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Abstract

The paper provides two contributions. First, we present new convergence results for conditional e-subgradient al-
gorithms for general convex programs. The results obtained here extend the classical ones by Polyak [Sov. Math.

Doklady 8 (1967) 593; USSR Comput. Math. Math. Phys. 9 (1969) 14; Introduction to Optimization, Optimization

Software, New York, 1987] as well as the recent ones in [Math. Program. 62 (1993) 261; Eur. J. Oper. Res. 88 (1996)

382; Math. Program. 81 (1998) 23] to a broader framework. Secondly, we establish the application of this technique to

solve non-strictly convex–concave saddle point problems, such as primal-dual formulations of linear programs. Con-

trary to several previous solution algorithms for such problems, a saddle-point is generated by a very simple scheme in

which one component is constructed by means of a conditional e-subgradient algorithm, while the other is constructed

by means of a weighted average of the (inexact) subproblem solutions generated within the subgradient method. The

convergence result extends those of [Minimization Methods for Non-Differentiable Functions, Springer-Verlag, Berlin,

1985; Oper. Res. Lett. 19 (1996) 105; Math. Program. 86 (1999) 283] for Lagrangian saddle-point problems in linear and

convex programming, and of [Int. J. Numer. Meth. Eng. 40 (1997) 1295] for a linear–quadratic saddle-point problem

arising in topology optimization in contact mechanics.
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1. Introduction

Consider the convex–concave saddle-point

problem to find

ðx�; y�Þ 2 X � Y : Lðx�; yÞ6Lðx�; y�Þ6Lðx; y�Þ;
8ðx; yÞ 2 X � Y : ðSPÞ

We assume that X � Rn and Y � Rm are non-

empty, convex and compact sets, andL :X�Y 7!R
ed.

mail to: tolar@mai.liu.se
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is convex–concave and finite (hence continuous) on

X�Y , that is, convex (concave) in xðyÞ on X ðY Þ for
every fixed value of y2Y (x2X ). We note that in

what is to follow, the compactness assumption
on X�Y can be replaced by some coercivity as-

sumption on L with respect to X�Y (e.g., [12, p.

334]).

Under the above assumptions on the problem

(SP), there exists a saddle-point, ðx�; y�Þ, of L on

X � Y , the set of which is a Cartesian product

which we will denote by X � � Y �. Further, for any

choice of ðx�; y�Þ 2 X � � Y �,

v� ¼ Lðx�; y�Þ ¼ min
x2X

max
y2Y

Lðx; yÞ

¼ max
y2Y

min
x2X

Lðx; yÞ:

(These results are collected, for example, in [12,

Section VII.4].)

The algorithm to be presented in Section 2 at-

tacks the problem by means of solving the fol-

lowing equivalent convex problem:

minimize
x2X

f ðxÞ; ðPÞ

where

f ðxÞ :¼ max
y2Y

Lðx; yÞ; x 2 X : ð1Þ

We shall denote the set of solutions to the problem

(1) by Y ðxÞ. An e-optimal solution, ~yy, to the

problem (1) is characterized by the relation

Lðx; ~yyÞP f ðxÞ � e; ð2Þ
for some ~yy 2 Y and eP 0.

Example 1 (convex programming). An interesting

application of (SP) is to convex programming,

where Lðx; yÞ :¼ hðxÞ þ yTgðxÞ, corresponding to
the Lagrangian of the problem to

minimize
x2X\G

hðxÞ; ðCPÞ

where h : Rn 7!R is a convex function, the convex

set G is described by means of convex inequalities,

G :¼ fx 2 RnjgiðxÞ6 0; i ¼ 1; . . . ;mg;

where gi : R
n 7!R is convex for each i, and

Y ¼ Rm
þ. For this problem, we assume that X is

bounded, and the Slater constraint qualification

that the set fx 2 X jgðxÞ < 0g is non-empty (see [4,
Theorem 6.2.4]). Under this CQ, the set Y � is

compact. Assuming we may somehow restrict the

set Y to be a convex and compact set including Y �,

we thereby fulfill all the conditions on the problem
(SP). The problem (P) corresponds to the (convex)

Lagrangian dual problem to maximizey2Rm
þhðyÞ,

where hðyÞ :¼ minx2X Lðx; yÞ.

For solving the problem (P), we utilize condi-
tional e-subgradient optimization, which extends

traditional subgradient optimization, as analyzed,

for example, in [31], to possibly inexact calcu-
lations of subgradients and to generating search

directions which take the feasible set X into ac-

count. (The latter extension of traditional sub-

gradient optimization was analyzed in depth first

in [19].) Thus, we generate a point in X �. In order

to generate a point in Y �, we propose to build the

sequence of weighted averages of the (possibly

inexact) solutions to (1), generated while searching
for a point in X �. We establish that this sequence

converges to the set Y �, provided that the step

lengths utilized in the process of finding a point in

X � by the subgradient algorithm, and the weights

used in constructing a point in Y �, are both chosen

appropriately.

Some words on notation. The notation k � k
denotes the Euclidean norm; for a non-empty,
closed, and convex set S � Rn, the normal cone to

S is

NSðxÞ :¼
fz 2 RnjzTðy � xÞ6 0; 8y 2 Sg; x 2 S;
;; x 62 S;

�
the indicator function to S is

wSðxÞ :¼
0; x 2 S;
þ1; x 62 S:

�

We have that the subdifferential operator of wS ,

owS, equals NS . Further,

projðx; SÞ :¼ arg min
y2S

ky � xk

denotes the (Euclidean) projection of the vector x
onto the set S; we further introduce

distðx; SÞ :¼ min
y2S

ky � xk

to denote the Euclidean distance from the point x
to its projection projðx; SÞ onto S. Finally, we in-

troduce, for any mP 0,
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X m :¼ fx 2 X jf ðxÞ6 f � þ mg;

that is, the lower level set of f corresponding to m-
optimal solutions to the problem (P). (So,

X 0 ¼ X �.)

The subject of Section 2 is the convergence of

conditional e-subgradient optimization algorithms.

Section 3 presents the overall algorithm and es-

tablishes its convergence to a saddle-point.
t ¼ 0; 1; . . . ; ð6Þ
2. Convergence of conditional e-subgradient optimi-

zation

Our first result establishes a simple relationship

between e-optimal solutions to (1) given x 2 X and

e-subgradients of f at x. We first note that ceðxÞ is
an e-subgradient of f at x (that is, ceðxÞ is an ele-

ment of the e-subdifferential, oef ðxÞ, of f at x) for
some eP 0 if and only if

f ðzÞP f ðxÞ þ ceðxÞ
Tðz� xÞ � e; z 2 Rn; ð3Þ

the definition of a subgradient (that is, an element

of the subdifferential) follows by setting e ¼ 0.

Proposition 2 (e-optimal solutions provide e-sub-
gradients). Suppose that, given x 2 X , ~yy is an e-
optimal solution to (1). Then, any subgradient ~ccðxÞ
of Lð�; ~yyÞ at x is an e-subgradient to f at x.

Proof. Fix any x 2 X and eP 0. For an arbitrary

z 2 X then follows that

f ðzÞPLðz; ~yyÞP f ðxÞ þ ½Lðz; ~yyÞ �Lðx; ~yyÞ � e�
P f ðxÞ þ ~ccðxÞTðz� xÞ � e;

which yields that ~ccðxÞ 2 oef ðxÞ, the first inequality

coming from the definition of the value f ðzÞ, the
second inequality following from the e-optimality
of ~yy in (1), and the right-most inequality following

from the convexity of Lð�; ~yyÞ. �

Example 1 (continued). For the special case of the
problem (CP), the above result states that an e-
optimal solution to the Lagrangian subproblem

provides an e-subgradient of the Lagrangian dual

function h. This property was described indepen-

dently by Larsson et al. [21] and Bertsekas [5, p.

615], but is most probably folklore, and a much

older result.
Given the iteration point xt at iteration t, let
cetðxtÞ be an et-subgradient of f at xt 2 X . Let

cXet ðx
tÞ be a conditional et-subgradient of f at xt 2 X ,

that is, cXet ðx
tÞ ¼ cetðxtÞ þ mðxtÞ for some mðxtÞ 2

NX ðxtÞ. (This is equivalent to replacing z 2 Rn with
z 2 X in (3) or, in other words, cXet ðx

tÞ is an element

of the et-subdifferential of the function f þ wX at

xt; see [9,19].) We will in the following analyze the

convergence of conditional e-subgradient algo-

rithms for the solution of (P) using the divergent

series step length rule,

at > 0; 8t; lim
t!1

at ¼ 0; and
X1
t¼0

at ¼ 1; ð4Þ

in cases also under the additional requirement thatX1
t¼0

a2t < 1; ð5Þ

and under different scalings of the search direc-

tions.
In the analysis that follows, it is assumed that

the sequences are infinite. In the case that

cXet ðx
tÞ ¼ 0 for some t, xt is et-optimal in (P), and the

procedure may be terminated (or the iteration

considered void and the value of et decreased).
For the sake of reaching a maximal generality,

the analysis in this section for the problem (P) will

ignore that its origin is the saddle-point problem
discussed in the previous section, and hence as-

sume temporarily that f : Rn 7!R is a general

convex function, and drop the assumption that the

non-empty, closed and convex set X is necessarily

bounded. Although we will study the problem only

under the assumption that there exist optimal so-

lutions to (P), we note that the algorithms de-

scribed below are optimizing in the sense that
lim inf t!1 f ðxtÞ ¼ f � :¼ infx2X f ðxÞ holds even if

X � is empty.

2.1. Divergent series step lengths, unscaled direction

We begin by considering unscaled directions.

The conditional e-subgradient optimization

method is given by

xtþ1=2 :¼ xt � atc
X
et
ðxtÞ; xtþ1 :¼ projðxtþ1=2;X Þ;
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We note that the requirements of the algorithm are

(a) that we have at hand a convergent algorithm

for solving the problem (1), (b) a procedure for

generating subgradients of Lð�; ytetÞ, where y
t
et
is an

et-optimal solution to the problem (1) given xt and
(c) that projections onto X are easily performed. In

the case of the problem (CP) solved via its La-

grangian dual, the latter two requirements are of

course trivial to fulfill.

Our main convergence result for the method (6),

(4) establishes convergence to the optimal set X �.

Theorem 3 (convergence to the optimal set using

divergent series step lengths). Let fxtg be gener-
ated by the method (6), (4) applied to (P). If X �

is bounded, Rþ 3 fetg ! 0, and the sequence
fcXet ðx

tÞg is bounded, then ff ðxtÞg ! f � and
fdistðxt;X �Þg ! 0.

Proof. Let d > 0 and Bd ¼ fx 2 Rnjkxk6 dg. Since
f is convex, X is non-empty, closed and convex,

and X � is bounded, it follows (from [28, Theorem

27.2], applied to the lower semicontinuous, proper

and convex function f þ wX ) that there exist

� ¼ �ðdÞ > 0 and r ¼ rðdÞ > 0 such that the lower

level set X �ð1þrÞ � X � þ Bd=2. Moreover, since

fcXet ðx
tÞg is bounded and fatg ! 0, there exists

an NðdÞ such that atkcXet ðx
tÞk2 6 �, et 6r� and

atkcXet ðx
tÞk6 d=2 for all tPNðdÞ.

The sequel of the proof is based on induction

and is organized as follows. In the first part, we

show that there exists a finite tðdÞPNðdÞ such that

xtðdÞ 2 X � þ Bd. In the second part, we establish

that if xt belongs to X � þ Bd for some tPNðdÞ
then so does xtþ1; this is done by showing that

distðxtþ1;X �Þ < distðxt;X �Þ, or xt 2 X � so that
xtþ1 2 X � þ Bd since the step taken is not longer

than d=2.
Let x� 2 X � be arbitrary. In every iteration t we

then have

x�
�� � xtþ1

��2 ¼ x�
�� � proj xt

�
� atc

X
et
ðxtÞ;X

���2
6 kx� � xt þ atc

X
et
ðxtÞk2

¼ kx� � xtk2 þ at 2cXet ðx
tÞTðx�

�
� xtÞ

þ atkcXet ðx
tÞk2
�
; ð7Þ
where the inequality follows from the projection

property. Now, suppose that

2cXesðx
sÞTðx� � xsÞ þ askcXesðx

sÞk2 < �� ð8Þ

for all sPNðdÞ. Then, using (7) repeatedly, we

obtain that for any tPNðdÞ,

kx� � xtþ1k2 < kx� � xNðdÞk2 � �
Xt

s¼NðdÞ
as;

and from (4) it follows that the right-hand side of

this inequality tends to minus infinity as t ! 1,

which clearly is impossible. Therefore,

2cXet ðx
tÞTðx� � xtÞ þ atkcXet ðx

tÞk2 P � � ð9Þ

holds for at least one tPNðdÞ, say t ¼ tðdÞ. From
the definition of NðdÞ, it follows that cXetðdÞ ðx

tðdÞÞT
ðx� � xtðdÞÞP � �. By convexity we have that

f ðx�Þ � f ðxtðdÞÞP cXetðdÞ ðx
tðdÞÞTðx� � xtðdÞÞ � etðdÞ, since

x�, xtðdÞ 2 X . Hence, f ðxtðdÞÞ6 f � þ �þ etðdÞ, that is,
xtðdÞ 2 X �þetðdÞ � X �ð1þrÞ � X � þ Bd=2 � X � þ Bd.

Now, suppose that xt 2 X � þ Bd for some

tPNðdÞ. If (8) holds, then, using (7), we have that

kx� � xtþ1k < kx� � xtk for any x� 2 X �. Hence,

distðxtþ1;X �Þ6 kprojðxt;X �Þ � xtþ1k
< kprojðxt;X �Þ � xtk
¼ distðxt;X �Þ6 d:

Thus, xtþ1 2 X � þ Bd. Otherwise, (9) must hold

and, using the same arguments as above, we obtain

that f ðxtÞ6 f � þ �þ et 6 f � þ �ð1þ rÞ, i.e., xt 2
X �ð1þrÞ � X � þ Bd=2. As

kxtþ1 � xtk ¼ kprojðxt � atc
X
et
ðxtÞ;X Þ � xtk

6 kxt � atc
X
et
ðxtÞ � xtk ¼ atkcXet ðx

tÞk6 d
2

whenever tPNðdÞ, it follows that xtþ1 2 X � þ
Bd=2 þ Bd=2 ¼ X � þ Bd.

By induction with respect to tP tðdÞ, it follows
that xt 2 X � þ Bd for all tP tðdÞ. Since this holds

for arbitrarily small values of d > 0 and f is con-
tinuous, the theorem follows. �

Remark 4 (on the convergence conditions). From
the proof, the requirement that fcXet ðx

tÞg is boun-

ded can be replaced by the weaker requirement

that fatkcXet ðx
tÞk2g ! 0 holds. Further, if X is
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bounded, and not just the set X �, then the se-

quence fcetðxtÞg is bounded automatically, while

the sequence fmðxtÞg may always be constructed so

that it is bounded. For more details on the possible
choices of this sequence, we refer to [19].

Remark 5 (relations). With et ¼ 0, Theorem 3 re-

duces to a result by Larsson et al. [19]. Further

letting mt ¼ 0n reduces the algorithm to traditional

subgradient optimization, and the result to one by

Ermol�ev [10, Section 9].

2.2. Divergent series step lengths, scaled direction

The scaled conditional e-subgradient optimi-

zation method is given by

xtþ1=2 :¼ xt � at
cXet ðx

tÞ
kcXet ðxtÞk

;

xtþ1 ¼ projðxtþ1=2;X Þ; t ¼ 0; 1; . . . ; ð10Þ

given some rule for choosing fatg.
This scaling of the search direction allows us to

remove the condition that the sequence fcXet ðx
tÞg is

bounded.

Theorem 6 (convergence to the optimal set using

divergent series step lengths). Let fxtg be generated
by the method (10), (4) applied to (P). If X � is
bounded and Rþ 3 fetg ! 0, then ff ðxtÞg ! f � and
fdistðxt;X �Þg ! 0.

Proof. The proof technique is similar to that of

Theorem 3. We define lt :¼ kcXet ðx
tÞk. The defini-

tion of NðdÞ is here altered to mean that for all

tPNðdÞ, at 6 �, et 6 r� and at 6 d=2.
The inequality (7) is here replaced by

kx� � xtþ1k2 6 kx� � xtk2

þ at
2

lt
cXet ðx

tÞTðx�
�

� xtÞ þ at

�
;

and, consequently, (8) by

2

lt
cXesðx

sÞTðx� � xsÞ þ as < ��:

We conclude as in the previous proof that

2

lt
cXet ðx

tÞTðx� � xtÞ þ at P � �
holds for at least one tPNðdÞ, say t ¼ tðdÞ, which
implies that cXetðdÞ ðx

tðdÞÞTðx� � xtðdÞÞP � �ltðdÞ, and,

by convexity, that f ðxtðdÞÞ6 f � þ �ltðdÞ þ etðdÞ, that
is, xtðdÞ 2 X �ltðdÞþetðdÞ � X �ðltðdÞþrÞ � X � þ Bd=2 � X �þ
Bd.

The rest of the proof follows as in the proof of

Theorem 3, noting that

kxtþ1 � xtk ¼ proj xt
����� � at

cXet ðx
tÞ

lt
;X
�
� xt

����
6 xt
���� � at

cXet ðx
tÞ

lt
� xt

����
¼ at 6

d
2
; tP tðdÞ:

The result follows. �

Remark 7 (relations). With mt ¼ 0n, the result re-

duces essentially to one by Polyak [25;27, pp. 144–

145] (the first one also assumes that et ¼ 0, while

the second one also assumes that X ¼ Rn). Con-

vergence is there established only for the sequence

ff ðxtÞg. In [1,32], convergence results are estab-

lished for a subgradient algorithm (still assuming

that mt ¼ 0n holds), where the search direction is
given by �ðcðxtÞ þ rtÞ, where frtg � Rn is a se-

quence of error vectors which tends to zero [1] or

stays bounded [32].

2.3. Quadratically convergent step lengths, non-

scaled direction

We now introduce the additional requirement
that (5) holds. As can be seen from the proof of the

below theorem, this step length condition implies

the boundedness of the sequence of iterates,

whence that boundedness condition, present in

Theorem 3, here can be removed.

Theorem 8 (convergence to an optimal solution

using divergent series step lengths). Let fxtg be
generated by the method (6), (4), (5) applied to (P).
If Rþ 3 fetg ! 0, the sequence fcXet ðx

tÞg is bounded,
and if

P1
s¼0 ases < 1, then fxtg converges to an el-

ement of X �.

Proof. Let x� 2 X �. Define lt :¼ kcXet ðx
tÞk. In every

iteration t we have that
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kx� � xtþ1k2 ¼ x�
�� � proj xt

�
� atc

X
et
ðxtÞ;X ����2

6 kx� � xt þ atc
X
et
ðxtÞk2 ¼ kx� � xtk2

þ at 2cXet ðx
tÞTðx�

�
� xtÞ þ atl

2
t

�
;

ð11Þ

where the inequality follows from the projection

property. Repeated application of (11) yields that

kx� � xtk2 6 kx� � x0k2 þ 2
Xt�1

s¼0

asc
X
es
ðxsÞTðx� � xsÞ

þ
Xt�1

s¼0

a2sl
2
s : ð12Þ

Since x� 2 X � and cXesðx
sÞ 2 oXes f ðx

sÞ for all sP 0 we

obtain that

f ðxsÞP f � P f ðxsÞ þ cXesðx
sÞTðx� � xsÞ � es; sP 0;

ð13Þ

and hence that cXesðx
sÞTðx� � xsÞ6 es for all sP 0.

We define c :¼ supt fltg, p :¼
P1

t¼0 a
2
t and

d :¼
P1

s¼0 ases. From (12) we then conclude that

kx� � xtk2 < kx� � x0k2 þ pc2 þ 2d for any tP 1,

and thus that the sequence fxtg is bounded.

Assume now that there is no subsequence fxtig
of fxtg with fcXeti ðx

tiÞTðx� � xtiÞg ! 0. Then there

must exist an � > 0 with cXesðx
sÞTðx� � xsÞ6 � � for

all sufficiently large values of s. From (12) and the

conditions on the step lengths it follows that

fkx� � xtkg ! �1, which clearly is impossible.

The sequence fxtg must therefore contain a sub-

sequence fxtig such that fcXeti ðx
tiÞTðx� � xtiÞg ! 0.

From (13) and the assumption that fetg ! 0 it

follows that ff ðxtiÞg ! f �. The boundedness of

fxtg implies the existence of an accumulation point
of fxtig, say x1. From the continuity of f follows

that x1 2 X �.

To show that x1 is the only accumulation point

of fxtg, let d > 0 and let MðdÞ be such that

kx1 � xMðdÞk2 6 d=3,
P1

s¼MðdÞ a
2
s 6 d=ð3c2Þ andP1

s¼MðdÞ � ases 6 d=6. Consider any t > MðdÞ.
Analogously to the derivation of (12), and using

(13), we then obtain that
kx1 � xtk26kx1 � xMðdÞk2 þ
Xt�1

s¼MðdÞ
a2sl

2
s þ 2

Xt�1

s¼MðdÞ
ases

<
d
3
þ d
3c2

c2 þ 2d
6
¼ d:

Since this holds for arbitrarily small values of

d > 0, the theorem follows. �

Remark 9 (relations). With mt ¼ 0n and X ¼ Rn,

the result reduces to one in [6]. With et ¼ 0 the

result reduces to one obtained in [19]. Under the
assumption that X ¼ Rn, Polyak [27, Section 5.5]

establishes the convergence of inexact subgradi-

ent algorithms where the search direction is

�ðcðxtÞ þ rtÞ, and where the error sequence frtg
tends to zero, stays bounded or is some random

sequence of vectors with bounded variance.

2.4. Quadratically convergent step lengths, scaled

direction

When introducing a scaling of the step direction

in the case of e-subgradients and the use of the

quadratically convergent step length rule (5), not

only do we need to introduce the condition thatP1
s¼0 ases < 1 holds (as in Section 2.3), but we

also need to ensure that the length of the step di-
rection does not tend to zero too quickly. Hence,

the norm of the direction vector is projected onto

the half-line f‘j‘P 1g. We further note that the

scaling again allows us to remove the condition

that fcXet ðx
tÞg is bounded.

The scaled conditional e-subgradient optimi-

zation method is given by

xtþ1=2 :¼ xt � at
cXet ðx

tÞ
maxf1; kcXet ðxtÞkg

;

xtþ1 ¼ projðxtþ1=2;X Þ; t ¼ 0; 1; . . . ð14Þ
Theorem 10 (convergence to an optimal solution

using divergent series step lengths). Let fxtg be
generated by the method (14), (4), (5) applied to (P).
If Rþ 3 fetg ! 0 and

P1
s¼0 ases < 1, then fxtg

converges to an element of X �.

Proof. The proof follows the same line of argu-

ments as that of Theorem 8. Let lt :¼ kcXet ðx
tÞk and
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gt :¼ maxf1; ltg. Let x� 2 X �. Analogously to the

proof of Theorem 8, we obtain for every t that

kx� � xtþ1k2 6 kx� � xtk2

þ at
gt

2cXet ðx
tÞTðx�

�
� xtÞ þ atl2

t

gt

�
:

Used repeatedly, we obtain

kx� � xtk2 6 kx� � x0k2 þ 2
Xt�1

s¼0

as
gs
cXesðx

sÞTðx� � xsÞ

þ
Xt�1

s¼0

a2sl
2
s

g2s
: ð15Þ

From (13) and (15) we then obtain that

kx� � xtk2 6 kx� � x0k2 þ 2
Xt�1

s¼0

ases
gs

þ
Xt�1

s¼0

a2sl
2
s

g2s

6 kx� � x0k2 þ 2
Xt�1

s¼0

ases þ
Xt�1

s¼0

a2s ;

so the sequence fxtg is bounded, from the as-

sumptions on the step lengths.

That every accumulation point of fxtg is opti-

mal then follows as in the proof of Theorem 8,

using (15) in place of (12), and noting that

lt=gt 6 1 for all t.
To show that x1 is the only limit point of fxtg,

let d > 0 and let MðdÞ be such that kx1 �
xMðdÞk2 6 d=3,

P1
s¼MðdÞ a

2
s 6 d=3 and

P1
s¼MðdÞ ases 6

d=6. Consider any t > MðdÞ. Analogously to the

derivation of (15), and using (13) and again noting

that lt=gt 6 1 for all t, we then obtain that

kx1� xtk26kx1� xMðdÞk2þ
Xt�1

s¼MðdÞ

a2sl
2
s

g2s
þ2

Xt�1

s¼MðdÞ

ases
gs

<
d
3
þd
3
þ2d

6
¼ d:

Since this holds for arbitrarily small values of

d > 0, this completes the proof. �

Remark 11 (relations). With et ¼ 0 the result re-
duces to one in [19]. With mt ¼ 0n the result reduces

to ones previously reached by Polyak [25] 1 and
1 Polyak [26] established that this algorithm cannot be

linearly convergent, and proceeded to introduce the step length

rule that now bears his name.
Alber et al. [2] (where the condition thatP1
s¼0 ases < 1 holds is replaced by the condition

that et 6 gat, g > 0 for all t).

Having presented some generally useful results

on the convergence of conditional e-subgradient
algorithms in constrained, convex optimization,

we now turn to the solution of the saddle-point

problem (SP) which will use a subset of the results

obtained in this section.
3. Ergodic convergence to the set of saddle-points

In order to solve the saddle-point problem (SP)

it is in general not enough to find any solution to

the maximization problem over y with x fixed to a

value x� 2 X �, as discussed, for example, in [12,

Remark VII.4.2.6], unless L is strictly concave in

y. (The corresponding result in the case of the
convex program (CP) is known as the non-

coordinability phenomenon; see, e.g., [22].) We

will establish that an ergodic (that is, averaged)

sequence of the inexact solutions ytet to the problem

(1), generated from the sequence xt in the above

subgradient algorithm, tends to Y �. Before moving

on to state and establish this result, we will how-

ever discuss some related algorithms.
Under an assumption that L is strictly convex–

concave, it is known that f , defined in (1), is

continuously differentiable, with rf ðxÞ ¼ rx �
Lðx; yÞ from Danskin�s Theorem [7], y being the

unique solution to (1) given x. In order to produce

a saddle-point in this situation, it is enough to find

the minimizer of f over X , and apply (1) to get the

corresponding component y of the saddle-point.
Algorithms of this type include the descent algo-

rithm of Demyanov and Malozemov [8, p. 230]

and the gradient projection algorithm of Zhu and

Rockafellar [36]. The former reference also sug-

gests adding a strictly convex–concave quadratic

term in the absence of strict convex–concavity, in

effect thus producing a proximal point-like algo-

rithm. Kallio and Ruszczy�nnski [14] (see also
[11,13,23]) propose a gradient projection algo-

rithm defined by the partial gradients of the

function L evaluated at perturbed points. (We,

however, do not assume L to be differentiable.)
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Kiwiel [15] solves the saddle-point problem

through the use of a bundle method for the

problem (P), and establishes that a convergent

component in y is generated automatically in the

search-direction finding quadratic programming
problems. As for the special case of the convex

program (CP), one can also envisage applying

column generation and/or cutting plane ap-

proaches, where coordinability is induced through

the solution of restricted master problems; see [21]

for more detailed discussions.

The inspiration for the algorithm proposed here

is however much more simple approaches to the
solution of the problem (CP) through the use of

Lagrangian dualization, subgradient optimization,

and the construction of an optimal primal solution

as simple or weighted averages of the Lagrangian

subproblem solutions. Thus, a saddle-point is

generated without solving any auxiliary problems.

The origin is Shor�s [31, pp. 116–118] work on

linear programming, followed by Larsson and Liu
[16], Sherali and Choi [30], Barahona and Anbil [3]

(still in the context of linear programming, and the

latter reference lacking a convergence proof),

Larsson et al. [17] for a special large-scale convex

programming problem arising in transportation

planning, and Larsson et al. [21] for the general

convex program (CP). The first convergence result

of this type for saddle-point problems not arising
from a Lagrangian was given by Petersson and

Patriksson [24], who studied a special such large-

scale problem arising in contact mechanics.

In the above algorithms, it is assumed that the

computations of the subproblems are performed

exactly. We extend the scope of these algorithm

not only to the more general convex–concave

saddle-point problems, but also to possibly inexact
solutions of the subproblems. In the context of the

problem (CP) and subgradient methods, it has

previously been shown in [5,34,35] that conver-

gence to the solution to (P) can be achieved

through the solution of inexact subproblem solu-

tions, but primal convergence results that can be

extracted from this development have not been

studied previously.
The interest in inexact computations is perhaps

the most pronounced in the solution of combi-

natorial optimization problems through Lagran-
gian dualization. (This area is also one where

Lagrangian dualization is quite popular.) Al-

though combinatorial optimization problems are

not convex problems in general, and there may not

exist a saddle point to such a Lagrangian, there
does however exist a saddle point for the convexi-

fied problem associated with the combinatorial

problem and its Lagrangian formulation, and the

maximum value of the Lagrangian dual function is

the optimal value of the convexified problem.

(Some of this theory is outlined by Wolsey [33,

Section 10.2].) If the relaxation does not satisfy the

integrality property (so that the Lagrangian sub-
problem cannot be reduced to a linear program),

then the Lagrangian subproblem will be a (po-

tentially) computationally difficult combinatorial

problem, and the use of inexact methods such as

heuristics to solve them will therefore be of com-

putational advantage; then, also, the resulting so-

lution will provide an e-subgradient of the

Lagrangian dual function.
The scope is also extended to include the pos-

sible use of conditional subgradients. Although

such an algorithm can, in principle, be incorpo-

rated into a standard subgradient algorithm for

the extended objective function f þ wX , this func-

tion is not finite everywhere, and moreover, it has

been found in the numerical investigations per-

formed in [19] that adding a normal cone element
to the search direction can substantially enhance

convergence in practice for some difficult prob-

lems.

3.1. Preliminaries

The optimality conditions for x� in (P) is given

by

�of ðx�Þ \ NX ðx�Þ 6¼ ; ð16Þ
(e.g., [29, Proposition 5A and Equation (5.5)]).

The non-coordinability phenomenon discussed

above, which is inherent in every non-strictly

convex–concave saddle-point problem, can be

equivalently described as the failure of the entire

set �of ðx�Þ to be included in NX ðx�Þ, something
which obviously does hold whenever f is differ-

entiable at x�. We will establish the convergence of

an averaged (or, ergodic) sequence of subproblem
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solutions by means of establishing that an ave-

raged sequence of the et-subgradients cetðxtÞ accu-
mulates at subgradients which verify optimality in

accordance with (16). The representative algo-
rithm which we have chosen among those in the

previous section is that validated in Theorem 8.

The properties of ergodic sequences of elements

generated in a subgradient scheme have previously

been analyzed in [20]. We extend some of their

analysis to the use of e-subgradients.
Let

At :¼
Xt�1

s¼0

as; ð17Þ

ŷyt :¼ A�1
t

Xt�1

s¼0

asyses ; ð18Þ

gt :¼ A�1
t

Xt�1

s¼0

ascesðx
sÞ; ð19Þ

ntc :¼ A�1
t

Xt�1

s¼0

asm
s; ð20Þ

ntp :¼ A�1
t

Xt�1

s¼0

ðxsþ1=2 � xsþ1Þ; ð21Þ

nt :¼ ntc þ ntp; ð22Þ

ut :¼ A�1
t

Xt�1

s¼0

asf ðxsÞ; ð23Þ

ftðxÞ :¼ A�1
t

Xt�1

s¼0

as f ðxsÞ
h

þ ðcesðx
sÞÞTðx� xsÞ � es

i
;

x 2 X ; ð24Þ

dtðxÞ :¼ f ðxÞ � ftðxÞ; x 2 X ; ð25Þ

.tðxÞ :¼ A�1
t

Xt�1

s¼0

asðmsÞTðxs
h

� xÞ

þ xsþ1=2
�

� xsþ1
�Tðxsþ1 � xÞ

i
; x 2 X :

ð26Þ
Here, At is the accumulated step length up to it-
eration t, ŷyt the weighted average of the inexact
solutions to (1), gt the weighted average of the es-
subgradients of f , and ntc and ntp ergodic normal

elements and projection steps, respectively. We

note that fŷytg � Y , and this sequence is therefore
bounded, by the boundedness assumption on Y .
Continuing, ut P v� clearly holds. The affine

function ft is derived as a surrogate of the con-

vexity inequality, and therefore dtðxÞP 0 on X .

Further, since ms 2 NX ðxsÞ and xsþ1=2 � xsþ1 2
NX ðxsþ1Þ, .tðxÞP 0 on X , and thus defines a valid

inequality for X .

We will establish that any accumulation point,
ŷy1, of the sequence fŷytg together with the solution

x1 obtained from the subgradient scheme forms a

saddle-point of L.

Lemma 12 (Y ð�Þ is a closed map). Let the sequence
fxtg � X , fetg � Rþ, the map Yeð�Þ : X 7!2Y be
given by the definition

YeðxÞ :¼ fy 2 Y jLðx; yÞP f ðxÞ � eg; x 2 X ;

and the sequence fytetg be given by the inclusion
ytet 2 YetðxtÞ. If the sequences fxtg ! x and fetg ! 0,
then fdistðytet ; Y ðxÞÞg ! 0. If, in addition, Y ðxÞ ¼
fyg, then fytetg ! y.

Proof. By the definition of YetðxtÞ, Lðxt; ytet ÞP
f ðxtÞ � et holds for all t. It follows from the con-

tinuity of the functions L and f , the compactness

of X and the construction of the sequence fetg that

y 2 Y ðxÞ holds for any accumulation point y of the
sequence fytetg. The result fdistðytet ; Y ðxÞÞg ! 0

then follows from the boundedness of the sequence

fytetg. The second result is then immediate. �

3.2. Main results

We next utilize this result to establish that the

sequence fŷytg accumulates in the set Y ðx1Þ, es-

tablishing the left-most inequality in (SP).

Theorem 13 (Lðx1; ŷy1ÞPLðx1;yÞ for all y2Y ).
fdistðŷyt;Y ðx1ÞÞg!0.

Proof. Fix any � > 0. By Theorem 8 and Lemma

12, for any large enough s,

distðyses ; Y ðx
1ÞÞ6 �=2; sP s:
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By the convexity of the function distð�; Y ðx1ÞÞ
(e.g., [28, Theorem 4.3]), we have that

distðŷyt; Y ðx1ÞÞ6A�1
t

Xt�1

s¼0

asdistðyses ; Y ðx
1ÞÞ; sP s:

Since fAtg ! 1 and s is fixed, A�1
t

Pt�1

s¼s asdistðyses ;
Y ðx1ÞÞ6 ð1� A�1

t AsÞ�=2 holds for every t > s.
Hence, distðŷyt; Y ðx1ÞÞ6 � holds for all t > s that

are large enough, and the desired result fol-

lows. �

The next result, which is a direct consequence of

the definition (19) and the inequality kxsþ1=2 �
xsþ1k6 askcXesðx

sÞk, is the first step towards a con-

vergence result for the ergodic sequence fgtg.

Lemma 14. The sequences fgtg and fntg are boun-
ded.

The following lemma concerns the convergence

properties of some of our ergodic sequences.

Lemma 15. fdtðx1Þg ! 0, f.tðx1Þg ! 0, and
futg ! v�. Further, fdtðxtÞg ! 0 and f.tðxtÞg ! 0.

Proof. By Theorem 8, fxtg ! x1. From the iter-
ation formula (6) it follows that

kxtþ1 � x1k2 6 kxt � x1k2 þ a2t kcXet ðx
tÞk2

� 2 at c
X
et
ðxtÞ

� �T
xtð

�
� x1Þ

þ xtþ1=2
�

� xtþ1
�T

xtþ1
�

� x1
��

:

Repeated application of this inequality and utili-

zing the definitions (23), (25) and (26) result in

kx0�x1k2þ
Xt�1

s¼0

a2skcXesðx
sÞk2

�2At dtðx1Þ
 

þ.tðx1Þþut�v��A�1
t

Xt�1

s¼0

ases

!
P0:

Since dtðx1ÞP 0, .tðx1ÞP 0, ut P f � and At > 0,

the immediate result is that

06 dtðx1Þ þ .tðx1Þ þ ut � f �

6
1

2At
x0
�� � x1

��2 þXt�1

s¼0

a2s cXesðx
sÞ

�� ��2h
þ ases

i!
:

Let t ! 1 and invoke the conditions of Theorem

8.

For the latter result, we note that the definitions

(19), (24) and (25) yield

06 dtðxtÞ ¼ dtðx1Þ þ f ðxtÞ � f ðx1Þ � ðgtÞTðxt � x1Þ;
t ¼ 1; 2; . . .

From the definitions (19) and (26) follow that

06 .tðxtÞ ¼ .tðx1Þ � ðntÞTðxt � x1Þ; t ¼ 1; 2; . . .

Theorem 8, Lemma 14, the continuity of f , and
the first part of this Lemma yield that the right-

hand sides of both the above equations tend to

zero as t approaches infinity. The result fol-

lows. �

We will also utilize the following lemma in our

continued analysis, when proving optimality ful-

fillment of the sequence fgtg in the limit.

Lemma 16. fgt þ ntg ! 0.

Proof. By the definition (19) and the iteration

formula (6),

gt þ nt ¼ A�1
t

Xt�1

s¼0

ðxs � xsþ1=2 þ xsþ1=2 � xsþ1Þ

¼ A�1
t ðx0 � xtÞ:

Theorem 8 yields that fxtg ! x1. The result then

follows from the definition (17) and the condition
(4). �

We are now ready to establish that the ergodic

sequence fgtg of subgradients accumulates at

subgradients which verify optimality, according to

(16). We divide the result into two parts, extend-

ing, respectively, Theorem 3.7 and Theorem 3.8 in

[20] to the use of e-subgradients.

Proposition 17 (convergence of fgtg to of ðx1Þ).
fdistðgt; of ðx1ÞÞg ! 0.

Proof. The definitions (19), (24) and (25) imply

that gt is a dtðxÞ-subgradient of f at any x 2 X ;
applying this result to x ¼ xt yields

f ðyÞP f ðxtÞ þ ðgtÞTðy � xtÞ � dtðxtÞ; y 2 X :
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By Lemma 14, the sequence fgtg is bounded. Let ~gg
be an accumulation point of fgtg, corresponding
to a convergent subsequence T. Then, by Lemma

15, in the limit ofT, from the above inequality, we
obtain that ~gg 2 of ðx1Þ. The boundedness of

of ðx1Þ then yields the desired result. �

Proposition 18 (convergence of fgtg to �NX ðx1Þ).
fdistðgt;�NX ðx1ÞÞg ! 0.

Proof. From the definition (26) it follows that, for

all t and any z 2 X , ðntÞTðz� x1Þ ¼ �.tðzÞþ
.tðx1Þ6 .tðx1Þ. By Lemma 14, the sequence fntg is
bounded. Let ~nn be an accumulation point of the

sequence fntgt2T for some convergent subsequence

T. From Lemma 15 it then follows that
~nnTðz� x1Þ6 0 for any z 2 X . By the continuity of

the function distð�;NX ðx1ÞÞ, for any � > 0 and all t
that are sufficiently large, distðnt;NX ðx1ÞÞ < �=2;
further, by Lemma 16, kgt þ ntk < �=2. This yields
that distðgt;�NX ðx1ÞÞ6distð�nt;�NX ðx1ÞÞþkgtþ
ntk< �, and the result follows. �

Theorem 13 established one of the inequalities

in the definition of (SP); the second inequality now

follows. (Note that the accumulation point ŷy1 still

is arbitrary.)

Theorem 19 (Lðx; ŷy1ÞPLðx1; ŷy1Þ for all

x 2 X ). fdistðxt;X ðŷy1ÞÞg ! 0.

Proof. For every x 2 X ,

Lðx; ŷy1Þ �Lðx1; ŷy1ÞP f ðxÞ �Lðx1; ŷy1Þ
¼ f ðxÞ � f ðx1Þ
P ~ggTðx� x1ÞP 0;

where the first inequality follows from the defini-

tion of f ðxÞ and the fact that ŷy1 2 Y , the equality

from Theorem 13, and the two final inequalities

from the convexity of f and, respectively, Propo-

sitions 17 and 18. �

We summarize the results of the Theorems 13

and 19 as follows:

Theorem 20 (ðx1; ŷy1Þ solves (SP)). dist ðxt; ŷytÞ;ðf
fx1g � Y �Þg ! 0.
4. Further research

As outlined at the beginning of Section 3,

among the possible application areas of this type
of methods perhaps the most interesting one is to

use them in order to generate an approximate so-

lution to the convexification of an integer pro-

gram. The ergodic sequence would then be

terminated finitely, for example when the duality

gap fails to be reduced significantly. The averaged

solution, or the result of a primal feasibility heu-

ristic applied from it, is there after used as a
starting point for (or is embedded within) an al-

gorithm devised to close the duality gap, such as a

cutting plane or branch and bound algorithm. The

use of this technique is well-known in circum-

stances when the relaxation has the integrality

property, because it is then equivalent to solve the

linear relaxation, but it has been tested only to a

limited extent for more difficult Lagrangian sub-
problems. In theory, these subproblems must of

course be solved exactly in the limit according to

our convergence conditions, and this may not be

practically feasible. Two of the authors of this

article are currently investigating the theory and

practice of using Lagrangian near-optimal so-

lutions and ergodic sequences in computations in

combinatorial optimization, combined with ap-
proximate solution methods using core problems

and column generation [18].

The proofs of the results of the previous section

relies on the essential element that the sequence

fxtg converges. Moreover, the analysis at present

utilizes rather heavily the condition (5) on the se-

quence of step lengths. It would be of interest for

practical purposes to be able to avoid this condi-
tion, as the possibility to enable the use of the al-

gorithm of Theorem 3 in place of that of Theorem

8 would also imply that the condition thatP1
s¼0 ases < 1 holds can be removed, which in

turn would allow for the subproblem solutions to

be even less exact.

The possible use of the algorithms of Theorems 6

and 10, where the search directions are scaled, are
left as a topic for further research, as are the po-

ssibilities to use other convexity weights in the

construction of the ergodic sequence fŷytg as well as
other step length rules in the subgradient algorithm.
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