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Abstract

Volvo Aero has recently invested in a new production cell containing ten re-
sources. The production cell is supposed to carry out a large variety of jobs
since �ve of the resources are multipurpose machines that are able to pro-
cess three di�erent types of operations. The cell contains, except from the
multipurpose machines, three set up and tear down stations, one automatic
deburring machine and one manual deburring station. The purpose of the
thesis was to study how the jobs will be scheduled with the default prior-
ity function that is delivered with the multitask cell, compared to optimal
scheduling and see if there is any unused potential. To study this a mathe-
matical model was implemented in AMPL together with numerous heuristics
trying to do the scheduling as well as possible, in a reasonable amount of time.
The focus of the heuristics has been to minimize the total lateness, a variable
that Volvo Aero wants to keep as low as possible. The scheduling problem
can be described as a job shop problem with multipurpose machines which
is among the hardest combinatorial problems within optimization.

The results from the study show that there is a lot of unused potential
that will be wasted if the default function is used. The scheduling could
be improved considerably if the existing function is changed for one that is
adapted to the production at Volvo Aero. Implementing an optimization
based heuristic could improve the scheduling even further, but is much more
cumbersome to implement in the real system. How the heuristic should work
needs to be studied further to be applicable in reality.



Sammanfattning

Volvo Aero har nyligen investerat i en ny produktionscell som innehåller tio
resurser. Eftersom fem av resurserna är multifunktionella maskiner som kan
utföra tre olika typer av operationer är multitaskcellen tänkt att utföra en
stor variation av jobb. I multitaskcellen �nns det, förutom de multifunktio-
nella maskinerna, tre riggnings- och rivningsstationer, en automatisk grad-
ningsrobot och en station där manuell gradning utförs. Syftet med denna
studie var att studera hur e�ektivt jobben kommer att schemaläggas med
standardprioriteringsfunktionen som den levereras med jämfört med opti-
mal schemaläggning, samt om det �nns någon outnyttjad potential. För att
studera detta har en matematisk modell samt ett �ertal olika heuristiker
implementerats i AMPL i ett försök att göra schemaläggningen så e�ektivt
som möjligt, inom en rimlig tid. Fokus har legat på att minimera antalet
förseningstimmar, en variabel som man hos Volvo Aero vill ha så låg som
möjligt. Schemaläggningsproblemet kan beskrivas som ett job shop-problem
med multifunktionella maskiner vilket är bland de svåraste kombinatoriska
problemen inom optimering.

Resultaten från denna studie visar att det �nns oanvänd potential som går
förlorad om standardprioriteringsfunktionen används. Enbart genom att byta
prioriteringsfunktione mot en som är anpassad för produktion på Volvo Aero
kan schemaläggningen av jobben e�ektiviseras avsevärt. Implementeringen av
en optimeringsheuristik i systemet skulle kunna e�ektivisera schemaläggning-
en ytterligare, men är besvärligare att realisera. Hur denna heuristik skulle
fungera behövs också studeras ytterligare för att vara praktiskt tillämpbart.
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Chapter 1

Introduction

1.1 The Company

Volvo Aero is a subsidiary of AB Volvo. The company's main area is devel-
oping and producing components with a high technology content for aircraft
and rocket engines. Service and maintenance of their products is also an
increasingly important part of their business. Volvo Aero has its head quar-
ters at Trollhättan, Sweden, where this project has taken place. Except from
Trollhättan they have two more o�ces in Sweden, one in Norway and three
in the USA.

1.2 Background

At the moment of writing Volvo Aero is about to build a new production
cell, which is an extensive project. The new production cell will contain ten
resources, machines and work stations, when �nished. Five of these resources
are multipurpose machines, called multitask machines, that can carry out a
variety of operations; the multitask machines work in parallel instead of just
one dedicated for every product. The multitask cell is delivered with a default
priority function that is not adapted for Volvo Aero. This is a totally new
concept for Volvo Aero that rises new questions. The main question is how
well the jobs will be scheduled in the multitask cell; is the default priority
function satisfying? Also, the lead times for the products will vary from time
to time depending on the number of jobs in the multitask cell, which makes
it hard to set exact due dates.
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1.3 Purpose of the thesis
The purpose of this thesis is to study the resource utilization in the new
production cell at Volvo Aero. The production cell is, as mentioned above,
delivered with a priority function and is a rather naive but fast algorithm
for job scheduling. Priority functions are easy to implement and work rather
well, even if there are disturbances in the system. That is why they are often
used in industry. The main objectives are to study how well the jobs in the
production cell will be scheduled using the default function, and to determine
whether there will be any unused potential in the production cell.

The production cell will be studied from a mathematical point of view.
A mathematical model of the multitask cell will be implemented where the
default function together with some alternatives could be simulated. Some
optimization heuristics that will use the mathematical model will be devel-
oped and implemented to compare to the default function. The total lateness
will be used to measure the quality of the result for the di�erent heuristics
and functions.

Hopefully the study results in an algorithm or another priority function
that can be used preferably instead of the existing priority function, but the
main objective is to show that there is unused potential in the production
cell.

1.4 Outline
Chapter 2 introduces scheduling problems in general, a description of the
multitask cell, and complexity classes. In Chapter 3 a complete optmization
model of the production cell is described. Because of the complexity of the
problem it would take too long to �nd an optimal schedule for larger exam-
ples. However, it is possible to create optimal schedules for smaller examples;
to show the potential an example is shown in Section 3.4. Chapter 4 presents
the di�erent heuristics that were implemented and tested. The existing prior-
ity function and some other priority functions that were tested are presented
in Section 4.1. How the model of the production cell, the heuristics and a
visualization module for creating Gantt charts of the solutions was imple-
mented can be found in Chapter 5. The results from the tests are found in
Chapter 6. The �nal part of the report is the discussion and conclusions part
in Chapter 7.
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Chapter 2

Scheduling problems

Scheduling problems have been studied for ages since there is a lot of time and
money to save from using e�ective scheduling approaches. Some examples
where scheduling is used are: to minimize the length of the routes for logistic
companies, to have e�ective personnel scheduling for airline companies and
to minimize the lead times for manufacturing companies.

The area that has got the most attention in the area of scheduling is static
scheduling. However, in later years it has been more and more common with
dynamic scheduling problems. One of the reasons is the introduction of the
Just-In-Time (JIT) systems and the fact that companies strive to be more
�exible and not have too much capital locked up in raw material etc. The
main di�erence between static and dynamic scheduling is that in a static
environment all the parameters, such as arrival times of products and pro-
cessing times for the operations, are available from the start. In dynamic
scheduling these type of parameters can change during execution time, for
example when jobs are late. This implies that in a dynamic scheduling en-
vironment it is possible to schedule jobs where the exact arrival time is not
always available. Most manufacturing problems are of the dynamic type
since they have some stochastic variables, such as machine breakdowns or
that an operation is stalled for some reason, making the exact arrival time
hard to predict. A semi-dynamic optimization method (see Section 4.2) was
tested in one of the attempts to create an optimal schedule. The method
is only quasi-dynamic since it is optimizing in discrete time steps and the
problem is static in every step. Many dynamic scheduling problems can be
transformed to their respective static scheduling problem and solved using an
iterative optimization method. Longer time intervals in the iterative method
will make room for more stochastic events, which might disrupt the existing
schedule.

In Section 2.1 a method for characterizing static scheduling problems is
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presented. The method described is used to classify the problem in Sec-
tion 2.3 after a description of the multitask cell in Section 2.2. Section 2.4
describes some previous work related to this topic. Section 2.5 describes
complexity classes to make it clear how hard this problem is.

2.1 Classification of scheduling problems
It is common to use a three-variable notation, α|β|γ, as the one described by
Anderson et al. in [MS97] for describing machine scheduling problems. Each
variable could be seen as a �eld that contains one or more variables. The
α-variable denotes machine environment, β-variable de�nes the job charac-
teristics and the γ-variable de�nes the optimality criterion. More details are
given in every separate section.

2.1.1 Characterization of the machine environment
The α �eld is a two-variable �eld of the form α = α1α2. The α1-variable
can be one or several of the variables in the set {◦, P, Q, R, O, F, J, MPM},
where

• ◦: single machine

• P : identical parallel machines

• Q: uniform parallel machines

• R: unrelated parallel machines

• O: open shop problem

• F : �ow shop problem

• J : job shop problem

• MPM : MultiPurpose Machines

Not all combinations are possible. For example it is not possible to have
both one and two machines at a time; however, it is possible to have a
shop problem combined with multipurpose machines. The di�erent variables
are interpreted as follows. If α1 ∈ {◦, P, Q, R}, every job consists of only
one operation that can be processed on any of the available machines. If
α1 = {◦}, there is only one machine available. If α1 = {P}, where P refers
to identical parallel machines, the processing time for every job is the same
on every machine. If α1 = {Q}, where Q refers to uniform parallel machines,
the processing time might di�er between the machines. If α1 = {R}, where
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R refers to unrelated parallel machines, the processing time on each machine
is both job dependent and machine dependent.

Let Jj denote a job number j and Oji denote operation number i of
job j. (Note that J and O denoting the job shop and open shop problems
are not the same as Jj and Oji denoting a job and an operation.) If α1 ∈
{O,F, J} the jobs consist of more than one operation, which is denoted as
Jj = {O1j, . . . , Omj} for a job consisting of m operations. If α1 = O, where
O refers to an open shop problem, every operation Oij has to be processed on
machine Mi but the order in which the operations are processed is irrelevant.
When α = F , where F refers to a �ow shop problem, the order in which the
operations is processed is relevant: operation O1j has to be processed before
operation O2j and so on. The last problem is the job shop problem when
α = J . The job shop problem is similar to the �ow shop problem except
that jobs might di�er. That is, the jobs can di�er in number of operations,
processing times and machines needed for processing.

If α1 = MPM it means that at least one machine in the environment can
process di�erent types of operations.

α2 denotes the number of machines, but is often left out if the number is
arbitrary.

2.1.2 Characterization of the job characteristics
The second �eld in the three-�eld notation denotes processing relations and
restrictions. Since not all problems have the same relations β is a subset of
some common relations, β ⊆ {β1, β2, β3, β4}. The β-variables are interpreted
as follows:

• β1 = rj, if the release dates are speci�ed

• β2 = dj, if due dates are speci�ed

• β3 = tjk, if there are setup times for the operations

• β4 = prec, if there are precedence constraints between the jobs

Note that these are the most common relations and restrictions, not all pos-
sible relations and restrictions.

2.1.3 Optimality criteria
The γ-�eld in the three-variable notation denotes the optimality criterion
that is used to minimize the cost and measure the results. Common criteria
are:
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• γ = Cmax, which is to minimize the maximum completion time,

• γ =
∑

j∈J wjCj, which is to minimize the total (weighted) �nish time
for all jobs j in the set J of jobs,

• γ = Lmax, which is to minimize the maximum lateness.

There is no universal rule to determine which criterion should be used; the
criteria di�er depending on problem and purpose. There is always the possi-
bility to compose other optimality criteria that might �t the problem better.

2.2 The multitask cell
When the multitask cell is mentioned in the report it refers to the whole
production cell including all ten resources. Which are the di�erent resources
in the multitask cell?

• There are three workstations where the raw products are set up or torn
down from their �xtures manually.

• There are �ve multitask machines that can perform drill, mill or lathe
operations on the products.

• There is one automatic deburring machine where most of the deburring
is done.

• There is one manual deburring station where all the manual deburring
is done; not all deburring can be done with the automatic machine.

A product is set up on a �xture so it is securely �xed before the operating
machine can process an operation on the product. Connected with the mul-
titask cell is a stock containing tools that are used in di�erent processes and
stock places for the products. There are two stocker cranes in the multitask
cell, one for transporting the products and one for transporting the tools to
the resources. See Figure 2.1 for a graphical illustration of the multitask cell.

The system is delivered with a priority function that is used for scheduling
the jobs in the multitask cell, which is presented in Section 4.1.

2.3 Classification of the multitask cell
To get a complete characterization according to the three-variable notation
the following questions need to be answered:

1. What does the machine environment look like?
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Figure 2.1: Graphical overview of the multitask cell.

2. Which are the parameters that specify a job?

3. What is the optimization criterion?

The machine environment in the multitask cell is a job shop environment
since it can be de�ned as a set of jobs where the number of jobs, processing
time of the operations and the route for the jobs through the multitask cell
might di�er between the jobs. The three set up and tear down stations and
the �ve multitask machines make the multitask cell an MPM environment.
Hence, α = α1α2 = JMPM10, which means a job shop environment with
ten resources out of which eight are multipurpose machines.

Which are the parameters that specify a job? Release dates, rj, specify
when the jobs will be available. Due dates, dj, are soft constraints; jobs are
allowed to be late but it will cost more. There are no precedence constraints
between the jobs. There is no setup time for the jobs or operations, but it
takes time to transport a job between two resources that need to be consid-
ered. This time is always the same, independent of the job, and no index is
therefore needed; the parameter will be called waiting time and be denoted
w. The β-�eld with release dates, due dates and waiting time is denoted as
β = β1β2β3 = rjdjw.

13



What is the optimization objective? For this study two di�erent opti-
mality criteria have been used. The reason is that the preferred optimality
criterion made the optimization problem too di�cult to solve. The pre-
ferred criterion is �rst of all to minimize the number of late hours, that is,
min

∑
j∈J Lj where Lj is the number of late hours for job j in the set J

of jobs. Note that Lj is 0 if job j �nishes on time. It is also desirable
to minimize the total completion time to get the jobs scheduled as early
as possible when they are on time. Hence, the preferred objective function
is min

∑
j∈J (Cj + Lj), and the preferred optimality criterion is written as

γ1 =
∑

j∈J (Cj + Lj). The consequence is that when a job is late the value
of this objective function increases two cost units every time unit the job is
late, compared to only one cost unit when it is on time. Therefore, the main
purpose of γ1 is to eliminate late jobs. The second optimality criterion used
was to only minimize the total lateness,

∑
j∈J Lj. This gives γ2 =

∑
j∈J Lj.

The optimality criteria for the problem were chosen depending on the
focus of the study. Another focus may have resulted in a di�erent objective
function, but the environment and the parameters would remain the same.
The three-variable notation is written as:

α|β|γ = JMPM10|rjdjwji|
∑
j∈J

(Cj + Lj), and (2.1)

α|β|γ = JMPM10|rjdjwji|
∑
j∈J

Lj. (2.2)

2.4 Previous work

There are not that many books and articles discussing job shop problems with
multipurpose machines of the same magnitude as the problem of scheduling
the jobs in the multitask cell. A lot of work has been done regarding the
job shop scheduling problem, but not that many are dealing with a job shop
environment containing multipurpose machines. The majority of the books
are theoretical studies of scheduling in general. It is di�cult to �nd books
with real examples taken from industry. The most relevant book found for
this study was [Bruc01], although it does not apply to this study. The prob-
lem that is discussed analytically in [Bruc01] only consider two jobs. Other
books that are dealing with scheduling problems are [MS97] and [KV02].

The regular job shop problem and the job shop problem with multipur-
pose machines di�er a lot, which makes it hard to generalize methods that
can solve job shop problems to be applicable to job shop problems with mul-
tipurpose machines. The main di�erence is that in a job shop problem only
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the operation order on the machines needs to be decided; in a job shop prob-
lem with multipurpose machines the machine selection for each operation
also needs to be decided.

2.5 Complexity
Before explaining the complexity of the problem there is a short introduction
to the concept of NP-completeness and complexity classes.

2.5.1 NP-completeness
In computational complexity theory, a complexity class is a set of problems of
related complexity. A decision problem Π is said to belong to the complexity
class P if it is solvable in polynomial time. Time refers to the number of
operations related to the input size n and a decision problem means a problem
that has the answer yes or no. This means that a problem Π that is in the
complexity class P and has input size n can be solved using less than cnk

operations, where c and k are constants. When a problem is classi�ed as
NP (nondeterministic polynomial) it means there is no known algorithm for
solving it in polynomial time. However, with a solution to an NP-problem
you can verify the solution in polynomial time. A problem is NP-hard if
the algorithm for solving the problem can solve all problems in NP. This
means that an NP-hard problem is at least as hard as any problem in NP.
The problems that are NP-complete are those that are both in NP and are
NP-hard, that is, the most di�cult problems in NP. NP-complete problems
can be veri�ed in polynomial time and all NP-problems can be reduced to
any NP-complete problem. A graph illustrating the relations between the
complexity classes is shown in Figure 2.2.

P

NP−
Complete

NP

NP−Hard

Figure 2.2: Relations between the classes P, NP, NP-Hard and NP-complete.

This means that NP-complete problems are usually much more di�cult
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to solve than problems in P. See [GJ79] for further reading about complexity
classes and NP-completeness.

2.5.2 Complexity of the multitask cell
Scheduling regular job shop problems in general is among the hardest combi-
natorial problems. When adding the multipurpose machines to the job shop
problem the complexity of the problem increases signi�cantly. The multipur-
pose machines add the aspect of machine selection to the job shop problem,
which is not an easy task. The MPM job shop problem with two machines
and three machines is already NP-hard according to [Bruc01], which means
that this problem is at least as hard as any NP-problem, if not harder still.
Eight machines added and more jobs makes it even more complex. The con-
clusion is that the multitask problem is in the complexity NP-hard, which
means that there is no known algorithm for solving the problem in polynomial
time.

16



Chapter 3

Mathematical modeling

In Section 3.1 the fundamentals of (mixed) integer programming are pre-
sented. Section 3.2 will give an informal description of the multitask cell
and in Section 3.3 a formal mathematical description is given. In Section 3.4
there is a small example illustrating the di�erence between the result from
the existing priority function compared to an optimal solution in an extreme
situation where a lot of decisions need to be made.

3.1 Mixed integer programming (MIP)
The multitask cell problem is a problem with both real valued and integer
valued variables. The real valued variables represent starting time of the op-
erations and the integer variables represent machine allocation and relations
between jobs and operations. This section introduces the basics about linear,
integer and mixed integer programming.

The optimization area devoted to solving linear programs is sometimes
called linear optimization and refers to the problem of minimizing (or max-
imizing) a linear function over a convex polyhedron speci�ed by linear and
non-negativity constraints. A general linear problem with non-negativity
constraints is written as

minimize f(x) = c1x1 + · · ·+ cnxn, (3.1a)
subject to a11x1 + · · ·+ a1n≤ b1, (3.1b)

...
am1x1 + · · ·+ amn≤ bm, (3.1c)

xi≥ 0, i = 1, . . . , n. (3.1d)

The vectors x = (x1, . . . , xn)T that satisfy the constraints (3.1b)�(3.1d) are
called feasible solutions. A linear program is unbounded if there exists a
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feasible solution x for every real number K such that f(x) < K. A linear
program has an optimal solution if it has at least one feasible solution and it
is not unbounded.

A problem with integer constraints on the variables xi is an integer (lin-
ear) program. If not all variables in a problem are restricted to integer values
the problem is a mixed integer (linear) program. The multitask cell problem
falls under the last category.

3.2 Model description
The following list describes what is needed in the multitask model:

• sets:

1. one set to represent the jobs,

2. one set of operations for each job,

3. one set to represent the resources (machines),

• parameters:

4. one parameter for each job to represent the release dates,

5. one parameter for each job to represent the due dates,

6. one parameter for each operation to represent where the operation
can be processed,

7. one parameter for each operation to represent the processing times,

8. one parameter for the transportation time,

9. one parameter for each resource to represent when the resource
will be available,

• variables:

10. one variable for each operation to represent the starting times,

11. one variable for each operation to represent where the operation
will be processed,

12. one or more variables to represent the order in which the opera-
tions are processed on the resources,

• constraints:

13. one constraint to secure that each operation is only processed on
one resource,
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14. one constraint to secure that a machine only processes one job at
a time,

15. one constraint to secure that the release dates are not violated,

16. one constraint to secure that the operations within a job are pro-
cessed in the right order,

17. one constraint to simulate that some resources are occupied at
start up, and

• objective function:

18. one objective function to optimize.

The following aspects have been left out due to the complexity of the
problem and because they are not considered to limit the performance of the
multitask cell.

• The number of �xtures: it is assumed that the �xture needed is always
available.

• The sta�ng requirements: it is assumed that there is always sta� avail-
able.

• The tool requirements: it is assumed that the stock is in�nite and that
the tools are transported from the stock to the resource instantaneously.

• The stock capacity: it is assumed that there is always room for the
products in the stock of the multitask cell.

3.3 Mathematical description
The list on page 18 presents three distinct parts of the model; the sets of
jobs and machines, the parameters and the variables. These are described
using mathematical notation in their corresponding section.
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3.3.1 Definitions of sets

J = the set of jobs j that is to be done

Nj = an ordered set of the nj operations i that is a part of job j,

i ∈ Nj = {1, . . . , nj}
K = the set of machines that are available (3 set up/tear down stations,

5 multitask machines, 1 manual deburring station, 1 automatic

deburring station), (K = 1, . . . , 10).

These sets cover the sets item in the list on page 18. An operation is de�ned
as a part of a job that requires a resource for some period of time. A resource
can only process one operation at a time.

3.3.2 Definitions of parameters

ajik =


1, if operation (j, i) can be

processed on resource k,

0, otherwise,

j ∈ J , i ∈ Nj, k ∈ K,

pji = the processing time for operation i of job j,

rj = the release date for job j ∈ J ,

dj = the due date for job j ∈ J ,

w = the transportation time for a product inside the multitask cell,

M = a su�ciently large positive integer number,

sk = the time when resource k ∈ K will be available the �rst time.

The parameter M is needed to construct some of the constraints in Section
3.3.4. The parameters above complete the parameters item in the list on
page 18.

20



3.3.3 Definitions of variables

xjik = the starting time of operation (j, i) on machine k,

zjik =


1, if operation (j, i) is

allocated to machine k,

0, otherwise,

j ∈ J , i ∈ Nj, k ∈ K,

yjipqk =


1, if operation (j, i) is being processed

before (p, q) on machine k,

0, otherwise,


j, p ∈ J , i ∈ Nj,

q ∈ Np,

(j, i) 6= (p, q),

k ∈ K,


cj = cost for job j, which is de�ned as the lateness of the job.

These variables complete the variables item in the list on page 18. From the
de�nition of the variables it is obvious that the problem is a mixed integer
program; the xjik are the real valued variables, and zjik and yjipqk are the
integer (binary) variables.

3.3.4 Definitions of constraints
The constraints are de�ned using the previous parameters and variables. The
�rst constraints ensure that an operation can only be processed on exactly
one machine from the set of valid machines for that operation [equations
(3.2)�(3.3)], and if two operations are on the same machine there has to be
an ordering between the operations [equations (3.4)�(3.5)]:∑

k∈K

zjik = 1, j ∈ J , i ∈ Nj, (3.2)

zjik ≤ ajik, j ∈ J , i ∈ Nj, k ∈ K, (3.3)

yjipqk + ypqjik ≤ ajik,

{
j, p ∈ J , i ∈ Nj, q ∈ Np,

k ∈ K, (j, i) 6= (p, q),
(3.4)

yjipqk + yjipqk + 1 ≥ (zjik + zpkq),

{
j, p ∈ J , i ∈ Nj, q ∈ Np

k ∈ K, (j, i) 6= (p, q).
(3.5)

The previous constraints force the solution to have an ordering of the
machines, but the solution needs to have a valid ordering to make the starting
times reasonable. The following constraints specify a valid ordering and
require a starting time for every operation [equations (3.6)�3.8)]:

M(1− yjipqk) + M(1− zpqk) + xpqk ≥ xjik + pji −M(1− zjik),
j, p ∈ J , i ∈ Nj, q ∈ Np, (j, i) 6= (p, q), k ∈ K,

(3.6)
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M · yjipqk + M(1− zjik) + xjik ≥ xpqk + ppq −M(1− zpqk),
j, p ∈ J , i ∈ Nj, q ∈ Np, (j, i) 6= (p, q), k ∈ K,

(3.7)

M(1− zj,i+1,k) + xj,i+1,k ≥ xjik + pji + w −M(1− zjil),
j ∈ J , i ∈ Nj \ {nj}, k, l ∈ K.

(3.8)

Equation (3.6) states that if operation (j, i) (operation i of job j) is to be
processed before operation (p, q) on resource k (yjipqk = zjik = zpqk = 1),
the starting time (xpqk) of operation (p, q) has to be after the �nish time
(xjik + pji) of operation (j, i). Equation (3.7) states the same as equation
(3.6) with the di�erence that (p, q) is scheduled before (j, i). Equation (3.8)
states that the operations within the same job has to be processed in the
right order.

The last types of constraints needed for the actual model are the non-
negativity and integer (binary) constraints on the variables [equations (3.9)�
(3.11)]:

zjik ∈ {0, 1}, j ∈ J , i ∈ Nj, k ∈ K, (3.9)

zjipqk ∈ {0, 1}, j, p ∈ J , i ∈ Nj, q ∈ Np, k ∈ K, (3.10)

xjik > 0, j ∈ J , i ∈ Nj, k ∈ K. (3.11)

To simulate that the resources are occupied at time zero one more con-
straint is required [equation (3.12)]:

xjik − skzjik ≥ 0, j ∈ J , i ∈ Nj, k ∈ K. (3.12)

Equation (3.12) states that if operation (j, i) is processed on machine k, that
is, zjik = 1, then it has to start after the simulated operation on machine k
is done. This constraint is not needed if all resources are available at time
zero. (If sk = 0 for all k the constraint will be redundant.)

3.3.5 Objective functions
Two objective functions have been used to complete the objective function
item in the list on page 18. One function minimizes the total lateness [equa-
tion (3.13)], and one also strives to minimize the �nish times of the early jobs
[equation (3.14)]; they are discussed in Section 2.3. The objective functions
are:

minimize
∑
j∈J

Lj, (3.13)

minimize
∑
j∈J

(Cj + Lj), (3.14)
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where Cj is the completion time of job j and Lj is the lateness of job j, which
is 0 if the job is on time. The variables Cj and Lj are (using the x, y and z
variables and the due date parameters) formed as:

Cj =
∑
k∈

xj,nj ,k + pjnj
,

Lj =

{
Cj − dj, if Cj > dj,

0, otherwise,

where dj is the due date for job j and nj is the last operation of job j.

3.4 A small example of the model
The following small and �ctitious example illustrates the model and also
serve as a further motivation for this project. The example is quite di�cult
since the di�erence between a �good� and an optimal solution is easier to see
in a �stressed situation� with a heavy load and a lot of choices that needs
to be done in order to make the schedule optimal. This is also the most
interesting scenario since Volvo Aero wants to utilize the multitask cell as
much as possible.

The example is scheduled using two di�erent methods. The �rst method
is based on the existing priority function where the operations are scheduled
according to their priority number every time a resource is available. The
second method generates an optimal schedule using the objective function in
equation (3.13).

3.4.1 Input to the example
The input below can also be found as AMPL code in Appendix A.2, where
it serves as example input code to the AMPL model. The machines in the
example are two set up and tear down stations, two multitask machines, and
two deburring machines. The input data for the jobs is speci�ed in Table
3.1.

The parameters that simulate that there are existing jobs in the multitask
cell at time 0 are also set and are found in Table 3.2. Mx in the table is used
in the machine allocation table (Table 3.3) in the result section (Section 3.4.2)
for the example; the number following M is used to denote which machine an
operation is allocated to. The processing times for the di�erent operations
and where they can be processed are found in the AMPL code for the input
in Appendix A.2.
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Products prdX prdY
Quantity 2 3
Operations/product 11 7
Time when �rst arrives 2 2
Interval (hrs.) 15 15
Expected lead time (hrs.) 68.33 17.05

Table 3.1: Input data for the jobs in the example. An operation is de�ned
as something that requires one of the ten resources.

Machine Machine is free at time
Set up/tear down (M1) 7
Set up/tear down (M2) 6
Multitask (M3) 8
Multitask (M4) 10
Manual deburring (M5) 17
Automatic deburring (M6) 25

Table 3.2: The table shows when the machines are ready to process their
�rst operation, assuming that the scheduling starts at time 0.

3.4.2 Result of the example
The most relevant data is presented in Figure 3.1. The lead times of the
products and how the machines are utilized are not included since the opti-
mization method is only focusing on minimizing the total lateness. In this
example the total lateness were decreased with 98% and the number of late
jobs were decreased with 66% in the optimal schedule compared to the exist-
ing priority function. This indicates that the existing priority function could
yield a schedule far from optimal in a stressed environment.

How the operations of the jobs were allocated is shown in Table 3.3. The
number in the table denotes the machine number, i.e. 1 stands for machine
M1 and so on.

Figures 3.2�3.3 show when every operation should start but not on which
machine. To get the complete schedule both Table 3.3 and the Figures 3.2�
3.3 have to be considered.
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Figure 3.1: Performance of two schedules for the example.
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Figure 3.2: Gantt chart for the existing priority function.
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Existing priority function
Operations

1 2 3 4 5 6 7 8 9 10 11
prdY_1 2 4 1 4 2 4 2 - - - -
prdX_1 2 3 5 6 1 4 1 4 5 6 2

Products prdY_2 2 4 2 4 2 3 2 - - - -
prdX_2 1 3 5 6 2 3 2 3 5 6 2
prdY_3 2 4 2 3 1 4 1 - - - -

Optimal
Operations

1 2 3 4 5 6 7 8 9 10 11
prdY_1 2 3 2 3 1 4 1 - - - -
prdX_1 1 3 5 6 2 4 1 4 5 6 1

Products prdY_2 1 4 1 3 1 3 1 - - - -
prdX_2 1 4 5 6 2 3 2 3 5 6 1
prdY_3 1 3 2 3 1 3 2 - - - -

Table 3.3: The machine allocation for the di�erent methods.
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Figure 3.3: Gantt chart for the optimal schedule.
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Chapter 4

Heuristics

For small-scale examples it is clearly possible to �nd optimal schedules. How-
ever, it would take too long to �nd an optimal solution when increasing the
number of resources and jobs for such a strategy to work in reality, since
the solution time increases exponentially with the size of the problem. It
took approximately two hours to solve the small example described in Sec-
tion 3.4 when using a computer dedicated for high performance computing
and default values in CPLEX (the software tool used for optimization); so-
lution time would increase signi�cantly when the problem size is increased.
The example in Section 3.4 contained a minimum number of resources for the
multitask cell to still have the same properties as the full-scale multitask cell.
If any of the set up/tear down stations or multitask machines were removed
the multitask cell would loose the ability to operate on two di�erent jobs that
require the same type of resource at the same time. If any of the remaining
resources were removed the multitask cell would no longer be able to carry
out all operations. Therefore, it is necessary to consider heuristics to �nd a
solution closer to optimum.

Before describing the di�erent heuristics tested during the thesis work
Section 4.1 describes how priority functions are used. Priority functions are
described �rst since the existing solution goes under this group of functions
and because most of the heuristics tested use a priority function to generate
a feasible solution to start with. Sections 4.2�4.6 present the optimization
based heuristics. The term �optimization based heuristics� refers to heuristics
that in some way strives to �lay the puzzle� instead of just prioritizing the
operations.

In all of the heuristics a priority function is used to generate a �rst feasible
schedule from the input. Some advantages from this are that the result
cannot be worse than the existing solution generated by the priority function,
that there is always a feasible schedule to use in case of failure of the more

27



advanced heuristic, and that the heuristics might run faster since solutions
that are worse than starting solution can be disregarded from the search.

4.1 Priority functions
Priority functions are easy to use since they are relatively easy to implement
and understand, they are stable since they always succeed to generate a
schedule, and they produce solutions quickly. The priority function delivered
with the multitask cell is not in any way adapted to what the jobs look like at
Volvo Aero. Together with the existing function three new functions that are
modi�cations of the existing one, and four completely new ones, are presented
below. One of the functions was modi�ed to show how the jobs would be
least e�ectively prioritized. This is rather useful information since it points
out a working direction when designing priority functions. More functions
were tested but the functions presented here are the ones that gave the best
results and have been tested in the simulation environment at Volvo Aero
(see Section 6.1).

The existing priority function consists of two di�erent formulas, one that
is used as long as the jobs are on time and one that is used for late jobs. The
variable CR, which stands for Critical Ratio, is used to denote the relative
priority number. This value is calculated for all the remaining operations
within a job; the lowest CR is the job's overall CR-value. The idea is that the
jobs are prioritized according to future bottleneck operations. The formulas
for the critical ratio of the existing function are:

CR =

{
1+(dj−t)(machines)

1+TRPT
, when job j is on time,

1
(1+(t−dj)(machines))(1+TRPT )

, when job j is late,
(4.1)

where

t = current time,

TRPT = total remaining processing time,

machines = number of machines that can process the operation,

dj = due date for job j.

Since both formulas have the TRPT term in the numerator jobs with a
long lead time will get a lower CR number most of the time.

The purpose with the modi�cations was to make the functions take the
lead times into account when calculating the priority numbers. The reason
for this is that jobs with longer lead times probably are less sensitive to
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disturbance resulting in delays, compared to jobs with shorter lead times.
Also, jobs with shorter lead times do not a�ect the multitask cell as much as
jobs with longer lead times. To make the CR-function take the lead times
into account and prioritize jobs with shorter lead times should have a positive
e�ect on the total lateness. The following functions and the existing one were
tested to see the a�ect of incorporating the lead times:

CR′ = CR · (total process time); (4.2)

CR′ = CR · CR · (total process time); (4.3)

CR′ =
CR

total process time
, (4.4)

where CR′ is the new value and CR is the old function value from the ex-
isting priority function. �Total process time� for a job is calculated using
all operations, disregarding which resource that can process the operations,
in the mathematical model. In the simulation environment at Volvo Aero
only operations that can be processed on any of the machines, the multitask
machines or the deburring machine, are used to calculated the �total process
time�. That di�erent methods are used to calculate �total process time�
should not make a di�erence since longer jobs have longer operations, and in
both cases �total process time� could most likely be replaced with expected
lead time without any signi�cant di�erence. The function in equation (4.4)
was tested to see what happens when jobs with longer lead times are priori-
tized even more than before. Another reason for the modi�cation is that it
opens up a window for short jobs to be processed before already late jobs to
avoid the ones on time to be late too.

Except for the existing function and the modi�cations described above,
a new type of function to calculate the CR-value was also implemented and
tested. This function was tested in two di�erent versions:

CR = dj − (current time)− (TRPT + (4.5)

(expected waiting time between operations))

CR = dj − (current time)− (TRPT + (4.6)

(expected waiting time between operations))) ·
(total process time)

Function (4.5) prioritizes the jobs according to the di�erence between avail-
able time and the time needed to �nish the jobs. (Note that the CR-value
is negative if the job cannot �nish on time.) In function (4.6) the lead times
are used as a weight to prioritize shorter jobs somewhat more than longer
jobs.
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The function 4.6 did not work as well as �rst expected because, when a
job is late the term (current time) − dj is negative and jobs that are late
will always be prioritized prior to jobs that are on time. Also, the function
prioritizes jobs with longer lead times before jobs with shorter lead times
when both are late because of the negativity and the following multiplication
in the function.

When functions (4.5)�(4.6) were implemented at Volvo Aero there was a
slight misunderstanding resulting in the following functions:

CR = dj − (TRPT + (4.7)

(expected waiting time between operations)),

CR = dj − (TRPT + (4.8)

(expected waiting time between operations)) ·
(total process time).

These functions performed surprisingly well in the simulation environment
at Volvo Aero, and was therefore tested further and included in the report.

4.2 First trial: Time window optimization
The term time window optimization refers to optimizing in discrete time
steps, which was the �rst idea for a heuristic. To be able to optimize in
discrete time steps it is necessary to have a counter that keeps track of
the time and a parameter that speci�es how long an interval should be.
The time window is de�ned as the current time plus the interval parameter.
When the scheduling is done only jobs that are released in or prior to the
current time window are considered. All operations that are scheduled to
start in the current time window are �xed and cannot be changed in the
future iterations; the operations that are scheduled to start after the time
window are not �xed and can be re-scheduled in future iterations. In every
iteration a priority function creates a feasible schedule that serves as a lower
bound to the optimizer to narrow down the search.

The time window optimization method is the one that resembles dynamic
scheduling the most of the methods that was implemented, since it only
schedules jobs that are released in a near future. What happens is that the
method divides the overall dynamic scheduling problem into several small
static scheduling problems that are only considering a fragment of the total
number of jobs.

In Figure 4.1 the method is illustrated for a general problem with four
jobs and �ve machines. (It is not the multitask cell.) Every box in the �gure
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represent an operation and the letters inside the box represent the machine
that will process the operation. Filled boxes are the operations that have
been �xed (start time of the operations are in or prior to the current time
window). The interval parameter used in the example is ten units so the
time windows are [0−10), [10−20) and [20−30) and so on. In the �rst time
window only job 1 and job 2 are available for scheduling. The �rst operation
of both jobs and the second operation of the �rst job are scheduled to start
in the �rst time window and is therefore �xed. In the second time window
job 3 is also available for scheduling. This forces some changes to the schedule
generated in the �rst iterations; operation three of job 2 is scheduled to be
processed on a di�erent machine, for example. The procedure is repeated
until there are no jobs left to schedule. If no new jobs are released in a time
window no re-scheduling is done since the last generated schedule is the best
one still. Therefore, the time window [20−30) is the last time window where
any actual scheduling is done in the example.
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Figure 4.1: An illustration of the time window optimization method.
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4.2.1 Additions to the model
Some additions to the mathematical model were needed to get the time
window optimization method working. The additions to the model are a
time parameter, T , that keeps track of the current time and an interval
parameter, ∆t, that de�nes how long the time windows are. Some changes
to the constraints and objective functions are also necessary to make sure
that only jobs that are released prior to time T + ∆t are scheduled in each
iteration. The new modi�ed constraints and objective functions are:∑

k∈K

zjik = 1, rj < T + ∆t, j ∈ J , i ∈ Nj, (4.9)

zjik ≤ ajik, rj < T + ∆t, j ∈ J , i ∈ Nj, k ∈ K,
(4.10)

yjipqk + ypqjik ≤ ajik,

{
rj < T + ∆t, j, p ∈ J , i ∈ Nj,

q ∈ Np, k ∈ K, (j, i) 6= (p, q),
(4.11)

yjipqk + yjipqk + 1 ≤ (zjik + zpkq),


rj < T + ∆t, j, p ∈ J ,

i ∈ Nj, q ∈ Np,

k ∈ K, (j, i) 6= (p, q),

(4.12)

M(1− yjipqk) + M(1− zpqk) + xpqk ≥ xjik + pji −M(1− zjik),
j, p ∈ J , i ∈ Nj, q ∈ Np, (j, i) 6= (p, q),

k ∈ K, rj < T + ∆t, rp < T + ∆t,
(4.13)

M · yjipqk + M(1− zjik) + xjik ≥ xpqk + ppq −M(1− zpqk),
j, p ∈ J , i ∈ Nj, q ∈ Np, (j, i) 6= (p, q),

k ∈ K, rj < T + ∆t, rp < T + ∆t,
(4.14)

M(1− zj,i+1,k) + xjik ≥ xjik + pji + w −M(1− zjil),
j ∈ J , i ∈ Nj \ {nj}, k, l ∈ K, rj < T + ∆t,

(4.15)

minimize
∑
j∈J

Lj, rj < T + ∆t, (4.16)

minimize
∑
j∈J

(Cj + Lj), rj < T + ∆t. (4.17)

In each of the iterations constraints of the form:

zjik = 1, j ∈ J , i ∈ Nj, k ∈ K (4.18)

yjipqk = 1, j, p ∈ J , i ∈ Nj, q ∈ Np, (j, i) 6= (p, q), (4.19)

xjik = xjik, j ∈ J , i ∈ Nj, k ∈ K, (4.20)
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are generated. The constraints are only generated for the operations that
are scheduled to start in the current time window, xjik < T + ∆t, and states
that operation i of job j will be processed on machine k at time xjik. These
constraints can not be removed once they are generated.

4.3 Second trial: Langrangian relaxation and subgradi-
ent optimization

To better explain how this method works there are �rst two sections describ-
ing the basics of Lagrangian theory (Section 4.3.1) and subgradient optimiza-
tion (Section 4.3.2). In Section 4.3.3 the actual method using Lagrangian
relaxation and subgradient optimization is presented.

4.3.1 Lagrangian theory
The Lagrangian approach is very useful for obtaining lower bounds for op-
timization problems. Out exposition of Lagrangian theory is taken from
[Ber98]. Lagrangian relaxation is best explained with an example like the
following optimization problem:

minimize f(x) = a′x, (4.21a)
subject to b′sx≤ es, s = 1, . . . , q (4.21b)

c′tx≤ dt, t = 1, . . . , r (4.21c)
xi = {0, 1}, i = 1, . . . , n (4.21d)

which has a linear cost function, linear side constraints, and binary con-
straints on the variables xi. Lagrangian relaxation basically consists of two
steps. First some constraints are removed to expand the region of feasible so-
lutions making it easier to solve; secondly the corresponding terms are added
to the objective function so the objective value will be a�ected in a negative
way if the constraints are violated. If the constraint speci�ed by equation
(4.21c) is the complicating constraint in the illustrating example it makes the
most sense to remove it from the original problem. The Lagrangian function
is formed when the terms µt(a

′x− dt) are added to the cost function:

L(x, µ) = a′x +
r∑

t=1

µt(c
′
tx− dt), (4.22)

where µt ≥ 0 are the Lagrange multipliers. A Lagrange multiplier can be
seen as a unit penalty that is added to the objective function for each unit
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that c′tx exceeds dt. The set of remaining constraints can be formulated as:

S = {x : xi = {0, 1}, b′sx ≤ es, i = 1, . . . , n, s = 1, . . . , q},

which still has to be considered. Suppose that f ∗ is the objective value of
any optimal solution to (4.21). Next note that

min
x∈S

L(x, µ) = min
x∈S

{
a′x +

r∑
t=1

µt(c
′
tx− dt)

}
(4.23)

≤ min
{x∈S|c′

tx≤dt,t=1,...,r}

{
a′x +

r∑
t=1

µt(c
′
tx− dt)

}
(4.24)

≤ min
{x∈S|c′

tx≤dt,t=1,...,r}
a′x (4.25)

= f ∗. (4.26)

If the dual function is de�ned as:

q(µ) = min
x∈S

L(x, µ), (4.27)

it is clear that q(µ) ≤ f ∗, for all µ ≥ 0n, that is, Largrange relaxation provides
lower bounds on f ∗. The Lagrangian dual problem can be formulated as:

maximize q(µ), (4.28a)
subject to µt≥ 0, t = 1, . . . , r., (4.28b)

This yield the best lower bound to the optimal solution of the original prob-
lem that is possible to achieve with the Lagrangian function.

4.3.2 The subgradient method

The dual function q in (4.27) is, for a �xed x ∈ S, a linear function. Thus, be-
cause the set S is �nite, the dual function q is the minimum of a �nite number
of linear functions of µ; this implies that q is piecewise linear. Because of the
piecewise linear structure of the dual function (4.27) it is not di�erentiable
in some points; hence steepest decent methods cannot be used. The sub-
gradient method is a simple algorithm to minimize nondi�erentiable concave
functions. From [Roc70] (page 214) the characterization of a subgradient g
to q at a given µ is as follows:

q(ν) ≤ q(µ) + (ν − µ)′g, ∀ν ∈ <n. (4.29)
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Let xµ ∈ S minimize the Lagrangian L(x, µ) for a given value of µ. The
vector at µ with elements

gt(xµ) = c′txµ − dt, t = 1, . . . , r,

is a subgradient to the dual function q de�ned in (4.27). To show this, note
that for all ν ∈ <n,

q(ν) = min
x∈S

L(x, ν)

≤ L(xµ, ν)

= a′xµ + ν ′g(xµ)

= a′xµ + µ′g(xµ) + (ν − µ)′g(xµ)

= q(µ) + (ν − µ)′g(xµ).

This shows that a vector that is formed by constraint function g at xµ is a
subgradient of q at µ.

The next step is to describe the actual subgradient method. The method
consists of the iteration

µk+1
t = max{0, µk

t + skgk
t }, t = 1, . . . , r, k = 1, . . . , (4.30)

where k is the iteration number, gk
t is element number t of the subgradient g

of q at µk, and sk > 0 is the step size. The subgradient is easiest calculated
through minimizing L(x, µk) at µk, let the minimizing x be xµk and set

gk = g(xµk)

where g(x) is the vector de�ned by the relaxed constraints. When using the
subgradient method the dual cost q may not improve at all iterations. The
convergence of the method is based on reducing the distance from the current
solution to the optimal solution, if su�ciently small step sizes sk are used.
Figure 4.2 illustrates this fact.

To guarantee convergence it is common to select the following step size
formula to update the step size sk:

sk =
αk(qk − q(µk))

||gk||2
(4.31)

where qk is an approximation to the optimal dual cost and 0 < αk < 2.
The parameter α in the step size update formula can be chosen in several
di�erent ways. For this thesis work two di�erent methods for updating the α
parameter have been tested. In the �rst method α0 was set to a value in the
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Figure 4.2: The �gure illustrates when the dual cost might not improve in
an iteration.

interval (0, 2) and decreased with a factor of two every few iterations. (During
the testing phase the number of iterations as well as the start value of α was
altered to test di�erent values.) In the second approach an adaptive formula
was tested to speed up the convergence. The formula used for updating the
αk is:

αk+1 =


1
2
αk, if q − q > 0.01 · q,

3
2
αk, if q − q < 0.001 · q,

αk, otherwise,

k = 1, 2, . . . , (4.32)

where

q = min
r=k−p+1,...,k

q(µr) and q = max
r=k−p+1,...,k

q(µr). (4.33)

This means that in every iteration the best and worst lower bound during
the last p iterations are compared and α is updated according to the formula.
For more information about this updating method of α see [Jun00].
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4.3.3 Lagrangian relaxation of the multitask model
The idea of this method was to generate dual solutions that can (hopefully)
be transformed to feasible solutions rather fast. One way this transformation
can be done is described in Section 4.4.

The constraints that were relaxed are the constraints in equations (3.6)�
(3.7). The most complicated constraints were relaxed since the purpose of
the relaxation was to speed up the optimization. Before rede�ning the new
cost function a vector consisting of the relaxed constraints is de�ned:

g1
jipqk = xijk + pji −M(1− zjik)− (M(1− yjipqk) + M(1− zpqk) + xpqk)

j, p ∈ J , i ∈ Nj, q ∈ Np, (j, i) 6= (p, q), k ∈ K;
(4.34)

g2
jipqk = xpqk + ppq −M(1− zpqk)− (M · yjipqk + M(1− zjik) + xjik)

j, p ∈ J , i ∈ Nj, q ∈ Np, (j, i) 6= (p, q), k ∈ K.
(4.35)

Let g be the combined vector of g1
jipqk and g2

jipqk. Even though there are
several indices it do not complicate the notation since they can be seen as one
composed index for one vector. This gives the following dual cost function:

q(µ) = min L(x, µ) = min
∑
j∈J

Lj + µTg(x). (4.36)

Note that Lj denotes lateness while L(x, µ) denotes the Lagrange function.

4.4 Third trial: Fixing variables
The idea of the �xing variables method is to transform the original problem
to a new problem through �xing some of the variables. Before �xing any
variables a feasible solution is needed, or some variables that are correctly
set. Which variables are appropriate to �x? It does not make much sense to
�x the time variables, xjik, since if the time variables are �xed the schedule
is also �xed. Fixing the order variables yjipqk has the same result since they
determine where and in which order the operations should be done. The
most reasonable variables to �x are therefore the allocation variables zjik.
Fixing the allocation variables transform the problem from an MPM job
shop problem to a regular job shop problem where all that is left to do is to
decide the order of the operations on the machines. When �xing the zjik it is
impossible to guarantee the optimal schedule since the allocation might not
be optimal.
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As mentioned earlier this method has to be used in conjunction with some
other method or priority function. The method consists of three steps:

1. Create a feasible allocation solution with a priority function, that is, a
feasible zjik solution.

2. Fix the allocation variables zjik.

3. Optimize the new problem with the zjik variables �xed.

4.5 Fourth trial: Local search
The idea behind local search was to start with an existing feasible solution
and modify the solution in small steps towards a better one. The number
of steps taken towards the �nal solution could either be decided by some
pre-determined conditions being ful�lled or for some pre-de�ned number of
iterations. In all iterations a new feasible solution (that might di�er depend-
ing on the method used) is found. To describe these possible moves between
feasible solutions a neighborhood structure N : S → 2S, where S is the set of
feasible solutions, needs to be de�ned. The set N(s) is the set of neighbors
to a feasible solution s and where the �best� solution is searched for. To
search for the best neighbor in every iteration might result in �nding a local
minimum instead of a global one.

The local search function is supposed to be used in conjunction with the
method described in Section 4.4 and a modi�ed version of the time window
method (Section 4.2). Since the solution found with the method in Section
4.4 is optimal given the machine allocation, the only search available is to
search for a swap between operations on di�erent machines trying to create a
better solution. The diagram in Figure 4.3 illustrates the �ow of the method.

4.5.1 Neighborhood structure for the multitask cell
The de�nition of a good neighborhood structure is the most crucial part of
local search methods. If the neighborhood is too small a good solution might
be di�cult to reach; if it is too large the execution time might be too long.
De�ning a good neighborhood structure took more e�ort than expected. The
variables move in too many dimensions to make a simple move from one
solution to another. The jobs do not have the same release and due dates,
which makes it hard to �nd an easy way to know which operations that are
possible to swap. Also, the operations are of various lengths which makes it
hard to calculate the cost of swapping two jobs. (If you swap two operations
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Figure 4.3: Diagram over the �ow in the local search method.

you have to make a new optimization that might re-schedule operations on
machines that were not one of the machines used in the swap.)

The neighborhood structure implemented and tested is de�ned as follows.

1. Find the longest operation that belongs to the latest job in the current
time interval.

2. Find the corresponding operation for the earliest job on a di�erent
machine.

3. Swap and re-calculate the cost.

4. Keep track of the new cost and solution if better than previous one.

5. Repeat from 1 but exclude jobs that already have been considered.

The purpose with this strategy was to move hours from one job that is early
to one that is late and hopefully make them both be on time.
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4.6 Fifth trial: Relaxing and rounding
This was the last method implemented and the one on which the least time
was spent. The idea was to relax the integrality constraints and make the
problem a regular linear program, which is much easier to solve. The relaxed
solution is not a feasible solution and it is in fact impossible to know if it will
turn out to be a good solution after rounding. However, the relaxed solution
creates a lower bound for the original problem. The method consists of three
steps:

1. Optimize the relaxed problem.

2. Round the integer variable to a feasible solution.

3. Optimize the starting times.

In step two all integer variables are rounded to 0 or 1 creating a feasible
machine allocation and order between the operations. This step is more dif-
�cult than it �rst appears since an operation i of job j can have its allocation
variables zjik larger than 0 for more than one machine k; the question is how
to choose between the variables set for one operation. When implementing
this method the largest zjik, for a �xed j and i, was set to 1 and the other
zjik variables was set to 0. The next problem is to set the order between the
jobs. Since the order variables are �ve dimensional (j, i, p, q, k) they are far
from 1, which makes it di�cult to set them in an optimal way. This is how
the order variables were set:

• First set the allocation variables zjik for all operations according to the
previous description.

• For all operations (j, i) and (p, q) where (j, i) 6= (p, q) on all machines,
check if zjik is set for both.

� If yjipqk > ypqjik set yjipqk = 1 and ypqjik = 0

� If yjipqk < ypqjik set yjipqk = 0 and ypqjik = 1

� If the order variables are the same and larger than 0 the jobs with
the earliest release date is scheduled �rst.

The order variables as well as the allocation variables were set because it
would take too long to solve the problem with just the allocation variables
set. When setting the order variables it seemed reasonable to compare the
order variables operation by operation and set the variable with the highest
value.

40



Chapter 5

Implementation

The choice of implementation language was obvious since there was only
one modeling language available. All modeling has been implemented using
the mathematical programming language AMPL. The optimization has been
done with the optimization tool CPLEX, which is compatible with AMPL.
To create Gantt charts and data from the results some modules were imple-
mented using Matlab.

5.1 AMPL model
The implementation of the model was relatively straightforward since it is
rather uncomplicated to implement a mathematical model in AMPL. To
make it easier to input data to the model the job set J was split up into
several sets. One of the sets has all the product types that are available, and
for each product type there is one set telling how many jobs of that product
there are. In mathematical notation this is written as:

h ∈ S, j ∈ Jh, i ∈ Nh,

where S is the set of products, Jh is the set of jobs of product type h, and
Nh is the set of operations for product type h. This simpli�es the model a
lot since the processing times only need to be speci�ed one time per product
instead of one time per job. The AMPL implementation of the model can
be seen in Appendix A.1 and an example data input in Appendix A.2.

5.2 Implementing the functions
Implementing the priority functions was more complicated than implement-
ing the model. One of the reasons is that it is hard to keep track of the
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status of the machines and jobs in AMPL, which would have been easier in
an object oriented programming language.

Even though AMPL is not an object oriented language the functions were
divided into several parts to make it easier to test, debug and maintain. The
di�erent parts are:

• one part that �nds the next available machine,

• one part that �nds the next available operation to the machine found,

• one part containing the di�erent priority functions,

• one part that sets the variables for an operation if a matching between
a machine and an operation is found,

• one part that sets the time when the machine can be considered again
if no matching is found,

• one part that sets the order variables,

• one part that creates the output for future calculation and presentation,
and

• one part that controls the communication �ow between the di�erent
parts.

Most of the implementation was straightforward; for example, if a matching
between a machine and an operation is found, all that needs to be done is
to set the variables that de�nes the machine allocation, the time when the
operation should start and the time when the machine is available again.
However, the implementation of the part that speci�es when a machine can
be considered again if no operation was found at the current time made
the implementation more complicated. The �rst solution to this problem
was quite naive: the new time for when a machine is available is set to
the minimum of the minimum release date, and the minimum of the other
machines times for when they are available, larger than the current time.
This did not solve the problem since an operation can be available earlier
if it belongs to a job that has recently �nished one operation, and then the
transportation time between two operations has to be taken into account.
The �nal solution to this problem is as follows:

• let the current time be called t, and the current machine be called k;

• let the new variables checkedk take the value 1 for every machine k
that has been checked at the current time t;
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• loop over all machines and �nd the smallest value of (finish time) +
(waiting time)(1 − checkedk) among the ones that are larger than t
and let this be the new time that the machine can be considered, t′;

• let t′ take the value of the smallest release date if t′ is larger than the
smallest release date that is larger than t;

• let the new available time for the machine be t′;

• set checkedk = 1.

The waiting time in step three is the time it takes before a job can be pro-
cessed again after it has �nished an operation.

5.3 Matlab module
The Matlab module was created to make it easier to interpret the results.
The module can create Gantt charts and diagrams of the machine utilization.
Example Gantt charts can be seen in Section 3.4. A Matlab function for
creating Gantt charts was implemented since Matlab does not have a built in
function for Gantt charts. The Gantt chart function was implemented using
the built in box-plots and stacking the boxes on top of each other. There
is one desirable feature that could not be implemented, which is to color
code the bars according to the machines. Instead the bars are color coded
according to the operation numbers, since there was no option available for
specifying the color of every single bar. To be able to follow a job and
see which machine it had been processed on it was necessary to produce
an output �le containing tables over machine allocations. This output �le
was later extended to contain more than just the machine allocation. A �le
created by the Matlab module contains:

• one table that summarizes to which machine each operation is allo-
cated,

• one table that summarizes when every operation starts,

• one table that summarizes release date, due date, start time, �nish
time, total time in the multitask cell and how the total time di�ered
from the expected lead time for each job,

• one table that summarizes how many of each product type that was
processed, average time in the multitask cell for each product type,
minimum and maximum times in the multitask cell for each product
type and how that time di�ered from the expected lead time,
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• one table that summarizes how many operations that has been pro-
cessed on each machine, when the �rst operation started on every ma-
chine, when the last operation ended on every machine and how each
machine was utilized between the �rst and last operation, and

• overall information like total number of late jobs, total lateness and
relative number of late jobs (total number of late jobs/total number
of jobs).

5.4 Implementation problems

There were several minor and one major problem during the implementation
phase. Most of the minor problems were implementation problems while the
major problem was caused by some error in the software.

The implementation errors were mostly index errors that arose from
AMPL trying to access elements in arrays or matrices that did not exist.
To �x those errors was rather easy; the problem was to �nd them. These
problems were most common when dealing with the priority functions since
when using CPLEX to schedule the jobs CPLEX takes care of the indexing
as long as it is modelled correctly.

The hardest problem, which was never resolved, was found when working
with the time window optimization method. An error message from AMPL
indicated that there could be a numerical error. Also, the error message indi-
cated that it might help changing the AMPL-parameters $presolve_eps
or $presolve_inteps . To �nd the right values for these parameters was
di�cult and that is why only one relevant result was obtained from the time
window method. The reason why this error appears in the time window
method is probably because it is an iterative method. At every iteration
some variables were rounded o� to a (according to AMPL) suitable value
and the rounded values made it impossible for CPLEX to �nd a feasible so-
lution in the next iteration. This was probably the error where most time
was spent without resolving the error. The attempt to resolve the error was
put aside when the error was present in the model where the integrality con-
straints were relaxed, and it turned out that it would take too long using the
time window method for larger input instances anyway.

There was a similar problem for the priority functions, but it was easier
to resolve. AMPL tried to compare a variable to a �xed value (0 for example)
and the result from the comparison claimed that they di�ered even though
they theoretically should have the same value. This problem was easier to
resolve because of the knowledge of the input data. The data speci�ed did
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only use values with at most two decimals and the incorrect value di�ered in
at least the tenth decimal. To resolve this problem something smaller than
0.009 needed to be added to the right-hand side of < and ≤ comparisons and
to the left-hand side for > and ≥ comparisons. The impact of this error was
not as extensive as the previous one; a solution was still generated but some
operations were scheduled later than they should have been. The error was
not revealed at once since a solution was generated and the solution seemed
to be correct.
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Chapter 6

Results

The chapter are divided into di�erent parts to re�ect the sections in Chapter
4. The methods that were able to produce a somewhat useful schedule are
compared to some priority functions and/or other heuristics. Before the
actual results there is a section describing the testing environments.

6.1 Testing environment
To verify that the methods worked, only small input data was used during
the implementation phase. Some of the heuristics never passed this step for
di�erent reasons. Being too slow or not being able to produce satisfying
results were the main reasons. The priority functions were tested with rela-
tively large instances in the mathematical model as well as in the simulation
environment at Volvo Aero. Except from the fact that the simulator is able
to use larger instances of input, is also takes the number of �xtures and tools
etc. into account, which makes the result more realistic and reliable.

6.2 Priority functions
All the results for the priority functions were generated in the simulation
environment at Volvo Aero to get more reliable results. The tests were sim-
ulated using three di�erent scenarios:

1. No variation in the input for the details, that is, the �rst job of all
product types started at the same time and the following details arrived
in a �xed interval that is product type speci�c.

2. A small variation in the input for the �rst details of all product types
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and the interval between the following details followed a normal distri-
bution.

3. Same as 2 but with larger variations for all products as well as for the
interval for the following details of each product type.

The product speci�c data is presented in Table 6.1 and the inputs are sum-
marized in Table 6.2. The eight priority functions presented in Section 4.1
were tested in the simulation environment. The following list associates the
names of the functions in the �gures with their corresponding functions in
Section 4.1:

prio 1 the existing priority function, function (4.1);

prio 2 the existing priority function with a slight modi�cation, function
(4.2);

prio 3 the existing priority function with a di�erent modi�cation, function
(4.3);

prio 4 the priority function where the result is expected to be worse than
with the existing function, function (4.4);

prio 5 the priority function that was based on a slight misunderstanding,
function (4.7);

prio 6 same as prio 5 but weighted, function (4.8);

prio 7 the priority function that was intended to be tested instead of prio
5, function 4.5;

prio 8 same as prio 7 but weighted, function (4.6).

The di�erent scenarios were run over one year in the simulation environ-
ment and the scenarios that had a input variation were run �ve times to
get a good average. (If there is no variation in the input, all �ve years are
exactly the same, that is why it is su�cient to run scenario 1 one time.) The
multitask machines in the multitask cell were occupied approximately 87%
of the time, which is considered to be a heavy load.

The results in Figures 6.1�6.3 show the total and average lateness and
the total number of late jobs.
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Products prdQ prdR prdS
Operations / product 11 5 11
Interval (hrs.) 72.5 36 36
Expected lead time (hrs.) 68.3 14.5 61.2
Number of products / year 69 139 139

Products prdT prdU prdV
Operations / product 3 5 7
Interval (hrs.) 44.7 44.7 44.7
Expected lead time (hrs.) 5.4 15.5 17.1
Number of products / year 112 112 112

Products prdW prdX prdY
Operations / product 11 4 3
Interval (hrs.) 44.7 44.7 143
Expected lead time (hrs.) 66.2 6.0 5.7
Number of products / year 112 112 35

Products prdZ
Operations / product 13
Interval (hrs.) 13.1
Expected lead time (hrs.) 46.1
Number of products / year 381

Table 6.1: The product speci�c input for the tests that were simulated at
Volvo Aero.
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First arrival
No variation Variation I Variation II

prdQ 0.5 0.5 55
prdR 0.5 5 15
prdS 0.5 10 30
prdT 0.5 15 0.5
prdU 0.5 20 9
prdV 0.5 25 18
prdW 0.5 30 27
prdX 0.5 35 36
prdY 0.5 40 0.5
prdZ 0.5 45 7

Table 6.2: The arrival dates for the �rst detail of each product.
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Figure 6.1: Total lateness for the priority functions.
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Figure 6.2: The number of late jobs for the priority functions. The total
number of products during this time is 1323.
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Figure 6.3: The average lateness for the priority functions.
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6.3 First trial: Time window optimization

The time window optimization method was one of the methods that managed
to produce a suboptimal schedule from a decent size of input data. Why the
schedule is only suboptimal is mainly because of the iterative procedure. To
speed up the optimization even more, a variable for adjusting the tolerance
on the gap between the best integer solution found so far, and of the best
possible solution remaining was set to allow a 20% di�erence between the two.
The consequence of this is that the each of the solutions in every iteration
might have an objective value that is 20% higher than the optimal value.
The input data used is speci�ed in Table 6.3. The lead time for product
type prdY was set to 40 hours for the �rst product and to 60 hours for
the remaining products to obtain more stress on the system. The optimized
result could most likely be better than it is. This is mainly because:

• a 20% margin from the true optimal was allowed in all iterations;

• the objective function only minimizes the number of late hours, not the
total number of hours; and

• since the method is an iterative method it is impossible to reach the
absolute optimum. (The solution generated in one iteration might not
provide the optimal solution in the long run.)

Figure 6.4 compares the result for the time window optimization method
with some other methods for the single example that the time window opti-
mization method managed to solve.

The time window optimization method also produced the error that was
not resolved (see Section 5.4). This is why it has not been possible to run
(larger) tests with the method. Except for that, the method did speed up
the optimization part, but not enough. Creating a schedule from the input
in Table 6.3 took several days, even though a priority function was used in
all iterations to create an initial solution.
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Products prdS prdT prdU
Quantity 2 2 2
Operations / product 11 5 11
Time for arrivals (hrs. from 0) 0, 64 10, 94 5, 89
Expected lead time (hrs.) 62 13 54

Products prdV prdW prdX
Quantity 3 3 3
Operations / product 5 5
Time for arrivals (hrs. from 0) 0, 54, 110 5, 64, 120 20, 79, 125
Expected lead time (hrs.) 5 14 12

Products prdY prdZ
Quantity 3 2
Operations / product 11 4
Time for arrivals (hrs. from 0) 0, 39, 95 35, 119
Expected lead time (hrs.) 40 (60) 5

Table 6.3: Input for the example that was successfully optimized using the
time window optimization method.
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Figure 6.4: Result for the time window optimization method compared to
the existing priority function, prio 2 [equation (4.2)] and the �xing variables
method described in Section 4.4.
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6.4 Second trial: Lagrangian relaxation

The Lagrangian relaxation method was probably the method where most
time was spent, and where the least success was obtained. The tests for
the Lagrangian relaxation method were made with a small example that
only contained �ve jobs. The results never ended up in an actual schedule
that gave any indication that the method might give a better schedule than
the priority functions produced. Some random testing was done where the
method in Section 4.4 was used to create a feasible solution at di�erent
iteration steps, but none of the solutions were better than the solution from
the existing priority function. The time for optimizing the relaxed problem
was also too long to be satisfying.

The tests with the adaptive step size rule did not improve the result
signi�cantly compared to the regular subgradient method.

6.5 Third trial: Fixing variables

The �xing variables method was the heuristic approach where most success
was made, if a priority function was used to generate the �rst guess. Before
the optimization part all operations for every job were allocated to a machine.
The results presented here were tested with all the priority functions, except
functions (4.7) and (4.4), in allocation algorithm. In a real environment the
number of jobs that are allocated before the optimization part determines
how good the schedule will be and how long it will take to generate it. The
tests that were run used the input from Table 6.4. The results are shown
in Figures 6.5�6.6, where the results are compared to the existing priority
function, as well as to the priority function that had the best result. The
functions used to generate the allocation for the method are equations (4.1),
(4.2), (4.3), (4.5), (4.6) and (4.8), starting on page 28.

The method was also tested with the input from the small example in
Section 3.4; the results for the example are shown in Figure 6.7 where the
�xing variables method is compared to the optimal solution and the solution
from the existing priority function.
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Products prdQ prdR prdS
Quantity 3 3 3
Operations / product 11 5 11
First arrival (hrs. from 0) 0 10 5
Interval (hrs.) 48 48 48
Expected lead time (hrs.) 68.33 14.49 61.15

Products prdT prdU prdV
Quantity 4 4 4
Operations / product 3 5 7
First arrival (hrs. from 0) 0 5 8
Interval (hrs.) 40 40 40
Expected lead time (hrs.) 5.35 15.5 17.05

Products prdW prdX prdY
Quantity 4 3 2
Operations / product 11 4 3
First arrival (hrs. from 0) 0 12 7
Interval (hrs.) 40 48 30
Expected lead time (hrs.) 66.19 5.95 5.65

Products prdZ
Quantity 3
Operations / product 13
First arrival (hrs. from 0) 15
Interval (hrs.) 48
Expected lead time (hrs.) 46.11

Table 6.4: The input for the test run for the �xing variables method.
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Figure 6.5: The total lateness and the number of late jobs for the existing pri-
ority function and the best priority function compared to the �xing variables
method used with six priority functions.
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Figure 6.6: The average lateness for the existing priority function and the
best priority function compared to the �xing variables method used with six
priority functions.
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Figure 6.7: Results for the small example from Section 3.4 with the �xing
variables method included.

6.6 Fourth and fifth trial: Local search and relaxing and
rounding

It turned out that the local search method did not work as well as expected
when it was implemented. The are two main reasons. First of all, the imple-
mentation was not a good local search method since it will most likely �nd
a local minimum if it improves the start schedule at all. Secondly, it took
too long to optimize after a swap had been made since the schedule after
the swap was infeasible, which made it harder for CPLEX to optimize. In
the tests that were done with the implemented version the resulting schedule
after every swap was worse than the starting schedule.

The relaxing and rounding method was an attempt to see if an easily
implemented heuristic might give a good result. The idea was pretty naive
and it turned out that the method did not work in practice. After rounding
the integer variables it was impossible to generate a feasible schedule. (The
integer variables could state that operation 4 of job X should start before
operation 6 of job Y and operation 10 of job Y should start before operation
2 of job X, which is a Catch-22 and impossible to realize.)
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Chapter 7

Discussion and conclusions

This chapter is divided into three parts. First, the problem in general and
the di�erent methods together with the result is discussed in Section 7.1,
Section 7.2 discuss further studies, and Section 7.3 presents the conclusions.

7.1 Discussion

Schdeuling job shop problems with multipurpose machines is among the
toughest combinatorial problems within optimization. The heuristics pre-
sented and tested in this report did not seem to work as well as anticipated.
Only one heuristic managed to produce good results in a reasonable amount
of time. If a method failed to generate a feasible schedule in a reasonable
amount of time for the input that was used to test the usability of the meth-
ods, there was no point to continue. (If a method cannot optimize a small
example with only �ve jobs and a decreased number of resources, how good
will it be for 20 or more jobs and all the included resources.) This was
the case for the Lagrangian method; the main ideas behind the Lagrangian
method was to generate several solutions faster and then make it feasible,
but when this failed the method proved to be unusable.

The time window method was not designed to be a method that would
succeed in creating good schedules fast. It was implemented to get a working
model of the multitask cell and as a basis for all the other methods. However,
there was one usable solution that the time window method managed to
produce (see Section 6.3) and that indicates the di�erence between a decent
schedule and a good one.

The result from the �xing variables method in Section 4.4 was much
better than expected. The fact that the result from a priority function com-
pared to the solution from the �xing variables method di�ered that much
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was surprising since they are using the same machine allocation. The main
advantage of using the �xing variables method was that it succeeded to gen-
erate a schedule in a decent amount of time. In the results for the �xing
variables method in Section 6.5 the di�erence between the �xing variables
heuristic and the best priority function did not di�er signi�cantly. However,
choosing the �xing variables method instead of a priority function will always
create a schedule that is at least as good as the schedule from the priority
function. Also, the di�erence between the priority function and heuristic will
most likely increase when the load increases.

As mentioned in the result section for the local search method (Section
6.6) it did not work as well as expected. The reason why CPLEX does not
manage to produce a feasible schedule after a swap is because CPLEX needs
a feasible solution to create an upper bound to be able to prune the branch
and bound tree. The idea to use CPLEX to create a new schedule came from
the �xing variables method, which seemed e�ective in �xing the allocation
variables and optimize. I did not consider the fact that a feasible solution
was used before the optimization part for the �xing variables method.

The tests on the priority function proved to be very successful. The
results showed that if larger jobs were prioritized prior to smaller jobs, the
resulting schedule will be worse than if smaller jobs has higher priority. In
Figures 6.1 and 6.2 (pages 50 and 51) Prio 4 produced the worst result,
which is the function that prioritize larger jobs more than smaller jobs. This
gives an indication that prioritizing smaller job more than larger jobs might
give a positive e�ect. Prioritizing a larger job before a smaller job causes
the bottleneck operation for the larger job to be the bottleneck operation for
the smaller job as well, which is not good since the processing time is most
likely larger for the larger job. Prio 7 proved to be the best priority function
tested at eliminating the bottlenecks for the smaller jobs since it gave the
best result. Other than that, Prio 7 di�ers from the other functions because
it does not prioritize late jobs di�erently from jobs that are on time. In all
the other cases the base value (before weighted) is either between 0 and 1 or
negative. Having a function that prioritizes late jobs more than jobs on time
might cause some jobs that are on time to be late.

There is not much to say about the relaxation and rounding method in
Section 4.6, except that it did not work well. The method for rounding could
be improved to generate feasible schedules, but there was not enough time to
explore such algorithms, and even so it could still not guarantee optimality.

60



7.2 Further studies and recommendations
Before implementing any optimizing heuristic it may be wise to wait for the
result from the Optimist project, which is a Ph. D. project at the University
of Skövde. However, I suggest Volvo Aero to consider if the existing priority
function is the best one for the multitask cell. To change priority function
should be rather easy and the result could di�er signi�cantly. This should
probably be studied further before implementing the new function. There
are many factors to regard, like the expected lead time and the arriving
schedule. These numerous factors a�ect the result of a priority function.
The focus of this thesis has continuously been to minimize the total lateness
since I believe measuring the total lateness shows how well the system works
under pressure.

It has come to my knowledge that Volvo Aero might purchase theXpressMP
optimization tool for a Ph. D. project, which can be used in conjunction with
Microsoft Excel. This might make it more interesting to try to implement
the method from Section 4.4, the best heuristic tested, and also extend the
model since not everything was included in the model.

Another improvement that could be made is to have several di�erent
priority functions and every time a resource is available use the one that
generates the best schedule for say the next 20 hours. If this is something
that is considered I think it is important to have a good objective function
to measure how good the resulting schedule for the di�erent functions are.

The multitask cell is a stochastic environment, which makes it nearly im-
possible to construct an optimized schedule. Some of the stochastic variables
are: personnel, tools, �xture, processing times and machine break downs, to
mention a few. All of them were left out in the model since they were di�cult
to model and would make it even harder to optimize. Before implementing
anything in the real environment some testing needs to be done on a model
that can handle most of these stochastic variables.

One thing that is interesting to see is how the solutions from the priority
functions would change if the lead times for the product types are changed as
well as the arriving schedule. Changing these parameters are probably two
of the areas where there are some possibilities to improve the utilization of
the machines even more. The result from the tests of the priority functions
also indicates that the current expected lead times might be too short. Even
though the load in the tests of the priority functions is high, the number of
late products and the total lateness seems to be too high.

Volvo Aero might want to consider a study on how to set the due dates as
well. One idea I have is to have two due dates where the �rst is set somewhat
earlier depending on the job and one a little bit later. The �rst due date is
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used when calculating the CR-number and the second one is the time when
you want the product to be �nished. This could decrease the number of late
jobs but it creates a new question: how should these two due dates be set?

7.3 Conclusions
I knew that this project would be a tough one, but it proved out to be even
harder than expected. I am a bit disappointed that I did not manage to
provide more optimized schedules on larger data sets that I did. However,
I think that the results provided by this study can motivate further studies
regarding the multitask cell.

Because of the stochastic environment of the multitask cell, I believe that
the best way to schedule the multitask cell is to use a good priority function.
An optimization method can be used, but in that case it should only schedule
jobs that will be on time to the multitask cell and not jobs that might be late
on the way to the multitask cell. The advantage with using an optimization
method is that you get a guarantee on the schedule that you cannot get from
a priority function.

To make an optimal schedule for the multitask cell is (almost) impossible.
The best heuristic tested in this thesis was the use of a priority function to
generate a feasible schedule, and use the machine allocation and optimize
the order in which the operations on the resources are processed. (That is,
to transform the job shop MPM problem to a regular job shop problem.)
When the priority function creates a feasible schedule it makes it possible for
CPLEX, which was used during the thesis, to prune the branch and bound
tree and �nd a solution quite fast.

Also, the expected lead times need to be studied further. From the result
of the priority functions there are approximately 90% late jobs, which is
probably not acceptable. Changing the expected lead times will a�ect the
priority function considerably since the expected lead times are an important
part of all the functions tested.
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Chapter 8

Glossary

AMPL - Short for �A Mathematical Programming Language�, a high level
programming language, developed at Bell Laboratories, for describing
and solving mathematical problems.

CPLEX - CPLEX is an optimization software package that is compatible
with AMPL and is sold by ILOG.

�xture - A �xture is an appliance on which a product needs to be securely
�xed before processed.

�ow shop problem - A manufacturing scheduling problem dealing with
multiple machines and jobs, where every job looks the same and there
is an ordering of the operations for the jobs (all jobs has to go through
all machines).

Gantt chart - A Gantt chart is used to show activities as they occur over
time.

heuristic - A heuristic is an algorithm that generate solutions without guar-
antee of optimality.

job - A job is a set of connected operations.

job shop problem - A manufacturing scheduling problem dealing with mul-
tiple machines and jobs, where there is an ordering of the operations
for the all jobs.

lateness - The lateness for a job is the number of hours (time units) a job
is late; if it is on time the lateness is 0.
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Matlab - Matlab is a numerical computing and programming language cre-
ated by The MathWorks

multipurpose machine - (MPM) machines that are able to process several
di�erent types of operations.

multitask cell - The production cell at Volvo Aero that is studied in this
project.

multitask machine - The names of the MPM machines in the multitask
cell.

open shop problem - A manufacturing scheduling problem dealing with
multiple machines and jobs, where there is no ordering for the opera-
tions for the jobs.

operation - An operation, for this report, is de�ned as something that re-
quires a resource's full attention in the multitask cell for some period
of time.

polyhedron - A polyhedron is de�ned as the solution set to a �nite number
of linear inequalities, that is, for i = 1, . . . ,m, ai ∈ <n, and bi ∈ <, a
polyhedron has the form

{x ∈ <n : aT
i x ≤ bi, i = 1, . . . ,m}.

resource - A resource is de�ned as a workstation or machine in the multitask
cell.
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Appendix A

Computer code

A.1 The AMPL-model

###
### A AMPL-model for the Multi-Task problem at Volvo

Aero Corp. at äTrollhttan.
### This was done as a part of a master thesis at

Chalmers Univ. of Tech.
### If you want to optimize a static schedule just set

the currentTime
### parameter to a sufficient large number.
###
### author: Tomas Jansson
###

### SETS ###
# The set of products
set PRDS ordered;

# The set of machines
set MACHINES ordered;

### PARAMETERS ###
# Need this number to set up the constraints
param largeNumber default 0;
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# Max number of operation for one product.
param maxOps >= 1 integer;

# Max number of one product wanted.
param maxPrd >= 1 integer;

# The number of operations for every product
param nrOpsPerPrd {PRDS} > 0 integer;

# Defines how many of each product that is wanted
param nrOfPrd {PRDS} >= 0 integer;

# The releas dates for the jobs.
param releaseDates {h in PRDS,i in 1..nrOfPrd[h

]} >= 0;

# The due dates for the jobs.
param dueDates {h in PRDS,i in 1..nrOfPrd[h]} >= 0;

# The operation times for each product
param opTimes {h in PRDS,i in 1..nrOpsPerPrd[h]} >= 0;

# validMachine[i,j,k] defines if the machine k is
# valid for operation j of job i
param validMachine {h in PRDS,i in 1..nrOpsPerPrd[h],

MACHINES} binary;

# A "fake" parameter that fakes that the machines are
busy at startup.

param fakeOp {MACHINES};

# The time a product has to wait before it can be
processed on a new resource.

param waitTime >= 0 default 0.1;

# Controls wich of the oneJperM1 that should be in the
Lagrange duality problem,

# a 1 says that the constraint shoud be in the problem
param ctrlConst1 {h in PRDS,i in 1..nrOfPrd[h], j in

1..nrOpsPerPrd[h],
o in PRDS,p in 1..nrOfPrd[o], q in 1..
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nrOpsPerPrd[o],k in MACHINES}
binary default 1;

# Controls wich of the oneJperM2 that should be in the
Lagrange duality problem,

# a 1 says that the constraint shoud be in the problem
param ctrlConst2 {h in PRDS,i in 1..nrOfPrd[h], j in

1..nrOpsPerPrd[h],
o in PRDS,p in 1..nrOfPrd[o], q in 1..

nrOpsPerPrd[o],k in MACHINES}
binary default 1;

param constCount default 0; # Keeps count in how
many constraints that has beeing added in total.

### PARAMETERS USED IN THE PRIORITY FCN ###
# This parameter control the main loop
param mainDone default 0;

param timeStep default 10;

# The current time.
param currentTime >= 0;

# Temporary time parameters that is used for
param temp1Time >= 0;

# priority calculation.
param temp2Time >= 0;

# The available machine
param availMachine symbolic in MACHINES;

# The product with the lowest priority number
param prioPrd symbolic in PRDS;

# The job with the lowest priority number
param prioJob;

# The operation with the lowest priority number
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param prioOp;

# The currently lowest priority number.
param minPrio;

# Used when calculating the priority number.
param currentPrio;

# Helps to iterate over the machines.
param machineChecked {MACHINES} default 0;

# The time when a machine is done with the current
operation.

param machineDone {MACHINES} >= 0;

# The priority number for each job.
param prioNr {PRDS, 1..maxPrd} default 100000;

# Indicates how far each job has come.
param opsDone {PRDS,1..maxPrd} default 0;

# A loop variable.
param done default 0;

# This is used to keep track of when the previos
operation is done

# when calculating the priority numbers.
param prevDone;

### VARIABLES ###
# opStart[i,j,k] defines the start time of
# operation j of job i on machine k (if
# operation j of job i is is performed on
# machine k).
var opStart {PRDS, 1..maxPrd,1..maxOps,MACHINES} >= 0

default 0;

# a copy of opStart, that stores the best value so far
var opStart_opt {PRDS, 1..maxPrd,1..maxOps,MACHINES

} >= 0 default 0;
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# machineAlloc[i,j,k] is one if
# operation j of job i is performed on
# machine k, zero otherwise.
var machineAlloc {PRDS, 1..maxPrd,1..maxOps,MACHINES}

binary;

# a copy of machineAlloc, that stores the best value
so far

var machineAlloc_opt {PRDS, 1..maxPrd,1..maxOps,
MACHINES} binary;

# order[i,j,p,q,k] is one if
# operation j of job i is
# scheduled before operation q
# of job p on machine k.
var order {PRDS, 1..maxPrd,1..maxOps,

PRDS, 1..maxPrd,1..maxOps,MACHINES} default 0
binary;

# copy of order
var order_opt {PRDS, 1..maxPrd,1..maxOps,

PRDS, 1..maxPrd,1..maxOps,MACHINES} default 0
binary;

var costVar {h in PRDS, i in 1..maxPrd} >= 0;

# copy of costVar
var costVar_opt {h in PRDS, i in 1..maxPrd} >= 0;

### PARAMETERS AND VARIABLES FOR THE LDS (LANGRANGIAN
DUAL SUBPROBLEM) ###

param my1 {h in PRDS,i in 1..nrOfPrd[h],j in 1..
nrOpsPerPrd[h],

o in PRDS,p in 1..nrOfPrd[o],q in 1..
nrOpsPerPrd[o],k in MACHINES:

not(h = o and i = p and j = q)} >= 0 default
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0;

param my2 {h in PRDS,i in 1..nrOfPrd[h],j in 1..
nrOpsPerPrd[h],

o in PRDS,p in 1..nrOfPrd[o],q in 1..
nrOpsPerPrd[o],k in MACHINES:

not(h = o and i = p and j = q)} >= 0 default
0;

param my1_2 {h in PRDS,i in 1..nrOfPrd[h],j in 1..
nrOpsPerPrd[h],

o in PRDS,p in 1..nrOfPrd[o],q in 1..
nrOpsPerPrd[o],k in MACHINES:

not(h = o and i = p and j = q)} >= 0 default
0;

param my2_2 {h in PRDS,i in 1..nrOfPrd[h],j in 1..
nrOpsPerPrd[h],

o in PRDS,p in 1..nrOfPrd[o],q in 1..
nrOpsPerPrd[o],k in MACHINES:

not(h = o and i = p and j = q)} >= 0 default
0;

param upperBound default 0;

# An approximation parameter that is used when
calculating the step-size.

param approx default 0;

param currentDualSol default 0;

# The solution from the previous iteration in the
lagrangian iteration.

param oldDualSol default 0;

# The maximum solution we have seen durint the last
progressCtr iterations

param maxProgressSol;

# The minimum solution we have seen durint the last

72



progressCtr iterations
param minProgressSol;

param progressDiff;

# How many iterations we should make before we
# deciding if we should change the stepWeight

parameter
param progressCtr default 10;

# A "weight" that is used when calculating the step-
size.

param stepWeight default 1.5;

# This keeps count on if we’re
param stepWeightCounter default 0;

# The size which we at least want to improve our
# solution with in every iteration (Lagrangian)
param speed default 0.001;

# When is it time to change the stepWeight?
param maxStepWeightCounter = 10;

param lagrangianCounterMax default 100;

# This is used when checking if a dual solution is
feasible to the primal problem.

param isFeasible default 0;

var const1Var {h in PRDS, i in 1..nrOfPrd[h], j in 1..
nrOpsPerPrd[h],

o in PRDS, p in 1..nrOfPrd[o], q in 1..
nrOpsPerPrd[o], k in MACHINES:

not(h = o and i = p and j = q)} =
(if (ctrlConst1[h,i,j,o,p,q,k] == 0) then 0

else ((opStart[h,i,j,k]+opTimes[h,j]-
largeNumber*(1-machineAlloc[h,i,j,k])) -

(largeNumber*(2-order[h,i,j,o,p,q,k]-
machineAlloc[o,p,q,k])+opStart[o,p,q,k])));
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var const2Var {h in PRDS, i in 1..nrOfPrd[h], j in 1..
nrOpsPerPrd[h],

o in PRDS, p in 1..nrOfPrd[o], q in 1..
nrOpsPerPrd[o], k in MACHINES:

not(h = o and i = p and j = q)} =
(if (ctrlConst2[h,i,j,o,p,q,k] == 0) then 0

else ((opStart[o,p,q,k]+opTimes[o,q]-
largeNumber*(1-machineAlloc[o,p,q,k])) -

(largeNumber*(1+order[h,i,j,o,p,q,k]-
machineAlloc[h,i,j,k])+opStart[h,i,j,k])));

var temp1Var {h in PRDS, i in 1..nrOfPrd[h], j in 1..
nrOpsPerPrd[h],

o in PRDS, p in 1..nrOfPrd[o], q in 1..
nrOpsPerPrd[o], k in MACHINES:

not(h = o and i = p and j = q)} = const1Var[h,
i,j,o,p,q,k]^2;

var temp2Var {h in PRDS, i in 1..nrOfPrd[h], j in 1..
nrOpsPerPrd[h],

o in PRDS, p in 1..nrOfPrd[o], q in 1..
nrOpsPerPrd[o], k in MACHINES:

not(h = o and i = p and j = q)} = const2Var[h,
i,j,o,p,q,k]^2;

# Need one stepsize parameter for each relaxed
constraint.

var stepSize1 = stepWeight*(approx-currentDualSol)/
sum{h in PRDS, i in 1..nrOfPrd[h], j in 1..

nrOpsPerPrd[h],
o in PRDS, p in 1..nrOfPrd[o], q in 1..

nrOpsPerPrd[o], k in MACHINES:
not(h = o and i = p and j = q)} (temp1Var[h,i,

j,o,p,q,k]+temp2Var[h,i,j,o,p,q,k]);

var stepSize;

var max1Var {h in PRDS, i in 1..nrOfPrd[h], j in 1..
nrOpsPerPrd[h],

o in PRDS, p in 1..nrOfPrd[o], q in 1..
nrOpsPerPrd[o], k in MACHINES:
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not(h = o and i = p and j = q)} = max(0,my1[h,
i,j,o,p,q,k]+stepSize*const1Var[h,i,j,o,p,q
,k]);

var max2Var {h in PRDS, i in 1..nrOfPrd[h], j in 1..
nrOpsPerPrd[h],

o in PRDS, p in 1..nrOfPrd[o], q in 1..
nrOpsPerPrd[o], k in MACHINES:

not(h = o and i = p and j = q)} = max(0,my2[h,
i,j,o,p,q,k]+stepSize*const2Var[h,i,j,o,p,q
,k]);

### OBJECTIVE ###
# The main objective function strives to keep costVar

as low as possible.
minimize totCost:

sum{h in PRDS, i in 1..nrOfPrd[h]:releaseDates
[h,i] < currentTime+timeStep} costVar[h,i];

# The Langrangian dual
minimize dualCost:

sum{h in PRDS, i in 1..nrOfPrd[h]:releaseDates
[h,i] < currentTime+timeStep}

(costVar[h,i] +
sum{j in 1..nrOpsPerPrd[h], o in PRDS, p in

1..nrOfPrd[o],
q in 1..nrOpsPerPrd[o], k in MACHINES:
releaseDates[o,p] < currentTime+timeStep and

not(h==o and i==p and j==q)}
(my1[h,i,j,o,p,q,k]*const1Var[h,i,j,o,p,q,k] +
(my2[h,i,j,o,p,q,k]*const2Var[h,i,j,o,p,q,k]))

);

### CONSTRAINTS ###
# The fake operation has to be ready before the

machine
#can process a real operation.
subject to fakeOps{h in PRDS, i in 1..nrOfPrd[h], j in

1..nrOpsPerPrd[h],
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k in MACHINES:
releaseDates[h,i] < currentTime+

timeStep}:
opStart[h,i,j,k] - fakeOp[k]*machineAlloc[h,i,

j,k] >= 0;

# Creates the values for the costVar variables,
# and they are defined as the time that the jobs

exceeds their due dates.
subject to costConstraint {h in PRDS,i in 1..nrOfPrd[h

],k in MACHINES:
releaseDates[h,i] <

currentTime+timeStep}:
opStart[h,i,nrOpsPerPrd[h],k] + opTimes[h,

nrOpsPerPrd[h]] - costVar[h,i] <=
dueDates[h,i];

# The first operation can’t start before its release
date.

subject to illegalStart{h in PRDS, i in 1..nrOfPrd[h
], k in MACHINES:

releaseDates[h,i] <
currentTime+timeStep}:

opStart[h,i,1,k] >= releaseDates[h,i]*
machineAlloc[h,i,1,k];

# Removes "illegal" values in opStart.
# (Had some problems with values that were set to ~

largeNumber)
subject to badOps{h in PRDS, i in 1..nrOfPrd[h], j in

1..nrOpsPerPrd[h],
k in MACHINES:

releaseDates[h,i] < currentTime+
timeStep}:

opStart[h,i,j,k] - largeNumber*machineAlloc[h,
i,j,k] <= 0;

76



# A operation can only be done on one machine
subject to oneOponeM {h in PRDS,i in 1..nrOfPrd[h], j

in 1..nrOpsPerPrd[h]:
releaseDates[h,i] < currentTime+

timeStep}:
sum {k in MACHINES} machineAlloc[h,i,j,k] = 1;

# The operation has to be done on a valid machine
subject to validity1 {h in PRDS,i in 1..nrOfPrd[h], j

in 1..nrOpsPerPrd[h],
k in MACHINES:

releaseDates[h,i] < currentTime+
timeStep}:

machineAlloc[h,i,j,k] <= validMachine[h,j,k];

# Only one of the operations [h,i,j] and [o,p,q] can
have their order variable set

subject to validity4 {h in PRDS,i in 1..nrOfPrd[h], j
in 1..nrOpsPerPrd[h],

o in PRDS,p in 1..nrOfPrd[o], q in 1..
nrOpsPerPrd[o],k in MACHINES:

releaseDates[h,i] < currentTime+
timeStep and

releaseDates[o,p] < currentTime+
timeStep}:

(if (h==o and i==p and j==q) then 0 else
(order[h,i,j,o,p,q,k] + order[o,p,q,h,i,j,k]))

<= machineAlloc[h,i,j,k];

# Force one of the order variable to be set.
subject to forceOrder1 {h in PRDS,i in 1..nrOfPrd[h],

j in 1..nrOpsPerPrd[h],
o in PRDS,p in 1..nrOfPrd[o], q in 1..

nrOpsPerPrd[o],k in MACHINES:
releaseDates[h,i] < currentTime+

timeStep and
releaseDates[o,p] < currentTime+

timeStep}:
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(if (h==o and i==p and j==q) then 0 else
machineAlloc[h,i,j,k]+machineAlloc[o,p,q,k] -
(order[h,i,j,o,p,q,k]+order[o,p,q,h,i,j,k]+1))

<= 0;

# Force the operations in one job to be correct
subject to forceOrder2 {h in PRDS,i in 1..nrOfPrd[h],

j in 1..nrOpsPerPrd[h],
j_2 in 1..nrOpsPerPrd[h], k in MACHINES:
releaseDates[h,i] < currentTime+timeStep}: if

(j_2 < j) then largeNumber else
order[h,i,j,h,i,j_2,k] >= order[h,i,j_2,h,i,j,

k];

# Make sure that there is only one job allocated at a
machine at any given time

# Relaxed to the dual function
subject to oneJperM1 {h in PRDS,i in 1..nrOfPrd[h], j

in 1..nrOpsPerPrd[h],
o in PRDS,p in 1..nrOfPrd[o], q in 1..

nrOpsPerPrd[o],k in MACHINES:
releaseDates[h,i] < currentTime+

timeStep and
releaseDates[o,p] < currentTime+

timeStep}:
(if ((h==o and i==p and j==q) or ctrlConst1[h,

i,j,o,p,q,k] == 1) then 0 else
(opStart[h,i,j,k] + opTimes[h,j] - largeNumber

* (1-machineAlloc[h,i,j,k]) -
(largeNumber*(2 - order[h,i,j,o,p,q,k] -

machineAlloc[o,p,q,k]) +
opStart[o,p,q,k]))) <= 0;

# Relaxed to the dual function
subject to oneJperM2 {h in PRDS,i in 1..nrOfPrd[h], j

in 1..nrOpsPerPrd[h],
o in PRDS,p in 1..nrOfPrd[o], q in 1..
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nrOpsPerPrd[o],k in MACHINES:
releaseDates[h,i] < currentTime+

timeStep and
releaseDates[o,p] < currentTime+

timeStep}:
(if ((h==o and i==p and j==q) or ctrlConst2[h,

i,j,o,p,q,k] == 1)then 0 else
(opStart[o,p,q,k] + opTimes[o,q] - largeNumber

*(1 - machineAlloc[o,p,q,k]) -
(largeNumber*(1 + order[h,i,j,o,p,q,k] -

machineAlloc[h,i,j,k]) +
opStart[h,i,j,k]))) <= 0;

# A copy that doesn’t take the ctrlConst1 variable in
account

subject to oneJperM1_2 {h in PRDS,i in 1..nrOfPrd[h],
j in 1..nrOpsPerPrd[h],

o in PRDS,p in 1..nrOfPrd[o], q in 1..
nrOpsPerPrd[o],k in MACHINES:

releaseDates[h,i] < currentTime+
timeStep and

releaseDates[o,p] < currentTime+
timeStep}:

if (h==o and i==p and j==q) then 0 else
opStart[h,i,j,k] + opTimes[h,j] - largeNumber

*(1 - machineAlloc[h,i,j,k]) -
(largeNumber*(2 - order[h,i,j,o,p,q,k] -

machineAlloc[o,p,q,k]) +
opStart[o,p,q,k]) <= 0;

# Same as above
subject to oneJperM2_2 {h in PRDS,i in 1..nrOfPrd[h],

j in 1..nrOpsPerPrd[h],
o in PRDS,p in 1..nrOfPrd[o], q in 1..

nrOpsPerPrd[o],k in MACHINES:
releaseDates[h,i] < currentTime+

timeStep and
releaseDates[o,p] < currentTime+

timeStep}:
if (h==o and i==p and j==q) then 0 else
opStart[o,p,q,k] + opTimes[o,q] - largeNumber
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*(1 - machineAlloc[o,p,q,k]) -
(largeNumber*(1 + order[h,i,j,o,p,q,k] -

machineAlloc[h,i,j,k]) +
opStart[h,i,j,k]) <= 0;

# The operation within a job have to be done in the
right order

subject to jobOrder {h in PRDS,i in 1..nrOfPrd[h], j
in 1..nrOpsPerPrd[h]-1,

k in MACHINES,l in MACHINES:
releaseDates[h,i] < currentTime+
timeStep}:

largeNumber*(1-machineAlloc[h,i,j+1,k])+
opStart[h,i,j+1,k] >=

opStart[h,i,j,l]+opTimes[h,j]+waitTime-
largeNumber*(1-machineAlloc[h,i,j,l]);

### PROBLEM DEFINTION ###
problem primalProb: opStart, machineAlloc, order,

costVar, totCost,
fakeOps, costConstraint, illegalStart, badOps

, oneOponeM,
validity1, validity4, oneJperM1_2, oneJperM2_2

, jobOrder, forceOrder2;

problem lagrangianDual2: opStart, machineAlloc, order
, costVar, const1Var,

const2Var, dualCost, fakeOps, costConstraint,
illegalStart, badOps,

oneOponeM, validity1, validity4, jobOrder,
forceOrder2,forceOrder1;;

A.2 Example input

###
### The data for the Multi-Task AMPL-model.
###
### author: Tomas Jansson
###
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# {M1,..M3} = <set up stations>, {M4,...M8} = <
multitask machines>, {M9} =

# <manuell gradningsstation> and {M10} = <robot
gradning>.

set MACHINES = M1,M3,M4,M8,M9,M10;

param waitTime = 0.1;

param maxPrd:= 3;

param maxOps:= 11;

param largeNumber := 300;

param : PRDS: nrOfPrd:=
#list as follows:
#prd1 <the ammount of prd1>
#prdLast <the ammount of prdlast>;
prdX 2
prdY 3;

param nrOpsPerPrd:=
#list as follows:
#prd1 <the number of operation for prd1>
#prdLast <the number of operation for prdLast

>;
prdX 11
prdY 7;

param interval :=
prdX 15
prdY 15;

param firstArrival :=
prdX 2
prdY 2;
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param expLeadTime:=
prdX 68.33
prdY 17.05;

param fakeOp
M1 7
M3 6
M4 8
M8 10
M9 17
M10 25;

# A tear down followed by a set up is considered to be
a combined operation

# Each column is the operation number for the product
and the rows are the machines.

# 1 in the matrices indicates that the machine is
valid for that operation.

param validMachine
[prdX,*,*] (tr)
: 1 2 3 4 5 6

7 8 9 10 11:=
M1 1 0 0 0 1 0

1 0 0 0 1
M3 1 0 0 0 1 0

1 0 0 0 1
M4 0 1 0 0 0 1

0 1 0 0 0
M8 0 1 0 0 0 1

0 1 0 0 0
M9 0 0 1 0 0 0

0 0 1 0 0
M10 0 0 0 1 0 0

0 0 0 1 0
[prdY,*,*] (tr)
: 1 2 3 4 5 6

7 8 9 10 11:=
M1 1 0 1 0 1 0
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1 . . . .
M3 1 0 1 0 1 0

1 . . . .
M4 0 1 0 1 0 1

0 . . . .
M8 0 1 0 1 0 1

0 . . . .
M9 0 0 0 0 0 0

0 . . . .
M10 0 0 0 0 0 0

0 . . . .;

# Each column is the operation number for the product
and the rows are the machines.

# The values in the matrices tells the operation time
for the specific operation.

# If the value is 0 it means that the operation number
doesn’t exist.

param opTimes
: 1 2 3

4 5 6
7 8 9
10 11:=

prdX 0.75 8.1 0.5 2 1.25
10.8 1.25 21.68 2 5.5

0.5
prdY 0.75 1.2 1.25 1.2 1.25 4.9

0.5 . . .
.;
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