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Stable relaxations of stochastic stress-constrained weight
minimization problems

A. Evgrafov�, M. Patriksson

Abstract The problem of finding a truss of minimal
weight subject to stress constraints and stochastic load-
ing conditions is considered. We demonstrate that this
problem is ill-posed by showing that the optimal solutions
change discontinuously as small changes in the modelling
of uncertainty are introduced. We propose a relaxation
of this problem that is stable with respect to such errors.
We establish a classic ε-perturbation result for the re-
laxed problem, and propose a solution scheme based on
discretizations of the probability measure. Using Cheby-
shev’s inequality we give an a priori estimation of the
probability of stress constraint violations in terms of the
relaxation parameter. The convergence of the relaxed op-
timal designs towards the original (non-relaxed) optimal
designs, as the relaxation parameter decreases to zero, is
established.

Key words stochastic programming, robust optimiza-
tion, ε-perturbation, stress constraints, discretization

1
Introduction

We consider the problem of finding a truss of minimal
weight subject to stress constraints and stochastic load-
ing conditions. The reason for introducing the stochas-
ticity into the problem is that uncertainty due to load-
ing conditions that are unknown in advance has to be
taken into account to obtain robust optimal solutions.
On the other hand, Evgrafov et al. (2003) showed that
optimal solutions to stochastic stress-constrained weight
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minimization problems change discontinuously as small
changes in the modelling of uncertainty are introduced.
Therefore, the optimal solutions are not robust with re-
spect to modelling errors, and their quality is very hard to
estimate.
In this paper we impose the stress constraints in a re-

laxed manner, which makes the weight minimization
problem stable with respect to changes in probability
measure. By adjusting the relaxation parameter one can
ensure that stress constrains are noticeably violated with
an arbitrarily small probability, and that the relaxed
optimal designs are close to the original (non-relaxed)
optimal designs.
Given positions of the nodes the design (and top-

ology in particular) of a truss can be described by design
variables xi ≥ 0, i= 1, . . . ,m, representing the volume of
material allocated to the bar i in the structure. We in-
troduce an index set I(x) = { i= 1, . . . ,m | xi > 0 } of the
present (or active) members in the structure.
Let (Ω,S,P) be a complete probability space. The

stochastic stress-constrained minimization problem can
be formulated as follows:

(P2)






min
(x,s(·))

w(x) := 111Tmx

s.t.






x≤ x ,

|si(ω)| ≤ σ1xi, i= 1, . . . ,m, P-a.s. ,

s(ω) solves (C)x(ω), P-a.s. ,

in which the minimization problem (C)x(ω) is the princi-
ple of minimum complementary energy:

(C)x(ω)






min
s
E(x, s) :=

1

2

m∑

i=1

s2i
Exi
,

s.t.






∑

i∈I(x)

BTi si = f(ω) .

The data in the problem has the following meaning from
a mechanical point of view:

– E is the Young modulus for the structure material;
– Bi is the kinematic transformation matrix for the bar i;
– f(ω) is the vector of external forces.
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For the problem to be tractable we assume that the
function f(·) is S-measurable. The variable si in the prob-
lem (C)x(ω) is the tensile force in the bar i times its
length.

2
A (short) quest for a correct relaxation

One does not need a specially constructed example to
demonstrate the discontinuity of optimal solutions to
the stress-constrained weight minimization problem. The
problem instance below is probably the simplest example
one can imagine.

Example 1 (One-bar truss). Figure 1 shows a simple one-
dimensional structure that consists of a single bar.
Suppose that Ω = [0, 2], f(ω) = ω, σ1 = 1, and x= 0.

Let P(1) be a uniform distribution on [0, 1], P(2) be
a uniform distribution on [1, 2], and Pk = (k−1)/kP(1)+
1/kP(2). The sequence {Pk}weakly converges to P = P(1),
and each measure possesses a density.
The structure is statically determinable, thus the force

s(ω) is independent of x and equals f(ω). The optimal so-
lution x∗ of (P2) equals 1, while each optimal solution x∗k
of (P2)k equals 2. Therefore, the sequence {x∗k} does not
converge to x∗ as k goes to infinity as one would want.
It is difficult to imagine the existence of any mild

conditions under which the stochastic stress-constrained
weight minimization problem is stable, when it is unsta-
ble even for the extremely simple structure of Example 1.
Thus, it is reasonable to construct a relaxation of the
problem, having the following properties:

(i) it is possible to recover a solution to the original
problem as a limit point of the solutions to the re-
laxed problem as a relaxation parameter goes to 0;

(ii) the relaxed problem is stable with respect to changes
in the probability measure;

(iii) it is possible to estimate the violation of the relaxed
constraints; and

(iv) it is possible to numerically solve the relaxed prob-
lem.

One straightforward approach, which obviously satisfies
the requirement (iii), is to choose a relaxation parame-
ter δ > 0 and to require that P(|si(ω)| ≤ σ1xi+ δ) = 1,

1

x

f(ω)

σ =11

Fig. 1 The one-bar truss

i= 1, . . . ,m. This approach is used when sizing approx-
imations to the deterministic case of the problem (P2)
are considered (Cheng and Guo 1997; Petersson 2001). To
show why such a relaxation of the problem is not enough,
we consider the following example.

Example 2 (Two-bar truss). Figure 2 shows a simple
structure that consists of two bars.
Suppose thatm= 2, Ω = [0, 2], f2(ω) = ω−1, σ1 = 1,

x=000, and

f1(ω) =






ω, if 0≤ ω ≤ 0.5 ,

1−ω, if 0.5< ω ≤ 1 ,

0, otherwise .

Let P
(1)
k be a uniform distribution on [0, 1/k], P(2) be

a uniform distribution on [1, 2], and Pk = 1/k
2P(1)+

(k2−1)/k2P(2). The sequence {Pk} weakly converges to
P = P(2) and each measure possesses a density.
As before, the force vector s(ω) is independent of

the design and equals f(ω). The optimal solution to the
non-relaxed problem (P2)k is x∗k = (1/k, 1)

T ; thus the se-
quence of solutions {x∗k} converges to the optimal solu-
tion x∗ = (0, 1)T of the non-relaxed problem (P2) as k
goes to infinity for this example.
For any “small” δ > 0 the optimal solution of the re-

laxed problem (Pδ2 ) exists and equals x
δ = (0, 1− δ)T . On

the other hand, for k > 1/δ the feasible design space of
the problem (Pδ2 )

k is (0,∞)× [1− δ,∞), and the objec-
tive function w(x) does not attain its infimum on this
set. Therefore, there is no optimal solution to the relaxed
problem (Pδ2 )

k!

Example 2 clearly shows that the requirement (ii)
is violated by the “straightforward” relaxation of stress
constraints.
To introduce the “correct” relaxation scheme, for pos-

itive designs x, we consider a convex, non-negative, and
differentiable function that was used by Evgrafov and Pa-
triksson (2003) to construct a penalty function for the
stress-constrained weight minimization problem

G(x, s) :=
m∑

i=1

[|si|−σ1xi]2+
xi

.

x

f(ω)

σ =11

1

1

1

f(ω)
2

x
2

Fig. 2 The two-bar truss
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Using the usual convention 0/0 = 0 and a/0 =∞ for
any a > 0, the function G can be evaluated at any
non-negative design x, and, furthermore, it is l.s.c. on
Rm+ ×R

m.
Now, for a positive relaxation parameter δ > 0 con-

sider the following minimization problem:

(
Pδ2
)






min
(x,s(·))

w(x)

s.t.






x≤ x ,
∫

Ω

G(x, s(ω)) P(dω)≤ δ ,

s(ω) solves (C)x(ω), P-a.s.

Owing to the measurability of the solutions to (C)x(·)
(see Evgrafov et al. 2003, Corollary 2.2), the problem
(Pδ2 ) is indeed a relaxation of (P2) (in the sense that the
feasible set of the former problem contains that of the lat-
ter), and (P02 ) = (P2).
Furthermore, owing to Chebyshev’s inequality, for any

c > 0 the following inequality holds:

P
(
|si(ω)| ≥ σ1xi+ c

)
≤
δxi

c2
, (1)

i.e., by choosing a small δ the probability of violat-
ing any stress constraint can be made arbitrarily small.
Therefore, the proposed relaxation satisfies the require-
ment (iii).
The rest of the paper is organized as follows. In Sect. 3

we investigate the properties of the feasible set of the
problem (Pδ2 ), and show that it satisfies a Slater-type
constraint qualification. Section 4 addresses the existence
of solutions for the problem. In Sects. 5, 6, and 7 we
show that the problem (Pδ2 ) possesses the properties we
listed; in particular, Theorem 2 verifies the property (i),
and Theorem 4 addresses the stability requirement (ii).
Using Theorems 3 and 5 we can approximate the prob-
lem by a sequence of simple differentiable and finite-
dimensional subproblems; this gives us the property (iv).
Finally, we illustrate the theory with a numerical example
in Sect. 8.

3
Auxiliary results

In this section we collect auxiliary results necessary for
the following development.
The lemma below asserts the continuity of the map-

ping x→ s(·), where s(·) solves (C)x(·), restricted to the
feasible set of the problem (Pδ2 ). It is an important part of
the proof of existence of solutions to (Pδ2 ), as it enables us
to choose a feasible state corresponding to the limit of the
design variables.

Lemma 1. Suppose that the sequence {(xk, sk(·))} to
(Pδ2 ) has design components converging to a limit x0.

Then the sequence of state variables P-a.s. converges to
a limit s0(·) solving (C)x0(·) as k goes to infinity.

Proof. The sequence of designs is bounded, so we
can use Evgrafov and Patriksson (2003), Lemma 2.2,
to conclude that the sequence of energy estimations{
∫

Ω

E(xk, sk(ω)) P(dω)

}

is bounded. Now the claim fol-

lows from Evgrafov et al. (2003), Proposition 2.3.

The following lemma is the crucial technical tool. It
shows that a Slater-type constraint qualification holds for
the relaxed stress constraints.

Lemma 2. Suppose that (x, s(·)) is a solution that is
feasible in

(
Pδ2
)
and is such that

∫

Ω

G(x, s(·)) P(dω) > 0.

Fix an arbitrary ε > 0. Then it is possible to find a feas-
ible point (x̃, s̃(·)) such that x̃ > x, ‖x̃−x‖ < ε, and∫

Ω

G(x̃, s̃(ω)) P(dω)<
∫

Ω

G(x, s(ω)) P(dω).

Proof. Let x̄= (1+ ε/3)x, and let s̄(·) be the solution to
(C)x̄(·). Then s̄(·) = s(·) and, since P{G(x, s(ω))> 0}> 0,
there is an index i such that xi > 0 and P{[|si(·)|−
σ1xi]

2
+

/
xi > 0}> 0. The continuity of

∫

Ω

[|si(ω)|−σ1xi]2+
/

xi P(dω) w.r.t. xi implies that
∫

Ω

G(x̄, s̄(ω)) P(dω) <
∫

Ω

G(x, s(ω)) P(dω).

For some positive p ≥ 3, to be determined later, set
x̃ = x̄+ ε/p ·111m and let s̃(·) be the solution of (C)x̃(·).
Using the directionally Lipschitz continuous dependence
of solutions to (C)x(·) on x (see Evgrafov et al. 2003,
Lemma 3.3), the continuity of [|s̃i|−σ1x̃i]2+/x̃i for i such
that x̄i > 0, and the inequality

[|s̃i(·)|−σ1x̃i]2+
x̃i

≤
p(τ +σ1)

2‖x̃− x̄‖2

ε
=

ε(τ +σ1)
2‖111m‖2

p
,

for i such that x̄i = 0, we conclude that it is possible
to choose a large enough p such that the inequality∫

Ω

G(x̃, s̃(ω)) P(dω)<
∫

Ω

G(x, s(ω)) P(dω) holds.

4
Existence of optimal solutions

From now on we make the following blanket assumptions:

(B1) for every positive design x the problem (C)x(ω) is
feasible for almost any ω;

(B2) the problem (C)000m(ω) is infeasible with a positive
probability.

The first assumption is related to the “richness” of the
ground structure and is easy to satisfy in practice. For ex-
ample, one can start from a ground structure that is able
to sustain any load. The second assumption eliminates
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the possibility of the empty structure being the optimal
solution.
In view of Example 2 it is of prime importance to es-

tablish the existence of optimal solutions to the problem(
Pδ2
)
for any δ > 0.

Theorem 1. For any δ > 0 the problem
(
Pδ2
)
possesses

at least one optimal solution (x∗, s∗(·)).

Proof. If there is at least one feasible solution (x̃, s̃(·))
then we can bound the design space by introducing the
additional constraint w(x) ≤ w(x̃). Then from any mini-
mizing sequence one can choose a subsequence with con-
verging design components. Lemma 1 ensures that the
corresponding subsequence of forces converges, and the
limit is then feasible in

(
Pδ2
)
owing to the lower semi-

continuity and non-negativity of G and Fatou’s Lemma.
Since the objective function is continuous in both design
and state variables (it is independent of the forces), the
limiting point is also an optimal solution.
Thus it remains to find a feasible solution. Following

the proof of Lemma 2, we see that if s̃(·) solves (C)111m(·),
then it solves (C)2q ·111m(·) for any q ≥ 0 as well. Thus we
can make the value of

∫

Ω

G(2q ·111m, s(ω)) P(dω) arbitrarily

small (but non-negative), if we choose a “large enough”
q. Hence the point (2q ·111m, s̃(ω)) is feasible in (Pδ2 ) for
some q.

Remark 1. For any optimal solution (x∗, s∗(·)) to
(
Pδ2
)

the equality
∫

Ω

G(x∗, s∗(ω)) P(dω) = δ holds.

Proof. If the strict inequality
∫

Ω

G(x∗, s∗(ω))P(dω)< δ held,

then for some 0< µ< 1 we would have
∫

Ω

G(µx∗, s∗(ω))×

P(dω) < δ as well. Furthermore, s∗(·) solves (C)µx∗(·),
and 0 < w(µx∗) < w(x∗) (see assumption (B2) ). The
latter inequality contradicts the optimality of (x∗, s∗(·))
in
(
Pδ2
)
.

5
Continuity with respect to lower bounds and
relaxation parameter

An additional motivation for considering the relaxed
problems (Pδ2 ) is given by the following result, which en-
sures that by reducing the relaxation parameter to zero
one recovers optimal solutions to the original problem
(P2).
We denote by val(P) the optimal value of any problem

(P).

Theorem 2. Suppose that the problem (P2) possesses an
optimal solution, and let the sequence {δk} monotonically
decrease to zero. Then any limit point of the sequence of

optimal solutions
{
x∗δk , s

∗
δk
(·))
}
(and there is at least one)

is an optimal solution to (P2).

Proof. The inequality

val(P2)≥ lim sup
k→∞

val
(
P
δk
2

)
(2)

obviously holds.
On the other hand, the optimal solution to (P2) is

feasible in each problem (Pδk2 ). In particular it means that
the sequence of optimal designs {x∗δk} is bounded and has
a limit point x̃. Lemma 1 implies that the corresponding
sequence of forces {s∗δk(·)} converges to a limit s̃(·) solving
the problem (C)x̃(·). The non-negativity and lower semi-
continuity of G, and Fatou’s Lemma, imply that (x̃, s̃(·))
is feasible in (P2), and thus we get

val(P2)≤ w(x̃) = lim inf
k→∞

w(x∗δk ) = lim infk→∞
val
(
Pδk2

)
.

Together with (2), this proves the claim.

The function G, defining the constraints of our prob-
lem, is not upper-semicontinuous at the designs that are
not strictly positive. Therefore, to apply numerical al-
gorithms we would like to introduce a positive lower
bound ε111m on the design variables and eventually reduce
ε to zero. This method, called ε-perturbation, is clas-
sic in topology optimization and is known to converge
for compliance minimization problems (Achtziger 1998;
Patriksson and Petersson 2002; Evgrafov et al. 2003). On
the other hand, for stress-constrained weight minimiza-
tion this simple procedure cannot approximate some op-
timal solutions, owing to the phenomena known as “stress
singularities” and “singular topologies” (Sved and Ginos
1968; Kirsch 1990; Cheng and Jiang 1992; Rozvany and
Birker 1994). More sophisticated numerical approaches
are known to overcome this difficulty, for example the
ε-perturbation by Cheng and Guo (1997) (see also Peters-
son 2001; Patriksson and Petersson 2002; Evgrafov et al.
2003) and a penalty function approach (Evgrafov and
Patriksson 2003). It turns out that for our relaxation the
simple approach outlined above is sufficient. To be more
precise, for ε > 0 consider the following ε-perturbation of
the problem (Pδ2 ):

(
Pδ,ε2

)






min
(x,s(·))

w(x)

s.t.






x+ ε111m ≤ x ,
∫

Ω

G(x, s(ω)) P(dω)≤ δ ,

s(ω) solves (C)x(ω) , P-a.s.

Theorem 3. Let {(x∗ε , s
∗
ε(·))} be a sequence of optimal

solutions to the problems {(Pδ,ε2 )}. Then any limit point
of the sequence {(x∗ε , s

∗
ε(·))} as ε goes to zero (and there

is at least one) is an optimal solution to the problem (Pδ2 ).
Furthermore,

val
(
Pδ2

)
= inf
ε>0
val
(
Pδ,ε2

)
= lim
ε→0
val
(
Pδ,ε2

)
.
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Proof. For any ε0 > 0 there is a point (x0, s0(·)), which
for every ε ∈ (0, ε0) is feasible in each problem (P

δ,ε
2 ).

In particular, it means that the sequence of optimal de-
signs {x∗ε} is bounded and has a limit point. We make
another observation, namely that for ε1 < ε2 it holds that
val(Pδ,ε12 )≤ val(Pδ,ε22 ).
Suppose that limk→∞ x

∗
εk
= x̃ for some sequence εk

converging to zero. Lemma 1 implies that the corres-
ponding sequence of forces {s∗εk(·)} converges to a limit
s̃(·) solving the problem (C)x̃(·). The non-negativity and
lower semi-continuity of G, and Fatou’s Lemma, imply
that (x̃, s̃(·)) is feasible in (Pδ2 ), and thus we get

val
(
Pδ2

)
≤ w (x̃) = lim

k→∞
w
(
x∗εk

)
= inf
ε>0
val
(
Pδ,ε2

)
. (3)

On the other hand, Lemma 2 implies that any feasible
solution (x, s(·)) to (Pδ2 ) such that

∫

Ω

G(x, s(ω)) P(dω)>

0 holds can be arbitrarily closely approximated by feas-
ible points of (Pδ,ε2 ). In particular, any optimal solution to
(Pδ2 ) can be approximated in such a way as to give us the
reverse inequality

val
(
Pδ2

)
= lim
k→∞

w
(
xεk
)
≥ inf
ε>0
val
(
Pδ,ε2

)
.

Together with (3), this proves the claim.

The following proposition enables us to approximate
the optimal value of (Pδ2 ) from below in a different way.

Proposition 1. Let the sequence {δk}monotonically in-
crease to δ∞ > 0. Then val(P

δ∞
2 ) = limk→∞ val(P

δk
2 ).

Proof. Obviously, the inequality

val
(
Pδ∞2

)
≤ lim inf
k→∞

val
(
Pδk2

)
(4)

holds.
On the other hand, Lemma 2 implies that any solu-

tion (x, s(·)) that is feasible in (Pδ∞2 ) and is such that∫

Ω

G(x, s(ω)) P(dω)> 0 can be arbitrarily closely approx-

imated by feasible points of (Pδk2 ) for “large enough” k. In
particular, any optimal solution to (Pδ∞2 ) can be approxi-
mated in such a way, which gives us the reverse inequality

val
(
Pδ∞2

)
≥ lim sup

k→∞
val
(
Pδk2

)
.

Together with (4), this proves the claim.

6
Continuity with respect to changes in probability
measure

In this section we prove the main result of the paper,
showing that for fixed δ > 0 the optimal solutions to
the problem (Pδ2 ) change continuously as the probabil-
ity measure changes. Throughout the section we assume

that Ω is a compact metric space, S = B(Ω), and the
source of uncertainty f(·) is assumed to be a continuous
function.
Continuity allows us to omit the adverb “almost”

when we talk about solutions of (C)x(·) for positive de-
signs x.

Proposition 2. For positive design x and each ω ∈ Ω
the problem (C)x(ω) has a unique solution s(ω), which is
a continuous function of ω.

Proof. Wemade an assumption that the problem (C)x(ω)
is feasible for any ω for a positive design x. The claim then
follows from Evgrafov et al. (2003), Corollary 4.1.

Consider a sequence of probability measures {Pk} de-
fined on B(Ω), together with a sequence of optimization
problems:

(
Pδ2
)k






min
(x,s(·))

w(x)

s.t.






x≤ x ,
∫

Ω

G(x, s(ω)) Pk(dω)≤ δ ,

s(ω) solves (C)x(ω), Pk-a.s.

Without any further regularity assumptions on the
probabilitymeasure we can prove the following inequality.

Lemma 3. Suppose that the sequence of probability
measures {Pk} weakly converges to P. Then val(Pδ2 ) ≥
lim supk→∞ val(P

δ
2 )
k.

Proof. Fix arbitrary positive numbers ς < δ and ε > 0.
Consider an optimal solution (x∗, s∗(·)) to (Pς,ε2 ). Owing
to Proposition 2, s∗(·) is a continuous function. Further-
more, since the energy E(x∗, s∗(·)) is continuous, we can
deduce thatG(x∗, s∗(·)) is continuous as well. Since {Pk}
weakly converges to P we conclude that (x∗, s∗(·)) is feas-
ible in (Pδ2 )

k for large enough k, and

val (Pς,ε2 )≥ lim sup
k→∞

val
(
Pδ2
)k

holds.
Owing to Theorem 3 and Proposition 1, the following

inequality holds:

val
(
Pδ2
)
= inf
ε>0
inf
ς<δ
val (Pς,ε2 )≥ lim sup

k→∞
val
(
Pδ2
)k
,

which is the desired result.

To prove the reverse inequality we assume additional
regularity properties on the sequence {Pk}. Namely, we
suppose that each measure Pk has a density pk(·) with re-
spect to a Lebesgue measure on Ω, and that the sequence
{pk(·)} converges to a density p(·) of P Lebesgue-almost
everywhere. This assumption is not very restrictive from
a theoretical point of view, and it is usually assumed in
engineering applications of probability theory.
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Theorem 4. Let {(xk, sk(·))} be a sequence of solutions
to {(Pδ2 )

k}. Then any limit point (and there is at least
one ) of the sequence {(xk, sk(·))} is a solution to the lim-
iting problem (Pδ2 ).

Proof. As in the proof of Theorem 1, for large enough q

we can find a point (2q ·111m, s̃(·)) that is feasible in (P
δ/2
2 ).

Since {Pk} weakly converges to P and s̃(·) is continuous,
for large enough k this point is feasible to (Pδ2 )

k. In par-
ticular, it means that the sequence {xk} is bounded and
has a limit point x0. Therefore, we may assume that the
original sequence has converging design components.
The lower semi-continuity and non-negativity of G,

and Fatou’s Lemma, imply that
∫

Ω

lim inf
k→∞

G(xk, sk(ω))p(ω) dω ≤

∫

Ω

lim inf
k→∞

[G(xk, sk(ω))pk(ω)] dω ≤

lim inf
k→∞

∫

Ω

G(xk, sk(ω))pk(ω) dω ≤ δ .

Thus we see that the P-probability of the set Ωf =
{ω ∈ Ω | lim infk→∞G(xk, sk(ω)) <∞} is one. Using

Fig. 3 Convergence of solutions to (Pδ2)
k to the solution of (Pδ2) for various values of δ

Lemma 1 we can verify the existence of a limiting state
s0(·) corresponding to the design x0, and the P-a.s. con-
vergence of sk(·) to this state. Using the lower semi-
continuity ofG, this implies that
∫

Ω

G(x0, s0(ω))p(ω) dω ≤

∫

Ω

lim inf
k→∞

G(xk, sk(ω))p(ω) dω ≤

lim inf
k→∞

∫

Ω

G(xk, sk(ω))pk(ω) dω ≤ δ .

The latter inequality shows that (x0, s0(·)) is feasible in
(Pδ2 ), and thus

val
(
Pδ2
)
≤ w(x0)≤ lim inf

k→∞
val
(
Pδ2
)k
.

Together with the estimation of lim supk→∞ val(P
δ
2 )
k

given by Lemma 3 this finishes the proof.

To show the qualitative difference between the prob-
lems (P2) and (Pδ2 ) we reconsider Example 1.

Example 3 (Example 1 revisited). Figure 3 shows the
convergence of solutions to (Pδ2 )

k to the solution of (Pδ2 )
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as k increases to infinity for various values of δ, as pre-
dicted by Theorem 4.
On the other hand, for a fixed k, the solutions to (Pδ2 )

k

converge to the optimal solution x∗k = 2 of (P2)
k as δ de-

creases to zero, in accordance with Theorem 2. Similarly,
optimal solutions to (Pδ2 ) converge to the optimal solu-
tion x∗ = 1 of (P2).

This example shows that one cannot in general expect
convergence as δ goes to zero and k goes to infinity simul-
taneously.

7
Discretization

The most popular method for solving a stochastic pro-
gramming problem involving a non-discrete probability
measure is to approximate it by a sequence of finite-
dimensional problems with discrete measures. Unfortu-
nately, we cannot apply Theorem 4 to our situation, be-
cause the approximating discrete measures do not possess
densities. Without this assumption, the implementation
of such a strategy seems to be impossible, owing to the
discontinuity of the functionG defining the constraints of
our problem. Therefore, we discretize the sizing approxi-
mations (Pδ,ε2 ) of

(
Pδ2
)
; Theorem 3 shows the viability of

such an approach.
In this section we sketch one possible discretization

approach, which does not require us to assume the conti-
nuity of the load vector f(·) with respect to ω. Evgrafov
and Patriksson (2003) used this approach to discretize
sizing approximations to the stochastic compliance min-
imization problem and to the original (non-relaxed)
stress-constrained weight minimization problem. The in-
terested reader is referred to the cited paper and refer-
ences therein for the detailed development of the dis-
cretization theory.
Suppose that Ω is a compact metric space with a met-

ric denoted by ρ(·, ·). Let S ⊃ B(Ω), P({ω | ρ(ω, ω0) <
r }) = P({ω | ρ(ω, ω0) ≤ r }) > 0 for any ω0 ∈ Ω, r > 0,
and P be a regular measure.
Consider a sequence of partitions ofΩ,Ak = {Ak1, . . . ,

Akk }, satisfying the following properties for each k and
1≤ l ≤ k:

(M1) P
(
Akl
)
> 0,

(M2) ∪kl=1A
k
l =Ω,

(M3) Aki ∩A
k
j = ∅, i �= j,

(M4) limk→∞ diam
(
Akl
)
= 0,

(M5) P
(
∂Akl
)
= 0.

Note that the collection of sets {Ak}, satisfying the
properties (M1)–(M5), generates an algebra S0 ⊂ S.
Define a sequence of discrete measures Pk with sup-

port suppPk = {ωk1 , . . . , ω
k
k }, satisfying the following

properties for each k and 1≤ l ≤ k:

(M6) ωkl ∈A
k
l ,

(M7) limk→∞max1≤l≤k Pk(ω
k
l )/P(A

k
l ) = 1.

We further assume that
(D1) the function f(·) is S0-measurable and bounded.
We denote by (C)kx(ω

k
l ) the following equilibrium prin-

ciple:






min
s
E(x, s)

s.t.






∑

i∈I(x)

BTi si = f(ω
k
l ) .

In the following theorem we establish the conver-
gence of discretizations for the problem (Pδ,ε2 ). We note
that from the weak∗ discrete convergence of the sequence
{(x∗k, s

∗
k(·))} follows the (usual) convergence of the opti-

mal designs.

Theorem 5. Consider the following sequence {(Pδ,ε2 )
k}

of discretizations of the problem (Pδ,ε2 ):

(
Pδ,ε2

)k






min
(x,s(·))

w(x)

s.t.






x+ ε111m ≤ x ,

∫

Ω

G(x, s(ω)) Pk(dω)≤ δ ,

s(ωkl ) solves (C)
k
x(ω

k
l ), l = 1, . . . , k .

Suppose that the assumptions (M1)–(M7) and (D1) hold.
Suppose further that there exists an optimal solution
(x∗, s∗(·)) to the problem (Pδ,ε2 ) such that the energy func-
tional E(x∗, s∗(·)) is essentially bounded.
Owing to the positivity of x∗ and assumption (B1)

the problems (C)k(x∗)(ω
k
l ) are feasible for any k, 1≤ l ≤ k.

Thus, there exists a sequence of optimal solutions to
{(Pδ,ε2 )

k}; we denote it by {(x∗k, s
∗
k(·))} Then any weak

∗

discrete limit point of this sequence solves the limiting
problem (Pδ,ε2 ).

Proof. We assume that the original sequence is weakly∗

convergent. The following two inequalities follow respec-
tively from Propositions A.7 and A.8 in Evgrafov and
Patriksson (2003):

val
(
Pδ,ε2

)
≤ lim inf
k→∞

val
(
Pδ,ε2

)k
, (5)

val
(
Pς,ε2

)
≥ lim sup

k→∞
val
(
Pδ,ε2

)k
, (6)

for any 0< ς < δ. Then, the claim follows from Proposi-
tion 1.



196

8
Numerical example

We consider the problem of finding a minimal weight of
the beam-like structure shown in Fig. 4. In this example,
the forces of magnitude one act independently of each
other, with the directions uniformly distributed in the in-
tervals schematically shown in the figure. The number of
bars in the ground structure is m = 49. We set E = 1.0
and σ1 = 1.0, start with ε = 0.05, and successively mul-
tiply it by the factor 0.6 until it becomes as small as
5.0×10−4.
We have solved the nested formulation of the problem

(i.e., we have eliminated the state variables and treated
them as functions of design) using an SQP-type algo-
rithm. The starting point was the equally distributed
material.
In Table 1 we report the optimal weights and statistics

describing the violations of the stress constraints for var-
ious values of the number of discretization points k. The
definitions of the statistics used are given below:

maxσ := max1≤�≤k̂max1≤i≤m[|σ|i�−σ1]+ ,

avgσ :=
k̂∑

�=1

{

max
1≤i≤m

[|σ|i�−σ1]+

}

Pk̂

(
ωk̂�

)
,

where σi� is a tensile stress in the bar i under the loading
condition 
, and k̂ = 625. The number maxσ character-
izes the maximal stress violation in the structure for all
load cases, whereas avgσ is the average (for all load cases)
maximal (among the structure members) stress violation.
The way we formulate stress constraints only guarantees
that avgσ is small when δ is small. Nevertheless, maxσ
turns out to be not very big and seems to decrease with δ
for this problem.
The reduction of the relaxation parameter δ to the

value 1×10−5 while keeping k = 625 gives us only a 3.6%
increase in the optimal weight, whereas the corresponding
numbers maxσ and avgσ decrease drastically to 2.54%

Fig. 5 The optimal designs for the weight minimization problem corresponding to (a) k= 1 and (b) k= 625. Line thicknesses are
proportional to cross-sectional areas

Fig. 4 The ground structure for the weight minimization
problem

Table 1 Results of numerical calculation

k w∗ maxσ avgσ

1 33.599 745.5% 285.0%

25 45.447 18.95% 1.02%

625 45.967 13.27% 0.61%

and 4×10−2%, respectively (compare with the last row in
Table 1).
Further increases of k do not lead to significant

changes in the optimal design. Therefore, we assume that
k = 625 is a reasonably good approximation to the prob-
lem’s probability measure, and, in particular, use this
approximation when calculating the statistics maxσ and
avgσ.
Two optimal designs corresponding to k = 1 and

k = 625 are shown in Fig. 5. It is interesting to note that
the multiple-load optimal design has fewer bars than the
corresponding average-load design.
Their behaviour under various loading conditions is

shown in Fig. 6.
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Fig. 6 Stresses and displacements for various random forces for optimal designs, corresponding to (a) k = 1 and (b) k = 625.
Note: for the sake of a better visualization of stresses, line thicknesses are not proportional to cross-sectional areas. Lighter color
means bigger stress

9
Conclusions

The relaxation of the stress-constrainedweight minimiza-
tion problem proposed in this paper offers a good trade-
off between the strict satisfaction of the stress constraints
and the robustness of the optimal solutions obtained with

respect to changes in the modelling of uncertainty. The
bound (1) on the constraint violations also allows one to
choose a satisfactory value of δ before starting the op-
timization. For example, one can choose the boundary
value c of the maximal acceptable violation of stress con-
straints, and then choose δ to be so small that the estima-
tion δx/c2 of the probability of exceeding this boundary
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is negligible, where x is an upper bound for the design
variables x.
The ongoing research is concentrated on the develop-

ment of efficient numerical methods for the problem (Pδ2 )
as well as on possible extensions of the results to more
general mechanical models (e.g., trusses with unilateral
constraints, frames, possibly with flexible joints).
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