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Abstract

Our problem of interest consists of minimizing a separable, convex and differentiable function over
a convex set, defined by bounds on the variables and an explicit constraint described by a separable
convex function. Applications are abundant, and vary from equilibrium problems in the engineer-
ing and economic sciences, through resource allocation and balancing problems in manufacturing,
statistics, military operations research and production and financial economics, to subproblems in
algorithms for a variety of more complex optimization models. This paper surveys the history and
applications of the problem, as well as algorithmic approaches to its solution. The most common
techniques are based on finding the optimal value of the Lagrange multiplier for the explicit con-
straint, most often through the use of a type of line search procedure. We analyze the most relevant
references, especially regarding their originality and numerical findings, summarizing with remarks
on possible extensions and future research.

1 Introduction and motivation

1.1 The problem at hand

Suppose that for j = 1, . . . , n the functions φj : R → R and gj : R → R are convex and differentiable and
that −∞ ≤ lj < uj ≤ +∞ holds. Let b ∈ R. Our problem has the following general statement:

minimize
x

φ(x) :=

n
∑

j=1

φj(xj), (1a)

subject to g(x) :=

n
∑

j=1

gj(xj) ≤ b, (1b)

xj ∈ Xj := [lj , uj ], j = 1, . . . , n. (1c)

Let X ⊂ R
n denote the (convex) feasible set of the problem (1). The problem has a finite optimal

solution if, for example, X is bounded or if each function φj is such that φj(xj) → +∞ whenever
xj → ±∞; it is moreover unique if the functions φj are strictly convex.

Applications where this mathematical model can be found are wide-spread. Before providing a short
list for a quick flavour, we must make an important comment, however: We consider as (almost) equivalent
the problem where the “≤”-constraint (1b) has been replaced by a “=”-constraint; the motivation is that
in practice we expect the only explicit constraint to be active at an optimal solution. (If we solve the
problem (1) while disregarding the constraint (1b), we either find an optimal solution to the original
problem (if feasible) or we learn that every optimal solution must fulfil (1b) with equality.) By the same
token, we will sometimes assume that the optimal value of the Lagrange multiplier µ for the explicit
constraint (1b) is positive.

1.2 Example applications

1.2.1 Euclidean projection

Let φj(xj) := 1
2 (xj − yj)

2, j = 1, . . . , n, where y ∈ R
n is a given vector. The resulting instance

of the problem (1) is that of finding the vector of X nearest to y, that is, the problem of finding
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the projection of the vector y onto X . This problem arises in plenty of applications, especially as a
subproblem. Various projection problems arise in decomposition methods for stochastic programming
problems ([RoW88, MuV91, NiZ93]). The case of an explicit linear equality is frequently occurring in
applications. A particular feasible set is the simplex, {x ∈ R

n
+ | (1n)Tx = b }, b > 0. (With b = 1, it is

known as the unit, or canonical, simplex.) Solving a projection problem over such a set described by a
linear equality constraint and bounded variables has been considered, for example, in matrix updates in
quasi-Newton methods ([CaM87]), in gradient projection methods for a class of mathematical programs
with equilibrium constraints (MPECs) arising in material and shape optimization problems in structural
mechanics ([FJR05]), in subgradient algorithms within right-hand side allocation methods for linear
multicommodity network flow problems ([HWC74, KeS77, AHKL80, HKL80, LPS96]), in equilibration
procedures for traffic flows ([DaS69, BeG82, DaN89, LaP92, Lot06]), primal feasibility procedures within
Lagrangian dual algorithms for classes of integer programs ([KLN00]) and in Lagrangian dual methods for
quadratic transportation problems, also known as constrained matrix problems ([BaK78, BaK80, OhK80,
OhK81, OhK84, CDZ86, Ven89, ShM90, Ven91, NiZ92]); see further below.

The problem of projecting a vector onto a halfspace (that is, the case {x ∈ R
n | aTx ≤ b } for some

vector a ∈ R
n), and the more general case of projecting a vector onto a level set {x ∈ R

n | g(x) ≤ b }
of some convex function g : R → R, also arises in classic procedures for the feasibility problem. The
most famous one is the successive projection method for polyhedral sets known as the Agmon–Motzkin–
Schoenberg algorithm [Agm54, MoS54]. Further examples can be found in the excellent surveys in
[BeT89, BaB96, CeZ97]. Such methods can also in some cases be interpreted as subgradient methods
for the minimization of a non-differentiable convex function over a closed convex set (e.g., [Gof78]),
several methods for which also use projections onto level sets of convex functions or surrogate linearized
subgradient inequalities (as in “poor man’s bundle methods”); see, for example, the level methods in
[LNN95, Kiw96a, Kiw96b], references found therein, and [Bra93, pp. 61–78].

1.2.2 Portfolio selection

Let b = 1, θ ≥ 0, and for all j let φj(xj) :=
qj

2 x2
j − θrjxj , qj > 0; gj(xj) := xj ; and lj := 0. The resulting

problem with the “≤”-constraint replaced by a “=”-constraint is to

minimize
x

n
∑

j=1

qj

2
x2

j − θrjxj , (2a)

subject to

n
∑

j=1

xj = 1, (2b)

xj ∈ [0, uj ], j = 1, . . . , n, (2c)

where x ∈ R
n is a vector of asset holdings (in portions of the total budget which are further upper

bounded by uj for each asset), the matrix of diagonal elements qj represents a diagonal approximation of
the positive definite matrix Q ∈ R

n×n of covariances, while r ∈ R
n is the vector of expected asset returns.

This then is a separable approximation of the classic Markowitz [Mar52, Mar59] portfolio optimization
model; references to the model (2) include [Sha63, Sto73, Jud75, EGP76, Pan80, DFL86].

1.2.3 Resource allocation models in production economics

Let b > 0. For all j let cj > 0, bj ∈ R, φj(xj) := cj/xj + bjxj , and gj(xj) := ajxj , aj > 0, and hence
consider the problem to

minimize
x

n
∑

j=1

cj/xj + bjxj , (3a)

subject to

n
∑

j=1

ajxj ≤ b, (3b)

xj ∈ [lj , uj ], j = 1, . . . , n. (3c)

We mention two typical instances of this model. In the lot sizing problem we let, for each j, xj denote
the order quantity of item j, cj be its holding cost, bj the ordering (or, replenishment) cost, aj the
storage requirement per item, and b the storage capacity. With this interpretation the problem is a lot
sizing problem with a capacity constraint for a multi-item system; cf. [CAA57, Zie82, VeK88]. (Without

2



the capacity constraint, a classic solution, often called Wilson’s formula, or the economic order quantity
(EOQ) formula, was given already by Harris [Har13, Har15]; see also [Wil34, WaW58, HaW63].) Letting
aj = 1 and bj = 0 for all j and replacing “≤” with “=” in the constraint (3b) we obtain the subproblem
of a hierarchical production planning problem considered by Bitran and Hax [BiH77]. In this case, the
problem is that of finding an optimal EOQ at the lower level of a hierarchical problem that defines the
right-hand side b of the items in a given class, and the bounds defining Xj are obtained from forecasts of
future demand, the current inventory, the safety stock, and the overstock limit. In [BiH79, BiH81] they
consider objective functions of the form (3a) where labour costs are included also.

Additional references on resource allocation problems are found in [Zip80b, IbK88, PaK90, MaK93,
BSSW94].

1.2.4 Optimum allocation in stratified sampling

The concept of optimum allocation in stratified sampling was introduced in [Ney34]. In this fundamental
problem in statistics we are interested in estimating the average of a certain quantity among large popu-
lations. Since it is infeasible to examine the entire population M , we have to make an estimation on the
basis of a small number of samples. For this purpose the population is stratified into n strata, each of
which having a population Mj , and from which xj samples are chosen.

The problem of minimizing the variance of the estimate is that to

minimize
x

n
∑

j=1

ω2
j

(Mj − xj)σ
2
j

(Mj − 1)xj
, (4a)

subject to

n
∑

j=1

xj = b, (4b)

xj ≥ 1, j = 1, . . . , n, (4c)

where ωj = Mj/M , σ2
j is an appropriate estimate of the variance in each strata, and we choose a total

sample size specified to a positive integer b and such that at least one sample is taken from each strata.
In this problem, the total sample is to be allocated to the strata so as to secure a minimum variance

of the global estimate. Alternatively, we may determine the smallest sample necessary to control the
variance of the global estimate at a specified level.

This problem is taken up and extended in [Sri63, San71, BRS99].

1.3 Motivation and outline

As will be evidenced by the example algorithms to be presented, an optimal solution to the problem (1)
can in many cases most simply be generated by finding the optimal value of a single variable, namely the
Lagrange multiplier associated with the constraint (1b). Two facts have attributed to the existence of
many such algorithmic developments and analyses: the problem is, as seen above and in the next section,
quite diverse in its applications, and the algorithms are often quite simple and elegant. In the preface
to their book on resource allocation Ibaraki and Katoh [IbK88, p. xiii] claim that the first paper on the
subject appeared in 1953 ([Koo53]), and then also state:

It is also observed that similar algorithms have been recurrently proposed in the literature, perhaps because
of their simplicity of structure and the diversity of their applications. In view of this, it appears timely to
summarize the past thirty years of achievement. This motivated us to write this book.

Since the publication of the above-mentioned book the development of algorithms for the continuous
allocation problem have not stalled but instead increased in intensity, and it is still true that algorithms
are recurrently proposed. It is therefore again timely to summarize this development, especially that
since the mid 1980s. Further, while it might in general be said that annotated bibliographies are going
out of fashion because of the development of electronically available and searcheable citation indexes,
many relevant publications both prior to and after the publication of the book [IbK88] cannot be found
in such indexes at all and several others at least not in mathematical ones. Related of course to all of the
above, the reference lists of the recent papers do not correctly reflect the methodological and applicational
development of the past decades.

In the next section we trace some of the history of the problem’s appearance and its many applications.
Upon the characterizations and properties of the primal problem (1), its Karush–Kuhn–Tucker conditions
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and its Lagrangian dual formulation, in Section 3 we build the two most important algorithmic constructs
and discuss their merits. We then collect the references in the area in annotated bibliographies, one for
each of the two main algorithm frameworks, and in the process not only adding to the most important
ones from the monograph [IbK88] with the last 20 years of research output but also tracing earlier
developments not found therein. We summarize the lists of articles by giving remarks on their originality,
numerical findings and visible patterns of research, followed by remarks on possible future developments.

2 History and additional applications

2.1 The theory of search and equilibria in special games

Our first examples have a diverse set of independent roots, but all of them are associated with various
equilibrium concepts.

2.1.1 Gibbs’ Lemma and equilibrium in thermodynamics

The first example problem is the earliest one that is general enough and sufficiently well studied to be a
candidate for providing an original reference to our problem (1).

Consider the following instance of (1):

minimize
x

n
∑

j=1

φj(xj), (5a)

subject to
n

∑

j=1

xj = b, (5b)

xj ≥ 0, j = 1, . . . , n. (5c)

Lemma 1 (Gibbs’ Lemma) Suppose that x∗ solves the problem (5). Then, there exists (at least one)
µ∗ ∈ R such that

φ′
j(x

∗
j )

{

= −µ∗, if x∗
j > 0,

≥ −µ∗, if x∗
j = 0,

j = 1, . . . , n, (6)

holds.

Proof. Thanks to the linearity of the constraints, the problem satisfies the Abadie constraint qualification
and the Karush–Kuhn–Tucker conditions are necessary for the local optimality of x∗. Introducing the
multiplier µ for the equality constraint and λj ≥ 0 for the sign condition on xj , we obtain the Lagrange
function L(x, µ, λ) := bµ +

∑n
j=1(φj(xj) + [µ − λj ]xj). Suppose then that the triple (x∗, µ∗, λ∗) ∈

R
n × R × R

n
+ is a Karush–Kuhn–Tucker point. Setting the partial derivatives of L with respect to each

xj to zero yields
φ′

j(x
∗
j ) = λ∗

j − µ∗, j = 1, . . . , n. (7)

Further, the complementarity conditions state that

λ∗
j · x∗

j = 0, j = 1, . . . , n.

For a j with x∗
j > 0 we must therefore have from (7) that φ′

j(x
∗
j ) = −µ∗. Suppose instead that x∗

j = 0.
Then, since λ∗

j ≥ 0 must hold, we obtain from (7) that φ′
j(x

∗
j ) = λ∗

j − µ∗ ≥ −µ∗, and we are done.

The name “Gibbs’ Lemma” was coined by John M. Danskin [Dan67, p. 10]; Gibbs’ Lemma is named
after the 19th century scientist J. Willard Gibbs, one of the great scholars of the century, and provider of
outstanding work in thermodynamics including pioneering work on statistical mechanics. In his long paper
“On the equilibrium of heterogeneous substances” [Gib1876, Gib1878a, Gib1878b]1 Gibbs formulated a
principle for the equilibrium state of chemical substances, such as gas, in actual physical contact with each
other. Gibbs’ Lemma stems from an equilibrium in a kind of game, wherein the system simultaneously
strives for a maximum entropy and a minimum energy. His principle is formulated in words thus:2

1At home, at dinner, Gibbs would often offer to prepare the salad by saying that he was the world’s recognized expert
on the mixture of heterogeneous substances ([Meh98]).

2This passage is found on page 56 in the 1961 Dover reprinted version of [Gib1876].
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I. For the equilibrium of any isolated system it is necessary and sufficient that in all possible variations of the
state of the system which do not alter its energy, the variation of its entropy shall either vanish or be negative.

II. For the equilibrium of any isolated system it is necessary and sufficient that in all possible variations of the
state of the system which do not alter its entropy, the variation of its energy shall either vanish or be positive.

Gibbs’ two principles correspond precisely to the two optimality conditions for the Lagrangian of a
maximum entropy and minimum energy formulation of the above-mentioned game. Notice however that
Gibbs never formulated the two optimization problems formally. The fact that the substances are allowed
to be heterogeneous was most important and truly original.

2.1.2 Marginal utility theory

Marginal utility theory in production economics dictates that the only items produced are the ones that
have the largest marginal profits; the marginal profits are also equal, and maximal, among all items.
Gibbs’ Lemma, rewritten for a maximization version of the problem, provides exactly this conclusion,
and the marginal profit moreover equals the (negative of the) value µ∗ of the Lagrange multiplier.

This result in utility theory is however older than Gibbs’ Lemma, and is nowadays attributed to the
Prussian economist and civil servant Hermann Heinrich Gossen. His work on marginal utility is found
in the book [Gos1854] published in German, and much later translated into English in [Gos83] with the
title The Laws of Human Relations and the Rules of Human Action Derived Therefrom. The preface
reveals that the author wrote in a quite pretentious tone, comparing his work with that of Copernicus in
significance; according to the English translation’s introductory essay, written by N. Georgescu-Roegen,
neither did his usage of German and mathematics (especially in light of the non-mathematical approaches
adopted by contemporary German economists) help him gain an audience. In fact, it was only in the
1870s that his work was rediscovered and appreciated, following discussions among the economists Leon
Walras, Carl Menger, and William Stanley Jevons, and then became reformulated in a more intelligible
way for the public.

To appreciate the originality of the work of H. H. Gossen and show that Gibbs’ Lemma effectively
was analyzed already by him, we cite his two main results (of which the first is of our primary interest);
they are, respectively, found in [Gos83, Theorem 1.2, p. 14] (result (a)) and [Gos83, Theorem 7.11, p.
108–109] (result (b)), and [Gos83, Theorem 2.3, p. 53].3

Theorem 2 (Gossen’s Fundamental Theorems) (the optimal allocation of money): (a) In order to
maximize his total pleasure, an individual free to choose between several pleasures but whose time is not
sufficient to enjoy all to satiety must proceed as follows: However different the absolute magnitudes of the
various pleasures might be, before enjoying the greatest pleasure to satiety first all pleasures in part in
such a manner that the magnitude [intensity] of each single pleasure at the moment when its enjoyment
is broken off shall be the same for all pleasures.

(b) Man obtains the maximum of life pleasure if he allocates all his earned money E between the
various pleasures and determines the e in such a manner that the last atom of money spent for each
pleasure offers the same amount [intensity] of pleasure.

(the optimal allocation of time): In order to maximize his life pleasure, man must distribute his
time and energy among various pleasures in such a way that for every pleasure, the intensity of pleasure
of the last atom produced shall be equal to the magnitude [intensity] of the discomfort experienced by
him at the very last moment of his expenditure of effort.

Interestingly, his proofs of several of the results in his book [Gos1854] were based on ingenious dia-
grams, which he was the first to devise; the result in (a) is nowadays normally illustrated with the use of
the indifference map but, as pointed out by N. Georgescu-Roegen in [Gos83, p. xci], Gossen’s diagram is
better in revealing the relationship between allocation and utility.

2.1.3 Traffic equilibrium

The notion of an equilibrium in a traffic system of individual trip makers seeking a best route from origin
to destination was first described and analyzed in mathematical terms by the statistician J. G. Wardrop
of the British Road Research Laboratory. Since his seminal paper [War52], the equilibrium conditions
are also known as Wardrop’s first principle. As cited from [War52], this is the definition:

3The “[intensity]” brackets constitute the translator’s clarification that we are dealing with derivative values.

5



The journey times on all the routes actually used are equal, and less than those which would be experienced
by a single vehicle on any unused route.

Wardrop’s first principle is usually referred to as the user equilibrium conditions, since they can be
related to the individual traveller’s (user’s) cost minimizing behaviour, and to the steady-state which
the principle describes and which evolves following trial-and-error route-choice adjustments. Wardrop’s
second principle deals with a situation in which the travellers are somehow influenced to choose their
routes such that the average travel cost is minimal, that is, the total travel cost is minimal. We refer to
such a situation as being a system optimum.

In the mid-1950s, following the publication of the famous Kuhn–Tucker Theorem ([KuT51]) in non-
linear programming, the user equilibrium principle was shown to be the statement of the optimality
conditions of a special convex program. This program has variables corresponding to the non-negative
volumes xj in the links j of the traffic network as well as disaggregated variables for the flows between
different origins and destinations; the objective function is the sum of integrals (with limits zero and
xj) of functions for each link, each of which measuring how the cost of travel along a link increases
by its volume. The primary classic references for the construction of these convex programs, and the
interpretation of their optimality conditions, are Beckmann et al. [BMW55, BMW56]; for more recent
expositions, see [She85, Pat94].

In the simplest traffic models, where there is only one origin and one destination, and the links are
all parallel (that is, the routes never intersect), the model (5) perfectly represents the above-mentioned
convex program. Indeed, let n be the number of links in the network, each function φj be the primitive
function corresponding to the travel cost function, and the value of b be the demand of travel between
the origin and the destination. Gibbs’ Lemma then corresponds exactly to Wardrop’s first principle, with
the value of µ being the cost of travel along each route actually used.

Normally traffic models are much more complex, dealing with several pairs of origin and destination
and having non-separable travel cost functions due to the interaction between traffic along neighbouring
links in the network, particularly at intersections. (For more details on traffic models, see [She85, Pat94].)
However, the simple model discussed above is interesting in that the connection between a user equilibrium
in a traffic network and Gibbs’ Lemma was discussed by economists long before the work of Wardrop
and Beckmann et al. We summarize this discussion next.

The notion of pricing economic activities in order to obtain a system optimum was introduced into
the economics literature by Jules Dupuit [Dup1844, Dup1849]. The argument is that a congested traffic
network will perform inefficiently, if users do not pay for their external costs. The concept of marginal
cost pricing is therefore sometimes referred to as the process of internalizing the external costs of the
users of the traffic network.4 This market-based, laissez-faire, pricing policy, in which selfish pursuit of
individual objectives result in maximum social benefit, is also the guiding light behind Adam Smith’s
Invisible Hand: having removed market imperfections (here, through the pricing of congestion), private
pursuit becomes optimal; see Book IV, Chapter II, of The Wealth of Nations [Smi1776].

The total travel cost is generally not minimized by the user optimal travel pattern, as already observed
by the economist A. C. Pigou [Pig20]. Pigou provides the following discussion on the difference between
the two principles:

Suppose there are two roads ABD and ACD both leading from A to D. If left to itself, traffic would be so
distributed that the trouble involved in driving a “representative” cart along each of the two roads would be
equal. But, in some circumstances, it would be possible, by shifting a few carts from route B to route C,
greatly to lessen the trouble of driving those still left on B, while only slightly increasing the trouble of driving
along C. In these circumstances a rightly chosen measure of differential taxation against road B would create
an “artificial” situation superior to the “natural” one. But the measure must be rightly chosen.

Notice that Pigou indeed describes a version of Gibbs’ Lemma.
The purpose of Pigou’s statement is to give an example of the consequences of total freedom of

companies’ factory investments. Pigou concludes that they would choose to invest in factories with higher
marginal investment costs, and that society, by a correctly chosen taxation, can direct the companies to
invest more wisely, from the society’s point of view. In this, he has in fact both stated the two route-choice
principles and also introduced the principle of congestion pricing.5

The economist F. H. Knight [Kni24] examined Pigou’s example, and explained in more detail the
reason for the difference between the two situations. Discussions on pricing issues later became more

4Traces of such ideas can be found also in von Thünen’s [vTh1826] analysis of agricultural land use.
5However famous Pigou’s discussion has become in transportation science, it is interesting to note that in subsequent

editions of the book ([Pig24, Chapters 8 and 10], [Pig29, Chapter 9], [Pig46, Chapters 9 and 11]), Pigou had replaced it
with examples from production economics.
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precise, especially after the optimization models of the two Wardrop conditions appeared in the work
by Beckmann et al.; see, for example, [Wal54, Wal61]. Congestion pricing, the related Braess’ Paradox,
and the “cost of anarchy”—the difference in total travel cost between the user equilibrium and system
optimal flows—is today a hot topic in transportation science (see, e.g., [Rou02, RoT02, CSS04]).

2.1.4 The theory of search

Consider the problem to

maximize
x∈X

n
∑

j=1

aj

(

1 − e−bjxj
)

, (8)

where X := {x ∈ R
n
+ | 1Tx = b }, b > 0, aj , bj > 0, j = 1, . . . , n, which is of the form (5) with a special

objective function. This problem was formulated and studied in the context of the US Navy search
for enemy vessels in the Atlantic ocean, by Bernard O. Koopman; see [Koo52, Koo53, Koo54, Koo56a,
Koo56b, Koo56c, Koo57, Koo79a, Koo79b], and the books [Koo80, Koo99] which contain some of the
earliest work done immediately after WWII (e.g., [Koo46]).

The problem has the following interpretation: an object is with probability aj inside box j, and −bj

is proportional to the difficulty of searching inside the box. If the searcher spends xj time units looking
inside box j then he/she will find the object with probability 1−exp(−bjxj). The problem (8) represents
the optimum search strategy if the available time is limited to b time units.

Koopman called his research problem the theory of search, which he invented through his work. In
his paper [Koo53] he gave four examples of problems of the form (5):

• Search for a lost object: The above example.

• Distribution of destructive effort: This example is discussed below.

• Response to a sales campaign: in a maximization version of (5) the value of b is the total value
spent on the campaign, while φj(xj) denotes the return on an investment xj in a given sector j.

• Drilling for oil: Among n possible drilling sites we wish to select only those that provide the best
return, measured in terms of the functions φj ; this function is zero at zero, but also at all arguments
xj (representing the investment into the operation) that are too small for the operation to yield a
sizable drilling.

The book [ORC59] summarizes some then recent developments in operations research made in partic-
ular by staff at MIT associated with NATO research activities. (Among the authors we find P. M. Morse
and G. E. Kimball.) Koopman (the only non-MIT author, affiliated with Columbia University) wrote
two chapters. In his concluding remarks to his chapter “Search” in this collection ([Koo59]) he states the
following, showing that he did indeed know of Gibbs’ work and understood the generality of the problem:

The class of problems considered herin is more general than the problems of linear programming, since the
expression to be optimized is non-linear and involves integration; it is more special, since only two linear
side-conditions are given. If the number of such conditions were increased, much of what has been done here
could be extended, although not without going drastically beyond the present chapter. The same is true,
with even greater difficulties, if the detection law (or pay-off function) is not of the simple exponential type
assumed. For all these extensions, only the general approach of the unilateral variational schemata remains.
This approach, while familiar through its use in many similar situations in the present period, actually goes
back to the work of Willard Gibbs, who applied it (in the case of finite sums, rather than integrals) in his
theory of the equilibrium of heterogeneous substances, an epochal work of the last century.

But a much more fundamental question is in order: When can the present methods, or anything like them
using the same general approach, have any hope of being applicable? The answer is that the pre-conditions of
the present type of approach are that the pay-off P should be additive in the separable portions of effort (so
that it can be expressed as an integral, in some sufficiently general sense); and, furthermore, that the separate
returns of the portions of effort be functions of these portions, together with the local conditions.

He then goes on the present a simple extension of the search problem where separability fails.
In the book “Resource Allocation Problems” by T. Ibaraki and N. Katoh [IbK88], Koopman’s papers

[Koo53, Koo56b, Koo56c, Koo57] and the problem (8) represent the first example mentioned in the book,
which however has no reference to Gossen or Gibbs.

Charnes and Cooper [ChC58b] and Karush [Kar62] furnished additional theory and a first example
algorithm for the problem, respectively; the algorithm of [ChC58b] is based on the Lagrangian dual
formulation of (8) while that of [Kar62] is based on dynamic programming. de Guenin [deG61] extends
the search algorithm to a general detection probability distribution; further developments in that area for
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the problem of moving targets are found in, for example, [Zah63, Luk77, Man82]. A book containing many
references to optimal search problems and methods is [Sto75], and [PIS02] includes several references to
the Russian activities in the theory of search since the 1940s.

2.1.5 A weapons allocation problem

We next consider a similar game but of a different origin than Koopman’s. John M. Danskin [Dan66,
Dan67] utilized Gibbs’ Lemma in the investigation of a weapons allocation game of this form:

maximize
x∈X

minimum
y∈Y

n
∑

j=1

vj

(

1 − αje
−κjxj/yj

)yj

,

where X := {x ∈ R
n
+ | 1Tx = b } and Y := {y ∈ R

n
++ | 1Ty = c }, all constants b, c, vj , κj are greater

than zero and αj ∈ (0, 1). This game was invented around 1951 at the RAND Corporation to study the
following cold war problem: Suppose one side allocates anti-missile defenses to various cities. The other
side observes this allocation and then allocates missiles to those cities. The function

φj(xj , yj) :=

{

vj

(

1 − αje
−κjxj/yj

)yj
, if yj > 0,

0, if yj = 0,

is intended to represent the residual value of a target if it is defended by xj defense units and attacked
by yj attack units. The quantity exp(−κjxj/yj) is the probability that an individual attack unit gets
through when xj/yj is the amount of defense against each attack unit, and κj is the effectiveness of
the defense. The value αj is the probability that a missile attack unit destroys the target, the quantity
1 − αj exp(−κjxj/yj) is the probability that the target survives an individual attack, and, finally, [1 −
αj exp(−κjxj/yj)]

yj is the probability that the target survives an attack with yj units. In this game,
then, the x-player acts first by constructing defenses, and the y-player moves in full knowledge of what
the x-player has done.

Danskin especially analyzes the problem for one of the players, namely the problem (8), characterizing
its unique optimal solution by means of Gibbs’ Lemma. Here, 1−exp(−bjxj) is the proportionate damage
done to target j with a level xj of attack, the value of which is aj , while bj is the vulnerability of target
j. The problem (8) then is to maximize damage subject to the availability of weapons. The criterion
for attacking target j according to Gibbs’ Lemma is therefore that the product ajbj is larger than some
threshold quantity. Through the Lagrangian relaxation of the constraint we can also reach a purely dual
problem in the (only) variable µ; Danskin [Dan67, Section II.3] also provides a simple scheme for finding
its optimal value through a line search. As we shall see, this technique has a much earlier origin within
production economics. More on the Lagrangian relaxation technique and dual line searches will be said
in Section 3.1.

Danskin also extends Gibbs’ Lemma to situations where φ is neither separable nor differentiable,
reaching a Lagrange multiplier rule for the characterization of an optimal solution based on the possible
values of the directional derivatives of φ in admissible directions.

In related work Danskin also studies the convoy routing and reconneaisance problems (see [Dan62a]
and [Dan62b, Dan62c], respectively). According to his recollections in the abstract of [Dan62a] the work
of that paper was performed in 1953 for the Operations Evaluations Group of the Navy Department.
Interestingly, therein he states Gibbs’ Lemma (albeit without naming it as such), referring the reader to
a proof that will be found in his forthcoming “Calculus of Variations and Operations Research”, which
however has not materialized; his only other citation in that paper is to the game theory classic [vNe28],
so in the open literature it is therefore first in his 1967 book on max–min problems that the lemma is
credited to Gibbs.

2.2 An example application arising as a subproblem

The following example, together with the special case following it, illustrates that the problem (1) can arise
naturally as a subproblem for important problems when attacked by various decomposition–coordination
methods. The technique applied here is Lagrangian relaxation (or, price-directive decomposition) together
with dual line search procedures; other general methods that can lead to problems of this form are right-
hand side allocation (or, resource directive decomposition) (e.g., [HWC74]), Benders decomposition (e.g.,
[CoL84, AaL90]) and surrogate relaxation. (See the classic references [Eve63, Geo70a, Geo70b, Geo70c,
GrP70, Las70] on these techniques.)
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2.2.1 Dual ascent methods for convex problems with linear constraints

Consider the convex program to

minimize
x

φ(x), (9a)

subject to εT
i x = di, i = 1, . . . , m, (9b)
xj ∈ Xj , j = 1, . . . , n, (9c)

where φ : R
n → R is a convex function of the form (1a), each set Xj is of the form in (1c), and for

i = 1, . . . , m εi ∈ R
n and di ∈ R are given data.

To introduce the Lagrangian dual function q we suppose we have at hand a dual vector λ̄ ∈ R
m,

whence the minimum of the Lagrange function over
∏n

j=1 Xj yields

q(λ̄) := minimum
x∈

�
n
j=1

Xj

{

φ(x) +

m
∑

i=1

λ̄i(ε
T
i x − di)

}

.

Note that the minimization problem actually separates into n independent one-variable problems. We
suppose that the function q is finite on R

m. In order to solve the problem of maximizing this function over
R

m, we consider a dual ascent procedure, which means that we generate directions of change, p ∈ R
m,

and that we are interested in solving the line search problem to

maximize
α≥0

q(λ̄ + αp). (10)

We will also be looking more specifically at the problem of optimizing q over a specific coordinate direction
given the current value λ̄, since such algorithms are quite popular. In that case, p = ei, where ei is the
ith unit vector; then, we will also allow α in (10) to become negative.

Suppose that α∗ ≥ 0 solves (10). Then, α∗ is a Lagrange multiplier in the primal problem to

minimize
x

{

φ(x) + λ̄
T
(Ex − d)

}

, (11a)

subject to pT(Ex − d) ≤ 0, (11b)
xj ∈ Xj , j = 1, . . . , n, (11c)

where E is the m × n matrix with rows εT
i .

To see this, notice that if α∗ solves (10), then, in particular, the minimum value of the Lagrangian
function equals q(λ̄ + α∗p). But the Lagrangian function (11) is precisely φ(x) + (λ̄ + α∗p)T(Ex − d),
whence this equality implies that α∗ indeed is the Lagrange multiplier sought.

Notice that the problem (11) is of the form (1).
Let, in particular, now p = ei, the ith unit vector, and so consider the coordinate search problem of

maximizing q over λi, keeping all the other indices fixed at their values at λ̄. Then, the optimal value is
λ∗

i = λ̄i + α∗, where α∗ is a Lagrange multiplier in the problem to

minimize
x

{

φ(x) + λ̄
T
(Ex − d)

}

, (12a)

subject to εT
i x = di, (12b)
xj ∈ Xj , j = 1, . . . , n. (12c)

In other words, performing a coordinate search in the dual space in the variable λi amounts to
Lagrangian optimally satisfying constraint i in the primal problem. If λ̄ = 0m, then the dual coordinate
search is equivalent to solving a relaxation of the original problem (9), where only constraint i in (9b) is
present.

The last result is not surprising at all; it simply says that to optimize over a dual variable is equivalent
to not Lagrangian relaxing the corresponding primal constraint; as we are not Lagrangian relaxing that
constraint, we equivalently eliminate that dual variable! For the more general first result, we can observe
that a dual line search corresponds to solving a primal problem where the linear constraints have been
surrogate relaxed with a particular vector of relaxation parameters, namely p; see [Glo68, Geo69, GrP70,
KaR79] for more on surrogate relaxation.

We next specialize this development to the important problem of minimum convex cost network flows,
which is an application where dual ascent methods have been applied for several decades.
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2.2.2 Dual ascent methods for separable strictly convex network flows:

Consider now the particular problem of the minimization of a separable strictly convex cost function over
the feasible flows in a single-commodity network. This special case of the above problem corresponds to
letting E be the node–link incidence matrix for the corresponding network representation, where each
element eij equals −1 (1) if node i is the origin (destination) node of link j, and 0 otherwise; the value
di is the demand value for node i, with di < 0 (di > 0) if node i is a source (sink) node, and the elements
of d sum to zero.

In this case, the gradient of q at λ̄ has a particularly simple form. Suppose we rename the variable
vector x such that each element is denoted xik, indicating the flow on link j = (i, k) from node i to node
k; also, we denote the set of links by L and the set of nodes by N . From the special form of the problem
the Lagrangian function has terms for each variable xik of the form φik(xik) + (λi − λk)xik .

By the sign conventions we then have that the partial derivative of the Lagrangian dual function q at
λ with respect to each coordinate λi is as follows:

∂q(λ)

∂λi
=

∑

k:(i,k)∈L

xik(λi − λk) −
∑

k:(k,i)∈L

xki(λk − λi) − di, i ∈ N ,

where x(λ) is the Lagrangian minimizer.
This result comes as no surprise, knowing that the optimality conditions of the dual problem is that

∇q(λ∗) = 0m, or, that Ex∗ = Ex(λ∗) = d holds: the partial derivative of q with respect to λi equals the
violation (or, slack) in the ith flow conservation constraint; in the context of network flows, the violation
of flow conservation is also called the divergence (or, surplus or imbalance) of node i.

In order to reach a dual optimal solution, it seems natural to utilize the primal–dual relations estab-
lished above, and therefore to try to balance node i’s flow through the manipulation of the dual price λi;
this is the main ingredient in a coordinate-wise dual ascent algorithm for the problem. From our previous
example, we know that performing a restricted dual search in which q is maximized over the single dual
price λi, that is, performing a line search in the ith dual coordinate, is equivalent to satisfying the ith

equality constraint (in a Lagrangian optimal manner). If ∂q(λ)
∂λi

> 0, this means that too much net flow
leaves (or, too little net flow reaches) the node. In order to balance the flow, a line search would then
increase the value of λi.

From the above we can see that this line search problem is equivalent to a special form of separable
problem (1), and is therefore amenable to be solved using the algorithms surveyed in this paper.

Some of the articles presented later on in this survey are devoted to the solution of the above network
flow problem by means of Lagrangian relaxation and dual ascent. This technique is very old, and appli-
cations are abundant, including problems in migration theory, tomography, and many others, as well as
several types of traditional network flow problems. To mention but a few references, see [Hil57, Bre67,
Cry71, BaK78, BaK80, Her80, CeL81, OhK81, CoP82, OhK84, ZeM85, CDZ86, OOK86, CeH87, ZeM88,
NEK90, ZeC91, Cur93], which all describe coordinate-wise dual search algorithms, dual ascent meth-
ods that operate over several coordinates simultaneously in [Pan84, Tse90, Ven91, HaH93, WuV95], the
surveys in [LaS81, ErS90, ScZ90, CeZ97], the classic by Kruithof [Kru37] (sometimes called the RAS algo-
rithm) and [DEs59, Osb60, Fur62, Sin64, Gra71, EvK74, Mur77, JeS79, Mac79, BHT87, BeT89, Tse91].
Further theoretical results on dual line searches, in particular for quadratic problems, are found in
[Pan84, LiP87, TsB87, VeH88, BeT89, Tse90, TsB90, Ven91].

3 A survey of techniques for our problem

The two subsections to follow describe the two main approaches to the problem (1). The first class of
algorithms utilizes the simple form of the KKT conditions and/or the Lagrangian dual problem which
has only one variable. Since the optimal value of the multiplier µ is found through a line search and
the values of the primal variables are only generated implicitly, we refer to this class of algorithms as a
dual one. In the second class of algorithms, denoted pegging algorithms, an optimal solution x∗ is built
up from solutions to relaxations of (1) wherein the bound constraints (1c) are relaxed. It is a recursive
algorithm wherein at each iteration some variables will receive their optimal values. In the process the
Lagrange multiplier is also optimized, but only implicitly, whence we refer to this as a primal algorithm.

In the annotated bibliographies that follow each algorithm class description we group together, in a
(roughly) chronological order, work where algorithms are explicitly described. Under the term “Problem”
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we provide any special properties of the problem introduced beside those already stated when presenting
the general problem (1); so, for example, we do not state that each function φj is convex and in C1,
and the default form of Xj is the finite interval [lj , uj ]. Under the term “Origin” we explain to which
concrete problem the algorithm is applied; if there is no specialization compared to be statements under
“Problem” then this item is deleted. Actual methodological particulars are provided under the term
“Methodology”, while under the term “Citations” we collect the most relevant citations in the work, if
any. Under “Notes” we provide any additional remarks that are worth mentioning, such as whether the
work contains comparative numerical experiments with conclusions.

3.1 Lagrange multiplier algorithms

3.1.1 Introduction

Algorithms based on the Lagrangian relaxation of the explicit constraint (1b) have an older history than
the primal “pegging” algorithms. This is clearly due to the fact that pegging algorithms quite strongly
rest on the Karush–Kuhn–Tucker (KKT) conditions (and the algorithmic developments in most of the
relevant references are based on KKT arguments) which did not become widely available until the end
of the 1940s and early 1950s with the work of F. John [Joh48], W. Karush [Kar39], and H. W. Kuhn
and A. W. Tucker [KuT51]. Lagrangian based algorithms have been present much longer and the famous
“Lagrange multiplier method” for equality constrained optimization is classic in the calculus curriculum.
While in theory such algorithms extend neither to inequality constraints nor to the presence of a ground
set Xj 6= R, the former poses no problem as we have discussed in Section 1, since we have only one
inequality constraint; the latter imposes additional conditions that in a one-variable problem are easy
to accommodate. Indeed, Lagrange multiplier techniques for our problem (1) are older, dating back at
least to the mid 1950s, if not earlier: the earliest reference found so far is to Churchman et al [CAA57],
although the Lagrange multiplier algorithm therein is a simple grid search method. We also include in our
discussions below the unpublished RAND report by Beckmann [Bec52], although it does not contribute
to the field of numerical solution methods; the reason for discussing it is that it has been referred to on
at least one occasion in a survey paper as if it did contribute to the field. (We note also that in every
reference to [Bec52] cited in this paper, starting with the influential referencing in the text book [CAA57],
the year 1952 has been erroneously replaced by 1942.)

Introducing the Lagrange multiplier µ ≥ 0 for the constraint (1b) we obtain the following conditions
for the optimality of x∗ in (1):

µ∗ ≥ 0, g(x∗) ≤ 0, µ∗g(x∗) = 0, (13a)

x∗
j ∈ Xj , j = 1, . . . , n, (13b)

and

x∗
j = lj , if φ′

j(x
∗
j ) ≥ −µ∗g′j(x

∗
j ), j = 1, . . . , n, (13c)

x∗
j = uj , if φ′

j(x
∗
j ) ≤ −µ∗g′j(x

∗
j ), j = 1, . . . , n, (13d)

lj < x∗
j < uj , if φ′

j(x
∗
j ) = −µ∗g′j(x

∗
j ), j = 1, . . . , n. (13e)

For the fixed optimal value µ∗ of the Lagrange multiplier the conditions (13c)–(13e) are the optimality
conditions for the minimization over x ∈

∏n
j=1 Xj of the Lagrangian function defined on

∏n
j=1 Xj ×R+,

L(x, µ) := −bµ +

n
∑

j=1

{φj(xj) + µgj(xj)}.

Its minimization over x ∈
∏n

j=1 Xj for a given µ ≥ 0 separates into n problems, yielding the Lagrangian
dual function

q(µ) := −bµ +
n

∑

j=1

minimum
xj∈Xj

{φj(xj) + µgj(xj)}, µ ≥ 0. (14)

By introducing additional properties of the problem, we can ensure that the Lagrangian dual function
q is not only concave but finite on R+ and moreover differentiable there. Suppose, for example, that for
each j, φj(·) + µgj(·) is weakly coercive on Xj for every µ ≥ 0 [that is, that either Xj is bounded or that
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for every µ ≥ 0, φj(xj) + µgj(xj) tends to infinity whenever xj tends to ±∞], and that φj is strictly
convex on Xj . In this case, then, the derivative q′ exists on R+ and equals

q′(µ) =
n

∑

j=1

gj(xj(µ)) − b,

where x(µ) is the unique minimum of the Lagrange function over
∏n

j=1 Xj . Thanks to this simple form of
the dual derivative, the maximum µ∗ of q over R+ can be characterized by the complementarity conditions
(13a), and the conditions (13) are the primal–dual optimality conditions for the pair of primal–dual convex
programs.

If we, as before, assume that µ∗ 6= 0, we search for µ∗ > 0 such that q′(µ∗) = 0 (or, in other words,
g(x(µ∗)) = 0), that is, we need to solve a special equation in the unknown µ, where the function q′ is
implicitly defined, but is known to be decreasing since q is concave. This equation can of course be solved
through the use of any general such procedure [for example, bisection search takes two initial values µ
and µ with q′(µ) > 0 and q′(µ) > 0, then iteratively cancels part of the initial interval given the sign of
q′ at its midpoint (µ + µ)/2], but the structure of q′ makes specialized algorithms possible to utilize.

From the above optimality conditions for the Lagrangian minimization problem over
∏n

j=1 Xj we
obtain that

xj(µ) =











lj , if µ ≥ µ+ := −φ′
j(lj)/g′j(lj),

uj , if µ ≤ µ− := −φ′
j(uj)/g′j(uj),

xj , if φ′
j(xj) + µg′j(xj) = 0.

As a special case, consider the set X := {x ∈ R
n | 1Tx = b; l ≤ x ≤ u } with b > 0. The above

formula then simplifies to

xj(µ) =











lj , if µ ≥ µ+ := −φ′
j(lj),

uj , if µ ≤ µ− := −φ′
j(uj),

xj , if φ′
j(xj) = −µ,

and we learn again the strong connection to Gibbs’ Lemma 1 in the characterization of an optimal
solution.

In a rudimentary algorithm we order these indices (or, breakpoints) µ+ and µ− in an increasing (for
example) order into {µ1, . . . , µN}, where N ≤ 2n due to the possible presence of ties. Finding µ∗ then
amounts to finding an index ∗ such that either q′(µ∗) = 0 (whence we are done), or that q′(µ∗) > 0 and
q′(µ∗+1) < 0 and then performing an interpolation between these two values such that µ∗ ∈ (µ∗, µ∗+1)
and q′(µ∗) = 0.

Two decisions thus need to be made: how to find the index ∗, and how to perform the interpolation.
Starting with the former, the easiest means is to run through the indices in ascending or descending order
to find the index where q′ changes sign. (We will refer to this methodology by ranking.) If we have access
to indices + and − for which q′(µ+) > 0 while q′(µ−) < 0, then we can choose the midpoint index,
check the corresponding sign of q′, and reduce the index set thereafter. (We will refer to this methodology
by bisection search.) Given the sorted list, we can also find this index in some random fashion. (We will
refer to this methodology by random search.)

As remarked above, algorithms such as bisection search can be implemented without the use of the
breakpoints, and therefore without the use of sorting, as long as an initial interval can somehow be found;
also general methods for solving the equation q′(µ) = 0, such as the secant method or regula falsi, can
be used even without an initial interval; notice however that q 6∈ C2, whence a pure Newton method is
not guaranteed to be well-defined.

If the functions φj and gj are quadratic and linear, respectively, the interpolation can be performed
exactly, since the corresponding equation is linear; otherwise, it is in general an infinitely convergent
procedure.

While the sorting operation used in the ranking and bisection search methods takes O(n log n) time
it is possible to lower the complexity by choosing the trial index based on the median index, which is
found without the use of sorting; the complexity of the algorithm is then reduced to O(n). It is not
clear, however, that the latter must always be more efficient, since the “O” definition calls for n to be
“large enough”. We also remark that in the case when the problem (1) arises as a subproblem in an
iterative method, as the method converges the data describing the problem will tend to stabilize. This
fact motivates the use of reoptimization of the problems, which most obviously can be done by using the
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previous value of the Lagrange multiplier as a starting point and/or utilizing the previous ordering of
the breakpoints; in the latter case, the O(n log n) sorting complexity will eventually drop dramatically
in practice, and even O(n2) sorting methods may be competitive due to their better reoptimization
capabilities.

To summarize the above class of methods, we may say that they are explicitly dual, since they work
in the dual space. The methods are on the other hand also implicitly primal, since they in each step may
identify optimal values of one or several primal variables xj at their respective bounds.

Since we have opted to include only references to methods solving our problem and not any general-
izations unless they do treat our problem as a subproblem, some perhaps natural references are omitted;
we refer, for example, to papers that treat the case of φ non-separable (e.g., [HoI99]; the algorithms in
this paper reduce to a general dual search method and bisection, respectively).

For the problem at hand, the principle of optimizing the value of µ is discussed in [CAA57, Ber60,
Eve63, Tak63], [Dan67, pp. 11–12], [Roc70, pp. 285–287], and [Geo70a, Geo70b, Geo70c, GrP70, Tak70],
among others, but without explicit details or referring to trial–and–error techniques only; the term grid
search refers to one such technique.

3.1.2 Annotated bibliography

[CAA57] C. W. Churchman, R. L. Ackoff and E. L. Arnoff, Introduction to Operations Research (Chapter
10: Inventory Models with restrictions)

(Problem) φj(xj) = cj/xj + bjxj , cj > 0, bj > 0; (non)linear inequality (gj(xj) = dj/xj , dj > 0; or aj > 0);
lj = −∞, uj = ∞

(Origin) Lot sizing problems with a linear (warehouse space) or nonlinear (machine time) restriction

(Methodology) Grid search

(Citations) [Bec52] (erroneously dated to 1942). On p. 261 the authors state: “What follows is essentially
an adaptation of the technique of Lagrangian multipliers and was suggested by an unpublished paper
of Beckmann.” Unless one reads also the bibliographical notes on p. 273 one might believe that the
manuscript [Bec52] contains at least a rudimentary Lagrange multiplier procedure. However, the
bibliographical notes say: “The articles by Beckman [...] are concerned with necessary and sufficient
conditions for an optimum solution. These conditions may provide the key to improved methods of
calculating solutions.” Further citation: [Kle55] (improved numerical techniques)

(Notes) Numerical examples (n = 2). Extends the technique to two inequality constraints.

[ChC58b] A. Charnes and W. W. Cooper, The theory of search: Optimal distribution of search effort

(Problem) φj(xj) = qjexp(−αxj), qj > 0, qj+1 ≤ qj , α > 0; linear equality (aj = 1, b = 1); lj = 0

(Methodology) Ranking

(Citations) Algorithms: [ChL54] (separable programming); theory of search: [Koo52, Koo53, Koo54, Koo56a,
Koo56b, Koo56c, Koo57]; theory: [KuT51]

[Eve63] H. Everett, III, Generalized Lagrange multiplier method for solving problems of optimum allocation
of resources

(Problem) φj(xj) = − log[1 − (1 − qj)
xj ], qj ∈ (0, 1); linear inequality (aj > 0)

(Origin) “Cell problem” in more complex models; application to a problem in reliability investment

(Methodology) Grid search

(Citations) Application: [Ket62]

(Notes) Numerical experiments with a trial–and–error method (n = 4). The method of [Ket62] for an
integer programming version of the problem utilizes dynamic programming; see also [Loa71]

[Sri63] K. S. Srikantan, A problem in optimum allocation

(Problem) φj ∈ C2, φ′′

j > 0; linear equality (aj 6= 0, b = 10s for some positive integer s); lj ≥ 0

(Origin) Extension of an optimal allocation problem in stratified sampling

(Methodology) Bisection search without the use of breakpoints

(Citations) Application: [Ney34]; theory: [ChC61a]

(Notes) Numerical experiments (n = 6)

[Bod69] L. Bodin, Optimization procedures for the analysis of coherent structures
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(Problem) φj strictly convex, increasing; φj(lj) > 0; linear inequality (aj = 1); 0 < lj < uj < 1. Special
case: φj(xj) = cj(1 − expxj), cj > 0

(Origin) Reliability determination at minimum cost for parallel or series systems

(Methodology) Ranking

(Citations) [BaP65]

(Notes) Discusses “modular decomposition” as a means to decompose more complex models with several
explicit constraints into the present one. Considers also solving a parametric model over the values of
the right-hand side b.

[DaS69] S. Dafermos and F. T. Sparrow, The traffic assignment problem for a general network

(Problem) φj(xj) =
qj

2
x2

j , qj > 0; linear equality (aj = 1); lj = 0, uj = ∞

(Origin) Subproblem for each origin–destination pair in the traffic equilibrium problem within a cyclic
decomposition (Jacobi) algorithm

(Methodology) Ranking; referred to as the “equilibration operator”

(Citations) Model foundations: [Pig20, War52, Bec67, BMW56, FoF58, FoF62, ChC58a, ChC61b]

(Notes) Numerical experiments (n = 60)

[San71] L. Sanathanan, On an allocation problem with multistage constraints

(Problem) General: φj ∈ C2, φ′′ > 0; linear equality (aj 6= 0); lj = −∞, uj = ∞ possible. Application:
φj(xj) = qj/xj , qj > 0

(Origin) Same. Application to optimal allocation in stratified sampling subject to restrictions on strata
estimates, capital budgeting and multistage sampling

(Methodology) Bisection search à la [Sri63]

(Citations) [Sri63, Kis65]

(Notes) Numerical experiments (n = 6); same problem as in [Sri63]. Presents a recursive pegging algorithm;
cf. Section 3.2.

[HWC74] M. Held, P. Wolfe, and H. P. Crowder, Validation of subgradient optimization

(Problem) φj(xj) = 1

2
(xj − yj)

2, linear equality (aj = 1); lj = 0, uj = ∞

(Origin) Linear minimum cost multicommodity flow problem solved via right-hand side (RHS) allocation,
Lagrangian relaxation and subgradient optimization; projection arises in the multiplier updating step,
one for each commodity

(Methodology) Ranking

(Citations) Cites [AbS70], where it is explained that G. W. Dantzig had already previously applied RHS
allocation to the given problem

(Notes) Numerical experiments (n ∈ [3, 20])

[Jud75] J. V. Jucker and C. de Faro, A simple algorithm for Stone’s version of the portfolio selection problem

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj = 1, b = 1); lj = 0

(Origin) Separable approximation of Markowitz’ portfolio selection problem, taken from [Sto73]

(Methodology) Ranking

(Citations) Models: [Mar52, Mar59, Sha63, Sto73]

(Notes) Numerical experiments (n = 8)

[LuG75] H. Luss and S. K. Gupta, Allocation of effort resources among competing activities

(Problem) φj strictly convex and increasing; linear inequality (aj = 1)

(Origin) Subproblem in a recursive pegging algorithm; cf. Section 3.2

(Methodology) Ranking

(Citations) Algorithms: [ChC58b, WiG69, Geo70a, Geo70c]

(Notes) Notes that having a closed form solutions to each Lagrangian problem is advantageous, and gives
them for some special forms of functions φj

[KeS77] J. L. Kennington and M. Shalaby, An effective subgradient procedure for minimal cost multicom-
modity flow problems
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(Problem) φj(xj) = 1

2
(xj − yj)

2; linear equality (aj = 1); lj = 0, uj = ∞

(Origin) Linear minimum cost multicommodity flow problem solved via RHS allocation, Lagrangian relax-
ation and subgradient optimization; projection arises in the multiplier updating step, one for each
commodity

(Methodology) Refers to the ranking procedure from [HWC74]

(Citations) Related models: [War52, ChC61b, HWC74]; price-directive decomposition: [FoF58, Tom67,
WeC72]

(Notes) Numerical experiments (n ∈ [8, 12])

[AHKL80] A. I. Ali, R. V. Helgason, J. L. Kennington, and H. Lall, Computational comparisons among
three multicommodity flow algorithms

(Problem) φj(xj) = 1

2
(xj − yj)

2; linear equality (aj = 1); lj = 0, uj = ∞

(Origin) Linear minimum cost multicommodity flow problem solved via RHS allocation, Lagrangian relax-
ation and subgradient optimization; projection arises in the multiplier updating step, one for each
commodity

(Methodology) Ranking

(Citations) Algorithms: [HWC74, KeS77]

(Notes) Numerical experiments, comparing RHS allocation with Dantzig–Wolfe decomposition and primal
partitioning (n ∈ [8, 60]). RHS allocation wins while convergence of that algorithm is not guaranteed

[HKL80] R. V. Helgason, J. L. Kennington, and H. Lall, A polynomially bounded algorithm for a singly
constrained quadratic program

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj = 1, b = 1); lj = 0

(Methodology) Bisection search; extends the method from [HWC74] to a more general case of QP

(Citations) [HWC74, KeS77, AHKL80] (for applications and special cases); [ChC58b, Sri63, San71, LuG75,
BiH79, McC7X] (for related work)

(Notes) Derives a O(n log n) time bound

[Zip80b] P. H. Zipkin, Simple ranking methods for allocation of one resource

(Problem) φj strictly convex, linear equality (aj = 1); lj = 0

(Origin) Subproblem in a hierarchical pegging algorithm for the same problem with additional upper
bounds; cf. Section 3.2

(Methodology) The ranking method from [LuG75] is the source algorithm. Modifications: (a) allowing
for the inexact determination of the Lagrangian problem’s solution; (b) allows for starting at any
breakpoint. Notes the possibility to replace ranking by bisection search (or Fibonacci search) and the
possibility to restart from the optimum in the previous iteration

(Citations) Applications: optimal search effort ([ChC58b]), marketing ([LuG75]), capital budgeting ([Han68,
p. 81]), production ([BiH77]), aggregation errors ([Zip80a]), portfolio selection ([Jud75, EGP76]),
reliability ([Bod69]), health care ([Fet73]), and multicommodity flows ([HWC74]). Algorithms: cites
the Lagrange multiplier method in [LuG75] as subsuming [ChC58b, WiG69]; discusses also the pegging
algorithm from [BiH77] (wrongly supposing that only one variable can be pegged at any given iteration)
and the Lagrange multiplier methods from [Bod69, HWC74, Jud75]. Further citations: [Koo57, deG61,
Kar62, Eve63, Geo70a, Geo70b, GrP70]

(Notes) Perhaps the first survey, providing a unified presentation of some previous work.

[Ein81] J. M. Einbu, Extension of the Luss–Gupta resource allocation algorithm by means of first order approx-
imation techniques

(Problem) φj ∈ C2 strictly convex and increasing; linear inequality (aj = 1); lj = 0

(Origin) Subproblem in a recursive pegging algorithm; cf. Section 3.2

(Methodology) Ranking; extension of the analytic method from [LuG75] with the numerical solution of the
Lagrangian problem determining the current Lagrange multiplier estimate

(Citations) [LuG75]

[Hor81] R. Horst, On reducing a resource allocation problem to a single one-dimensional minimzation of a
differentiable convex function
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(Problem) φj strictly convex, decreasing, φj(0) = 0; linear equality; lj = 0

(Origin) Same

(Methodology)

(Citations) Convex programming techniques: [ChC58b, LuG75]; dynamic programming techniques: [WiG69];
duality: [Geo71]

(Notes) Derives the primal–dual optimality conditions of the problem; proposes no algorithms

[Was81] A. R. Washburn, Note on constrained maximization of a sum

(Problem) φj strictly convex; linear equality (aj = 1); lj = 0

(Methodology) Ranking, possibly with a random starting index

(Citations) Algorithms: [ChC58b, Eve63, Sto75, Bro80]

(Notes) Numerical experiments (n = 8)

[OhK80] A. Ohuchi and I. Kaji, Algorithms for optimal allocation problems having quadratic objective function

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj = 1); lj > 0

(Origin) Subproblem in a coordinate dual ascent method for a strictly convex quadratic optimal allocation
problem

(Methodology) The Lagrange multiplier methods “polynomial approximation” (PA; quadratics preferable),
“sequential search” (SS; bisection search), hybrid method (HB = PA + SS)

(Citations) [Tak70] (consider the same problem, except for uj = ∞, provides a coordinate-wise search
method for the Lagrange dual but without details or theory) [Tak63, Geo70a, Geo70b] (background
theory); [KIM79] (extension to integer programming case)

(Notes) Numerical experiments (n ∈ [10, 100]; randomly generated instances); HB best

[OhK81] A. Ohuchi and I. Kaji, An algorithm for the Hithcock transportation problems with quadratic cost
functions

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj > 0); lj > 0

(Origin) Parallel subproblems in a coordinate dual ascent method for a strictly convex quadratic trans-
portation problem

(Methodology) The three Lagrange multiplier methods from [OhK80]

(Citations) Algorithms: [Tak70, OhK80]; [AHU74] for bisection search complexity

(Notes) Numerical experiments using HB (number of source nodes N1 ∈ [40, 100]; number of terminal nodes
N2 ∈ [80, 200]; randomly generated instances); reference to [HKL80] added in proof

[OhK84] A. Ohuchi and I. Kaji, Lagrangian dual coordinatewise maximization algorithm for network trans-
portation problems with quadratic costs

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj > 0); lj ≥ 0

(Origin) Parallel subproblems in a coordinate dual ascent method for a strictly convex quadratic trans-
portation problem

(Methodology) The three Lagrange multiplier methods from [OhK80]

(Citations) [Tak70, OhK80]; [AHU74] for bisection search complexity

(Notes) Numerical experiments using HB (n ∈ [30, 100]; complete graphs; randomly generated instances);
favourable comparison to Wolfe’s [Wol74] QP algorithm (tests on problems with n ∈ [5, 7]); no refer-
ence to [HKL80, OhK81] but algorithm better explained

[Zie82] H. Ziegler, Solving certain singly constrained convex optimization problems in production planning

(Problem) φj(xj) = cj/xj + bjxj , cj ≥ 0, bj ≥ 0; linear inequality (aj > 0); lj = 0, uj = ∞

(Methodology) Bisection search without sorting or use of breakpoints; acceleration by Newton method or
regula falsi; initial interval given by a projection of the result of Harris’ [Har15] EOQ formula

(Citations) Previous “trial-and-error” procedures: [Bec52, CAA71], erroneously dating the former to 1942.
Because of this error in dating the reference [Bec52] (which is the same as in [CAA57]), we believe
that the author neither gained access to it nor read the relevant bibliographical notes in [CAA71].
Indeed, his citation reads: “ Solution procedures for [...] have been proposed e.g. by Beckmann and
Churchman, Ackoff and Arnoff, which try to approximate the optimal solution by a trial and error
generation of the Lagrange multipliers.” See the item above for [CAA57] for a further discussion
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(Notes) Notes that no bounds on µ∗ are provided in the previous work. Numerical experiments (n ∈
[10, 500]). Main purpose to propose a bound on µ∗ rather than actually finding its value

[FeZ83] A. Federgruen and P. Zipkin, Solution techniques for some allocation problems

(Problem) φj strictly convex; linear equality (aj = 1); lj = 0

(Origin) Parallel subproblem in a RHS allocation algorithm for a problem with additional linear generalized
upper bound (GUB) constraints

(Methodology) Derived from the ranking algorithm from [Bod69]; replaces sorting by work with two heaps;
no complexity analysis; also discusses the reoptimization of the sorted list, and discusses the invert-
ibility of φ′

j and proposes a numerical approximation scheme (cites [Zip80b])

(Citations) Related work ([Bod69, LuG75, OhK80, Zip80b, BiH81, Roh79])—see [Roh82] for the published
version of the latter; data structures ([Knu68, AHU74])

(Notes) The paper [Roh82] contains a discussion on the productivity of the activities, measured in terms of
the quantity φj(x

∗

j )/x∗

j , and relates this number to the value of φ′

j(0) for some special return functions
given in [ChC58b, LuG75]

[Bru84] P. Brucker, An O(n) algorithm for quadratic knapsack problems

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality

(Methodology) Median search

(Citations) [HKL80]; [AHU74] for median complexity O(n)

[CDZ86] R. W. Cottle, S. G. Duvall, and K. Zikan, A Lagrangean relaxation algorithm for the constrained
matrix problem

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj = 1); lj = 0

(Origin) Parallel subproblems in block coordinate dual ascent method for the quadratic transportation
problem

(Methodology) Bisection search; reoptimization of sorting using permutation vector from [Knu73, p. 80]; also
tests using the parametric principal pivoting (PPP) algorithm; also investigates the use of successive
over-relaxation (SOR) in the coordinate ascent method

(Citations) Problem ([Bac70, BaK78]); other coordinate ascent algorithms ([Tak63, Tak70, OhK80, OhK81,
OhK84]); subproblem algorithms ([Roc70, Jud75, FLR78, KIM79, HKL80, Roc81, Bru84]); cyclic
coordinate ascent ([Zad69, Zan69]); SOR ([CoP82, Cot84]); parametric principal pivoting ([Cot72])

(Notes) Discusses the problem of unbounded level sets of the Lagrangian dual problem; imposes a Slater
condition. Remarks that the test problems in [OhK84] are “easy”. Numerical experiments (number of
source nodes N1 = 54; number of terminal nodes N2 = 55; taken from [BaK78, BaK80]); reoptimiza-
tion of sorting reduces CPU time by half; SOR another half; best algorithm PPP (note: equivalent to
using median search, or ordinal statistics, cf. [RJL92])

[DFL86] J.-P. Dussault, J. A. Ferland, and B. Lemaire, Convex quadratic programming with one constraint
and bounded variables

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj ≥ 0); lj = −∞, uj = ∞ possible

(Origin) Positive semidefinite quadratic program solved through a series of separable approximations; par-
allel subproblems in coordinate dual ascent method for the problem

(Methodology) Bisection search

(Citations) Refers to the complementary pivot algorithm from [Pan80] as reducing to bisection search for
quadratic programs with a diagonal Hessian; other Lagrange multiplier search methods ([FLR78,
HKL80, Roc70]); the active set method from [McC79]

(Notes) Numerical experiments with two versions of the complete algorithm (exact line search; unit step
length) and the parametric linear complementarity algorithm from [Pan80] (n = 50); the latter wins
when the original problem matrix is less diagonally dominant

[Vid84] P. V. V. Vidal, A graphical method to solve a family of allocation problems

(Problem) φj(xj) = −rj(1 − exp(−kjxj)), rj , kj > 0; linear equality; lj = 0

(Methodology) Graphical method for finding a zero of q′ based on a nonlinear transformation that creates
a piece-wise linear q′

17



(Citations) General methodologies: [Sri63, Vid70, San71, BiH79]; dynamic programming: [WiG69]; Kuhn–
Tucker based: [LuG75]; derivation of the Lagrangian: [Hor81]

(Notes) Numerical experiment (n = 4) taken from [WiG69]. Provides a table of references to applications
where other nonlinear transformations also lead to piece-wise linear q′

[Vid86] P. V. V. Vidal, Solving a family of simple allocation problems

(Notes) Same algorithm, same numerical example, same methodological references, and same table as in
[Vid84], but without a reference. Discusses an extension to a non-differentiable problem

[Vid87] P. V. V. Vidal, A simple method to solve some simple allocation problems

(Notes) Same algorithm, same numerical example, same methodological references, and same table as in
[Vid84], but without a reference

[CaM87] P. H. Calamai and J. J. Moré, Quasi-Newton updates with bounds

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality

(Origin) Broyden quasi-Newton update of Jacobian approximation

(Methodology) Median search

(Citations) [AHU74] for median search complexity O(n)

(Notes) Notes that the result of the median search also provides important information when the original
problem is inconsistent

[IbK88] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches

(Problem) Linear equality (aj = 1)

(Origin) Resource allocation problem from several areas

(Methodology) Pegging (the algorithm BRELAX2 from [BiH81]) or recursive pegging (first converting the
set to Xj to [0, uj ], then utilizing the Lagrange multiplier algorithm BRELAX1 from [Zip80b]); pegging
(the algorithm from [BiH81], then denoted RELAX) for the special case of Xj = [0, uj ]

(Citations) Applications: optimal search effort ([Koo53, Koo56a, Koo56b, Koo57, ChC58b, Kar58, Kar62]),
optimal sample allocation in stratified sampling ([Ney34, Sri63]), optimal portfolio selection ([Mar52,
Mar59, Sha63, Sto73, Jud75, EGP76, Zip80b]), production planning ([BiH77, BHH81, BiH81, Zie82]),
resource distribution ([FeZ83, FeZ84]), mass advertising ([Kot71]; here, φj is “S-shaped”), marketing
effort allocation ([Lus73]), reliability problems ([Bod69]), bidding for oil and gas ventures ([FeG86]),
allocation of people to evacuation routes ([Fra78]), subproblems in subgradient algorithms ([HWC74]),
the apportionment problem ([BaY82]). Algorithms for continuous problems: pegging algorithms
([Zip80b, BiH81]), Lagrange multiplier methods ([LuG75, HKL80, OhK80, Zip80b, Was81, Bru84]),
and variations ([Ein81])

(Notes) Comprehensive overview of the linearly constrained allocation problem with extensions to mini-
max/maximin, lexicographic minimization, submodular and integrality constraints, and more. Notes
that the RELAX algorithms can be extended to the case of non-differentiable functions φj

[RoW88] R. T. Rockafellar and R. J.-B. Wets, A note about projections in the implementation of stochastic
quasigradient methods

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; g′

j > 0 and bounded away from zero; lj = −∞, uj = ∞ possible

(Origin) Projection subproblem in a stochastic quasigradient method

(Methodology) Ranking; interpolation by the secant method; proposes also the secant method for the
Lagrangian minimization problem when xj(µ) is not explicitly available

(Citations) Related work: [FLR78, McC79, HKL80, BiH81, CDZ86]

(Notes) Acknowledges R. Cottle for supplying references

[VeK88] J. A. Ventura and C. M. Klein, A note on multi-item inventory systems with limited capacity

(Problem) φj(xj) = cj/xj + bjxj , cj ≥ 0, bj ≥ 0; linear inequality (aj > 0); lj = 0, uj = ∞

(Methodology) Refinement of algorithm from [Zie82]; initial interval given from the least/most costly items
relative storage requirements, followed by a Newton/regula falsi step; proposes an algorithm based on
the continued use of such steps, but without a formal convergence analysis
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(Citations) Background ([Har15]), marginal cost solution technique ([JoM74]), previous bounds on µ∗

([Zie82]).

(Notes) Main purpose to propose a bound on µ∗ rather than actually finding its value

[Ven89] J. A. Ventura, Algorithms for quadratic transportation networks

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality

(Origin) Line search subproblem in the Polak–Ribière [PoR69] dual ascent method for the quadratic trans-
portation problem

(Methodology) Two algorithms: (a) the pegging algorithm from [BiH81], extended to possibly negative
constraint coefficients and developed in [VeH88]; (b) the bisection search algorithm from [CDZ86],
utilizing reoptimization of breakpoints (and claiming that [CDZ86] does not utilize reoptimization) as
well as pegging variables based on the sign of q′; the algorithm does not use sorting of the breakpoints

(Citations) Applications: communication networks ([Min78, Min84]), adjustment of input–output tables
([BaK78, BaK80, BiH81]), estimation of contingency tables in statistics ([DeS40, Fri61]), and projec-
tion of interzonal transfers ([DeM80, Oma67]); Lagrangian dual algorithms: cyclic coordinate ascent
([CDZ86]), gradient-based dual ascent ([KNS74, VeH88])

(Notes) Numerical experiments (number of source nodes N1 ∈ [25, 150]; number of terminal nodes N2 ∈
[25, 150]). Best strategy found was to initially use pegging, then transfer to bisection search (the latter
utilizes a good starting solution better), but difficult to find a good transition strategy

[Ven91] J. A. Ventura, Computational development of a Lagrangian dual approach for quadratic networks

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality

(Origin) Line search subproblem in the Polak–Ribière [PoR69] dual ascent method for the quadratic trans-
portation problem

(Methodology) Three algorithms: (a) the bisection search algorithm from [HKL80], extended to cover non-
unit constraint coefficients; (b) random search without sorting; (c) the pegging algorithm from [BiH81],
extended to cover non-unit constraint coefficients

(Citations) Applications: resistive electrical networks ([CoK77]), equilibrium import–export trade problems
([Gla78]), quadratic data fitting ([BaK80]), optimal economic operation of electric power systems
([ElC79]), projecting and forecasting traffic matrices in telecommunication networks ([DeM80]); La-
grangian dual algorithms ([BaK80, CoP82, OhK84, ZeM85, CDZ86, BeE87, BHT87]); [LiP87] for the
interpretation of dual line searches

(Notes) Numerical experiments (n ∈ [50, 500]); the pegging algorithm wins, and random search is somewhat
faster than bisection search; discusses a potential improvement from utilizing that the step lengths
become smaller by eventually switching from pegging to bisection search, but without testing. Presents
a primal feasibility heuristic for adjusting the infeasible Lagrangian problem solutions � (µ) into feasible
flows; the heuristic is however not optimizing in the limit as µ → µ∗

[DaN89] S. Dafermos and A. Nagurney, Supply and demand equilibration algorithms for a class of market
equilibrium problems

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj = 1)

(Origin) Subproblem for each pair of supply and demand within a cyclic decomposition (Jacobi) algorithm
for a market equilibrium model with linear and separable supply and demand functions

(Methodology) Ranking; referred to as the “equilibration operator”; adaptation of the algorithm from
[DaS69] to the given problem

(Citations) Algorithms in the same spirit: [DaS69, LuG75, HKL80, Zip80b, BiH81]; iterative algorithm for
the same problem: [Nag87]

[PaK90] P. Pardalos and N. Kovoor, An algorithm for a singly constrained class of quadratic programs
subject to upper and lower bounds

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj = 1); lj = 0

(Methodology) Proposes a randomized version of the median search algorithm, having O(n2) worst-case and
O(n) expected complexity; theoretically compares the algorithm with the median search algorithm
from [Bru84] and the bisection search algorithm from [HKL80]

(Citations) Median complexity: [Blu+72, AHU74]; projection algorithms: [HWC74, HKL80, Bru84, CaM87];
application to multicommodity network flows ([HWC74, Mey84])
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(Notes) Numerical experiments (n ∈ [500, 4000]); compares randomized median search with bisection
search; the former wins in CPU time by a factor of three. The reference [Bru84] was added thanks to
a referee

[ShM90] B. Shetty and R. Muthukrishnan, A parallel projection for the multicommodity network model

(Problem) φj(xj) = 1

2
(xj − yj)

2; linear equality (aj = 1); lj = 0

(Origin) Linear minimum cost multicommodity flow problem solved via RHS allocation, Lagrangian relax-
ation and subgradient optimization; projection arises in the multiplier updating step, one for each
commodity

(Methodology) Bisection search

(Citations) RHS allocation algorithm for the problem: [HWC74, KeS77, HKL80], the latter also for the
claim that RHS allocation is the best decomposition scheme for the problem

(Notes) Numerical experiments (n ∈ [50, 450])

[NiZ92] S. S. Nielsen and S. A. Zenios, Massively parallel algorithms for singly constrained convex programs

(Problem) φj strictly convex; linear equality (aj > 0)

(Origin) Subproblem in several network flow type problems

(Methodology) Four algorithms: (a) An iterative Bregman projection algorithm originating in [CeL81]; each
iteration consists of a sequence of projection-like operations with respect to a distance measure in terms
of approximations of φj (a “Bregman function”), first onto the hyperplane, then onto the bounds for
each variable depending on the result of the hyperplane “projection”; the operations resemble those
of the pegging algorithm, but convergence is not finite. (b) The bisection algorithm, extending that
from [HKL80] to non-quadratic φj . (c) A line search method originating in [Tse90] which provides
an underestimate of the optimal step. (d) A Newton-type algorithm where the formula utilizes left or
right derivatives of φ′ depending on its sign. Convergence is established for quadratic φj

(Citations) Applications to RHS allocation methods for multicommodity flows ([HKL80]), row-action meth-
ods in computerized tomography ([Her80]), nonlinear network flow problems solved by dual coordi-
nate ascent methods ([BeT89]) and in matrix balancing ([ScZ90]), as well as in other applications
([DFL86, PaK90, CoH93]); dual line search methods ([HKL80, CeL81, Tse90])

(Notes) Numerical experiments (n ∈ [91, 1000]) on massively parallel implementations; the Newton method
is found to be the most robust; does however not implement bisection search but instead ranking, and
remarks that it fares badly for tightly constrained problems and that it would be a good idea to use
bisection instead

[RJL92] A. G. Robinson, N. Jiang, and C. S. Lemke, On the continuous quadratic knapsack problem

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj > 0); transforms the problem before solution
to φj(xj) = 1

2
x2

j

(Methodology) Three Lagrange multiplier algorithms: (a) the approximate median based algorithm from
[PaK90], implemented as in [AHU74, p. 102]; (b) the bisection search algorithm from [HKL80], im-
plemented using Quicksort; (c) the median search algorithm from [Bru84]; and (d) a dual “Newton”
method (as suggested by a referee) with safe-guards against non-differentiability and non-ascent. In-
cludes the possibility to peg the variables xj based on the sign of q′ (à la [Ven89, Ven91]). Also
proposes a pegging algorithm; cf. Section 3.2

(Citations) Applications: multicommodity flows ([AHKL80]), traffic equilibrium ([DaS69]), quadratic trans-
portation ([OhK84]), matrix balancing in regional and national economics ([CDZ86, NKR90, NaR92]),
convex quadratic programming ([CDZ86]), portfolio selection ([Jud75, Pan80]); references to other
pegging algorithms ([Mic86], pointed out by a referee), and Lagrange multiplier methods ([DaS69,
HWC74, HKL80, Bru84, CDZ86])

(Notes) Notes that the principal pivoting algorithm ([CDZ86]) reduces to the O(n) ordinal statistics (me-
dian search) algorithm for the given problem. Numerical experiments (n ∈ [100, 4000]) against the
pegging algorithm; the pegging algorithm wins against all the three Lagrange multiplier methods and
is comparable to the Newton method. Notes that the complexity of bisection search grows more than
linearly with n, whereas the others grow linearly

[GSAB93] S. J. Grotzinger, R. Srinivasan, R. Akella, and S. Bollapragada, Component procurement
and allocation for products assembled to forecast: Risk-pooling effects

(Problem) φj(xj) = dj

� x̂j+xj

0
[x̂j +xj−s]fj(s) ds (convex; fj is a marginal density function); linear equality

(aj = 1)
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(Methodology) Ranking; advanced start, with first index chosen based on the sign of the constants x̂j ;
extends the procedure from [Zip80b] to the case of upper bounds

(Citations) Algorithms: [LuG75, Zip80b]

(Notes) Numerical experiments (n ∈ [2, 44])

[MaK93] B. M. Maloney and C. M. Klein, Constrained multi-item inventory systems: An implicit approach

(Problem) φj(xj) = cj/xj + bjxj , cj > 0; linear inequality (aj > 0); lj = 0, uj = ∞

(Methodology) Improves the initial bounds from [VeK88]; cites [HMMS60, Lew81] for the origins of such
bounds; also presents a Newton-type algorithm (denoted the “implicit algorithm”) for obtaining µ∗,
which utilizes the bounding formula iteratively; the algorithm utilizes an initial ranking of inventory
cost/storage requirement ratios, just as in [Zie82, VeK88]; convergence is claimed (referring to it being
a Newton method) but not established

(Citations) Problem definitions ([Har15]), the “classic solution technique” ([HaW63, BuK63, JoM74]); ear-
lier bounds on µ∗ ([Zie82, VeK88])

(Notes) Numerical experiments (n ∈ [2, 31]); compares the implicit algorithm with the iterative algorithms
from [Zie82, VeK88] and the “classic solution technique”; the proposed wins in a clear majority of the
cases. Main purpose still to propose a bound on µ∗ rather than actually finding its value

[CoH94] S. Cosares and D. S. Hochbaum, Strongly polynomial algorithms for the quadratic transportation
problem with a fixed number of sources

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj = 1); lj = 0, uj = ∞

(Origin) Quadratic transportation problem with one source; extended to any fixed number of sources

(Methodology) Median search

(Citations) Linear median complexity: [Blu+72]; original algorithm: [Bru84]

[Hoc94] D. S. Hochbaum, Lower and upper bounds for the allocation problem and other nonlinear optimization
problems

(Problem) φj convex; linear equality (aj = 1); lj = 0, uj = ∞

(Methodology) Greedy algorithm with arbitrary increments

(Citations) Continuous case: [Zip80b, Koo57, LuG75, Bru84]; discrete case: [Koo53, ChC58b, IbK88]

(Notes) The algorithm does not require that φj ∈ C1

[HoH95] D. S. Hochbaum and S.-P. Hong, About strongly polynomial time algorithms for quadratic optimiza-
tion over submodular constraints

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj = 1); lj = 0, uj = ∞

(Origin) Special case of a problem with generalized upper bound (GUB) constraints

(Methodology) Median search

(Citations) Linear time algorithms: [Bru84, CoH94]; median complexity: [Blu+72]

(Notes) Also presents an O(n) algorithm for the GUB case

[BrS95] K. M. Bretthauer and B. Shetty, The nonlinear resource allocation problem

(Origin) Same problem with integral requirements on � , solved by means of continuous relaxation and
branch–and–bound

(Methodology) Lagrangian relaxation of the nonlinear constraint; unspecified method for solving the result-
ing equation q′(µ∗) = 0

(Citations) “Generalizes previous work” in [HKL80, Bru84, CaM87, PaK90, ShM90] (QP) and [NiZ92]
(linear constraint), and similar approaches for allocation problems in [Zip80b, BiH81, IbK88] and for
production planning in [Zie82, VeK88, MaK93]

(Notes) Discusses the cases when the Lagrangian problem has a closed form solution (such as for the
stratified sampling, quadratic knapsack, and production planning problems) or not (such as in capacity
planning in manufacturing networks)

[BSS95] K. M. Bretthauer, B. Shetty, and S. Syam, A branch and bound algorithm for integer quadratic
knapsack problems

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj > 0)
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(Origin) Same problem with integral requirements on � , solved by means of continuous relaxation and
branch–and–bound

(Methodology) Bisection search

(Citations) Applications: promotion models ([McC7X]); capital budgeting ([Lau70, MSM83, DMS88]); hy-
drological studies, clique problems in graphs, and location problems ([GHS80]); for the continuous case:
resource allocation ([BiH79, LuG75]); algorithms for multicommodity flows ([HWC74]) and stochastic
programs with network recourse ([NiZ93]); additional references found in [IbK88]. Algorithms for the
problem: [HWC74, HKL80, Bru84, CaM87, PaK90, ShM90, PYH91, NiZ92]

(Notes) Discusses the reoptimization of the relaxed problem from a previous B & B iteration when the
lower bounds change. Describes the algorithm in the unavailable report by McCallum [McC7X] as
solving the continuous relaxation and applying a rounding heuristic in order to obtain integer solutions.
Numerical experiments (n ∈ [75, 200])

[Bre96] K. M. Bretthauer, Capacity planning in manufacturing and computer networks

(Problem) φj(xj) = cjxj ; nonlinear inequality (gj(xj) = aj/(xj − hj), aj > 0)

(Origin) Same problem with integral requirements on � and a concave objective function, solved by means
of continuous relaxation and branch–and–bound, and where the concave objective function is replaced
by a linear underestimator within each set Xj

(Methodology) Lagrangian relaxation of the nonlinear constraint; unspecified method for solving the result-
ing equation q′(µ∗) = 0

(Citations) [BiH81, PaK90] included in the reference list but not in the text

(Notes) Numerical experiments (n ∈ [75, 300]) on the integer program that compares whether reoptimiza-
tion of the continuous subproblems and special heuristics applied at each B & B node are advantageous;
the answer is ’yes’

[BiM96a] G. R. Bitran and S. V. Mondschein, Inventory management in catalog sales companies

(Problem) φj(xj) = −
� x̂j+xj

0
dj [xj − cj(x̂j + s− xj)]fj(s) ds−

�
∞

x̂j+xj
dj(x̂j + xj − ĉj(s− x̂j − xj))fj(s) ds

(convex; fj is a marginal density function); linear inequality (aj > 0); lj = 0, uj = ∞

(Origin) Operational submodel in a hierarchical decision-making model including feedback strategies

(Methodology) Bisection search without the use of breakpoints

(Citations) Applications: [BHH82, BiM96b]; algorithms solving similar models, also by the use of the KKT
conditions: [LuG75, Zip80b]

[Gla96] P. Glasserman, Allocating production capacity among multiple products

(Problem) φj(xj) = cj/γj(xj), γ−1

j convex; linear equality (aj = 1); lj > 0, uj = ∞

(Origin) Choice of base-stock levels and capacity allocations for a minimal total backorder or holding cost,
in an inventory system with several items

(Methodology) Simple heuristic decision rules

(Citations) Similar analyses for other sequencing problems: [Kle76, Ana89]; optimization algorithms: [LuG75,
Zip80b, IbK88]

(Notes) Shows that simple rules exist (such as one that maximizes the time between stockouts) that behave
asymptotically optimally, in the sense that as the number of orders tend to infinity the allocation policy
tend to be optimal.

[KoL98] M. S. Kodialam and H. Luss, Algorithms for separable nonlinear resource allocation problems

(Problem) φj strictly increasing; gj strictly decreasing; φ′

j/g′

j strictly increasing and invertible; lj = 0;
uj = ∞; Slater CQ

(Origin) Same; application mentioned: the service constrained problem

(Methodology) Two Lagrange multiplier algorithms: (a) ranking (denoted RANK) à la [LuG75] (and
[Tan88] for a minimax version); and (b) bisection search (denoted EVALUATE) à la [Zip80b] (and
[Lus91] for a minimax version); also presents a pegging algorithm (denoted RELAX) à la [BiH81],
cf. Section 3.2, and a combination with RANK (denoted RELAX/RANK) in which sorting is first
performed, then followed by the division of the problem into two roughly equal parts, each of which
is solved with RELAX and RANK, respectively (cites [Ein81, Lus92] for this combination)

(Citations) Algorithms for the problem: [ChC58b, WiG69, LuG75, Zip80b, BiH81, Ein81, IbK88, GSAB93,
BrS95]; for the minimax problem: [LuS86, Lus87, Tan88, Lus91, Lus92]
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(Notes) Extends the three algorithms in a natural manner to the general bounded case, citing [LuG75,
BiH81, GSAB93], but without an analysis. Conclude through numerical experiments (n = 104) that
pegging (RELAX) is best when the multiplier value µ̄ is available explicitly (followed by RANK
and EVALUATE), otherwise EVALUATE is much better; RANK however suffers much when lacking
explicit solutions, since inversions are needed at every iteration. Notes that if RANK is supplied with
bisection search then RANK = EVALUATE follows. Investigates the effect on the algorithms on the
relative number of positive variables at the optimum; RANK is the most sensitive to this number, and
fares worse with an increased number of positive values, since RANK is initialized at zero; RELAX
spends the most time in providing a first Lagrange multiplier estimate.

[MaD89] N. Maculan and G. G. de Paula, Jr, A linear-time median-finding algorithm for projecting a vector
on the simplex of � n

(Problem) φj(xj) = 1

2
(xj − yj)

2; linear equality (aj = 1, b = 1); lj = 0, uj = ∞

(Methodology) Median search

(Citations) [AHU74] for the O(n) complexity of median search; [HWC74] for uses of projections onto a
simplex

[MMP97] N. Maculan, M. Minoux, and G. Plateau, An O(n) algorithm for projecting a vector on the
intersection of a hyperplane and � n

+

(Problem) φj(xj) = 1

2
(xj − yj)

2; linear equality (aj 6= 0); lj = 0, uj = ∞

(Methodology) Two methods: bisection search and median search

(Citations) [AHU74] for the O(n log n) and O(n) complexity of sorting and median search, respectively;
[Mic86] for an alternative method (but “without detailed complexity analysis”); [MaD89] for a special
case

[MeR00] A. Melman and G. Rabinowitz, An efficient method for a class of continuous nonlinear knapsack
problems

(Problem) φj(xj) = φ(x) = x[exp(−1/x) − 1]; linear inequality (aj > 0); lj = 0, uj = ∞

(Origin) Determining the optimal frequency of waste removal services in chemical production processes

(Methodology) A modified Newton method based on Halley’s method

(Citations) Lagrange multiplier methods: [Bec52, CAA57] (“trial–and–error”), [Zie82, Vid87] (“rigorous
methods”); Halley’s method: [Tra64]. As in the references [CAA57, Zie82] the authors date [Bec52]
to the year 1942, and probably never gained access to it

(Notes) Numerical experiments (n ∈ [500, 3000])

[MSMJ03] N. Maculan, C. P. Santiago, E. M. Macambira, and M. H. C. Jardim, An O(n) algorithm
for projecting a vector on the intersection of a hyperplane and a box in � n

(Problem) φj(xj) = 1

2
(xj − yj)

2; linear equality (aj 6= 0)

(Methodology) Median search

(Citations) Previous algorithms: [MaD89, MMP97], [Bru84, Mic86, PaK90]; refers to the use of projections
in subgradient techniques in [HWC74, KeS77]

(Notes) Computational results (n ∈ [104, 106]) confirm the linearity of the complexity. States that the
references [Bru84, PaK90] were, during the refereeing process, provided by K. C. Kiwiel; states that
[Bru84] “does not use the KKT optimality conditions”, and refers to four contributions of the paper,
out of which the one theoretical result (Lemma 2.1) was not new in 2003

[Spi02] H. Spiess, Biproportional matrix balancing with upper bounds

(Problem) φj(xj) = xj(log xj − rj), linear equality (aj = 1); lj = 0

(Origin) An extension of the matrix balancing problem in transportation planning with the addition of
upper bounds; parallel subproblems in coordinate dual ascent method for the problem

(Methodology) Ranking

(Citations) Matrix balancing problems: [Fur70, Mur77, LaS81]

(Notes) Notes that the methodology probably can be extended also to multi-proportional problems and
three-dimensional matrix balancing

[HaP04] W. W. Hager and S. Park, The gradient projection method with exact line searches
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(Problem) φj(xj) = 1

2
(xj − [yj + αpj ])

2, α ≥ 0; linear equality (aj > 0); lj = 0, uj = 1

(Origin) Exact line search in the gradient projection algorithm, applied to a reformulation of the graph
partition problem as a continuous quadratic programming problem; a parametric projection problem
to find the piecewise linear projections ProjX [ � + α� ] over an interval in the step length α

(Methodology) Explicit enumeration of breakpoints

(Citations) Subproblem algorithms: [Bru84, PaK90]

[DaF06] Y.-H. Dai and R. Fletcher, New algorithms for singly linearly constrained quadratic programs subject
to lower and upper bounds

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality

(Origin) Same; also a subproblem in a gradient projection method for a quadratic problem with a non-
diagonal Hessian

(Methodology) Bracketing followed by a secant method

(Citations) Previous algorithms: [HKL80, Bru84, CaM87, PaK90]

(Notes) Includes a device for checking the consistency of the problem. Extended to the non-convex case.
Numerical experiments on randomly generated problems (n ∈ [104, 106]) against bisection search; the
proposed method wins by a factor of 1.5–4

[Lot06] P. A. Lotito, Issues in the implementation of the DSD algorithm for the traffic assignment problem

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj ≥ 0; linear equality (aj = 1, b = 1); lj = 0, uj = ∞

(Origin) Subproblem for each origin–destination pair in the traffic assignment problem within the scaled
reduced gradient method of [LaP92]

(Methodology) A Newton method, wherein q′′, at breakpoints where it is not defined, is replaced by the
left (right) derivative of q′ when q′ is negative (positive)

(Citations) Refers to [HKL80, Bru84, PaK90] for the case when qj > 0 for all j, and to [NiZ92] for a similar
Newton method

(Notes) Numerical experiments on median search, randomized median search and the proposed Newton
method (n ∈ [100, 400]); they show similar performance and complexity, but the Newton method is
slightly faster. Has observed in actual iterative use for the traffic assignment problem that the latter is
even faster. Vectorized implementations are also shown to be more easily constructed for the Newton
method, due to the avoidance of any binary search

3.2 Primal “pegging” algorithms

3.2.1 Introduction

A pegging algorithm for the problem (1) works as follows: We first determine whether the constraint (1a)
is satisfied with equality at an optimal solution, by solving (1) while ignoring the constraint (1a); see the
discussion in Section 1. Unless we then have already found an optimal solution, we know that µ∗ > 0
and that the inequality constraint can be regarded as an equality.

Next, we solve the problem (1) while ignoring the constraints (1b), obtaining a solution x̄. Together
with x̄ we also obtain an estimate µ̄ of the multiplier value µ∗ from the optimality condition. Let

L(x̄) := { j = 1, . . . , n | x̄j < lj }, U(x̄) := { j = 1, . . . , n | x̄j > uj }

denote the sets of variables that are out of bounds at x̄. Let also J(µ̄) := { j = 1, . . . , n | lj < x̄j < uj }.
In order to simplify the remaining discussion, we consider the simplest form of explicit constraint,

namely
∑n

j=1 xj = b; the general case is treated analogously.
Calculate the total deficit and excess with respect to the set X at x̄ as

∇ :=
∑

j∈L(x̄)

(lj − x̄j), ∆ :=
∑

j∈U(x̄ )

(x̄j − uj).

Now, if ∆ ≥ ∇ then we set x∗
j = uj , j ∈ U(x̄); otherwise, we set x∗

j = lj , j ∈ L(x̄). We then reduce the
problem by removing the fixed variables, and adjust the right-hand side of the constraint (1b) to reflect
the variables fixed. If any free variables are left, we resolve the problem (1) while ignoring the constraint
(1b), otherwise we have obtained an optimal solution.
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The rationale behind this procedure is quite simple and natural: Suppose that ∆ ≥ ∇ holds. We
have that µ̄ = −φ′

j(x̄j) for j ∈ J(µ̄). Let s ∈ U(x̄) and i ∈ {1, . . . , n} \ U(x̄). Since the functions φj are
convex, it follows that

−φ′
s(us) ≥ −φ′

s(x̄s) = µ̄ = −φ′
i(x̄i) ≥ −φ′

i(ui).

Denote by b+ the right-hand side in the following iteration given that ∆ ≥ ∇ holds: b+ := b−
∑

j∈U(x̄) x̄j .

Also let (x̂, µ̂) denote a pair of relaxed optimal primal–dual solutions in the following iteration. We must
have that µ̂ ≤ µ̄, since

∑

j∈{1,...,n}\U(x̄)

x̄j = b −
∑

j∈U(x̄ )

x̄j ≤ b −
∑

j∈U(x̄ )

uj = b+ =
∑

j∈{1,...,n}\U(x̄)

x̂j ;

hence, for at least one j ∈ {1, . . . , n} \U(x̄) we have that x̂j ≥ x̄j , and therefore, by the convexity of φj ,

µ̂ = −φj(x̂j) ≤ −φj(x̄j) = µ̄

follows.
Since in each iteration at least one variable is fixed (or, pegged, as it is sometimes called) to an optimal

value, the algorithm is clearly finite, and in fact its complexity is O(n2). The most serious disadvantage
of the algorithm may be the requirement that the problem without the variable bounds present must have
an optimal solution. The computational efficiency of this method is also determined by whether or not
it is possible to provide an explicit formula for each x̄j in terms of the multiplier; this is of course always
possible when for each j φj is strictly convex quadratic and g is linear with aj 6= 0. The methodology
on the other hand has the clear advantage that at least for linear explicit constraints convergence of
the method only requires the functions φj to be convex; this is in contrast with the Lagrange multiplier
methods to be discussed in Section 3.1, and which require them to be strictly convex.

Variations of the above theme does exist. One such variation is such that one of the bounds is relaxed
in the constraints (1c), and that the resulting subproblems are solved with a pegging algorithm with
respect to the non-relaxed bounds; hence, a recursive pegging algorithm, which is how we will refer to
them. A second variation is that the pegging is based on the feasibility with respect to the constraint
(1a) at the projected vector

x̂ := Proj �
n
j=1

Xj
x̄,

that is, consider letting

x̂j := lj , j ∈ L(x̄); x̂j := uj , j ∈ U(x̄); x̂j := x̄j , j ∈ {1, . . . , n} \ (L(x̄) ∪ U(x̄)).

Then, if g(x̂) > 0 we set x∗
j = lj , j ∈ L(x̂); if g(x̂) < 0 we set x∗

j = uj , j ∈ U(x̄); if g(x̂) = 0 then
x∗ = x̂. We will refer to this variation as a projected pegging method.

To summarize the above class of methods, we may say that the methods are explicitly primal, since
they in each step decide on the optimal value of at least one of the variables xj . They are on the other
hand also implicitly dual, since they in each step update upon the dual variable µ towards its optimal
value based on the current values of the primal variables.

Apart from the below references, motivations for the pegging activities can also be found in [Thv60,
Boo63, Boo64, Geo70a, Geo70b, Geo70c, Geo72]. A simple modification of the pegging method is also
found in [YaS87].

3.2.2 Annotated bibliography

[San71] L. Sanathanan, On an allocation problem with multistage constraints

(Problem) General: φj ∈ C2, φ′′

j > 0; linear equality (aj 6= 0); lj = −∞, uj = ∞ possible. Application:
φj(xj) = cj/xj , cj > 0

(Origin) Same. Application to optimal allocation in stratified sampling subject to restrictions on strata
estimates, capital budgeting and multistage sampling

(Methodology) Recursive pegging algorithm

(Citations) [Sri63, Kis65]

(Notes) Numerical experiments (n = 6); same problem as in [Sri63]. Presents a Lagrange multiplier method
à la [Sri63] for the problem; cf. Section 3.1. The purpose of the paper is to introduce pegging as
an alternative approach, with the advantage that pegging can be extended to certain multi-stage
problems.
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[LuG75] H. Luss and S. K. Gupta, Allocation of effort resources among competing activities

(Problem) φj strictly convex and increasing, linear inequality (aj = 1)

(Origin) Applications: allocating an advertising budget among n sales territories, portfolio selection, and
budgeting

(Methodology) Recursive pegging algorithm

(Notes) For the submodels, the algorithm is a Lagrange multiplier method which utilizes sorting of primal
derivatives (“ranking”), hence the strong requirements on φj ; cf. Section 3.1

[BiH77] G. R. Bitran and A. C. Hax, On the design of hierarchical production planning systems

(Problem) Family disaggregation production planning model; φj(xj) = cj/xj , cj > 0; linear equality (aj =
1)

(Origin) Hierarchical production planning problem

(Methodology) Pegging

(Citations) [BiH79]

(Notes) Small numerical tests. Extends the algorithm to the inequality case

[BiH79] G. R. Bitran and A. C. Hax, On the solution of convex knapsack problems with bounded variables

(Problem) Linear equality (aj = 1)

(Origin) Same

(Methodology) Pegging

(Citations) [ChC58b, WiG69, LuG75, BiH77]

(Notes) Numerical experiments (n ∈ [50, 200]). Proves that if ∇ > ∆ in some iteration then the value of µ̄
will decrease in the next iteration

[BiH81] G. R. Bitran and A. C. Hax, Disaggregation and resource-allocation using convex knapsack-problems
with bounded variables

(Problem) Linear equality (aj = 1); lj = −∞ and uj = ∞ possible

(Origin) Production planning and scheduling, allocation of financial resources, inventory control

(Methodology) Pegging. Algorithm referred to as BRELAX2 in [IbK88, Section 2.3]

(Citations) Applications: [ChC58b, WiG69, HWC74, LuG75, BiH77, BHH81]; algorithms: [ChC58b] (“con-
vex programming arguments”), [WiG69] (dynamic programming), [LuG75] (iterative algorithm), [Zip80b]
(extension of the algorithm in [LuG75])

(Notes) Similar to [BiH79]

[Zip80b] P. H. Zipkin, Simple ranking methods for allocation of one resource

(Problem) φj strictly convex, linear equality (aj = 1); lj = 0

(Methodology) For the general problem: recursive pegging, citing [LuG75]. Algorithm referred to as BRE-
LAX1 in [IbK88, Section 2.3]. For the singly bounded problems (uj = ∞), cites the Lagrange multi-
plier method from [LuG75], and also presents a modification, likewise based on the ranking of primal
derivatives; cf. Section 3.1.

(Citations) Applications: optimal search effort ([ChC58b]), marketing ([LuG75]), capital budgeting ([Han68,
p. 81]), production ([BiH77]), aggregation errors ([Zip80a]), portfolio selection ([Jud75, EGP76]),
reliability ([Bod69]), health care ([Fet73]), and multicommodity flows ([HWC74]). Algorithms: cites
the Lagrange multiplier method in [LuG75] as subsuming [ChC58b, WiG69]; discusses also the pegging
algorithm from [BiH77] (wrongly supposing that only one variable can be pegged at any given iteration)
and the Lagrange multiplier methods from [Bod69, HWC74, Jud75]. Further citations: [Koo57, deG61,
Kar62, Eve63, Geo70a, Geo70b, GrP70]

(Notes) Perhaps the first survey on algorithms for the problem, providing a unified presentation of some
previous work. For the singly bounded submodels, the algorithm is a Lagrange multiplier method,
hence the strong requirements on φj ; cf. Section 3.1

[Mic86] C. Michelot, A finite algorithm for finding the projection of a point onto the canonical simplex of � n

(Problem) φj(xj) = 1

2
(xj − yj)

2; linear equality (aj = 1, b = 1); lj = 0, uj = ∞

(Methodology) Pegging

(Citations) Projections onto general polyhedra: [Wol74, Wol76, BGR78]
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(Notes) Extends the algorithm to a more general setting (aj > 0)

[IbK88] T. Ibaraki and N. Katoh, Resource Allocation Problems: Algorithmic Approaches

(Problem) Linear equality (aj = 1)

(Origin) Resource allocation problem from several areas

(Methodology) Pegging (the algorithm BRELAX2 from [BiH81]) or recursive pegging (first converting the
set to Xj to [0, uj ], then utilizing the Lagrange multiplier algorithm BRELAX1 from [Zip80b]); pegging
(the algorithm from [BiH81], then denoted RELAX) for the special case of Xj = [0, uj ]

(Citations) Applications: optimal search effort ([Koo53, Koo56a, Koo56b, Koo57, ChC58b, Kar58, Kar62]),
optimal sample allocation in stratified sampling ([Ney34, Sri63]), optimal portfolio selection ([Mar52,
Mar59, Sha63, Sto73, Jud75, EGP76, Zip80b]), production planning ([BiH77, BHH81, BiH81, Zie82]),
resource distribution ([FeZ83, FeZ84]), mass advertising ([Kot71]; here, φj is “S-shaped”), marketing
effort allocation ([Lus73]), reliability problems ([Bod69]), bidding for oil and gas ventures ([FeG86]),
allocation of people to evacuation routes ([Fra78]), subproblems in subgradient algorithms ([HWC74]),
the apportionment problem ([BaY82]). Algorithms for continuous problems: pegging algorithms
([Zip80b, BiH81]), Lagrange multiplier methods ([LuG75, HKL80, OhK80, Zip80b, Was81, Bru84]),
and variations ([Ein81])

(Notes) Comprehensive overview of the linearly constrained allocation problem with extensions to mini-
max/maximin, lexicographic minimization, submodular and integrality constraints, and more. Notes
that the RELAX algorithms can be extended to the case of non-differentiable functions φj

[Ven91] J. A. Ventura, Computational development of a Lagrangian dual approach for quadratic networks

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality

(Origin) Line search subproblem in the Polak–Ribière [PoR69] dual ascent method for the quadratic trans-
portation problem

(Methodology) Pegging (extends the algorithm from [BiH81] to allow for non-unit coefficients in the linear
equality constraint); also discusses two Lagrange multiplier methods based on bisection search (the
method from [HKL80] and a random search method); cf. Section 3.1

(Citations) Pegging methods ([BiH81]), Lagrange multiplier methods for network flow problems ([BaK80,
CoP82, OhK84, CDZ86, BeE87, BHT87, LiP87])

(Notes) Numerical experiments (n ∈ [50, 500]) on NETGEN generated networks, using Merge sort [O(n log n)]
for the sorting; pegging wins, followed by random search and the method from [HKL80]

[RJL92] A. G. Robinson, N. Jiang, and C. S. Lemke, On the continuous quadratic knapsack problem

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj > 0); transforms the problem before solution
to φj(xj) = 1

2
x2

j

(Methodology) Pegging (perhaps the first time the term is mentioned)

(Citations) Applications: multicommodity flows ([AHKL80]), traffic equilibrium ([DaS69]), quadratic trans-
portation ([OhK84]), matrix balancing in regional and national economics ([CDZ86, NKR90, NaR92]),
convex quadratic programming ([CDZ86]), portfolio selection ([Jud75, Pan80]); references to other
pegging algorithms ([Mic86], pointed out by a referee), and Lagrange multiplier methods ([DaS69,
HWC74, HKL80, Bru84, CDZ86])

(Notes) Numerical experiments (n ∈ [100, 4000]) against three Lagrange multiplier algorithms (the dual
line search methods from [HKL80, Bru84, PaK90]) and a rough dual Newton method, cf. Section 3.1;
the pegging algorithm wins against all the three Lagrange multiplier methods and is comparable to
the Newton method

[KoL98] M. S. Kodialam and H. Luss, Algorithms for separable nonlinear resource allocation problems

(Problem) φj strictly increasing; gj strictly decreasing; φ′

j/g′

j strictly increasing and invertible; lj = 0;
uj = ∞; Slater CQ

(Origin) Same; application mentioned: the service constrained problem

(Methodology) Pegging (denoted RELAX) à la [BiH81]; also presents two Lagrange multiplier algorithms
(denoted RANK and EVALUATE), cf. Section 3.1, and an algorithm combination (denoted RE-
LAX/RANK) in which sorting is first performed, then followed by the division of the problem into two
roughly equal parts, each of which is solved with RELAX and RANK, respectively (cites [Ein81, Lus92]
for this combination)
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(Citations) Algorithms for the problem: [ChC58b, WiG69, LuG75, Zip80b, BiH81, Ein81, IbK88, GSAB93,
BrS95]; for the minimax problem: [LuS86, Lus87, Tan88, Lus91, Lus92]

(Notes) Also extends the three algorithms in a natural manner to the general bounded case, citing [LuG75,
BiH81, GSAB93], but without an analysis. Conclude through numerical experiments (n = 10, 000)
that pegging (RELAX) is best when the multiplier value µ̄ is available explicitly (followed by RANK
and EVALUATE), otherwise EVALUATE is much better; RANK however suffers much when lacking
explicit solutions, since inversions are needed at every iteration. Notes that if RANK is supplied with
bisection search then RANK = EVALUATE follows. Investigates the effect on the algorithms on the
relative number of positive variables at the optimum; RANK is the most sensitive to this number, and
fares worse with an increased number of positive values, since RANK is initialized at zero; RELAX
spends the most time in providing a first Lagrange multiplier estimate.

[BSS96] K. M. Bretthauer, B. Shetty, and S. Syam, A projection method for the integer quadratic knapsack
problem

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear equality (aj > 0)

(Origin) Same problem with integral requirements on � , solved by means of continuous relaxation and
branch–and–bound

(Methodology) Pegging

(Citations) Lagrangian multiplier method for the problem: [BSS95]; recent projection method: [RJL92]
which is modified in the present paper; other methods: [HKL80, PaK90, ShM90, NiZ92]

(Notes) Provides a modified version of the method of [RJL92] through which an a priori problem conversion
becomes unnecessary. Numerical example (n = 5). Compares two implementations for the original
problem, using the Lagrange multiplier method from [HKL80] and the modified pegging algorithm
from [RJL92] (n ∈ [50, 100]); pegging wins in CPU time by a factor of 3–4

[BrS97] K. M. Bretthauer and B. Shetty, Quadratic resource allocation with generalized upper bounds

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear inequality (aj > 0)

(Origin) Quadratic resource allocation with generalized upper bounds solved through Lagrangian relaxation

(Methodology) Pegging

(Citations) Bisection search ([HKL80]); pegging ([RJL92]); other methods for the problem ([LuG75, BiH81,
FeZ83, MSM83, Bru84, DMS88, IbK88, PaK90, ShM90, NiZ92, BKP93]); an O(n) algorithm for a
more general problem ([MeT93])

(Notes) Provides a modified version of the pegging algorithm from [RJL92] through which an a priori
problem conversion becomes unnecessary. Numerical experiments (n ∈ [100, 1500]) on easy and hard
problems (related to the number of variables that are not on any of the bounds at � ∗); compares bisec-
tion search, pegging, and the general-purpose GRG algorithm from [SmL92]; pegging wins marginally
over bisection search, while both are reported to be more than 4000 times faster than GRG

[BRS99] K. M. Bretthauer, A. Ross, and B. Shetty, Nonlinear integer programming for optimal allocation
in stratified sampling

(Problem) φj(xj) = cj/xj , cj > 0; linear inequality (aj > 0)

(Origin) Same problem with integral requirements on � , solved by means of continuous relaxation and
branch–and–bound

(Methodology) Pegging

(Citations) Stratified sampling ([Coc77]); pegging algorithms for the continuous relaxation ([BiH81, RJL92]);
Lagrange multiplier methods ([HKL80, PaK90, NiZ92, BrS95]); other studies of the problem ([Sri63,
MSM86, IbK88])

(Notes) Notes that a dual line search is also possible to use, but refers to it as an infinite procedure.
Numerical experiments [n ∈ [5, 200] (easy problems), n ∈ [5, 20] (hard problems), n ∈ [75, 200] (easy
problems)]; compares pegging and a Lagrange multiplier method (given by an unidentified generic
nonlinear solver taken from [PFTV90]) together with a general B & B code, as well as a problem
conversion/linearization into a linear 0/1 problem from [MSM86, Hoc95]; on easy problems the latter
wins over pegging by a great margin, and the Lagrange multiplier method is a factor of nearly 10
slower; on the hard problems the conversion method does not converge within time limits on the
largest instances, while pegging wins over the Lagrange multiplier method with a factor of about 6.

[BrS02a] K. M. Bretthauer and B. Shetty, A pegging algorithm for the nonlinear resource allocation problem
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(Problem) φj ∈ C2; gj ∈ C2. Case I: φj increasing, gj decreasing, x̄j increasing in µ̄. Case II: φj decreasing,
gj increasing, x̄j decreasing in µ̄

(Origin) Discrete extension of same problem, solved through continuous relaxation and branch–and-bound

(Methodology) Pegging. Case I: if �
j∈L

[gj(lj)−gj(x̄j)] > �
j∈U

[gj(x̄j)−gj(uj)] then peg wrt. U , otherwise
peg wrt. L. Case II: if �

j∈L
[gj(lj)− gj(x̄j)] < �

j∈U
[gj(x̄j)− gj(uj)] then peg wrt. U , otherwise peg

wrt. L.

(Citations) Applications of the original problem: [Coc63, GeK77, MSM83, HaC84, IbK88, BSSW94]; algo-
rithms: [HKL80, BiH81, Bru84, IbK88, PaK90, ShM90, NiZ92, RJL92, BKP93, BrS95, BSS95, BSS96,
BrS97, KoL98]

(Notes) Show that in both cases I and II �
j∈L

[gj(lj) − gj(x̄j)] > �
j∈U

[gj(x̄j) − gj(uj)] implies that the
value of µ̄ will increase in the next iteration. Discusses the differences between having access to ¯�
explicitly (such as in the strictly convex quadratic minimization case with a linear constraint) or not

[BrS02b] K. M. Bretthauer and B. Shetty, The nonlinear knapsack problem—algorithms and applications

(Problem) Same as in [BrS02a]

(Origin) Discrete extension of same problem, solved through continuous relaxation and branch–and-bound

(Methodology) Same as in [BrS02a]

(Citations) Applications: financial ([MSM83]), production and inventory management ([Zie82, VeK88,
MaK93, BSSW94]), stratified sampling ([Coc63]), optimal design of queueing network models in man-
ufacturing ([BiT89]), and computer systems ([GeK77]); algorithms: [Zip80b, BiH81, FeZ83, Bru84,
IbK88, PaK90, ShM90, NiZ92, RJL92, BrS95, KoL98, BrS02a]. Cites also algorithms for the integer
problem and algorithms for the non-convex continuous problem.

(Notes) Survey paper on applications and algorithms

[BSS03] K. M. Bretthauer, B. Shetty, and S. Syam, A specially structured nonlinear integer resource
allocation problem

(Problem) φj(xj) = cj/xj + bjxj , cj > 0, bj > 0, or φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear inequality (aj > 0)

(Origin) Capacity planning problems in health care and production planning and portfolio optimization
problems with additional GUB constraints (and with/without integer variable requirements), solved
through Lagrangian relaxation of the coupling resource constraints and a dual line search (and branch–
and–bound)

(Methodology) Pegging

(Citations) Previous pegging algorithms: [BiH81, IbK88, RJL92, KoL98, BrS02a]

(Notes) Numerical experiments on randomly generated problems (n ∈ [10, 5000])

[Ste00] S. M. Stefanov, On the implementation of stochastic quasigradient methods to some facility location
problems

(Problem) φj(xj) = 1

2
(xj − yj)

2; linear (in)equality (aj > 0)

(Origin) Projection subproblem in a stochastic quasigradient method

(Methodology) Projected pegging

(Citations) [RoW88, Ste01a]

(Notes) States that the algorithm has an O(n2) complexity. Small numerical examples (n ∈ {5, 6})

[Ste01a] S. M. Stefanov, Convex separable minimization subject to bounded variables

(Problem) φj ∈ C2, strictly convex; gj ∈ C2, g′

j > 0 and bounded away from zero; general constraint as
well as linear (in)equality (aj > 0); lj = −∞, uj = ∞ possible

(Methodology) Projected pegging

(Citations) Applications: [ChC58b, HWC74, LuG75, Zip80b, BiH81, RoW88, Ste00]; algorithms: [LuG75,
HKL80, Zip80b, BiH81, Bru84, Mic86, PaK90, MoV91, Ste00]

(Notes) Numerical experiments (n ∈ [1200, 1500]). Does not present any relationships between the pro-
jected pegging method proposed and the pegging methods cited

[Ste01b] S. M. Stefanov, Separable Programming: Theory and Methods

(Problem) φj ∈ C2, strictly convex; gj ∈ C2, g′

j > 0 and bounded away from zero; general constraint as
well as linear (in)equality (aj > 0); lj = −∞, uj = ∞ possible
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(Origin) Same; also applied to the problem from [Ste00]

(Methodology) Projected pegging from [Ste01a]

(Citations) Algorithms: [Dun77, McC79, CDZ86, LiP87], in addition to those in [Ste01a]

(Notes) Text similar to that of [Ste01a]

[Ste04a] S. M. Stefanov, Convex quadratic minimization subject to a linear constraint and box constraints

(Problem) φj(xj) =
qj

2
x2

j − rjxj , qj > 0; linear (in)equality (aj > 0); lj = −∞, uj = ∞ possible

(Methodology) Projected pegging

(Citations) Algorithms: [ChC58b, HWC74, LuG75, McC79, HKL80, Bru84, DFL86, Mic86, RoW88, PaK90,
RJL92, Ste00, Ste01a, Ste01b, Ste04b]

(Notes) Numerical experiments (n ∈ [1200, 1500])

[Ste04b] S. M. Stefanov, Polynomial algorithms for projecting a point onto a region defined by a linear con-
straint and box constraints

(Problem) φj(xj) = 1

2
(xj − yj)

2; linear (in)equality (aj > 0); lj = −∞, uj = ∞ possible

(Methodology) Projected pegging

(Citations) Algorithms: [ChC58b, HWC74, LuG75, KIM79, BiH81, Bru84, Mic86, RoW88, Ste00, Ste01a,
Ste01b, Ste02, Zip80b]

4 Analysis, comments and future research

We summarize the above bibliographies of the two main algorithm approaches for the problem (1), by
listing the—in our opinion—main contributions, sorted in chronological order:

[CAA57] The first algorithm

[ChC58b] The first practical and convergent algorithm

[ChC58b] The first explicit use of breakpoints in a Lagrange multiplier algorithm

[Sri63] The first bisection algorithm

[Sri63] The first algorithm for a general form of φj

[Bod69] The first algorithm for the parametric problem (over the values of the RHS b)

[DaS69] The first numerical experiment with n > 10

[San71] The first (recursive) pegging algorithm

[San71] The first article to discuss both pegging and Lagrange multiplier algorithms

[LuG75] The first article to discuss the value of having an explicit formula for � (µ)

[BiH77] The first true pegging algorithm, together with convergence theory

[HKL80] The first complexity analysis of a Lagrange multiplier algorithm

[Zip80b] The first survey on algorithms

[Zip80b] The first discussion on the reoptimization of the problem for small changes in the data; utilizes the
previous value of µ∗

[Ein81] The first numerical solution of the Lagrangian minimization problem

[Zie82] The first Newton-type algorithm for the problem

[FeZ83] The first mention of reoptimization of the problem through the re-ordering of the list of breakpoints

[CDZ86] The first serious computational study

[CaM87] The first discussion on the value of solving the Lagrangian dual problem even when the original
problem is inconsistent

[IbK88] The first comprehensive survey

[IbK88] The first collected treatise on extensions of the problem (to integer variables, maximin problems,
non-differentiable functions φj , etcetera)

[RoW88] The first algorithm for a general form of gj

[Ven89] The first numerical comparison between pegging and Lagrange multiplier algorithms

[Ven89] The first hybrid pegging/Lagrange multiplier algorithm

[NiZ92] The first theoretical analysis of a Newton algorithm for the Lagrangian dual problem

[NiZ92] The first (massively) parallel implementation

[KoL98] The most complete computational study
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Decade 50s 60s 70s 80s 90s 00s Σ
Lagrange multiplier algorithms 2 4 5 21 19 6 57
Primal “pegging” algorithms — — 4 4 6 8 22

Table 1: Number of articles on each algorithm class through the decades. Note that the three papers
[Vid84, Vid86, Vid87] on Lagrange multiplier methods are only counted once.

[KoL98] The first pegging algorithm for the general problem

[BrS02a] The first pegging algorithm analyzed for the general problem

In Table 1 we summarize the appearance of articles on the two main algorithmic approaches, among
the articles presented in the above bibliographies.

It is apparent from the above list and Table 1 that most of the development of Lagrange multiplier
algorithms occurred in the 1980s and the early 1990s while the development of pegging algorithms has con-
tinued to increase over the decades, albeit at a smaller scale. Notice that noone actually has yet proposed
a Lagrange multiplier algorithm for the general problem (1), although it is of course straightforward.

The development of numerical experiments for the problem (1) is illustrated in Table 2, where we cite
the size of the largest test problem reported during each decade.

Decade 50s 60s 70s 80s 90s 00s
Lagrange multiplier algorithms 2 60 12 200 104 106

Primal “pegging” algorithms — — 200 200 104 5000

Table 2: Largest instances solved for each algorithm class through the decades.

Based on the above list of articles it appears that a short story on how to solve the problem (1) goes
as follows: to utilize a pegging algorithm, unless one has access to a near-optimal value of the Lagrange
multiplier µ or x(µ) is not available explicitly, whence one should instead use a Lagrange multiplier
algorithm. Also, on the latter approach, it is evident that a sorting of the breakpoints should be avoided,
unless one needs to solve several similar problems. And: one should not use the ranking approach but
instead use bisection or a Newton-like algorithm.

There are some interesting questions and comments that are provoked by reading these articles, and
which conclude the paper:

1. Recall that two general convex quadratic programming algorithms reduce to instances of Lagrange
multiplier algorithms when considering strictly convex quadratic programming instances of the gen-
eral problem (1): parametric principal pivoting ([CDZ86]) reduces to ordinal statistics (or, median
search), cf. [RJL92], and the complementary pivot algorithm from [Pan80] reduces to bisection
search, cf. [DFL86]. Can more general statements be made regarding the connection between
quadratic programming algorithms and Lagrange multiplier algorithms?

2. In the above references, no Newton-type algorithm has been analyzed theoretically for a non-
quadratic problem; such an analysis is called for, given the success the algorithms have had in
numerical experiments.

3. Is it possible to say in general which of the two main approaches is the best to use when solving a
certain extension of the problem, such as, say, to integer variables (as in [Gre70, IbK88])?

4. As we have remarked before presenting the bibliographies for each of the two main algorithm classes,
there is an issue regarding the solvability of the relaxed problems. It appears that noone has yet
proposed a way around that problem, but there is a simple approach for dealing with it: Suppose we
apply a proximal point algorithm (e.g., [Roc76a, Roc76b]) for the problem, and use either pegging
or a Lagrange multiplier algorithm in each iteration. In the proximal point algorithm we introduce

an additive term for each index j into the objective, of the form
γτ

j

2 (xj − xτ
j )2, where γτ

j > 0 and
xτ

j is the value of the variable xj at iteration τ of the proximal point algorithm. This addition
means that solvability of the relaxed problem is always guaranteed, and moreover if the problem
has (non-strictly convex) quadratic objective terms and the constraint is linear then the relaxed
problem has an explicit optimal solution. A few iterations of the proximal point algorithm might
produce better solutions than a general tool for solving non-strictly convex programs.
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5. In all the above references the only comparison with a “standard” NLP solver has been performed
in [BrS97]; the conclusion is that pegging beats a GRG code with a huge factor. This does of
course not conclude the debate of whether the best specialized algorithms discussed in this paper
are superior to every generally applicable algorithm in nonlinear programming that can utilize the
special sparsity of the problem. Numerical tests are planned in the near future to contribute to an
answer to this question.
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[KLN00] K. C. Kiwiel, P. O. Lindberg, and A. Nöu, Bregman proximal relaxation of large-scale 0-1 prob-
lems, Computational Optimization and Applications, 15 (2000), pp. 33–44.

[Kle55] B. Klein, Direct use of extremal principles in solving certain optimization problems involving inequal-
ities, Journal of the Operations Research Society of America, 3 (1955), pp. 168–175.

[Kle76] L. Kleinrock, Queueing Systems, vol. II, John Wiley & Sons, New York, NY, 1976.

[KNS74] D. Klingman, A. Napier, and J. Stuts, NETGEN: A program for generating large-scale capacitated
assignment, transportation and minimum cost network flow problems, Management Science, 20 (1974),
pp. 814–821.

[Kni24] F. H. Knight, Some fallacies in the interpretation of social cost, Quarterly Journal of Economics,
38 (1924), pp. 582–606. Reprinted in The Ethics of Competition, pp. 217–236, Harper, New York,
NY, 1935; and in American Economic Association, Readings in Price Theory, pp. 160–179, Richard
D. Irwin, Chicago, IL, 1952.

[Knu68] D. E. Knuth, The Art of Computer Programming, vol. 1: Fundamental algorithms of Addison-Wesley
Series in Computer Science and Information Processing, Addison-Wesley, Reading, MA, 1968.

[Knu73] , The Art of Computer Programming, vol. 3: Sorting and Searching of Addison-Wesley Series in
Computer Science and Information Processing, Addison-Wesley, Reading, MA, 1973.

[KoL98] M. S. Kodialam and H. Luss, Algorithms for separable nonlinear resource allocation problems,
Operations Research, 46 (1998), pp. 272–284.

[Koo46] B. O. Koopman, Search and screening, OEG Report 56, Operations Evaluations Group, Office of the
Chief of Naval Operations, U.S. Navy Department, Washington, D.C., 1946. Reprinted in [Koo80].

[Koo52] , New mathematical models in operations research, Journal of the Operations Research Society
of America, 1 (1952), pp. 3–9.

[Koo53] , The optimum distribution of effort, Operations Research, 1 (1953), pp. 52–63.

[Koo54] , The distribution of searching effort, Journal of the Operations Research Society of America, 2
(1954).

[Koo56a] , The fallacies of operations research, Operations Research, 4 (1956), pp. 422–426, comments by
Charles Hitch, 426–430.

[Koo56b] , The theory of search, I: Kinematic bases, Operations Research, 4 (1956), pp. 324–346.

[Koo56c] , The theory of search, II: Target detection, Operations Research, 4 (1956), pp. 503–531.

[Koo57] , The theory of search, III: The optimum distribution of effort, Operations Research, 5 (1957),
pp. 613–626.

[Koo59] , Search, in Operations Research Center, M.I.T., Notes on Operations Research 1959, The
Technology Press, Cambridge, MA, 1959, pp. 40–83.

[Koo79a] , An operational critique of detection laws, Operations Research, 27 (1979), pp. 115–133.

[Koo79b] , Search and its optimization, American Mathematical Monthly, 86 (1979), pp. 527–540.

[Koo80] , Search and Screening. General Principles With Historical Applications, Pergamon Press, Inc.,
Elmsford, NY, second ed., 1980.

[Koo99] , Search and Screening. General Principles With Historical Applications, Military Operations
Research Society, Alexandria, VA, revised ed., 1999.

[Kot71] P. Kotler, Marketing Decision Making: A Model Building Approach, Holt, Rinehart and Winston,
New York, NY, 1971.

[Kru37] J. Kruithof, Telefoonverkeersrekening, De Ingenieur, 52 (1937), pp. E15–E25. English translation,
Calculation of telephone traffic, by U. K. Post Office Research Department Library, No. 2663, Dollis
Hill, London, U.K.

[KuT51] H. W. Kuhn and A. W. Tucker, Nonlinear programming, in Proceedings of the 2nd Berkeley
Symposium on Mathematical Statistics and Probability, J. Neyman, ed., University of California
Press, Berkeley, CA, 1951, pp. 481–492.

[LaS81] B. Lamond and N. F. Stewart, Bregman’s balancing method, Transportation Research, 15B (1981),
pp. 239–248.

[LaP92] T. Larsson and M. Patriksson, Simplicial decomposition with disaggregated representation for the
traffic assignment problem, Transportation Science, 26 (1992), pp. 4–17.
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Française Information Recherche Opérationnelle, 16 (1969), pp. 35–43.

[PIS02] V. V. Popovich, Y. A. Ivakin, and S. S. Shaida, Theory of search for moving objects, in Oceans
2002 IEEE/MTS Conference Proceedings, Biloxi, MS, October 29–31, 2002, vol. 3, 2002, pp. 1319–
1329.

[PFTV90] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in
FORTRAN, Cambridge University Press, Cambridge, NY, 1990.

[RJL92] A. G. Robinson, N. Jiang, and C. S. Lemke, On the continuous quadratic knapsack problem,
Mathematical Programming, 55 (1992), pp. 99–108.

[Roc70] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

[Roc76a] , Augmented Lagrangians and applications of the proximal point algorithm in convex program-
ming, Mathematics of Operations Research, 1 (1976), pp. 97–116.

[Roc76b] , Monotone operators and the proximal point algorithm, SIAM Journal on Control and Opti-
mization, 14 (1976), pp. 877–898.

[Roc81] , Monotropic programming: Descent algorithms and duality, in Nonlinear Programming 4, O. L.
Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic Press, New York, NY, 1981, pp. 327–
366.

[RoW88] R. T. Rockafellar and R. J.-B. Wets, A note about projections in the implementation of stochastic
quasigradient methods, in Numerical Techniques for Stochastic Optimization, Yu. Ermol’ev and R. J.-
B. Wets, eds., no. 10 in Springer Series in Computational Mathematics, Berlin, 1988, Springer-Verlag,
pp. 385–392.

[Roh79] J. Rohn, Productivity of activities in the optimal allocation of one resource, working paper, Charles
University, Prague, 1979.

[Roh82] , Productivity of activities in the optimal allocation of one resource, Aplikace Matematiky, (1982).

[Rou02] T. Roughgarden, The price of anarchy is independent of network topology, in Proceedings of the
34th Annual ACM Symposium on the Theory of Computing, New York, NY, 2002, ACM Press,
pp. 428–437.
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