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1 SUMMARY

We consider structural topology optimization problems including unilateral constraints
arising from, for example, non-penetration conditions in contact mechanics or non-
compression conditions for elastic ropes. To construct more realistic models and to hedge
off possible failures or inefficient behaviour of optimal structures, we allow parameters
(for example, loads) defining the problem to be stochastic. The resulting nonsmooth
stochastic optimization problem is an instance of stochastic mathematical programs with
equilibrium constraints (MPEC), or stochastic bilevel programs. The existence as well
as the continuity of optimal solutions with respect to the lower bounds on the design
variables are established. The question of continuity of optimal solutions with respect
to small changes in probability measure is analyzed. For a subclass of the problems
considered the answer is affirmative, thus showing the robustness of optimal solutions.

2 INTRODUCTION

Does the introduction of multiple load cases into a topology optimization problem always
lead to robust optimal designs? The large number of publications aiming to achieve robust
solutions by optimizing for several (in some cases the continuum) load cases suggests that
the answer should be positive.

The answer of course depends on the exact definition of “robustness” and the type of
optimization problem under consideration. The reason for considering several load cases
is to incorporate the uncertain nature of the loads into the model, while the desired
property of a robust design is to change continuously as a model of reality (loading
conditions, material properties, etc.) changes. To thoroughly answer the posed question
it is necessary to measure the closeness of two models of (uncertain) reality.

In this paper we consider two of the most natural and classic structural topology opti-
mization problems: the finding of a maximally stiff truss under a volume constraint, and
the finding of a truss of minimal weight under stress constraints. The uncertainty due
to several factors (such as loads unknown in advance, varying material properties, man-
ufacturing errors, etc.) is taken into account. Capturing the uncertainty in the model
through the use of probability theory allows us to construct general models, and through
the associated probability measure, it is possible to interpret the “continuous change in



the model of reality” as a continuous change in a topological space of measures.

To include a wide range of applications we allow mechanical structures to be unilaterally

constrained, i.e., some parts of the structure might come into unilateral frictionless contact
with rigid obstacles, while some other parts might sustain only tensile forces. Practical
applications of unilateral contact include such machine elements as joints, hinges, press-
fits, and examples of structures with tensile-only members include suspension bridges and
cranes.

Practice has shown that the idea of allowing truss topology to change may lead to ex-
ceedingly efficient designs. On the other hand, these designs may be very inefficient
or can even fail when loading conditions slightly change. An attempt to maintain the
efficiency of topology optimization while hedging off possible failures or inefficient be-
haviour has given rise to the field of robust topology optimization. The anticipated fact
that the “real” probability model is never known, and the reported high sensitivity of
solutions to stochastic structural optimization problems with respect to small changes in
probability measure [1, pp. 20–22], caused the development in the area to concentrate on
probability-free worst-case (“pessimistic”) approaches to uncertainty. An efficient numer-
ical approach to solve topology optimization problems with a simple convex uncertainty
model is known [2].

An alternative approach to robust topology optimization based on treating uncertainty
via probability theory is analyzed in [3], [4] and [5]; an interested reader can find all
the proofs of the results listed here in these papers. In addition to extending “classic”
structural topology optimization results (existence of optimal designs, convergence of ε-
perturbations) to the general stochastic setting, we analyze the continuity of optimal
solutions with respect to changes in the probability measure. The results of this analysis
give us explicit information about when the introduction of uncertainty into the structural
topology optimization models indeed leads to robust optimal designs. We also illustrate
the convergence of various approximations for the stochastic weight minimization problem
and show the qualitative behaviour of optimal solutions with numerical examples.

2.1 Mechanical equilibrium

Given positions of the nodes the design (and topology in particular) of a truss can be
described by the following sets of design variables: xi ≥ 0, i = 1, . . . , m, representing
the volume of material, allocated to the bar i in the structure; Xj ≥ 0, j = 1, . . . , r2,
representing the volume of material, allocated to the cable j. We introduce two index
sets of the present (or active) members in the structure: I(x) = { i = 1, . . . , m | xi > 0 }
and J (X) = { j = 1, . . . , r2 | Xj > 0 }.

Let (Ω, S, P) be a complete probability space. Given a particular design the status of the
linear elastic mechanical system is governed by the principle of minimum complementary
energy (C)(x,X)(ω) (in our case it is an (x, X, ω)-parametric minimization problem) where
the functions in the problem have the following meaning from a mechanical point of view:
E(ω) and Ec(ω) are Young’s moduli for the structure and cable materials respectively;
Bi(ω) is the kinematic transformation matrix for the bar i; γj(ω) is the unit direction
vector of the cable j; (g2(ω))j is the initial slack of the cable j; Lj(ω) is the length
of the cable j; C1(ω) is the quasi-orthogonal kinematic transformation matrix for rigid
obstacles; g1(ω) ≥ 0 is the vector of the initial gaps; and f(ω) is the vector of external
forces.



For the problem to be tractable we assume that all functions listed above are S-
measurable. We further assume that the matrix C1 is quasi-orthogonal, that is, that
C1C

T
1 = I. That condition is fulfilled if at each node either there is at most one rigid

support or multiple supports “act” in orthogonal directions to each other.
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λ ≥ 0, SJ (X) ≥ 0, sIc(x) = 0, SJ c(X) = 0.

The variables in the problem (C)(x,X)(ω) have the following interpretation: si is the
tensile force in the bar times its length; Sj is the tensile force in the cable; λ is the vector
of contact forces. Using the quasi-orthogonality of C1, contact forces λ are uniquely
determined by (s, S) and depend continuously on them; this fact will be used without
backward reference.

2.2 General stochastic minimum compliance problem

The general stochastic minimum compliance problem is:
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(s(ω), S(ω), λ(ω)) solves (C)(x,X)(ω), P-a.s.,

where v and V are the limits on the amount of cable and structure material correspond-
ingly. In this problem we minimize the average value of compliance for multiple load
cases. In topology optimization we set lower bounds x = 0 and X = 0.

2.3 Stochastic stress constrained weight minimization problem

The formal problem formulation is as follows:
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where σ1 and σ2 are the maximal allowable effective stresses in, and ρ1 and ρ2 the den-
sities of, the structure and the cable materials respectively. In this problem we require
stress constraints to hold for almost all load cases, or we allow them to be violated with

probability zero. In topology optimization we set lower bounds x = 0 and X = 0.



3 THEORETICAL RESULTS

3.1 Existence of solutions

Theorems 3.1 and 3.2 summarize conditions sufficient for the existence of optimal solu-
tions to problems (P1) and (P2).

Theorem 3.1 (Existence of solutions to (P1)). Suppose that for some feasible point

(x0, X0, s(·), S(·)) in the problem (P1) we have cf (x, X, s(·), S(·), λ(·)) < ∞. Then, there

exists at least one optimal solution to (P1).

Theorem 3.2 (Existence of solutions to (P2)). Suppose that the following assump-

tions are satisfied: (i) the feasible set of the problem (P2) is nonempty; (ii) P(E(·) ≥ c) =
P(Ec(·) ≥ c) = 1 for some constant c > 0; (iii) the functions Lj(·), g1(·), g2(·), C1(·),
Bi(·) and f(·) are essentially bounded. Then there exists at least one optimal solution to

the problem (P2).

3.2 Convergence of ε-perturbations

The replacement of the lower design bounds (x, X) = 0 with a small positive value
ε > 0 tending to zero (whence the name — ε-perturbation), or the approximation with
a sequence of sizing optimization problems, has become a classical solution approach to
structural topology optimization problems. For compliance minimization problems such
an approach is sufficient for approximating optimal solutions.

The situation with the stress constrained weight minimization is far more complicated.
Sved and Ginos [6] observed that the problem may have singular solutions, which cannot
be approximated by the simplistic approach outlined above. Cheng and Guo [7] proposed
a more sophisticated relaxation procedure, where not only lower bounds but also stress
constraints were perturbed. They showed the convergence of optimal values of perturbed
problems to the optimal value of the original problem, while Petersson [8] showed the
convergence of optimal solutions. Patriksson and Petersson [9] generalized the result
for stochastic topology optimization problems with unilateral constraints and discrete

probability measures.

Consider the following ε-perturbation of the problem (P1):
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(s(ω), S(ω), λ(ω)) solves (C)(x,X)(ω), P-a.s.

Theorem 3.3 (Convergence of ε-perturbations for (P1)). Suppose that for some

ε0 > 0 there is a solution (x0, X0, s0(·), S0(·), λ0(·)) that is feasible in (P1) with

(x0, X0) ≥ ε01m+r2
and cf(x0, X0, s0(·), S0(·), λ0(·)) < ∞. For each ε0 ≥ ε > 0, let

(x∗
ε, X

∗
ε , s∗ε(·), S

∗
ε(·), λ

∗
ε(·)) denote an arbitrary optimal solution to (P ε

1). Then any limit

point of the sequence {(x∗
ε, X

∗
ε , s∗ε(·), S

∗
ε (·), λ

∗
ε(·))} (and there is at least one) is an optimal

solution to (P0
1 ) = (P1).

For the stress constrained weight minimization problem we restrict ourselves to the very
important special case of a truss without unilateral constraints, under stochastic loading.



Consider the following ε-perturbation of the problem (P2):
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where from the function o : R++ → R++ we only require the properties that {o(ε)/ε}
converges to zero while {o(ε)/ε2} is bounded away from zero (e.g., o(ε) = ε2 satisfies
these requirements).

Theorem 3.4 (Convergence of ε-perturbations for (P2)). Suppose that the only

source of uncertainty — loads f(·) are essentially bounded. Assume further that for some

ε0 > 0 there is a solution (x0, s0(·)) that is feasible in (P2) with x0 ≥ o(ε0)1m. For each

ε0 ≥ ε > 0 let (x∗
ε, s

∗
ε(·)) denote an arbitrary optimal solution to (P ε

2). Then any limit

point of the sequence {(x∗
ε, s

∗
ε(·))} (and there is at least one) is an optimal solution to

(P0
2 ) = (P2).

Being an interesting theoretical result, the ε-perturbation based method has several draw-
backs when it comes to algorithms. The presence of stress constraints in the problem does
not allow us to use many numerical algorithms designed for MPECs without state con-
straints. Specifically, in the stochastic setting the presence of stress constraints does not
allow us to construct discretizations of the problem: even though the stress constraints
must hold with probability one they can be violated on some set of measure zero, which
may happen to contain our discretization points. Therefore, we introduce an alternative
convergent scheme, which in addition to adding the small lower bounds on the design
variables moves the stress constraints into the objective function using a convex penalty
function.

Let G(x, s) :=
∑m

i=1[|si| − σ1xi]
2
+/xi. Using the usual convention 0/0 = 0 and a/0 = ∞

for any a > 0, the function G can be evaluated on any nonnegative design x. It is easy to
check that G is l.s.c. on R

m
+ × R

m. Let µ : R++ → R++ be an arbitrary function having
a property limε→+0 µ(ε) = +∞ but limε→+0 εµ(ε) = 0. Consider the penalized problem:
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G(x, s(ω)) P(dω)
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{

ε1m ≤ x ≤ x + ε1m,

s(ω) solves (C)x(ω), P-a.s.

Theorem 3.5 (Penalty function approach to (P2)). Suppose that the only source of

uncertainty — loads f(·) are essentially bounded. Suppose further that for some ε0 > 0
there is a solution (x0, s0(·)), which is feasible in (P2) with x0 ≥ ε01m. Then for any

0 < ε ≤ ε0 the problem (P̄ε
2) has an optimal solution (xε, sε(·)). Any limit point of the

sequence {(xε, sε(·))} is an optimal solution to (P2).

3.3 Distribution sensitivity

The analysis of stability of optimal solutions with respect to small changes in probability
measure is of great importance. From the computational point of view it allows one



to replace the original stochastic problem by a sequence of simpler problems, involving
approximations (discretizations) of the probability measure. From the practical point of
view, it asserts that solutions to the problem obtained using statistical estimations of
the unknown stochastic distribution are “close” to exact solutions. From the theoretical
point of view, it confirms the robustness of the probabilistic approach with respect to
possible errors in the probability distribution.

Throughout this subsection we assume that Ω is a compact metric space, S = B(Ω) and
the only sources of uncertainty are the loads f(·), gaps g1(·) and slacks g2(·), which in
addition are assumed to be continuous functions. We also assume that for all (x, X) > 0
the problem (C)(x,X)(ω) is feasible for almost any ω ∈ Ω. We need to impose additional
regularity properties on the sequence {Pk}. Namely, we suppose that each measure Pk

has a density pk(·) with respect to a Lebesgue measure on Ω and that the sequence {pk(·)}
converges to a density p(·) of P Lebesgue-almost everywhere. The existence of densities
is not a very restrictive assumption from the theoretical point of view, and it is usually
assumed in engineering applications of probability theory.

Under these assumptions it is possible to show the continuity of the optimal solutions to
the stochastic compliance minimization problem. We denote by (P1)

k the problem (P1)
in which the measure P is substituted by Pk.

Theorem 3.6 (Robustness of solutions to (P1)). Let {(xk, Xk)} be a sequence of

optimal in {(P1)
k} designs. Then any limit point (and there is at least one) of this

sequence is a design, which is optimal in the limiting problem (P1).

Unfortunately, solutions to stress constrained weight minimization problems are not in
general continuous with respect to small changes in probability measure. To ensure the
continuity we need to make a very restrictive assumption that approximating measures
and a limit measure have the same support, or else relax the model [5].

4 NUMERICAL EXAMPLES

4.1 Convergence of ε-perturbations

Consider the problem of minimizing the weight of the 4-bar structure shown in Fig-
ure 1 (a). The stress limit for each bar is σ = 1, and the Young’s modulus is E = 1.
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Figure 1: The 4-bar truss problem (a) and the corresponding feasible design domain (b).
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Figure 2: Convergence of the ε-perturbations (a) and the penalty function approach (b) for the
4-bar truss problem.

Assume that the upper design bounds are inactive, and that the force vector f(ω) equals
(2 cos(ω), 1.5 sin(ω)), where 0 ≤ ω ≤ π. The probability measure is the uniform one on
[0, π]. Since the initial structural topology as well as the loading conditions are symmetric,
we can expect symmetric optimal solutions (i.e., x∗

1 = x∗
4, x∗

2 = x∗
3). Figure 1 (b) shows the

projection of the set of feasible designs onto the linear subset { x ∈ R
4 | x1 = x4, x2 = x3 }.

Note that the feasible set is not a finite union of polyhedra, because we work with an
infinite number of load cases. Despite the large number of load cases, at the globally
optimal solution, x∗ = (0, 2.5, 2.5, 0), the structural topology was modified (i.e., bars 1
and 4 were removed).

There are three local minima, two of which (including the globally optimal solution) are
singular. The difference in the objective function value between the best non-singular
local minimum and the globally optimal solution can be made much larger by a suitable
choice of constants. The nonsingular non-global, local minimum of the original problem is
the global minimum for the “naively” perturbed problem for all small values of ε. There-
fore, we cannot approximate the globally optimal solution by the “naive” ε-perturbation.
Both the “correct” ε-perturbation scheme and the penalty function approach (where we
used µ(ε) = ε−0.8) allow us to recover the globally optimal solution, as shown in Figure 2.

4.2 Qualitative behaviour of optimal solutions

We consider a problem of finding a minimal weight of a cable suspended crane under
stochastic loading. In this example the force is a unit vector with the direction uniformly
distributed on [−3π/4,−π/4]. The number of bars is m = 23, and the number of cables
is r2 = 5. We set ρ1 = ρ2 = 1.0, the maximal cross-sectional area for both cables and
bars equals to 1.0, the maximal stresses are σ1 = 1.4 and σ2 = 0.8, Young’s moduli
are E = Ec = 1.0, and initial slacks g1 = 0. The behaviour of the single, average-load,
optimal design under various loading conditions is shown in Figure 3 (a). The behaviour
of a design optimized for a 625-point approximation of the probability measure is shown
in Figure 3 (b).
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Figure 3: Stresses and displacements for various random forces for optimal designs, correspond-
ing to (a) single average-load and (b) 625 load cases. Note, for the sake of better visualization
of stresses, line thicknesses are not proportional to cross-sectional areas, but instead choosen to
have the same thickness. Lighter color means bigger stress.
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