In terms of generalized link
89 travel times,

~ttaðfaÞ, taðfaÞ �
X
k2K

u�k
ogkðf Þ
ofa

; ð5Þ

91 the optimal link flow solution, f �, to the side constrained traffic equilibrium problem is a Wardrop
92 equilibrium link flow solution where u� 6 0 is the vector of optimal Lagrangian multipliers to the
93 side constraints (4c). One interpretation of this is that the effect of the side constraints is trans-
94 ferred to the trip makers perception of the link travel times. In addition, the value of the sum in (5)
95 may be interpreted as the time equivalent of a toll that the travelers on the link are willing to pay
96 to use the link (cf. the discussion in Jorgensen, 1963; Hearn, 1980; and Larsson and Patriksson,
97 1999). If a vector u� of multipliers is known, then the side constrained traffic equilibrium problem
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98 (4) could be solved as a standard traffic equilibrium problem. The link travel times ~ttaðfaÞ may be
99 summed up into generalized route travel times as

cr ,
X
a2A

drataðfaÞ �
X
k2K

u�k
X
a2A

dra
ogkðf Þ
ofa

 !
;

101 which satisfy the Wardrop conditions (2). However, the dual multipliers u� are generally not
102 unique, which in turn make the generalized link, and route, travel times non-unique. This is
103 proved and further discussed in Larsson and Patriksson (1999).
104 Our primary interest is in instances of problem (4) where the side constraints model flow re-
105 strictions on individual links or linear combinations thereof, and where the number of side
106 constraints are small relative to the number of links in the network.
107 The side constrained traffic equilibrium with elastic demand is a generalization of the fixed
108 demand mode. Special cases of the elastic demand model that can be modelled as optimization
109 problems and the demand is bounded from above, can be transformed into a fixed demand model.
110 This can be made by the procedure described in for example Gartner (1980). Using the this
111 transformation, methods for the fixed demand case, can be applied to the elastic demand case.

112 3. Related work

113 The traffic equilibrium problem with side constraints is a side constrained nonlinear multi-
114 commodity network flow problem. Instances of this problem have been studied in several earlier
115 papers and a number of solution algorithms have been proposed. Examples of applications of the
116 nonlinear multicommodity network flow problem with side constraints can be found in Ahuja
117 et al. (1993, Chapter 14); Mar�ıın (1995) and Pınar and Zenious (1993).
118 The capacitated nonlinear multicommodity network flow problem is a well studied special case
119 of the side constrained nonlinear multicommodity network flow problem. In Hearn and Ribera
120 (1981), restrictive assumptions on the travel delay functions are formulated such that the ca-
121 pacitated traffic equilibrium problem can be solved using standard methods for the traffic equi-
122 librium problem. A dual ascent algorithm for the capacitated equilibrium problem is presented in
123 Hearn and Lawphongpanich (1990). In their algorithm, the link/route coupling constraints (1c)
124 are dualized. An master problem is constructed. The master problem is a linear problem where
125 each constraint represents a tangent plane which overestimates the optimal dual value. This
126 problem is solved alternating with two sub-problems. The two sub-problems solved in each it-
127 eration are, firstly, the problem of finding a shortest path from each origin to each destination in
128 the network and secondly, a one-dimensional convex problem which is solved analytically. A new
129 tangent plane is constructed from the solution to the sub-problem and is added to the master
130 problem. Encouraging computational results for a small-scale network are given in the paper. In
131 Larsson et al. (1997) a dual method for the traffic equilibrium problem where the link/route
132 coupling constraints are dualized, is discussed (cf. Hearn and Lawphongpanich, 1990). The master
133 problem for finding optimal dual values is solved with sub-gradient optimization. The extension
134 to the case of link flow capacities is presented but no computational results are given. In Larsson
135 and Patriksson (1995) an augmented Lagrangian approach is applied to the capacitated traffic
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136 equilibrium problem. The capacity constraints are dualized. A master problem for updating the
137 dual multipliers and a penalty parameter is solved alternating with an sub-problem that is a traffic
138 equilibrium problem. In the implementation, the disaggregate simplicial decomposition method is
139 used for the sub-problem.
140 In Lawphongpanich (2000) a simplicial decomposition procedure is described for the nonlinear
141 multicommodity network flow problem with linear side constraints. The simplicial decomposition
142 procedure consists of one master and one sub-problem. The master problem consists of mini-
143 mizing a convex nonlinear objective function over a restricted set of flow patterns, all of which is
144 feasible with respect to the demand constraints and the side constraints. This master problem and
145 an sub-problem which is a linear multicommodity network flow problem with side constraints are
146 solved in alternation. The sub-problem is solved with a truncated Danzig–Wolfe decomposition
147 algorithm where the side constraints are dualized. Computational results for an implementation in
148 the GAMS software package (Brooke et al., 1998) are presented. The test problems are instances
149 of capacitated traffic equilibrium problems.

150 4. A stabilized column generation procedure

151 In this section we present a column generation procedure for the convex side constrained traffic
152 equilibrium problem. The basic column generation procedure to be presented in Section 4.1 is an
153 application of the schemes given in Dantzig (1963, Chapter 24), Lasdon (1970, Chapter 4.4) and
154 Magnanti et al. (1976). A Boxstep extension (Marsten et al., 1975) of the column generation
155 scheme is presented in Section 4.2. The proposed column generation procedure is summarized and
156 the convergence is proved in Section 4.3. An advanced start procedure is discussed in Section 4.4.

157 4.1. Basic scheme

158 Dualizing the side constraints in the problem (4) with multipliers u6 0 results in the Lagrangian
159 dual problem

max
u6 0

hðuÞ;

161 where

hðuÞ ¼ min
f2F

T ðf Þ
(

�
X
k2K

ukðgkðf Þ � bkÞ
)
:

163 This problem can be reformulated as

max v; ð6aÞ
165 subject toX

k2K
ukðgkðf Þ � bkÞ þ v6 T ðf Þ; f 2 F; ð6bÞ

uk 6 0; k 2 K; ð6cÞ
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168 which has an infinite number of constraints. Denote problem (6) the dual master problem.
169 A relaxed dual master problem is constructed by considering only a subset of the points in F.
170 Let the set I hold the indices of a finite number of link flow vectors f i 2 F. The relaxed dual
171 master problem is

max v; ð7aÞ
173 subject toX

k2K
ukðgkðf iÞ � bkÞ þ v6 T ðf iÞ; i 2 I; ð7bÞ

uk 6 0; k 2 K: ð7cÞ
176 Dualizing the linear problem (7) gives the dual problem

min
X
i2I

T ðf iÞki; ð8aÞ

178 subject toX
i2I

gkðf iÞki 6 bk; k 2 K; ð8bÞX
i2I

ki ¼ 1; ð8cÞ

ki P 0; i 2 I; ð8dÞ
182 where k is the vector of dual variables for the constraints (7b). For simplicity, we assume that the
183 problem (8) has at least one feasible solution. A procedure for finding a feasible solution is dis-
184 cussed in Section 4.4. The problem (8) is called the restricted master problem. Let k̂k denote the
185 solution to problem (8) and let (ûu; v̂v) denote the corresponding dual solutions to (8b) and (8c),
186 respectively. A link flow solution f � ¼

P
i2I f iki is computed from the solution to the restricted

187 master problem. The solution f � is optimal to the side constrained traffic equilibrium problem (4)
188 if the corresponding dual solution (ûu; v̂v) satisfiesX

k2K
ûukðgkðf Þ � bkÞ þ v̂v6 T ðf Þ; 8f 2 F:

190 Solving a sub-problem,

min
f2F

T ðf Þ
(

�
X
k2K

ûukðgkðf Þ � bkÞ
)
; ð9Þ

192 will check whether this is the case. Let f̂f denote the optimal solution to the sub-problem. Note
193 that since v̂v is constant in the sub-problem it has been omitted there. If the reduced cost r̂r defined
194 as

r̂rðf Þ, T ðf̂f Þ �
X
k2K

ûukðgkðf̂f Þ � bkÞ � v̂v; ð10Þ

196 is negative, then the vector ðgðf̂f ÞT; 1ÞT corresponds to a new column with potential to reduce the
197 objective function value of problem (8) The index set I is augmented and the new column is
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198 added to the restricted master problem (8). If the reduced cost is non-negative, the column
199 generation procedure is terminated and the optimal solution to (4) is given by the solution to the
200 restricted master problem (cf. Lemma 1, Section 4.3). From well known properties of Lagrangian
201 duality, the optimal value to problem (9) provides a lower bound to the optimal value to problem
202 (4), since

T ðf �Þ ¼ min
f2F;gðf Þ6 b

T ðf ÞP min
f2F;gðf Þ6 b

T ðf Þ
(

�
X
k2K

ûukðgkðf Þ � bkÞ
)

P min
f2F

T ðf Þ
(

�
X
k2K

ûukðgkðf Þ � bkÞ
)
:

204 The sub-problem (9) is a traffic equilibrium problem. It is solved a number of times in the solution
205 procedure, each time with changes only in the objective function, since u is updated in each it-
206 eration. Therefore a method that has good reoptimization facilities is most suitable. We have
207 chosen the disaggregate simplicial decomposition (DSD) method of Larsson and Patriksson
208 (1992).
209 The DSD method is based on a route-restricted equilibrium problem and a sub-problem for
210 generating new routes to the restriction. Assume that a non-empty subset of the simple routes
211 �RRpq 
 Rpq for all (p; qÞ 2 C is known and denote the flow on route r 2 �RRpq by hr. The restricted
212 equilibrium problem in the DSD method is given by

min
f

T ðf Þ
(

�
X
K2K

ûukðgkðf Þ � bkÞ
)
; ð11aÞ

214 subject to

fa ¼
X

ðp;qÞ2C

X
r2 �RRpq

drahr; a 2 A; ð11bÞ

X
r2 �RRpq

hr ¼ dpq; ðp; qÞ 2 C; ð11cÞ

hr P 0; ðp; qÞ 2 C; r 2 �RRpq: ð11dÞ

218 The problem (11) is a convex problem where the constraints have a Cartesian product structure
219 with respect to the origin–destination pairs. The problem (11) is solved by a projected gradient
220 method (see e.g., Bertsekas and Garni, 1983). The optimal solution to this problem is feasible in
221 (9) and is therefore an upper bound on the optimal value to problem (9). Let the solution to the
222 restricted equilibrium problem (11) be denoted ŷy. The DSD algorithm proceeds by linearizing the
223 objective function of (11) with respect to the link flow variables at ŷy. The linearized problem is

min
y

T ðŷyÞ
(

�
X
k2K

ûukðgkðŷyÞ � bkÞ þ
X
a2A

taðŷyaÞ
 

�
X
k2K

ûuk
ogkðŷyÞ
oya

!
ðya � ŷyaÞ

)
; ð12aÞ

225 subject to
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ya ¼
X

ðp;qÞ2C

X
r2Rpq

drahr; a 2 A; ð12bÞ

X
r2Rpq

hr ¼ dpq; ðp; qÞ 2 C; ð12cÞ

hr P 0; r 2 Rpq ðp; qÞ 2 C: ð12dÞ
229 This problem amounts to finding a fastest route in each of the origin–destination pairs. To effi-
230 ciently solve the fastest route problem we need to disregard negative cycles. Let K1 and K2

231 denote the index set for linear and nonlinear side constraints respectively. We require that
232

P
k2K1

uk
ogkðyÞ
oya

6 tað0Þ for a 2 A and that ogkðyÞ
oya

P 0 for a 2 A and k 2 K2. These restrictions
233 guarantee that the coefficients corresponding to ya for all a 2 A in the objective function (12a) are
234 non-negative for all ŷy 2 F. Non-negative link travel times imply non-negative cycle times. We
235 have not implemented any mechanism for avoiding such cycles, since they, in our application,
236 have not appeared.
237 For each origin destination pair (p; qÞ 2 C the set bRRpq is augmented by the generated route if
238 this is not already present in the set. Due to the convexity of problem (4),

T ðf �ÞP min
f2F

T ðf Þ
(

�
X
k2K

ûukðgkðf Þ � bkÞ
)

P min
y2F

T ðŷyÞ
(

�
X
k2K

ûukðgkðŷyÞ � bkÞ þ
X
a2A

taðŷyaÞ
 

�
X
k2K

ûuk
ogkðŷyÞ
oya

!
ðya � ŷyaÞ

)
; ð13Þ

240 the optimal value to the fastest route problem provides a lower bound on the optimal value to
241 problem (9) and therefore also a lower bound to the optimal value of problem (4). The DSD
242 method alternates between solving the two problems Eqs. (11) and (12). The route generation
243 procedure is terminated when the relative gap between the upper and the lower bounds is smaller
244 than some prespecified value.

245 4.2. Boxstep modification

246 The cutting plane procedure, and the dual equivalent column generation procedure, suffers
247 from inherent instability (see e.g., Hiriart-Urruty and Lemar�eechal, 1993, Chapter 15). The in-
248 stability may cause that consecutive iterates are very distant. To prevent instability in the column
249 generation procedure, the procedure presented in Section 4.1 is modified to include a Boxstep
250 restriction (Marsten et al., 1975). Through the Boxstep modification of the procedure, adaptive
251 bounds on individual dual variables are introduced in the master problem to prevent large moves
252 in the dual space. For linear problems a modification similar to the Boxstep restriction has been
253 used for stabilizing column generation procedures with promising computational results in du
254 Merle et al. (1999).
255 Box constraints are added on individual dual variables in the relaxed dual master problem (7).
256 Given multiplier values ûu6 0 the Boxstep modification of the relaxed dual master problem is

max v; ð14aÞ
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258 subject toX
k2K

ukðgkðf iÞ � bkÞ þ v6 T ðf iÞ; i 2 I; ð14bÞ

ulbk 6 uk 6Uub
k ; k 2 K; ð14cÞ

uk 6 0; k 2 K; ð14dÞ
262 where

ulbk :¼ ûuk � l; uubk :¼ ûuk þ l if ûuk ¼ ulbk ; ð15aÞ
ulbk :¼ ûuk � l; uubk :¼ ûuk þ l if ûuk ¼ uubk ; ð15bÞ
ulbk :¼ ulbk ; uubk :¼ uubk if ulbk < ûuk < uubk ; ð15cÞ

266 for k 2 K and where l is a box size parameter. The corresponding Boxstep modified restricted
267 master problem is then

min
X
i2I

T ðf iÞki

(
þ
X
k2K

ðuubk ak � ulbk bkÞ
)
; ð16aÞ

269 subject toX
i2I

gkðf iÞki þ ak � bk 6 bk; k 2 K; ð16bÞX
i2I

ki ¼ 1; ð16cÞ

ki P 0; i 2 I; ð16dÞ
ak; bk P 0; k 2 K; ð16eÞ

274 where k is the vector of the dual variables for the constraints (7b), and a and b are vectors of the
275 dual variables for the upper and lower bounds on u, respectively. The values of multipliers ûu are
276 taken as the values of the dual variables to the constraints (16b).
277 Applying the Boxstep procedure can result in an optimal value to problem (16) which is not
278 necessarily an upper bound on the optimal value to problem (4) since the solution

P
i2I f iki is not

279 necessarily feasible with respect to the side constraints. The computation of a lower bound given
280 by (4.1) is still valid.
281 The Boxstep modification stabilizes the column generation scheme, and it also decreases the
282 computational burden of the sub-problem, because it leads to a faster reoptimization.

283 4.3. Algorithm and convergence

284 The column generation procedure can be summarized in the following steps.

Step 0. Find an f 0 such that gkðf 0Þ < bk, k 2 K and set the vector u1 ¼ 0. Choose some � > 0.
Set I :¼ f0g and i :¼ 1.
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Step 1. Solve the master problem (16) with Boxstep restrictions according to (15). If
gkð
P

i2I f ikiÞ6 bk, for all k 2 K, then update the upper bound.
Step 2. Solve the sub-problem (9). Update the lower bound of T ðf �Þ. If the corresponding re-

duced cost r̂rP 0 in (10) then the algorithm terminates. Otherwise, let f i denote the so-
lution to problem (9). Augment the index set I :¼ I [ fig.

Step 3. Terminate if the relative gap between the upper and the lower bound is smaller than �.
Let i :¼ iþ 1 and go to Step 1.

294 A heuristic procedure for finding the strictly feasible link flow vector f 0 in Step 0 is discussed in
295 Section 4.4. Below, we show how the algorithm has an asymptotic convergence. The proof is
296 based on the technique used in Zangwill (1969, Chapter 14).

297 Lemma 1 (Convergence test). If, for a fixed ûu6 0 and v̂v 2 R

min
f2F

r̂rðf ÞP 0 ð17Þ

299 holds, then ûu and v̂v are optimal in problem (6) and the minimizer f̂f to problem (9) is optimal in
300 problem (4).

301 Proof. See Dantzig (1963, Chapter 24, Theorem 2). �

302 Theorem 1. If the sequence of iterates generated by the algorithm ff ig is finite, then the last iterate

303 solves problem (4). If the sequence is infinite then for some �II � I; ff ig!i2
�II
f1, where f1 satisfies the

304 convergence test (17).

305 Proof. If the sequence of iterates is finite then the algorithm has terminated in the convergence test
306 and we conclude that the last iterate f i solves the sub-problem (9) and problem (4) according to
307 Lemma 1.
308 Assume that the sequence of iterates is infinite. Denote the sequence of dual iterates by
309 fðui; viÞg11 . First we show that the primal and dual iterates are contained in compact sets. Con-
310 struct the problem

max v; ð18aÞX
k2K

ukðgkðf Þ � bkÞ þ v6 T ðf Þ; f 2 F; ð18bÞ

ulbk 6 uk 6 uubk ; k 2 K; ð18cÞ
uk 6 0; k 2 K: ð18dÞ

315 Define a point f 0 as

T ðf 0Þ ¼ min
f2F

T ðf Þ

317 for which vi P T ðf 0Þ holds. Let u ¼ 0 and from (18b) and the strictly feasible solution f 0 we have
318 that vi 6 T ðf 0Þ. Therefore, vi is bounded. From the fact that u6 0 and from (18b) we get
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ukðgkðf 0Þ � bkÞ6
X
k2K

ukðgkðf 0Þ � bkÞ6 T ðf 0Þ � v6 T ðf 0Þ � T ðf 0Þ:

320 Therefore

uk P
T ðf 0Þ � T ðf 0Þ
gkðf 0Þ � bk

;

322 that is, ui is bounded. This boundedness ensures that there exists a set �II � I for which

ðui; viÞ ! ðu1; v1Þ; i 2 �II; ð19Þ
f i ! f1; i 2 �II: ð20Þ

325 Since in iteration i a constraint of the form

Hðf iÞ ¼ ðu; vÞ
X
k2K

ukðgkðf iÞ
					

(
� bkÞ þ v6 T ðf iÞ

)
;

327 is added, we have that (ul; vlÞ 2 Hðf iÞ for all lP iþ 1, that is,X
k2K

ulkðgkðf iÞ � bkÞ þ vl 6 T ðf iÞ; lP t þ 1:

329 From (19),X
k2K

u1k ðgkðf iÞ � bkÞ þ v1 6 T ðf iÞ:

331 Since F is a compact set and T ðf Þ �
P

k2K ukðgkðf Þ � bkÞ is a continuous function in u, the so-
332 lution of the sub-problem (9) defines a closed point-to-point map D : RjKjþ1 ! RjAj. Therefore,
333 from (20)X

k2K
u1k ðgkðf1Þ � bkÞ þ v1 6 T ðf1Þ: ð21Þ

335 Now, assume that (u1; v1) does not satisfy condition (17). Since the map D is closed, f1 is a
336 solution to the sub-problem (9) for ðu; vÞ ¼ ðu1; v1Þ. But for such (u1; v1) from Lemma 1,X

k2K
u1k ðgkðf1Þ � bkÞ þ v1 > T ðf1Þ: ð22Þ

338 The point ðu0; v0Þ ¼ ð0; T ðf 0ÞÞ is feasible in \i2IHðf iÞ. Since the box constraints (18c) are always
339 inactive there is at least one feasible point (u; v) in the set\

i2I
Hðf iÞ

( )\
fulbk 6 uk 6 uubk 8k 2 Kg:

341 As (21) and (22) are contradictory, (u1; v1) must satisfy (17).
342 Let yi ¼

P
i2I kif i for k P 0 which, by the convexity of T , satisfies T ðyiÞ6

P
i2I kiT ðf iÞ.

343 Choosing k as an optimal solution to problem (8) we have T ðyiÞ6
P

k2K bkuik þ vi. NowX
k2K

bkuik þ vi P T ðyiÞP T ðf �Þ:
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345 Consequently the limit y1 is an optimal solution to problem (4). �

346 4.4. Initialization

347 The column generation procedure proposed in Section 4 starts from a strictly feasible link flow
348 vector f 0. However, an initial strictly feasible solution is not necessary for the convergence of the
349 column generation scheme. Initial computational experiments showed that for some test prob-
350 lems, the nonlinear column generation procedure has problems finding feasible solutions and that
351 the efficiency of the procedure is improved when it is warm-started from a feasible solution.
352 A heuristic phase-one procedure is developed to produce such a starting solution. The proce-
353 dure is similar to the column generation procedure described for problem (4), but with an added
354 penalty function to the objective (4a) together with a shift of the right-hand sides of the side
355 constraints (4c). This heuristic procedure for finding feasible solution has earlier been used in, for
356 example, Yang and Yager (1994). The right-hand side shift is made by scaling the right-hand side
357 vector b of (4c). Set nk ¼ 0:99 for k 2 K where bk > 0 and nk ¼ 1:01 for k 2 K where bk < 0. Let

gkðf Þ6 nkbk; k 2 K; ð23Þ
359 define a set of strengthend side constraints. Define the penalty function

P ðf ; cÞ ¼ c
2

X
k2K

ðmaxf0; gkðf Þ � nkbkgÞ2:

361 This penalty function is added to the objective function (4a). These modifications are applied to
362 the solution procedure until a feasible solution is generated, either that the generated column is
363 feasible with respect to the side constraints, or that the master problem generates a feasible so-
364 lution. When a feasible solution is found the right-hand sides are shifted back to their initial
365 values by letting n ¼ 1:0, the penalty function P is removed from the objective, and the phase one
366 procedure is terminated. The phase-one procedure is heuristic since it fails if the the set defined by
367 (23) is an empty set. The value of the parameter c has a great effect on the computational per-
368 formance. In the case of negative components in the ogðf Þ=ofa-vector, a large value of c may
369 introduce negative cycles in the fastest path sub-problem and some caution is required.

370 5. Numerical experiments

371 We present results from numerical tests for three types of side constraints. The first type is for
372 general linear side constraints. The linear constraints are constructed to represent typical flow
373 restrictions in the context of strategic traffic management. The second type of side constraints are
374 restrictions on individual links. A subset of the links in the test network is selected and for these
375 links the flow is fixed to the system optimal link flows. The third type of side constraint consists of
376 link flow capacities. The capacities are chosen as multiples of the system optimal link flow so-
377 lution. This type of capacity constraint is used in Lawphongpanich (2000). The test networks in
378 Table 1 are used in the computational experiments.
379 In each iteration the linear restricted master problem is solved to optimality using the CPLEX
380 6.5 Simplex callable library. The sub-problem is solved using a modified implementation of the
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381 disaggregate simplicial decomposition method in Larsson and Patriksson (1992) where the re-
382 stricted equilibrium problem is solved using a gradient projection procedure (see e.g., Bertsekas
383 and Garni, 1983). The solution procedure for the sub-problem is heavily truncated in all nu-
384 merical experiments. The problem of finding new fastest routes in the network is solved every 20th
385 iteration. The computations have been performed on a SUN Ultra 10 with 300 MHz CPU and
386 320 MB of internal memory. The chosen values of the penalty parameter c and the box size
387 parameter l is determined by experiments.

388 5.1. Three traffic management scenarios modeled using linear side constraints

389 In this section results from numerical experiments for three test scenarios with linear side
390 constraints are presented. The scenarios are motivated by planning goals, and the constraints are
391 chosen to represent typical traffic management goals. The test network is the city of Link€ooping.
392 The equilibrium traffic flows for the centre of the Link€ooping are shown in Fig. 1. The link widths
393 are proportional to the link flows. The objective value for the traffic equilibrium problem solved

Table 1

Test networks

Network Nodes Arcs Commodities

Nine node 9 18 4

Sioux Falls 24 76 528

Hull 501 798 142

Link€ooping 335 882 12,372

Fig. 1. Link€ooping equilibrium scenario.
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394 for finding the equilibrium solution is 4.056018eþ8 (with a lower bound on the optimal value of
395 4.056016eþ8).
396 In the first scenario, the traffic inflow to the city center of Link€ooping is restricted. The re-
397 striction concerns the inflow into a zone of 28 nodes and is placed on 10 links and is defined by six
398 linear side constraints. The links included in the six side constraints are shown in Fig. 2 where
399 each black line represent one side constraint. The total flow on the 10 links in the Wardrop
400 equilibrium flows is 40 265 vehicles during a period of 2 h and the travel demand from origins
401 outside the defined city center to destinations in the city center is 21 608 vehicles during this time.
402 Three sub-scenarios are constructed by requiring that the inflow is reduced by 30%, 20% and 10%,
403 respectively, that is that 64%, 43% and 21% of the traffic whose destination is not within this zone
404 is forced to reroute around the zone.
405 The penalty parameter c is set to 0.9 and a box size of l ¼ 100 is chosen. The computational
406 results are shown in Table 2 where the scenario is given in column 1, the number of iterations
407 made in the column generation procedure in column 2, the number of route generation problems
408 solved in column 3, the number of iterations in the column generation procedure until the solution

Fig. 2. Link€ooping Scenario 1 30%.

Table 2

Test results for the Link€ooping Scenario 1

Reduction (%) #Iter. #Route gen. prob. #Iter. until feas. Lower bound Upper bound CPU (s)

30 700 48 444 4.070729eþ8 4.070762eþ8 881

20 260 26 197 4.061485eþ8 4.061505eþ8 305

10 580 42 107 4.057255eþ8 4.057282eþ8 644
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409 to the master problem is feasible in the side constraints, excluding the feasible solution found by
410 the phase-one procedure, is given in column 4, the lower and upper bounds at termination in
411 column 5 and 6, respectively, and the computational time in CPU seconds is given in column 7.
412 The number of iterations, the number of fastest route problems solved and the CPU time include
413 the computations made in the phase-one procedure. The solution procedure is terminated when a
414 relative accuracy between the upper and the lower bound of 1e)3% is reached.
415 The six side constraints are all active in the optimal solutions to the three sub-scenarios. Fig. 3
416 shows the link flow difference between the unconstrained equilibrium solution and the case where
417 the inflow is reduced by 30%. The link widths are proportional to the absolute difference, where
418 the darker links indicate an increase and the lighter a decrease in flow. Fig. 4 shows link widths
419 proportional to the relative flow difference between the Wardrop equilibrium flows and the flows
420 in Scenario 1. In Fig. 5 the iteration history is shown for the objective values of the upper and
421 lower bounds. The horizontal line in Fig. 6 represents a high quality lower bound on the optimal
422 value, indicating that the quality of the upper bound is good compared to the quality of the lower
423 bounds computed in the solution scheme.
424 In the second scenario the total flow, in both directions, on each of 13 road segments is re-
425 stricted. The links with flow restrictions are all in the central part of Link€ooping. The locations of
426 the restrictions are shown in Fig. 7. Three sub-scenarios are constructed. The flow restrictions in
427 the three sub-scenarios are chosen such that the total road flow on individual road segments (i.e.,
428 the link flow in both directions) is reduced by 30%, 20% and 10% compared to the equilibrium
429 flows. The penalty parameter c is set to 0.9 and a box size of l ¼ 1 is chosen. The column gen-
430 eration scheme is terminated when a relative accuracy between the upper and the lower bound of
431 le)3% is reached. The computational results are shown in Table 3. All but two of the side con-

Fig. 3. Link€ooping Scenario 1 30% (relative difference).
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432 straints are active in the solution to the sub-scenario with a 30% reduction, and all but three in the
433 20% and 10% cases.

Fig. 4. Link€ooping Scenario 1 30% iteration history.

Fig. 5. Link€ooping Scenario 2 30%.
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Fig. 6. Link€ooping Scenario 2 30% (relative difference).

Fig. 7. Link€ooping Scenario 3.
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434 In the third scenario, the total flow in both directions on each of four road segments, is re-
435 stricted. The scenario is constructed such that some travelers are forced to use a bypass route
436 instead of traveling through the central part of the city. The road segments where the total flow
437 are restricted are shown in Fig. 8. In order to achieve this goal, the flow restrictions are chosen
438 such that the link flow in both directions increases 20% compared to the equilibrium flow. That is,
439 letting �ff denote the equilibrium link flow, the constraints added are of the form
440 fa1 þ fa2 P 1:2ð�ffa1 þ �ffa2Þ. The penalty parameter c is set to zero and a box size of l ¼ 1 is chosen.
441 The column generation procedure is terminated when a relative accuracy between upper and
442 lower bounds on the objective value of 1e)3% is reached. The upper bound on the optimal ob-
443 jective value is at termination 4.058109eþ8, and the lower bound is 4.058076eþ8. All the side
444 constraints are active in the solution at termination. The solution procedure requires 480 itera-
445 tions and 37 fastest path problems are solved. The computational time is 526 s. Neither the choice
446 of box size parameter nor the phase one procedure is crucial for the practical convergence speed of
447 the algorithm for this type of test problem.

Table 3

Test results for the Link€ooping Scenario 2

Reduction (%) #Iter. #Route gen. prob. #Iter. until feas. Lower bound Upper bound CPU (s)

30 780 52 154 4.062912eþ8 4.062939eþ8 1042

20 720 49 153 4.059475eþ8 4.059512eþ8 973

10 600 43 246 4.057128eþ8 4.057149eþ8 742

Fig. 8. Link€ooping Scenario 3 (relative difference).
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448 5.2. Partial system optimal flows

449 In this section, numerical results for test problems where some of the links in the network has a
450 fixed flow are presented. The numerical experiments are performed using the Link€ooping network.
451 Based on system optimal link flows ~ff for the Link€ooping network, two sub-scenarios are con-
452 structed. For each of the link in the network the total travel time tað ~ffaÞ ~ffa, where ~ffa is the system
453 optimal link flow for link a 2 A, is computed. For the two sub-scenarios, the 10% and 20% of the
454 links with the highest value of tað ~ffaÞ ~ffa are selected. From each of the selected links, a side con-
455 straint of the form fa ¼ ~ffa is constructed. The selected links in the two sub-scenarios represent
456 85% and 92% of the total travel time respectively, and the sub-scenarios therefore ensure system
457 optimal link flows on links with a noticeable effect on the total travel time. These test problems
458 clearly violate our initial assumption of the existence of a strictly feasible solution to the side
459 constraints. Further, the heuristic phase-one procedure proposed in Section 4.4 cannot be applied
460 to the case of side contraints of equality type. Instead the column generation procedure is ini-
461 tialized with the (infeasible) Wardrop equilibrium links flows for the Link€ooping network.
462 The column generation procedure fails to produce a feasible solution in both of the sub-sce-
463 narios. However, near-feasible solutions are found. For the 10% sub-scenario, 89 links are selected
464 resulting in 89 side constraints. (In practice, each of the equality side constraints is rewritten as
465 two inequality side constraints.) The parameter value l ¼ 1:0 is selected. The column generation
466 procedure is terminated after 600 iterations. At termination, a link flow pattern with an objective
467 value of 4.061930eþ8 is obtained. A lower bound of 4.061786eþ8 is recorded. The infeasibility of
468 the best link flow solution found, computed as the residual

P
k2K maxf0; gkðf Þ � bkg, equals 0.42,

469 where
P

k2K bk equals 5:2eþ 5. The computational time is 934 CPU seconds. The route gener-
470 ation problem is solved 43 times.
471 The results for the 20%-scenario is the following. A set of 177 links is selected to comprise the
472 links with the highest total travel time in the system optimal solution. The parameter value
473 l ¼ 1:0 is selected. After 600 iterations, an upper bound of 4.064737eþ8 has been found and a
474 lower bound of 4.064139eþ8 is recorded. The residual for this solution is 5.03, where

P
k2K bk

475 equals 9:6eþ 5. The computational time is 2109 CPU seconds and 43 route generation problems
476 are solved.
477 To illustrate the importance of the Boxstep modification a numerical experiment with different
478 box sizes is made. The data for the 20% scenario is used. The stabilized column generation
479 procedure is run for a fixed CPU time of 800 s. In Fig. 9 the best lower bound is shown for
480 different choices for the box size parameter l. For small values of the box size parameter
481 (l ¼ 0:01) small dual steps are taken. For this choice, the reoptimization of the sub-problem is
482 fast and a large number of iterations are made.
483 For large values of the box size parameter (l ¼ 5) large dual steps are taken. In this case the
484 procedure has an unstable behavior, the reoptimization of the sub-problem is not as efficient as
485 for small changes in the dual variables, and a smaller number of iterations can be made within the
486 given limit. (For even larger values of l, the performance of the procedure becomes even worse.)
487 The results from this experiment show how the quality of the lower bound can be improved by the
488 introduction of the Boxstep procedure. The best computational performance is achieved with a
489 compromise, where the reoptimization of the sub-problem is relatively fast, and where the dual
490 steps are allowed to be sufficiently large (for example by the choice l ¼ 1).
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491 5.3. Capacity side constraints

492 In this section, results from numerical experiments are presented for the capacitated traffic
493 equilibrium problem. All four networks in Table 1 have been used for the experiments.
494 Three scenarios are constructed for each of the test networks. In each of the scenarios the
495 capacities are chosen as a percentage of the system optimal link flow solution. The percentages
496 chosen are 105%, 110% and 120%. This type of test problems is also used in Lawphongpanich

Fig. 9. Lower bounds for some box size parameters l.

Table 4

Test results for the capacitated traffic equilibrium problem

Network Capacity (in %) #Iter. # Route

gen. prob.

#Iter. until feas. Lower bound Upper bound CPU (s)

Nine node 105 83 14 80 1912.50 1912.52 1

110 80 10 74 1873.31 1873.32 1

120 41 7 38 1829.56 1829.57 1

Sioux Falls 105 100 18 80 42.5326 42.5355 4

110 60 16 55 42.3769 42.3796 2

120 40 15 24 42.3169 42.3175 2

Hull 105 460 36 182 21799.4 21801.0 310

110 380 32 177 21697.0 21698.6 191

120 200 23 117 21603.4 21605.3 78

Link€ooping 105 340 30 – 4.061638eþ8 4.063108eþ8 1144

110 180 22 – 4.058899eþ8 4.060200eþ8 476

120 160 21 – 4.056554eþ8 4.057481eþ8 408

20 T. Larsson et al. / Transportation Research Part B xxx (2002) xxx–xxx

TRB 393 No. of Pages 22, DTD = 4.3.1

31 December 2002 Type SPS, Chennai
ARTICLE IN PRESS



UNCORRECTED
PROOF

497 (2000). Links with zero flow in the system optimal solution are eliminated from the capacitated
498 traffic equilibrium since the corresponding arc capacity will be zero. The box size is chosen as l
499 equal to 0.1, 0.001, 0.01, and 0.3, for the Nine node, Sioux Falls, Hull, and Link€ooping networks,
500 respectively. The penalty parameter c is chosen to be 1.0, 0.1, 0.2, and 0.9, respectively. The
501 solution procedure is terminated when a relative accuracy between the upper and the lower bound
502 of 1e)3% for the Nine node network, 1e)2% for the Sioux Falls and Hull networks, and 5e)2%
503 for the Link€ooping network, is reached. The results from the computational experiments are given
504 in Table 4. For the Link€ooping network, only one feasible solution is generated, and it is generated
505 by the phase-one procedure. In Fig. 10 the infeasibility with respect to the side constraints of the
506 current solution to the master problem is given for the Hull test network and the 105% case. The
507 first 19 iterations are made in the initialization procedure. Iterations where the value for the right-
508 hand side residual is missing represent a feasible solution.

509 6. Conclusions

510 We have presented a column generation procedure for the side constrained traffic equilibrium
511 problem. The column generation procedure is a modification of that given, for example, in
512 Lasdon (1970, Chapter 4.4) where the stabilization technique in Marsten et al. (1975) is intro-
513 duced to get a more computationally efficient algorithm. Computational results for three types of
514 side constraints are presented with their focus on test problems which represent typical traffic
515 management goals. The algorithm performs reasonably well and performs better for the cases
516 where the number of side constraints is small. For the Nine node and the Sioux Falls network, the
517 performance, measured in terms of the number of fastest route problems solved, is comparable to
518 the result from the algorithm presented in Lawphongpanich (2000).

Fig. 10. Right-hand side residual in the Hull 105% case.
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