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Abstract

In this thesis we investigate the use of Singular Value Decomposition and Wavelets for classi�cation of
malign melanoma. We �rst cover some basic theory, and later some tools and methods for image analysis such
as morphological operators and thresholding. Finally, we make a simple linear model to evaluate the data.
Although our model is not su�cient for classi�cation, we manage to show trends in the data implying the
possibility to re�ne the model to get better results.
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1 Introduction

Melanoma is a type of skin cancer that, even though it is less common, probably is the most known and famous
due to its high deadliness and correlation to sun bathing (UV-rays being the primary cause). With 1600000 new
cases and 48000 deaths every year, melanoma is responsible for 75% of all the skin cancer related deaths1. It is of
utter importance to be able to identify and remove the melanoma as fast as possible since the probability of relapse
or spread is proportional to the depth of the lesion. If detected early the chance of a complete removal, and thus
curing, is high.

Early inspection of lesions are often done visually using something called Dermatoscopy2. One then proceeds
to look at features indicating whether the lesion is malign or not. There are a lot of features to consider and there
is no single feature that one can rely on [14]. To compensate for this there is a framework called the ABCDE-
rule (Assymetry, Border, Color, Diameter, Evolution) which is to help classi�cation using a score based system.
Other frameworks are also used, but the basic principle behind all of them are pretty much the same. Using these
frameworks, identi�cation is still not a trivial task and it takes an experienced doctor in dermatology to be able to
classify correctly over 90% of all cases.

To this date there are some classi�cation tools and research regarding melanoma but unfortunately only a few
or none of these have good enough results to be used in real life scenarios, due to the complex nature of the lesions.
One big problem is that malign and benign lesions can share a lot of features, malign may look benign and vice
versa. There are even cases when even a pro�esional can not classify either case by just visually inspecting the
lesion. This makes it tough to make computer aided classi�cation. Partly because there are no direct indicators
and also that some features are very small or discrete which make them hard to isolate.

With this in mind this thesis will take a shotgun approach to determine parameters; we �re a hail of bullets and
see which hit. We thus may sacrify the quality of some parameters but make up for it in quantity (and we know
that we will need quite a few parameters anyway).

This thesis will also try to focus on Wavelets and SVD approach for a couple of reasons. Wavelets have been
used before for classifying malign cancer, where they are used to detect when the skewness and kurtosis become
too high, since we know that healthy tissue will have a normal distribution, whereas malign does not [6].

1Wikipedia
2Basically looking at the lesion through a looking glass and a liquid medium

a.k.a. dermoscopy, epiluminescence microscopy
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2 Wavelet and MRA

De�nition 1. {ϕk}k∈Z is a basis for a linear subspace V if any function f ∈ V can be written uniquely as:

f =
∑
k

ckϕk.

�
With this, we de�ne 〈·, ·〉 as the scalar product and can then write any f ∈ V as

f =
∑
k

〈f, ϕk〉ϕk. (1)

De�nition 2. L2(R) is de�ned as the set of all functions f(t) such that∫ ∞
−∞
|f(t)|2dt <∞,

�
with the corresponding norm

‖f‖ =

(∫ ∞
−∞
|f(t)|2dt

)1/2

.

De�nition 3. A basis {ϕk} of a subspace V is said to be a Riesz basis if, for f =
∑
k ckϕk,

A‖f‖2 ≤
∑
k

|ck|2 ≤ B‖f‖2,

holds, where 0 < A ≤ 1 ≤ B are some constants which do not depend on f.

�

De�nition 4. A multiresolution analysis (MRA) is a family of closed subspaces Vj of L
2(R) with the following

properties:

• Vj ⊂ Vj+1 for all j ∈ Z;

• f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1 for all j ∈ Z;

•
⋃
j∈Z

Vj is dense in L
2(R);

•
⋂
j∈Z

Vj = {0};

• There exists a scaling function ϕ ∈ V0 such that {ϕ(t− k)} is a Riesz basis for V0, where t ∈ R and k ∈ Z.

�
To make proper use of wavelets and MRA we want to impose some extra restrictions to the scaling functions,

namely:

Property 1: Localized in time, which means a rapid decay to zero as t→ ±∞, or more preferably;

Property 2: Compact support: t /∈ (a, b) and |a− b| <∞⇒ ϕ(t) = 0;

Property 3:
∫∞
−∞ ϕ(t)dt = 1.

The localization properties (Property 1) and (Property 2) will ensure us that our approximations will contain local
information of f . The last, (Property 3), is closely related to approximations of f and vanishing moments (de�ned
in section 2.2.4).

To make use of locality we add some more properties to the scaling function, namely dilation and translation
(j, k ∈ Z):

ϕj,k(t) = 2j/2ϕ(2jt− k).
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Having the scaling function de�ned in this way will ensure that

‖ϕj,k‖ = ‖ϕ‖,

since

‖ϕj,k‖ =

(∫ ∞
−∞
|2j/2ϕ(2jt− k)|2dt

)1/2

=

(
2−j

∫ ∞
−∞

2j |ϕ(t− k)|2dt
)1/2

= ‖ϕ‖.

From this it follows that ϕj,k is a Riesz basis for Vj . Using (1) we can construct a function, fj ∈ Vj , to approximate
some function, f ∈ Vj , by:

fj(t) =
∑
k

sj,kϕj,k(t), (2)

where sj,k = 〈f, ϕj,k〉.

2.1 Wavelets

In the previous section we prepared us to approximate a function in di�erent time scales. Now, to make our
MRA more interesting we introduce wavelets. In the same way that scaling functions correspond to approximation,
wavelet functions correspond to di�erences (or errors), that is; given the approximations fj ∈ Vj and fj+1 ∈ Vj+1

for j ∈ Z, we denote the di�erence dj between the two levels as

dj = fj+1 − fj ,

or equivalently
fj+1 = dj + fj .

From this we get a recursive relation between di�erent levels of approximations as

fj+1 = dj + dj−1 + . . .+ dj0 + fj0 . (3)

To be able to generalize we want our details to be expressed in some basis as we have done in (2), i.e.

dj(t) =
∑
k

wj,kψj,k(t),

where wj,k = 〈f, ψj,k〉. This brings us to our next de�nition.

De�nition 5. For a general MRA, a function ψ is said to be a wavelet if the detail space W0 ⊂ L2(R) spanned
by the functions ψ(t − k) complements V0 in V1. By this we mean that any f1 ∈ V1 can be uniquely written as
f1 = f0 + d0, where f0 ∈ V0 and d0 ∈W0. We write this formally as V1 = V0⊕W0. Finally, we require the wavelets
ψ(t− k) to be a Riesz basis for W0.

�
Here ψ is called the mother wavelet, and just as we imposed some restrictions to the scaling function, we impose
some for our wavelet as well:

Property 1: Localized in time;

Property 2: Compact support;

Property 3:
∫∞
−∞ ψ(t)dt = 0.

Note that these are the same properties as we want for the scaling function except that we want the integral to be
equal zero. Similarly we de�ne the dilated and translated wavelet function:

ψj,k(t) = 2j/2ψ(2jt− k),

and can thus safely write the approximation in (3), at an arbitrary level J ∈ Z, as

fJ(t) =

J−1∑
j=j0

∑
k

wj,kψj,k(t) +
∑
k

sj0,kϕj0,k(t),

3



or formally expressed in its respective spaces 3 as

VJ = WJ−1 ⊕WJ−2 ⊕ . . .⊕Wj0 ⊕ Vj0 .

Further, looking at (3), we can show that fj0 → 0 when j0 → −∞, as well as ‖f − fj‖ → 0 when j → ∞ cf.[9].
Thus letting j tend to in�nity we get

f(t) =
∑
j,k

wj,kψj,k(t),

which we call the wavelet decomposition of f .

2.2 Wavelet decomposition

2.2.1 Properties of wavelets and scaling functions

We start with looking at de�nition 4. Condition 1. states that V0 ⊂ V1 which tells us that the scaling equation can
be expressed as

ϕ(t) = 2
∑
k

hkϕ(2t− k). (4)

If we take the Fourier transform of this equation we get

ϕ̂(ω) = H(ω/2)ϕ̂(ω/2),

where
H(ω) =

∑
k

hke
−ikω.

To understand how the scaling function reacts to di�erent frequencies, we �rst let ω = 0 to investigate what happens
at the low frequencies. According to (Property 3), in the de�nition of scaling functions4, ϕ̂(0) = 1 and thus:

H(0) =
∑
k

hk = 1.

Correspondingly, for high frequencies, i.e. ω = π we get:

H(π) = 0.

So we keep low frequencies and discard high ones, thus we conclude that H is a low-pass �lter. If we do the same
procedure for the wavelet function we realize, using de�nition 5, that W0 ⊂ V1 and thus ψ ∈ V1. We again use
Condition 1 in de�nition 4 to get

ψ(t) = 2
∑
k

gkϕ(2t− k),

with corresponding Fourier transform
ψ̂(ω) = G(ω/2)ϕ̂(ω/2),

where
G(ω) =

∑
k

gke
−ikω.

Similarly, to investigate how the wavelet function reacts to di�erent frequencies, we realize that according to
(Property 3) in the de�nition of wavelets 5 that ψ̂(0) = 0, resulting in:

G(0) =
∑
k

gk = 0

and
G(π) = 1.

This tells us that G is a high-pass �lter.

3Vj =Wj−1⊕Vj−1 need not be unique, since ψ andWj depend on how we choose our high pass �lter. However, having an orthogonal
basis for our scaling function will enforce uniqueness.

4The extra restrictions on page 2
5The extra restrictions on page 3
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2.2.2 Orthogonality and Biorthogonality

Orthogonality and biorthogonality are properties which can be added to the wavelet and scaling functions. As in
most cases this will signi�cantly improve and simplify many algorithms6. The de�nitions are quite straightforward,
and we will not go in depth in this paper, but rather stating the de�nitions.

De�nition 6. The wavelet and scaling functions satisfy the orthogonality condition if

• 〈ϕj,k, ϕj,l〉 = δk,l;

• 〈ψj,k, ψj,l〉 = δk,l;

• 〈ϕj,k, ψj,l〉 = 0.

�
Where

δk,l :=

{
1 if k = l,
0 else.

In terms of coe�cients this can be viewed as

•
∑
l hlhl+2k = δk/2;

•
∑
l glgl+2k = δk/2;

•
∑
m hm+2kgm+2l = 0.

Biorthogonal systems are quite similar to orthogonal systems. The basic principle is that we have two sets of wavelet
and scaling functions, the originals and the duals. We de�ne them in a similar manner as we have done before; here
ϕ̃j,k and ψ̃j,k denote the duals of scaling and wavelet functions, respectively:

ϕ̃(t) = 2
∑

h̃kϕ̃(2t− k)

and
ψ̃(t) = 2

∑
g̃kψ̃(2t− k).

De�nition 7. The wavelet and scaling functions satisfy the biorthogonality condition if

• 〈ϕj,k, ϕ̃j,l〉 = δk,l;

• 〈ψj,k, ψ̃j,l〉 = δk,l;

• 〈ϕj,k, ψ̃j,l〉 = 0;

• 〈ϕ̃j,k, ψj,l〉 = 0.

�
Note that ϕ and ψ are not orthogonal to each other, but to their duals. Similarly, the duals are not orthogonal to
each other, but to the originals.

2.2.3 The Discrete Wavelet transform

Since the MRA is recursive in nature it e�ects the wavelet transforms to generally be recursive as well. As we
will see, when we derive our algorithm we need an entry point in form of the scaling coe�cients. We also assume
orthogonal wavelets. Thus let us start at level j+1 with corresponding coe�cients sj+1,k = 〈f, ϕj+1,k〉 and continue
from there7. We now have our approximation:

fj+1(t) =
∑
k

sj+1,kϕj+1,k(t).

6as you will see in the next section
7In practice, we assume to have sample values from g(2−(j+1)k) from which we numerically compute our coe�cients. This process in

known as pre-�ltering. Probably the easiest and most common way to do this is to simply choose the sampled values of the function
as the coe�cients, see [9].
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Using what we got from de�nition 5, we can split fj+1 as

fj+1 = fj + dj

and equivalently ∑
k

sj+1,kϕj+1,k(t) =
∑
k

sj,kϕj,k(t) +
∑
k

wj,kψj,k(t).

Performing a scalar multiplication on both sides we get∑
k

sj+1,k〈ϕj+1,k, ϕj,l〉 =
∑
k

sj,k〈ϕj,k, ϕj,l〉+
∑
k

wj,k〈ψj,k, ϕj,l〉.

Since ϕj,k constitute an orthogonal basis we know that 〈ϕj,k, ϕj,l〉 = δk,l and 〈ψj,k, ϕj,l〉 = 0 and thus we have

sj,k =
∑
l

sj+1,l〈ϕj+1,l, ϕj,k〉.

Now, using (4) we get

ϕj,k(t) =2j/2ϕ(2jt− k)

=2j/2
(

2
∑
m

hmϕ((2jt− k)2−m)
)

(2−1/2)(21/2)

=21/2
∑
m

hm2(j+1)/2ϕ(2j+1 − 2k −m)

=21/2
∑
m

hmϕj+1,2k+m(t).

And since 〈ϕj+1,l, ϕj+1,2k+m〉 = δl,2k+m, we can deduce that

〈ϕj+1,l, ϕj,k〉 = 21/2
∑
m

hm〈ϕj+1,l, ϕj+1,2k+m〉 = 21/2hl−2k.

The same procedure for the wavelet coe�cients yields:

sj,k = 21/2
∑
l

hl−2ksj+1,l

wj,k = 21/2
∑
l

gl−2ksj+1,l.

Thus we now have a recursive formula for calculating the coe�cients. To illustrate this we draw a decomposition8

diagram in �gure 1.

sj

H∗

G∗

↓ 2

↓ 2 wj−1

H∗

G∗

↓ 2

↓ 2

sj−2

wj−2

Figure 1: Wavelet decomposition.

If we want to reconstruct a signal from our coe�cients, we need an inverse wavelet transform. We will not go in
to more details in this paper but rather just present the Fast Inverse Wavelet Transform [9]. One of the advantages
of using this transform is that we do not use the wavelet and scaling function explicitly, but rather the orthogonal
�lter bank. Given the scaling (sj,k) and wavelet (wj,k) coe�cients 9 at level j, we have our reconstruction as

sj+1,k = 21/2
∑
l

(hk−2lsj,k + gk−2lwj,k),

8↓ 2 and ↑ 2, stands for down sampling and up sampling by a factor of 2.
9recall that if we have done our decomposition correctly, we will have the wavelet coe�cients for all levels up to the �nest one: J
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which we illustrate in �gure 2. We realize that by using this we will �nally end up with sJ,k, which are the coe�-
cients at the �nest level. Here we are basically done, but to recover the sample values we have to perform a post
�ltering step, which can be done by a convolution with the scaling function cf. [9].

sj⊕

H

G

↑ 2

↑ 2wj−1

⊕

H

G

↑ 2

↑ 2wj−2

sj−2

Figure 2: Wavelet reconstruction.

2.2.4 Vanishing moments

De�nition 8. A scaling function, ϕ, is said to have the approximation property if, for α ≤ N − 1:

‖f − fj‖ ≤ C2−jα‖f (α)‖

when it reproduces polynomials up to order N − 1, i.e.:∑
k

kαϕ(t− k) = tα.

�
Abusing notation we write this as tα ∈ Vj , and thus tα ⊥ W̃j , i.e. 〈tα, ψ̃j,k〉 = 0. With this in mind, we now

de�ne what we mean by vanishing moments for wavelet.

De�nition 9. A wavelet is said to have N vanishing moments if∫
tαψj,kdt = 0, for α = 0 . . . N − 1.

�
Vanishing moments is an important feature in wavelet theory. In combination with Fourier-transform it helps us to
construct �lter banks [9]. It is also what gives wavelets the ability to compress data. To illustrate this we consider a
�ne scale wavelet, ψj,k. Using (Property 1) or (Property 2) in the de�nition of wavelets, we can assume the wavelet
to be zero outside an interval proportional to 2−j . Given that the wavelet have N vanishing moments and that
α ≤ N , if a signal would have continuous derivatives on this interval, we could approximate it by an (α− 1)-degree
Taylor polynomial, Pα−1(t), with an error of order O(2−jα), and thus:

〈f, ψj,k〉 =

∫
f(t)ψj,k(t)dt

=

∫
Pα−1(t)ψj,k(t)dt+O(2−jα)

=O(2−jα).

We now know that the smooth parts of the signal will give small wavelet coe�cients at �ner scales, allowing us
to store only the coe�cients representing the parts containing a lot of detail, e.g. where there is abrupt changes.
According to [7], the number of vanishing moments is weakly linked to how many oscillations the wavelets has, and
in terms of signal and image processing, more than two vanishing moments is seldom desirable. The reason for this
is that you do not really gain that much in quality, as much as that you would loose in speed for more vanishing
moments. It is however more interesting and desirable when dealing with numerical analysis [7].

2.3 Two Dimensional Wavelet Transform

The two dimensional wavelet transform is a straightforward generalization of the one dimensional case. If we in the
one dimensional case had our �rst sampled data as a vector, we will now start with a matrix, M as our samples

7



instead, where Mi,j = f(xi, yj). To do our decomposition we simply �rst transform all the rows to an approxima-
tion part and a detail part, and then do the same procedure for the resulting matrix but transforming the columns
instead. 10

Sj+1 H̃∗
xSj+1 G̃∗

xSj+1

H̃∗
xG̃∗

ySj+1 G̃∗
xG̃∗

ySj+1

H̃∗
xH̃∗

ySj+1 G̃∗
xH̃∗

ySj+1

Figure 3: 2D Wavelet decomposition.

With this in mind it makes sense to de�ne our 2D mother functions as follows:

Φ(x, y) := ϕ(x) ◦ ϕ(y),

ΨH(x, y) := ϕ(x) ◦ ψ(y),

ΨV (x, y) := ψ(x) ◦ ϕ(y),

ΨD(x, y) := ψ(x) ◦ ψ(y).

Here Φ is the scaling function and ΨH ,ΨV ,ΨD are our wavelet functions, which we will call the horizontal, vertical
and diagonal details. Further we introduce our translated and dilated functions as:

Φj,k(x, y) := 2jΦ(2jx− kx, 2jy − ky),

ΨH
j,k(x, y) := 2jΨH(2jx− kx, 2jy − ky),

ΨV
j,k(x, y) := 2jΨV (2jx− kx, 2jy − ky),

ΨD
j,k(x, y) := 2jΨD(2jx− kx, 2jy − ky).

Using basically the same de�nition as in the 1D case, we de�ne our approximations spaces Vj as the set of all
functions that can be written as:

fj(x, y) =
∑
k

cj,kΦj,k(x, y).

We end up with our scaling function as:

Φ(x, y) = 4
∑
k

hkΦ(2x− kx, 2y − ky).

And our mother wavelets for α = {H,V,D}

Ψα(x, y) = 4
∑
k

gαkΦ(2x− kx, 2y − ky).

From this we get that Vj ⊂ Vj+1 and Wα
j ⊂ Vj+1. We now know that any fj ∈ Vj can be expressed as

fj = fj−1 + dHj−1 + dVj−1 + dDj−1,

and once again, we have a recursive scheme for the wavelet decomposition. We can represent this to be a bit more
intuitive in �gure 4, where we denote S as the samples (or scaling coe�cients) and W as the wavelet coe�cients.
Looking at this we also realize the potential for compression. If we assume that the squares represent a block of
memory we realize that for storing just the coe�cients, we do not really need to allocate any additional memory.

10The method used in this section, de�nes what is called separable wavelets. We won't go in more detail in this paper, but just note
that not all wavelets in higher dimensions need to be de�ned in this way. We also assume a biorthogonal system.
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Also, assuming that we can disregard the �nest details (which are often polluted with too much noise anyway), we
can directly disregard 3/4 of the required memory.

Sj

WV
j−1 WD

j−1

Sj−1 WH
j−1

WD
j−1WV

j−1

WH
j−1

WV
j−2 WD

j−2

Sj−2 WH
j−2

Figure 4: Two steps of decomposition matrix.

2.3.1 Border conditions of �nite length signals

In the theory so far all signals has been assumed to have in�nite length, and thus a problem arises when we have
signals of �nite length. We recall that to decompose a signal we need to compute sj,k = 21/2

∑
l hl−2ksj+1,l,

which can be problematic at the endpoints of the signal. To illustrate: Say, that we have a discrete signal s =
{s1, s2 . . . sn−1, sn}. To sample a certain element si where 0 << i << n, we need to know si−1, si and si+1, both
of which are present in our signal. Now, if we needed to sample s1, we would need s0, which does not exist. The
solution to this is to simply extend the signal in some way, so that we could access s0. In [5], we are introduced to
some methods to extend the signal, namely:

1. Extend by zeros - Simply pad the extension by zeros. Simple, but does generally introduce jumps in the
function.

2. Symmetric extension - Re�ect the signal at the endpoints. Does not su�er from jumps in the function, but
rather jumps in the �rst derivative.

3. Periodic extension - Repeat the signal at the endpoints. Good choice if the functions are periodic, or close
to periodic.

4. Extrapolation - Extrapolate the signal. e.g. constant, linear or quadratic extrapolation.

All methods have di�erent strength and weaknesses. Zero padding is easy, needs no extra memory, but su�ers from
jumps in the function. Extrapolation by higher order polynomials reduces jumps in the function and its derivatives,
proportional to the degree of the polynomial. It can yield a better extension in terms of accuracy, but with the
disadvantage that we need more in terms of computations and/or memory. Symmetric and periodic extension is
a good compromise, since we can at least reduce the jumps to the �rst derivative, as well as no extra memory
requirements are needed since all necessary data is already included in the signal.

2.3.2 Edge detection and some other practical examples

Besides just compression, the two dimensional wavelets can be used for many things in image processing such as
edge detection. The basic principle is illustrated 11 in �gure 5, where we �rst do one level of decomposition to get
Sj−1,W

H
j−1,W

V
j−1 and WD

j−1. We then disregard the scaling coe�cients and reconstruct the image using just the
details.

11In this example we reconstruct each detail separately, sum them together, and then clamp the result.
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(a) Original image (b) Horizontal details

(c) Vertical details (d) Diagonal details

(e) Reconstructed details

Figure 5: Edge detection using daubechies2 �lter bank.
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There are many other bene�cial uses as well, such as:

• Compression - Described in previos section

• De-noising - Similar to compression, threshold desired frequencies

• Sampling - In [11] they use wavelets to accelerate a ray traced scene. They do this by building importance
maps 12 under di�erent resolutions, from which they then sample from. Both steps are done using wavelets.

• Computer graphics in general - Can also be used for accelerating by approximating dynamic shadows in a
rasterized 3D-scene, or as a complement to spherical harmonics in global illumination.

• Principal components

• Numerical analysis

It is easy to realize that wavelets in its own right is a quite powerful tool, but by combining it with other methods
it can be even more useful.

12Basically a variance map
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3 Singular Value Decomposition and Principal Component Analysis

3.1 Eigen Decomposition

From the theory regarding eigenvalues and eigendecomposition, we know that given a symmetric matrix A ∈ Rm×m
we have the decomposition

A = UΛUT ,

where U is orthogonal i.e. UUT = UTU = I, and I is the identity matrix. Λ is a diagonal matrix containing the
eigenvalues of A, and the ith column of U is the eigenvector of A with eigenvalue Λi,i. To illustrate this, we multiply
the decomposition by U from the right

AU = UΛUTU = UΛ.

Letting λi = Λi,i, and ui be th i
th column of U we see that

Aui = λi, (5)

which we recognize as the common eigenvalue equation.

3.2 Singular Value Decomposition - SVD

Now, suppose A ∈ Rm×n where m ≥ n and with rank r ≤ n, we then end up with the decomposition 13

A = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×n are both orthogonal matrices. Further Σ ∈ Rm×n is a quasidiagonal matrix where
Σi,i ≥ 0 called the singular values, which are closely related to eigenvalues. To show this we multiply A with AT

from the right, to end up with ATA being symmetric, and since ATA is of rank14 r we know that we will have r
eigenvalues that are nonzero. Until stated otherwise we will be looking at the eigenvectors that correspond to the
nonzero eigenvalues. We can now decompose ATA as:

ATA = V ΛV T .

Repeating the same procedure as in (5), dropping the indexation for convenience, we see that

ATAv = λv,

where v is the eigenvector of ATA with corresponding eigenvalue λ. If we once more multiply by A we see that

AATAv = λAv,

implying that if v is and eigenvector for ATA, then Av is an eigenvector for AAT with the same eigenvalue, λ. We
also realize that since we require v to be normalized, ‖Av‖22 = λ , since

(Av)T (Av) = vTATAv = vTλv = λ. (6)

With this in mind, we now de�ne ui := Avi/σi, where σi is the square root of λi. We realize that by replacing Av
with Av/σ in equation (6), that this is a set of vectors which are pairwise orthogonal as well as normalized , and
thus we can now write:

uTi Avj = (A
vi
σi

)TAvj =
vTi A

TAvj
σi

= vTi vj
λi
σi

=

{
σi if i = j,
0 else.

(7)

We thus realize that if we write in matrix notation, we get:

UTAV = Σ,

where Σ is composed of the singular values (σ1 . . . σr) on the diagonal and zero elsewhere. Now we are almost done,
however since UT ∈ Rr×m and V ∈ Rn×r they are still not orthogonal. To �x this we simply add the remainingm−r
and n−r unit vectors, ũ and ṽ, to U and V respectively such that (u1 . . . um) and (v1 . . . vn) are pairwise orthogonal,

13for n ≥ m, simply transpose the matrix and do the same procedure. Alternatively pad with zeros such that n = m.
14This is also the rank of A and AAT
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and letting the corresponding singular values be zero i.e. Σ ∈ Rm×n where Σi,i = σi if i ≤ r and 0 otherwise. We
now know that UTU = UUT = Im,m and V TV = V V T = In,n and by multiplying by U from the left and V T from
the right, we thus acquire:

A = UΣV T ,

which is our desired decomposition also known as full SVD.
Since we have some redundancy in our singular vectors where σ = 0, we get no information out of them and

might as well just ignore those values using just the r non-redundant columns of U and V respectively, as well as
letting Σr = diag(σi . . . σr) we end up with

A = UrΣrV
T
r ,

where Ur ∈ Rm×r and Vr ∈ Rn×r, which is commonly called the economy- or compact SVD. If we, say take the
k largest singular values with corresponding singular vectors we call that the thin SVD, which play a big role in
compression.

3.3 Algorithm for decomposition

We have previously shown the existence of the SVD decomposition, and this section will explain some basic al-
gorithms for doing this. There are many ways of doing the decomposition with varying pros and cons, as well as
complexity. There is however a general structure15 to these algorithms for a general (m× n) matrix, A:

1. Reduce A to bidiagonal form, such that A = U1BV
T
1 , where U1 and V1 are orthogonal. This can be done by

Householder re�ections, which will be discussed in the next section.

2. Find the SVD of B, such that B = U2ΣV T2 .

3. Let U = U1U2 and V = V1V2, and we have our desired decomposition A = UΣV T .

The reason for reducing A to bidiagonal form is that it's easier to �nd the SVD of such a matrix.

3.3.1 Householder Re�ections

A Householder re�ection is a transformation used on matrices to zero out parts of a vector x by re�ecting it in
a hyperplane perpendicular to a vector u with the condition ‖u‖2 = (uTu)1/2 = 1. Since the re�ection in vector
notation can be written as:

x− 2〈u, x〉u = x− 2uuTx,

we realize that the corresponding transformation matrix can be de�ned as P := I − 2uuT , which also is orthogonal.
To show orthogonality we write:

PPT = (I − 2uuT )(I − 2uuT )T = I − 4uuT + 4(uuT )2 = I.

Suppose now that we want to transform a vector x, such that Px = [c, 0 . . . 0]T = ce1. By expanding Px we see
that u is a linear combination of x and e1

Px = x− 2u(uTx) = ce1 ⇒ u =
1

2(uTx)
(x− ce1).

Also since P is a re�ection, we know that

‖x‖2 = ‖Px‖2 = |c|, and c = ±‖x‖2.

Thus u must be parallel to
ũ := x+ ce1,

as well as that u = ũ
‖ũ‖2 . To keep cancellation to a minimum, we want the �rst entry of x− ce1 as far from zero as

possible and thus we choose c = sign(x1)‖x1‖e1, which gives:

ũ = x+ sign(x1)‖x‖e1.

We now have our ũ as:

ũ =


x1 + sign(x1)|c|

x2
...
xn

 .
15with some exceptions such as the Jacobi method
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To illustrate why this is useful we will repeat the same example as in [4] where they use Householder re�ections to
transform a matrix A to an upper triangular matrix. However, to show generality, we show this on a non quadratic
matrix A, where • denotes an arbitrary real number.

A =



• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •


.

Choose P1 such that P1A = A1 =



• • • • •
0 • • • •
0 • • • •
0 • • • •
0 • • • •
0 • • • •
0 • • • •


.

Choose P ′2 such that P2 =

[
1 0
0 P ′2

]
, where P2A1 = A2 =



• • • • •
0 • • • •
0 0 • • •
0 0 • • •
0 0 • • •
0 0 • • •
0 0 • • •


.

Choose P ′3 such that P3 =

 1
1

0

0 P ′2

 , where P3A2 = A3 =



• • • • •
0 • • • •
0 0 • • •
0 0 0 • •
0 0 0 • •
0 0 0 • •
0 0 0 • •


.

Choose P ′4 such that P4 =


1

1
1

0

0 P ′4

 , where P4A3 = A4 =



• • • • •
0 • • • •
0 0 • • •
0 0 0 • •
0 0 0 0 •
0 0 0 0 •
0 0 0 0 •


.

Choose P ′5 such that P5 =


1

1
1

1

0

0 P ′5

 , where P5A4 = A5 =



• • • • •
0 • • • •
0 0 • • •
0 0 0 • •
0 0 0 0 •
0 0 0 0 0
0 0 0 0 0


.

So if we let P = P4P3P2P1, and so our transformation A5 = PA is an upper triangular matrix.
Since the main goal of the householder transformation was to get a bidiagonal structure we realize that in the same
procedure can be used to re�ect the rows as well, we just �nd a matrix by which we multiply from the right.
Choose Li and then Ri such that:
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A =



• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •
• • • • •


,

L1A =



• • • • •
0 • • • •
0 • • • •
0 • • • •
0 • • • •
0 • • • •
0 • • • •


and (L1A)R1 = A1 =



• • 0 0 0
0 • • • •
0 • • • •
0 • • • •
0 • • • •
0 • • • •
0 • • • •


,

L2A1 =



• • 0 0 0
0 • • • •
0 0 • • •
0 0 • • •
0 0 • • •
0 0 • • •
0 0 • • •


and (L2A1)R2 = A2 =



• • 0 0 0
0 • • 0 0
0 0 • • •
0 0 • • •
0 0 • • •
0 0 • • •
0 0 • • •


,

L3A2 =



• • 0 0 0
0 • • 0 0
0 0 • • •
0 0 0 • •
0 0 0 • •
0 0 0 • •
0 0 0 • •


and (L3A2)R3 = A3 =



• • 0 0 0
0 • • 0 0
0 0 • • 0
0 0 0 • •
0 0 0 • •
0 0 0 • •
0 0 0 • •


,

L4A3 = A4 =



• • 0 0 0
0 • • 0 0
0 0 • • 0
0 0 0 • •
0 0 0 0 •
0 0 0 0 •
0 0 0 0 •


and �nally L5A4 =



• • 0 0 0
0 • • 0 0
0 0 • • 0
0 0 0 • •
0 0 0 0 •
0 0 0 0 0
0 0 0 0 0


.

So in this case we get L = L1L2L3L4L5 and R = R1R2R3, which gives us our desired transformation B = A5 =
LAR. Changing notation as UT = L and V = R we recognize our desired bi-diagonalization 16:

B = UTAR⇒ A = UBV T .

16This is not completely true, since we need to add extra columns so that U and V are indeed orthogonal.(as we did for proving the
existence of the SVD)
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3.3.2 Putting it all together

In the previous section we constructively proved the existence of the SVD. We here present some more practical
information according to [4].

Lemma 1. Let B ∈ Rn×n be a bidiagonal matrix with (a1 . . . an) on the main diagonal and (b1 . . . bn−1) on the
superdiagonal. There are three ways to convert the problem of �nding the SVD of B to �nding the eigenvalues and
eigenvectors of a symmetric tridiagonal matrix, namely:

1. Let A =

[
0 BT

B 0

]
and P = [e1, en+1, e2, en+2 . . . en, e2n], where ei is the i:th column of the (2n× 2n) identity

matrix. Tps = PTAP is symmetric and tridiagonal 17. Tps has all zeros on the main diagonal and the super-
and subdiagonal is (a1, b1, a2, b2 . . . bn−1, an). If Tpsxi = αixi is an eigenpair for Tps and xi being a unit

vector, then αi = ±σi, where σi is a singular value of B, and Pxi = 1√
2

[
vi
±ui

]
, where ui and vi are the left

and right singular vectors of B.

2. BBT is symmetric tridiagonal with maindiagonal a21+b21, a
2
2+b22 . . . a

2
n−1+b2n−1, a

2
n, and super- and subdiagonal

a2b1, a3b2 . . . anbn−1. The singular values of B are the square roots of the eigenvalues of BBT , and the left
singular vectors of B are the eigenvectors of BBT . Also BBT contains no information about the right singular
vectors of B.

3. BTB is symmetric tridiagonal with maindiagonal a21, a
2
2 + b21, a

2
3 + b22 . . . a

2
n+ b2n−1, and super- and subdiagonal

a1b1, a2b2 . . . an−1bn−1. The singular values of B are the square roots of the eigenvalues of BTB, and the right
singular vectors of B are the eigenvectors of BTB. Also BTB contains no information about the left singular
vectors of B.

From this we see that algorithms such as QR-iteration, divide-and conquer and Bisection with inverse iteration,
using a brute force approach can provide us with the singular values and maybe only the left or right singular
vectors [4]. There is however, as always, drawbacks. First of all using this approach we need to compute all 18 the
singular values, and thus ignoring some crucial bene�ts of the SVD. Also, forming BTB and/or BBT can be quite
numerically unstable, and we can thus loose precision, especially for small singular values. Due to this fact, we'd
rather use algorithms that doesn't depend on BTB or BBT , but rather on B or Tps directly. Again referring to [4],
there are some well known ways of doing this, namely:

• QR iteration and its variations - High accuracy and Fastest for �nding all singular values for matrices of
dimension roughly n ≤ 25

• divide-and-conquer - High accuracy and Fastest for �nding all singular values for matrices of dimension n ≥ 25

• Bisection and inverse iteration - High accuracy for �nding singular values within a desired interval, may su�er
loss of orthogonality

• Jacobi's method - Overall high accuracy

3.4 Principal Component Analysis - PCA

Principal component analysis is de�ned as a linear orthogonal transformation where the greatest variance by any
projection end up along the �rst basis in the new coordinate system, the second greatest along the second basis and
so forth. The brute force approach is to recursively �nd the current axis orthogonal to previous axes which maximize
the variance, which can be quite cumbersome and computationally expensive for large data sets. To improve this,
one realized that this could be done by taking the eigendecomposition of the covariance matrix, however as we will
see this will involve computing XXT , for some matrix X. Say that we have n features of equal length m, we write
the ith feature as xi = {ai1 . . . aim} which is stored as a row vector. We de�ne our mean vector

x̄i :=
1

m

m∑
k=1

aik.

17ps stands for perfect shu�e, that is just a reordering of the matrix
18more than often only a few are desired
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We can then de�ne our covariance matrix:

C :=


Cov(x1, x1) Cov(x1, x2) Cov(x1, x3) . . .
Cov(x2, x1) Cov(x2, x2) Cov(x2, x3) . . .
Cov(x3, x1) Cov(x3, x2) Cov(x3, x3) . . .

...
...

...
. . .

 ,
where Cov(xi, xj) is calculated by:

Cov(xi, xj) =
1

m− 1

m∑
k=1

(aik − x̄i)(a
j
k − x̄j).

To make notation easier we de�ne the matrix X̂:

X̂ =

x1...
xm

 .
And �nally the zero mean matrix, where we simply subtract the sample mean from the corresponding sample:

Xi,j := X̂i,j − x̄j .

We can then simply write the covariance matrix as:

C =
1

m− 1
XXT .

Now we want to �nd our transformation matrix, T , which will be the projection onto our principal components (the
eigenvectors), i.e. Y = TX, where Y is the transformed data. As just stated Y is projected onto an orthogonal
basis, and so it will have zero covariance, i.e. 1

m−1Y Y
T will be a diagonal matrix DY . To start o� we expand DY

DY =
1

m− 1
Y Y T

=
1

m− 1
(TX)(TX)T

=
1

m− 1
T (XXT )TT

=TCTT .

We thus search for a matrix T such that TCTT is diagonal. To �nd this matrix, our choice of T is such that
C = 1

m−1XX
T = TTDT , where TTDT is the eigendecomposition19. And we get the following

TCTT =T (TTDT )TT

=(TTT )D(TTT )

=D,

and we see that T does indeed diagonalize TCTT . We also note that the pricipal components are the rows of T
(the eigenvectors of XXT ), and the ith eigenvalue is the variance along the i:th principal component. To improve
this algorithm, we realize that we don't have to compute XXT if we use SVD instead since we can write, using the
proper U :

Y = UTX = UTUΣV T = ΣV T ,

and
Y Y T = ΣV T (ΣV T )T = Σ(V TV )ΣT = ΣΣT ,

which we realize is what we want since the singular values are the square roots of XXT , and since Σ is diagonal
ΣΣT = diag(σ2 . . . ).

19Remember that T is orthogonal
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3.4.1 Practical uses

SVD and PCA have many uses in numerical analysis, but also in statistics and as a tool as well. When dealing with
unknown data of higher dimensions, we could use PCA to �nd the di�erent clusters when the high dimension makes
the data hard to visualize. Since we know that the further away the clusters are from each other would increase
the variance in the corresponding direction, we could project the data on the major principal components and thus
make visualization of the di�erent cluster easier. In the same manner PCA is also used in statistical regression,
since if we have too many variables in terms of data, we could just re-project the data and then choose only the
components with the highest singular values. Yet another similar, but also di�erent example is what we use in this
paper. To e�ectively disregard of useless information in the pictures of the lesion we use PCA to �gure out what
angle we need to rotate the image such that it would �t an axis aligned box most e�ciently.
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4 Image analysis

Due to the nature of the images, it is very hard to isolate an optimal set of features, therefore the approach in this
paper aims at collecting a large set of features that may or may not be signi�cant. After the features have been
collected stepwise linear regression is used to extract the features which are of highest relevance. From this much
can be done, such as logistic regression, neural networks or support vector machines. However, here we simply look
at the linear model to see if classi�cation is plausible. The �rst problem with the images provided was that, due to
the hardware used, we have our area of interest in a circular region of our image. This makes segmentation through
thresholding tough, since the histogram will most likely be skewed or contain multiple minimas. This can however
be solved by a morphological operator, clear to border which is a special case of morphological reconstruction, which
is explained in the next section. We also take time here to de�ne the LAB color space, designed by CIE20. Similar to
HSV21, and CMYK22, LAB represents an image with di�erent bases in terms of color. Here L represent luminosity
(dark to light), A is green to magenta, and B is blue to yellow. The reason for investigating both RGB23 and LAB is
that while RGB has a linear distance in computational measures, LAB is designed to have linear distance regarding
how the three cone cells in the human eye interpret colors24 . How to convert an RGB image to LAB is not very
di�cult, but quite tedious; �rst we need to transform the RGB image to an absolute color space such as sRGB25.
After this step the transformation basically involves some polynomial transformations from sRGB to XYZ26, and
then from XYZ to LAB. Here XYZ is another color space de�ned by CIE, which was one of the �rst color spaces
designed to be analogous to the three cone cells in the human eye. It is also the basis for most other color spaces.

4.1 Preprocessing

4.1.1 Morphological Operators

Morphological operators are tools to clean up and manipulate images. They are easiest to de�ne and explain in
binary images, however the extension to gray scale images are quite straight-forward. A morphological operator is
de�ned as a set of pixels, called the structure element, relative to a reference pixel. It's usually a simple neighbor-
hood such as a (3 × 3) square or a disk, with the reference pixel in the center. Given an image A with structure
element S and S′ being S rotated around its reference pixel by 180◦, as well as the complements Ac and Sc, we
de�ne the basic operators as:

Erosion operator

A	 S := {(i, j) : Si,j ⊆ A}

Dilation operator

A⊕ S := (Ac 	 S)c

Opening operator

A ◦ S := (A	 S)⊕ S′

Closing operator

A • S := (A⊕ S)	 S′.

For a more intuitive de�nition we illustrate these operators in Figure 6 27. For the gray scale case we view the image
and the structure element as functions, A(x, y) and S(x, y), where x,y denotes a pixel. We then de�ne erosion as:

(A	 S)(x, y) := min
(i,j)∈S

(A(x+ i, y + j)− S(i, j))

and dilation:

(A⊕ S)(x, y) := max
(i,j)∈S

(A(x− i, y − j) + S(i, j)).

20The International Commission on Illumination
21H: Hue, S: Saturation, V: Value(Brightness).
22C: Cyan, M: Magenta, Y: Yellow, K: Key(Black). Referring to the inks used in a color printer.
23R: Red, G: Green, B: Blue.
24Spectral sensitivity in short (S, 420-440 nm), middle (M, 530-540 nm), and long (L, 560-580 nm) wavelengths.
25As RGB, but with an extended Gamut. Gamut is the portion of the color space which can be represented or reproduced, e.g. pure

red cannot be expressed in the CMYK color space.
26X: A mix of S and L , Y: Luminosity (Basically a wider M skewed towards L), Z: Equivalent to S.
27Note that the the area after the dilation and closing operation is actually the light gray and the dark gray area.
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Throughout this paper we use a �at28 circular structure element of varying radius.

(a) Morphological erosion (b) Morphological dilation

(c) Morphological opening (d) Morphological closing

Figure 6: The four basic morphological operators using a circular structure element. Black denotes the structure
element, the red dot denotes the pixel for which we visualize structure element, dark gray denotes the image
before the operation medium gray denotes the �nal image. For opening and closing the light gray area denotes the
intermediate step.

In practice one comes a long way by just using these operators. There is however one more, morphological
reconstruction, which is quite interesting and worth noting. Morphological reconstruction uses two images and a
structure element, the marker and the mask, as opposed to just one image and a structure element. As described in
[13] the reconstruction operator works in such a way that the peak of the marker image specify where the processing
begins, the peaks are then dilated while being forced to �t within the bounds of the mask image. This process is
then repeated until there is no more change in the marker image. The algorithm is as follows:

28When working with gray scale images one can use a non-�at structure element e.g. normal shaped. A �at is top-hat shaped.
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Algorithm Reconstruct(G,F )
(∗ Reconstruction ∗)
Input: Marker Image G;

Mask Image F
Output: Reconstructed Image I
1. h1 ← F
2. while hk+1 6= hk
3. hk+1 ← (hk ⊕ S) ∩G
4. return hk

Figure 7: Algorithm for morphological reconstruction

4.1.2 Morphological reconstruction to simplify segmentation

This is a method inspired from [10] since this makes the image seem more pronounced and should therefore help
thresholding. We do this by reconstructing the image within the original image, I, as a mask and the opened image,
Io, as a marker, resulting in Ir. We now open the inverted image of Ir, call it I

c
ro , and do another reconstruction

using Icro as a marker and the inverted image of Ir as a mask, resulting in Icfinal. The result is then simply the
inverted image of Icfinal. The algorithm is shown in Figure 8 and visualized in Figure 9. The majority of the images
we use in this paper were taken in a way such that we have a circular image with a black border. At a �rst glance,
this seems easily solved, however making a general algorithm was not as trivial as expected. The most straight
forward way to go, would be to simply crop the image, but to be able to do that we need information of the location
of the lesion. To get this information we would need to, e.g. threshold the image, and we know that this is not
possible since the border is dark, as is the lesion. There are some ways to overcome this problem such as �guring
out the radius of the circle and use of some cloning for the areas outside this radius. This seemed to be the best
option, although it would mean a lot of unnecessary work for such a simple problem. Luckily enough we found yet
another morphological operator, clear to border, which is basically a special case of reconstruction. In short terms
this clones low values that are connected to the border. Since the raw data is in RGB-color space, we know that
visually dark areas are represented by low values over all channels which allows us to clear each channel with no
worries, which might not have been possible in other color spaces such as LAB.

Algorithm PreprocSegmentation(I)
(∗ Preprocessing via reconstruction ∗)
Input: Image I
Output: Image I
1. Io ← Open(I)
2. Ir ← Reconstruct(I, Io)
3. Icro ← Open(255− Ir)
4. Ifinal ← 255− Reconstruct(Icro , 255− Ir)
5. return Ifinal

Figure 8: Algorithm for preprocessing the image with morphological reconstruction.
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(a) Original image. (b) Clear border; get rid of the dark border.

(c) Open; removes �ne grained (light) noise.
(d) Reconstruct; use previous opened image as
mask. Lesion is now more distinct.

(e) Open inverted image; removes �ne grained
(dark) noise.

(f) Reconstruct and invert back; we now have a
very distinct lesion.

Figure 9: The segmentation preprocessing step by step. As we can see we went from a fairly uncooperative image
to something that's very easy to use for isolating the lesion.
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4.1.3 Hair removal

The method used to �lter away hairs was inspired by [12], and is based on that hairs should absorb more light
than skin and therefore should appear darker when looking at a luminosity gray scale image. Since luminosity is
encoded in all channels in an RGB color space, we convert it to LAB color space, where L will represent luminosity.
Since this channel contains only the data we are interested in we consider it to have the desirable range and quality.
From this we could do a morphological opening to remove thin details, i.e. hair strands. Subtracting the original
image from the opened image will indicate a higher di�erence where the hairs are present and from that we can do
a simple thresholding to acquire a mask for the hairs. Now simply replace the masked regions in the original image
with the opening. The algorithm presented in Figure 10.

Algorithm RemoveHair(I)
(∗ Remove Hairs ∗)
Input: Hairy Image I in LAB color space
Output: Clean Image I in LAB color space
1. Io ← Open(I)
2. M ← |IL − IoL |
3. Mb ← threshold(M)
4. for every index i,j
5. if Mb(i, j) = 0
6. I(i, j) ←I(i, j)
7. else

8. I(i, j) ←Io(i, j)
9. return I

Figure 10: Algorithm for removing hairs ( I is all three channels. Writing e.g. IL or IoL , means the luminance
channel of that image).

Note that this algorithm is not �awless since a worst case scenario appears when the hairs are darker than the
skin but brighter than the lesion will cause the algorithm to fail. The simplest solution is to basically require that
hair is physically removed before taking the picture, leaving this step completely unnecessary.
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(a) Original image. (b) Opened image.

(c) Di�erence between (a) and (b). (d) Thresholding.

(e) Remove small areas

(f) Final image where the areas in the mask (e)
have been replaced by (b), e�ectively removing
the hairs.

Figure 11: Hair removal. The opened (b) image and the �nal image (f) seem identical. However, when we compare
these two more closely (in Figure 12), we observe that using just opening, detail is lost.
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(a) Opened image, note the circular smudges as a result of the opening.

(b) Final image

Figure 12: Comparing these two images we observe that a lot of �ne detail has been lost in the opened image
(similar to a blur). As this step only aims to remove hairs we only replace the area of the hairs with the opened
image. This way we remove hairs with minimal alterations to the original image. 25



4.1.4 Normalize colors

Depending on the skin color or lighting conditions on the subject, the lesion may be biased towards di�erent colors.
Given e.g, a true color 24-bit image (i.e. where the red green and blue channel can be represented integer values from
0 to 255), we can compensate for the lighting by subtracting the mean color of the entire image, and re-normalize
to fall in the range 0-255, we do this in the following way:

1. Let R, G and B represent the red, green and blue channels of the image, represented as matrices, where the
values range from 0 to 255.

2. Let r̄, ḡ and b̄ be the mean values of all the elements in the corresponding matrices.

3. De�ne new channel values as Rn = R− r̄, Gn = G− ḡ and Bn = B − b̄.

4. Also de�ne M as the single largest element from R, G or B, as well as m being the smallest.

5. Finally let In be the image composed of the new channels and normalize In by In = 255 In−mM−m .

4.1.5 Noise removal

Noise removal is a pretty common technique used in image processing. There are di�erent ways to do this [8], the
simplest probably being a median �lter [2]. The idea is to, given a neighborhood of a pixel p; we simply replace the
value of p with the median of the neighborhood. Depending on how heavy you want your noise removal you can
choose larger neighborhoods and/or iterate the method on itself. There certainly are more fancy methods as well,
such as using wavelets or Fourier transforms. The idea is basically that since we know that noise will be of high
frequency and carries little energy, we simply dampen the corresponding constants of small amplitude before we do
our reconstruction. The most common way to modify the constants is commonly called hard thresholding and soft
thresholding.
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4.2 Thresholding

Thresholding is the core of many algorithms related to image processing, since it helps us to distinguish between
the data we need and the data we do not need. A histogram is an estimate of the distribution of values for a signal,
generally represented as a number of bins containing the number of occurrences of values within di�erent intervals.
For image processing in general, and in this thesis, we use consecutive, non-overlapping intervals of equal length.
When we want to threshold an image or a signal, we usually look at the histogram to �nd a minimum, which will
indicate a desired thresholding limit. Depending on the setup, one may be looking for one or more minimas, and
thus need to change the thresholding algorithm correspondingly. However in our case we only want to mask the
lesion, and thus we try to �nd a histogram with only one local minimum. To get a suitable histogram we use the
L-channel from the LAB-color space, since this channel will generate a histogram with two peaks; one for the dark
areas, i.e. the lesion, and one for bright areas, i.e. the skin.

A straight forward approach to �nd the minimum would be to start at the smallest value in the histogram
and successfully take one step forward as long as the histogram increase in value. When the histogram no longer
increase value, we know that we are at a local maximum, and continue stepping forward, now as long as the
histogram decrease in value. When it no longer decreases, we know that we are at the minimum. It is easy to
realize that this approach have one fatal �aw; spikes in data can cause the algorithm to stop too early. So if we
would like to use this algorithm properly we should, as in noise removal, e.g. use some median �lter to smoothen
the histogram, which has to be �ne tuned to handle the trade o� in quality versus stability.

When we deal with natural signal, another approach, called minimum error, is to assume the histogram to be
a sum of two or more normal distributions. To �nd the local minimas, we then simply �t the distributions to the
data and have our minimum as the intersections of the distributions.

The third option, which is also used in this paper is the midpoint method which is commonly de�ned as in
the algorithm in Figure 13. This algorithm �nds the threshold value such that the mean value for the part of the
histogram below the threshold equals the mean value of the part of the histogram above the threshold.

Algorithm threshold(I, T0, T1)
(∗ Threshold, midpoint method ∗)
Input: Grayscale image I
Input: Arbitrary thresholds T0 6= T1
Output: Threshold Tn
1. h← histogram(I)
2. while Tn+1 6= Tn
3. µ0(Tn)← (

∑
z≤Tn

zh(z))/(
∑
z≤Tn

h(z))

4. µ1(Tn)← (
∑
z>Tn

zh(z))/(
∑
z>Tn

h(z))

5. Tn+1 ← µ0(Tn)+µ1(Tn)
2

6. return Tn

Figure 13: Algorithm for thresholding. Here z is an intensity and h(z) is the histogram value at z, and since the
histogram is discrete, z represents an index to the histogram.

4.3 Rotate and crop the image

By using the positions of the masked pixels from the binary thresholded image, we can preform a PCA to get a
rotation such that the rotated image will be optimally aligned to the axes such that each segment of the di�erent
quadrants will be as similar as possible. This is useful in our case since we can e�ectively crop the image and also
investigate asymmetry in order to analyze e.g. the variance of the means and the variance of the variance between
the di�erent quadrants. The procedure is as follows:

1. Given the masked pixels; store the corresponding positions in a (2× n) matrix, X, where n is the number of
masked pixels.

2. Let: (U, S, V ) = SV D(X)

3. Denote the �rst column of U as b = (bx, by)T , and let a = (1, 0)T . Now a is our origin vector and b is the
principal direction.
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4. To get the angle, θ we use some simple trigonometry29: θ = sign(by)cos−1(bx).

5. Using e.g. MATLAB, we can now rotate the image, I, by I = imrotate(I, θ)

(a) Original. (b) Image after rotation.

Figure 14: Segmentation preprocessing. In image (a) the arrow marks �rst principal component. In the rotated
image (b) each segment now has roughly equal coverage

Since we now have a rotated image which �lls an axis aligned bounding box nearly optimally, we can easily crop the
image by just �nding the maximum and minimum values of the indexes corresponding to the white pixels. When
we use our cropped image we can save computations and data, and as we will see later this will also make it easier
for us to disregard some redundant data, providing us better parameters.

29Making sure that b is normalized.
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4.4 Feature Extraction

To recap, the preprocessing procedure for the images so far, is performed via these steps in the following procedural
algorithm:

Step 1: Clear border;

Step 2: Remove noise;

Step 3: Remove hairs;

Step 4: Reconstruct;

Step 5: Threshold;

Step 6: Rotate and crop image.

4.4.1 Skewness and kurtosis

Mean and variance are probably the most used statistical parameters, as well as self explained. In many cases
these are good enough, but there are a couple of more instruments in our toolbox, namely skewness and kurtosis.
Skewness describe how centered the distribution is around the mean, a skewness of 0 means that the distribution is
perfectly centered around the mean. Kurtosis describe the tails of the distribution. The normal distribution has a
kurtosis of 0, negative values indicate lighter tail and positive values indicate heavier tails. Below we describe the
di�erent parameters.

Mean:

E[x] =
1

N

N∑
i=1

xi.

Variance:

E2[x] =
1

N − 1

N∑
i=1

(xi − x̄)2.

Skewness:

E3[x] =
1

N−1
∑N
i=1(xi − x̄)3√

( 1
N−1

∑N
i=1(xi − x̄)2)3

.

Kurtosis:

E4[x] =
1

N−1
∑N
i=1(xi − x̄)4

( 1
N−1

∑N
i=1(xi − x̄)2)2

− 3.

Here, N is the number of samples, xi the i
th sample, and x̄ the mean of all samples i.e. E[x].

4.4.2 Wavelet features

In [7] was shown that wavelets were created in the early 1980's as a response to a debate between whether the visual
system react to spatial frequency rather than space. In this wavelet model of vision, what we see as an image is the
signal, the receptive �elds correspond to the wavelets and the constants are the reaction of a neuron to a particular
pattern of light. Small receptive �elds would tell us about space whereas large would tell us about frequency. In
alignment with this there are theories that state that our visual system uses what is similar to a wavelet transform,
which would help us di�erentiate di�erent objects. Thus some believe that the future of wavelets is not necessarily
in compression, but rather recognition. Further, [7] states that there are in�nitely many wavelets and that there is
no real guideline on which wavelets to choose 30. Thus in this paper mainly common wavelets with a small number
of vanishing moments, such as Haar, Daubecies2 and, Daubecies4 were investigated which are visualized along with
their �lters in Figure 15.

30Except for numerical analysis where vanishing moments does have a great impact.
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Haar is the simplest wavelet to de�ne with:

ψ(t) =

 1 0 ≤ t < 1
2 ,

−1 1
2 ≤ t < 1,

0 else.
and φ(t) =

{
1 0 ≤ t ≤ 1,
0 else.

Here, ψ and φ is the mother wavelet and scaling function, respectively.
The Daubecies wavelets on the other hand is a polynomial generalization of the haar wavelet where Daubechies1
equals Haar. The number indicates the degree of the polynomial as well as the vanishing moments, where
Daubechies1 would have zero vanishing moments, Daubecies2 would have one, Daubechies4 three, etc. Except
from Daubechies1 there is no explicit form for the wavelet functions of this family and they consequentially de�ned
as a product �lter in the frequency domain. We can however approximate the wavelets in order to visualize them
with the Cascade algorithm. To reconstruct the mother wavelet we can start with a unit impulse at the coarsest
level as successively reconstruct the signal to the desired level from where the scaling function also can be recon-
structed. As can be expected from [6], besides using mean values and variance, skewness and kurtosis may help
identifying malign tissues. The reasoning for this is that natural e�ects, such as healthy tissue, are often normally
distributed in some sense and deviations from the normal, such as in microcalci�cations, results in a deviation
from this distribution. Hopefully, we will be able to identify similar deviations in this manner as well. Since both
skewness and kurtosis can have negative values we include the absolute value in our model since a value of zero
is assumed to be the indicator of healthy tissue, and thus deviations from this will indicate unhealthy tissue. In
[10] was shown that using the mean and variance of the wavelet coe�cients from the binary image as features for a
neural network they were able to achieve good classi�cation rate. Therefore we will include the same parameters in
this paper as well. As in the paper [10] we will use approximately three levels of decomposition. Since we here deal
with a binary image, we need not worry about wavelet extension, since a zero padding will �t the signal exactly.
The procedure is quite straight forward:

1. Given a binary image, I.

2. Decompose the I for n levels, and store the horizontal, vertical and diagonal details in the matrices Hi, Vi and Di,
for the corresponding i:th level of decomposition.

3. Store the mean, variance, skewness and kurtosis for each detail and level as parameters, that is 12n number
of parameters.

To reassure us that these parameters have any signi�cance at all, we do a small test with a couple of extreme
cases to see if we notice any di�erence. For this setup we have two benign pictures shown on Figure 16-(a),(b) which
seem to have a small color variation, and two malign pictures shown on Figure 16-(c),(d) with high variation. Both
images have been rotated and cropped to keep redundant data outside the lesion to a minimum. The images in
Figure 16 are then decomposed and we investigate the coe�cients for the horizontal, vertical and diagonal details,
for each row and column independently. During some tests in the beginning of the project it was noticed that,
for wavelet coe�cients, the resolution of the images could have greater impact on the parameters than the actual
features, so to be consequent we rescale all the images to have equal resolution 31. The spectrum plots in the
following �gures we have the coe�cients at the x-axis and the corresponding value at the y-axis followed by tables
summarizing the values. These plots and tables are meant to give us some intuition whether there is any di�erence
between the two cases 32. We also have a ground truth image which is composed of plain normal noise, as seen in
Figure 17, which is meant to represent some ideal case as a reference.

31This can be tricky as well since rescaling can involve some bi-linear or bi-cubic interpolation, which could be exposed because of
vanishing moments.

32We will here write e.g. DB2 to denote the Daubechies2 wavelet.
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(a) Haar (Daubechies1) (b) Daubechies2

(c) Daubechies4

Figure 15: Examples of wavelets and their sample coe�cients (�lter).
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(a) Malign1. (b) Malign2.

(c) Benign1. (d) Benign2.

Figure 16: Cropped test images. Represented by mapping the LAB-values to RGB (explained in section 4).
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(a) Normal noise.

(b) Skewness. (c) Kurtosis.

Figure 17: Ground truth of skewness and kurtosis values. Using a image of plain normal noise with mean 0 and
variance 1. Using the DB2 wavelet.

Normal
Skewness absolute mean 0.1990
Skewness variance 0.1023
Kurtosis mean 2.9854
Kurtosis variance 0.3149

Table 1: Skewness and kurtosis values for the control image in Figure 17.
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(a) Skewness. (b) Kurtosis.

(c) Skewness - thresholded. (d) Kurtosis - thresholded.

Figure 18: Spectrum of skewness and kurtosis for the DB4 wavelet. In (a)-(b) the full spectrum is plotted whereas
in (c)-(d) values below a certain threshold are disregarded.

DB4 Malign1 Malign2 Benign1 Benign2
Skewness absolute mean 0.5014 0.7190 0.2972 0.3189
Skewness variance 0.5242 1.0891 0.1912 0.2171
Kurtosis mean 6.9720 8.5350 5.1325 4.9342
Kurtosis variance 16.5221 43.6926 4.8227 4.6182

Table 2: Mean and variance of skewness and kurtosis from the spectrum in 18 (a)-(b).

DB4 Malign1 Malign2 Benign1 Benign2
Skewness absolute mean 1.8160 2.0639 1.5549 1.5725
Skewness variance 0.3633 0.8117 0.0648 0.0911
Number of values above threshold 428 493 41 32
Kurtosis mean 16.7860 19.4424 14.8717 13.0884
Kurtosis variance 38.3466 78.9864 12.4312 1.4258
Number of values above threshold 492 576 53 20

Table 3: Mean, variance and number of values above threshold for skewness and kurtosis from the spectrum in
Figure 18 (c)-(d).
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(a) Skewness (b) Kurtosis

(c) Skewness - thresholded (d) Kurtosis - thresholded

Figure 19: Spectrum of skewness and kurtosis for the HAAR wavelet. In (a)-(b) the full spectrum is plotted whereas
in (c)-(d) values below a certain threshold are disregarded.

HAAR Malign1 Malign2 Benign1 Benign2
Skewness absolute mean 0.7163 0.5999 0.4716 0.4410
Skewness variance 0.8823 0.6964 0.4062 0.3426
Kurtosis mean 7.4629 7.3068 5.6624 5.2897
Kurtosis variance 15.0520 23.3291 4.4196 3.2257

Table 4: Mean and variance of skewness and kurtosis from the spectrum in Figure 19 (a)-(b).

HAAR Malign1 Malign2 Benign1 Benign2
Skewness absolute mean 1.8482 1.9269 1.6742 1.6170
Skewness variance 0.2543 0.3660 0.0958 0.0673
Number of values above threshold 448 296 147 104
Kurtosis mean 13.7607 15.2561 12.2406 11.5498
Kurtosis variance 19.4261 43.0680 7.2712 4.2840
Number of values above threshold 523 495 107 56

Table 5: Mean, variance and number of values above threshold for skewness and kurtosis from the spectrum in
Figure 19 (c)-(d).
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(a) Skewness (b) Kurtosis

(c) Skewness - thresholded (d) Kurtosis - thresholded

Figure 20: Spectrum of skewness and kurtosis for the DB8 wavelet. In (a)-(b) the full spectrum is plotted whereas
in (c)-(d) values below a certain threshold are disregarded.

DB8 Malign1 Malign2 Benign1 Benign2
Skewness absolute mean 0.5564 0.5467 0.2303 0.2275
Skewness variance 0.6069 0.6177 0.1095 0.1206
Kurtosis mean 7.7029 7.1874 4.5109 4.5519
Kurtosis variance 17.7679 21.7402 2.6856 2.6301

Table 6: Mean and variance of skewness and kurtosis from the spectrum in Figure 20 (a)-(b).

DB8 Malign1 Malign2 Benign1 Benign2
Skewness absolute mean 1.5681 1.6417 1.2838 1.4467
Skewness variance 0.3009 0.4448 0.0762 0.2790
Number of values above threshold 505 447 53 50
Kurtosis mean 14.0525 14.8454 11.9737 11.9704
Kurtosis variance 24.5558 41.8609 3.7044 13.9579
Number of values above threshold 647 537 47 39

Table 7: Mean, variance and number of values above threshold for skewness and kurtosis from the spectrum in
Figure 20 (c)-(d).
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We see from Figures 17-20 and Tables 1-7 that when we use the cropped image there is indeed a notable
di�erence between the two cases. All of the values from the malign lesions are higher than for the benign with
some promising candidates such as number of values above threshold, kurtosis variance and skewness variance.
Compared to the ground truth in Figure 17 and Table 1 we consider the di�erence between the parameters to be
reasonable as well. As expected we got the most e�cient results from the Daubechies2-Daubechies4 wavelets. Haar
and higher order Daubechies either had worse results or no signi�cant improvement. This was to be expected since
as discussed earlier, higher order wavelet was not particularly useful for image analysis. We also note from Figures
17-20 that the majority of the values are centered around the mean. This is expected since in natural scenes, the
most information is obtained at the low frequencies [7]. This introduces a bit of a complication, since if we would
like to take the mean of all the values, it would be tough to see a di�erence. To compensate for this we simply
disregard values close to the mean by setting them as zero when, |β| < |β| + β̂, where |β| and β̂ are the mean of
the absolute values and standard deviation of the values respectively. The last observation is that we get nonsense
at the coarsest scale, especially for higher order wavelets such as Daubechies8. This is also to be expected since in
this analysis we decompose the signal to the coarsest scale possible. Recalling that we need to do extensions for
border cases, we realize that when we try to decompose at the coarsest level the majority of the information will
come from the extension and not the actual signal.

It was also realized that, since the normal distribution is separable, it would make sense to just investigate the
skewness and kurtosis on the whole matrix, instead of the rows and columns independently. However this provided
poor results, as can be seen in table 8 and �gure 21, and thus we stick to the row-column approach.

(a) Skewness. (b) Kurtosis.

Figure 21: Using data from whole matrix with the DB2 wavelet.

DB2 Malign1 Malign2 Benign1 Benign2
Skewness mean 0.3587 0.6206 0.6521 0.5994
Skewness variance 0.2867 0.8026 0.8709 0.7197
Kurtosis mean 14.6403 15.1114 16.2085 14.4795
Kurtosis variance 79.0416 65.0885 56.7736 41.9747

Table 8: Mean and variance of skewness and kurtosis from Figure 21
.

Knowing this we have our following algorithm for calculation of the parameters:

1. Given a multi channel image33 I.

2. Decompose the I for n levels, and store the horizontal, vertical and diagonal details in the matrices Hc
i , V

c
i and Dc

i .
for the corresponding level i of the decomposition and channel c.

3. Calculate the skewness and kurtosis for every row and every column for every matrix, and store all the values
in one long vector, v.

4. Set vi = 0 if |vi| < |v|+ ṽ, where |v| is the mean of the absolute values and ṽ is the standard deviation.

5. Store the mean and variance of v as parameters.

33Here we decompose each channel separately
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4.4.3 Geometric features

According to [1], for a binary image, given N as the perimeter and A as the area both measured in number of pixels,
we can de�ne our irregularity index as

Ir :=
N2

4πA
,

Other parameters that may also be of value can be de�ned as, solidity:

So :=
A

CA
,

and convexity:

Co :=
CN
N

,

where CA is the area of the convex hull and CN the convex perimeter. We do not focus much on pure geometric
features in this paper and thus these simple de�nitions have to su�ce.

4.4.4 PCA for neighbors

In [3], a technique to do a spatio-chromatic analysis of images using principal components is proposed. That is,
instead of doing the PCA per pixel, the neighborhood of the pixel is used as input data. In this paper we use a
(3×3) pixel neighborhood. As was discussed with wavelets, this was also created with the visual receptors in mind,
where the neighborhood would correspond to the receptors in an eye or a camera. Not enough time were spent
investigating this, so for this paper we simply calculate the mean and variance of the di�erent color channels of the
bases. If one were to take this further it would make sense to investigate the average case for the bases of benign
lesions and malign lesions respectively. Hopefully one would be able to notice a di�erence in terms of the basis.
Another interesting aspect is that when we look at the projections onto the di�erent bases, we could hopefully
catch details that would otherwise not be that apparent. In Figures 23 and 24 we show the bases and some of the
projections onto these bases, respectively, using the image in Figure 22.

Figure 22: Original image
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(23.1) e0 (23.2) e1 (23.3) e2 (23.4) e3

(23.5) e4 (23.6) e5 (23.7) e6 (23.8) e7

(23.9) e8 (23.10) e9 (23.11) e10 (23.12) e11

(23.13) e12 (23.14) e13 (23.15) e14 (23.16) e15

(23.17) e16 (23.18) e17 (23.19) e18 (23.20) e19

(23.21) e20 (23.22) e21 (23.23) e22 (23.24) e23

(23.25) e24 (23.26) e25 (23.27) e26

Figure 23: The di�erent bases, where en is the nth base, obtained for the described method. For clarity the 27
values are visualized as a (3× 3) area with an RGB value for each sub area.
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(24.1) Projected on e0 (24.2) Projected on e1

(24.3) Projected on e2 (24.4) Projected on e3

(24.5) Projected on e4 (24.6) Projected on e14

Figure 24: The image in Figure 22 reprojected onto the respective base. Note that di�erent features are more
prominent in di�erent projections.
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4.5 Evaluating the model

To evaluate the model a simple stepwise linear regression was used. The p-values used in these algorithms is a
measure of the evidence against our null hypothesis, in this case the null hypothesis is that there is no relationship
between the model and the data. The lower the p-value the stronger evidence against the null hypothesis. For
stepwise regression there are generally three types of algorithms, namely:

1. Forward selection - Start with no parameters and successively add the most relevant feature, i.e. the one
which has the lowest p-value when included. We stop after a certain number of parameters or when a certain
threshold of the next p-value is violated.

2. Backward selection - Start with all the parameters and successively remove the one with the highest p-value
until criterion is met.

3. Forward and Backward selection - Start with some model and alternate between removing and adding
parameters.

In this paper the forward and backward selection, including cross product terms with no parameters as starting
model was used. The reason for this is that since we have so many parameters that we don't really know will be
signi�cant or not, so we basically let the algorithm decide what's the best �t. The reason for allowing cross product
terms is that when doing the analysis in practice the more di�erent indications you have can be as dangerous as if
you have one really strong indication, e.g. if you have a small color variation as well as an irregular border, this
can indicate as much as if you had just a really strong color variation. Hopefully the cross products will capture
these dependencies. We also assume that we will need many parameters in our model since, again in practice, you
can not just look at one feature but rather many. Even though the ABCDE-model seems to have �ve features,
every letter has many sub-indicators. Since we will allow so many parameters in our model, we have a risk of over
�tting, so one should not trust the results completely.

To make things even more complicated there are many sub-classes of malign and benign melanoma, each with
di�erent characteristics. To investigate every possible class is beyond the scope of this paper, and we are thus as
bold to generalize to a binary model, either it is benign or it is not. We thus expect our model to look as follows:

y = β1 + β2 + · · ·+ β1β2 + β1β3 + · · ·+ β2β3 + . . . .

Where βi is the i:th feature. If y is greater than a value, α, we declare the lesion malign. The value of α is can be
calculated as the value that maximizes sensitivity34 and speci�city35. This means that by tweaking α we can get
e.g. better sensitivity at the cost of speci�city, which can be a worthwhile trade o�.

When we have acquired our model we use cross validation to investigate the quality of the model which is done by
these steps:

1. Use all the data to �gure out what parameters to include.

2. Take e.g. 70% as training data and 30% as test.

3. Fit the training data to the model acquired in step one using simple regression.

4. Evaluate the test data and save results.

5. Go to step 2. Stop after n steps or until convergence of e.g. the mean squared error of the model or the
misclassi�cation rate.

34Sensitivity - Percentage of correctly identi�ed malign lesions.
35Speci�city - Percentage of correctly identi�ed benign lesions.
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5 Results and discussion

The main result of this work is that we fairly often managed36 to get a sensitivity and speci�city around 80%,
with some best results at 93%. It should however be noted that the models which was acquired had around 10-15
parameters, which can be considered relatively high compared to our dataset with a size just over a hundred. The
model is thus unfortunately not good enough to be used in practice as it would require consistent results with well
above 90% in sensitivity which, with the reasons above, is something we can't guarantee.

As the saying that a chain only is a as strong as its weakest link, there is a similar problem with this work. For
example, one of the most crucial parts is the thresholding and segmentation since all other parameters in one way
or another, depends on the quality of the segmentation. It wouldn't matter if we had the best algorithms in the
world for extracting parameters if they were extracted from the wrong part of the image. And, even though the
thresholding process can be simple enough in its own right it also heavily depend on how we preprocess the image.
To further illustrate the importance of spending more time on each small step; Tim K. Lee, David I. McLean, and
M. Stella Atkins devote a whole paper [15] on just de�ning a measure for the boarder of the lesion37.

In this paper we used a linear model to classify two di�erent sets of data, which seem to work relatively well
although it is a crude approximation. To achieve a better classi�cation ratio we should use some logistic model, or
even better support vector machines or neural networks. We also do not go more into speci�c details about exactly
which parameters that were selected in our model, but it is however worth mentioning that there were, more or
less, a consistency in the parameters chosen and that they were both depending on the skewness, kurtosis as well
as the mean and variance of the binary images. We thus conclude that although it is hard to �nd single to few
parameters describing the lesion, we have seen that it does however seem possible to come up with some kind of
model. For future work it would be interesting to see what a more rigorous investigation could achieve, either by
investigating each step closer, looking at the data in a di�erent way, or just plainly actually trying to mimic the
practical ABCDE-method as close as possible. One thing we can say for sure is that it is a very complex problem
where we need to look at many di�erent indicators, very precisely.

36e.g. by tweaking the algorithms or transforming the parameters by the square root or logarithm, etc, di�erent results were acquired.
37In fact, quite many papers focus on one speci�c type of feature.
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