
THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

The Dirac Equation: Numerical and
Asymptotic Analysis

Hasan Almanasreh

Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2012



The Dirac Equation: Numerical and Asymptotic Analysis
Hasan Almanasreh
ISBN 978-91-628-8593-9

c©Hasan Almanasreh, 2012

Division of Mathematics –Physics Platform (MP 2)
Department of Mathematical Sciences
Chalmers University of Technology and University of Gothenburg
SE - 412 96 Gothenburg
Sweden
Telephone: +46 (0)31 772 1000

Printed at the Department of Mathematical Sciences
Gothenburg, Sweden 2012



The Dirac Equation: Numerical and Asymptotic Analysis
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Abstract

The thesis consists of three parts, although each part belongs to a specific
subject area in mathematics, they are considered as subfields of the perturba-
tion theory. The main objective of the presented work is the study of the Dirac
operator; the first part concerns the treatment of the spurious eigenvalues in the
computation of the discrete spectrum. The second part considers G-convergence
theory for projected parts of a family of Dirac operators and general positive
definite self-adjoint operators. The third part discusses the convergence of wave
operators for some families of Dirac operators and for general self-adjoint op-
erators.

In the first part, a stable computational scheme, using finite element and
Galerkin-based hp-cloud methods, is developed to remove the spurious eigen-
values from the numerical solution of the Dirac eigenvalue problem. The scheme
is based on applying a Petrov-Galerkin formulation to introduce artificial diffu-
sivity to stabilize the solution. The added diffusion terms are controlled by a
stability parameter which is derived for the particular problem. The derivation
of the stability parameter is the main part of the scheme, it is obtained for spe-
cific basis functions in the finite element method and then generalized for any
set of admissible basis functions in the hp-cloud method.

In the second part, G-convergence theory is applied to positive definite parts
of the Dirac operator perturbed by h-dependent abstract potentials, where h
is a parameter which is allowed to grow to infinity. After shifting the per-
turbed Dirac operator so that the point spectrum is positive definite, the spectral
measure is used to obtain projected positive definite parts of the operator, in
particular the part that is restricted to the point spectrum. Using the general
definition of G-convergence, G-limits, as h approaches infinity, are proved for
these projected parts under suitable conditions on the perturbations. Moreover,
G-convergence theory is also discussed for some positive definite self-adjoint
h-dependent operators. The purpose of applying G-convergence is to study the
asymptotic behavior of the corresponding eigenvalue problems. In this regard,
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the eigenvalue problems for the considered operators are shown to converge, as
h approaches infinity, to the eigenvalue problems of their associated G-limits.

In the third part, scattering theory is studied for the Dirac operator and gen-
eral self-adjoint operators with classes of h-dependent perturbations. For the
Dirac operator with different power-like decay h-dependent potentials, the wave
operators exist and are complete. In our study, strong convergence, as h ap-
proaches infinity, of these wave operators is proved and their strong limits are
characterized for specific potentials. For general self-adjoint operators, the sta-
tionary approach of scattering theory is employed to study the existence and
convergence of the stationary and time-dependent h-dependent wave operators.

Keywords: Dirac operator, eigenvalue problem, finite element method, spuri-
ous eigenvalues, Petrov-Galerkin, cubic Hermite basis functions, stability pa-
rameter, meshfree method, hp-cloud, intrinsic enrichment, G-convergence, Γ-
convergence, spectral measure, scattering theory, identification, wave operator,
stationary approach.
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1 Introduction

In quantum mechanics the Dirac equation is a wave equation that provides a de-
scription of the relativistic motion of the electrons as well the positrons, while
the corresponding eigenvalue problem determines their energies (eigenvalues).
The computation of the Dirac operator eigenvalues for single-electron systems
is thoughtfully considered in the last decades in order to obtain stable solution
that can be used as a basis in approximating the eigenvalues of the electron
in some simple many-electron systems. The difficulty in computing the Dirac
operator eigenvalues for a single-electron system is the presence of unphysical
(spurious) eigenvalues among the genuine ones. Also, another challenging task
is the study of the asymptotic behavior of the spectrum, in particular the eigen-
values, of families of perturbed Dirac operators.

The need for stable numerical approximation for the Dirac operator eigenval-
ues with Coulomb interaction for single-electron systems makes the construc-
tion of a stable computational scheme the main concern of this thesis. Here, we
classify the spuriosity in two categories; the so-called instilled spurious eigen-
values and the spuriosity caused by the unphysical coincidence phenomenon.
We provide a stable scheme to compute the Dirac operator eigenvalues imple-
menting two different numerical methods; the finite element method (FEM) and
the Galerkin-based hp-cloud method. The scheme relies on appropriate choices
of the computational space that meets the properties of the Dirac wave function.
On the other hand, it mainly relies on adding artificial stability terms controlled
by a stability parameter. The stability parameter is derived for particular finite
element basis functions in the FEM, and generalized to arbitrary basis functions
in the hp-cloud approximation method. The stability scheme is computationally
unexpensive, simple to apply, and guarantees complete removal of the spurious
eigenvalues of both categories.

We also study the asymptotic behavior, as h → ∞, of the eigenvalues of
a family of perturbed Dirac operators by h-dependent potentials using the the-
ory of G-convergence. We prove the G-limit operators of positive definite parts
of this family under suitable assumptions on the perturbations. In particular
we prove that the corresponding eigenvalues and the eigenvalue problem of
the operator restricted to the point spectrum of the perturbed Dirac operators
converge respectively to the eigenvalues and eigenvalue problem of the G-limit
operator. Apart from this, we start employing Γ-convergence together with G-
convergence to study the G-limits of some positive definite self-adjoint opera-
tors, and discuss the convergence of their corresponding eigenvalue problems.
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Regarding the absolutely continuous part of the spectrum, we study scatter-
ing theory for a family of Dirac operators and general self-adjoint operators. For
the Dirac operator with different power-like decay h-dependent potentials, the
strong time-dependent wave operator (WO) exists and is complete. We prove
the strong convergence, as h→∞, of this WO under suitable conditions on the
assumed potential. If the added potentials are of short-range type, the conver-
gence study of the WOs is equivalent to the convergence study of the perturbed
Dirac operator in the strong resolvent sense. For the Dirac operator with long-
range potentials, we consider two simplified WOs for which the study of the
asymptotic behavior is easier. Depending on the power of decay of the assumed
potentials, the simplified WOs are obtained by considering two particular iden-
tifications. One of these identifications is an h-free operator, thus the study of
the asymptotic behavior of the WOs is also reduced to the study of the conver-
gence of the perturbed Dirac operator in the strong resolvent sense. The other
identification still has the h-dependency, but the convergence of the WOs with
this identification becomes easier to study. For general h-dependent self-adjoint
operators, the existence and convergence, as h → ∞, of the weak and strong
time-dependent WOs and of the stationary WO are studied more comprehen-
sively.

An outline of this work is as follows: In §2, we give preliminaries and in-
troduce some elementary properties of the Dirac operator. In §3, we explain the
occurrence of the spurious eigenvalues caused by using the projection method
in the numerical approximation of general eigenvalue problems. Also we dis-
cuss the causes of the spuriosity of both categories in the computation of the
Dirac eigenvalue problem. We continue with the discussion on the stability
scheme and the stability parameters, where we also provide numerical exam-
ples using the FEM and hp-cloud method. In §4 we give basic preliminaries on
G-convergence including a general overview, a one dimensional example, and
some definitions. Likewise, Γ-convergence and its connection to G-convergence
are stated. We also discuss G-convergence of elliptic and positive definite self-
adjoint operators. Further, we apply G-convergence theory to positive definite
parts of a family of Dirac operators. In §5 we provide a general overview of
scattering theory and state the definitions of the time-dependent and stationary
WOs and their properties. We also study the strong convergence of the WOs for
a family of Dirac operators, and discuss the simplified WOs. Finally, we discuss
and prove the existence and convergence of the time-dependent and stationary
WOs for the general h-dependent self-adjoint operators.
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2 The Dirac equation

The free Dirac equation describes the free motion of an electron (or a positron)
with no external fields or presence of other particles. It is derived from the
relativistic relation between energy and momentum

λ2 = p2c2 +m2c4, (1)
where λ is the total electron energy, p is the electron kinetic momentum, c is the
speed of light, andm is the electron rest mass. The corresponding wave equation
of quantum mechanics is obtained from the classical equation of motion (1) by
replacing the energy λ and the momentum p by their quanta

λ = i}
∂

∂t
and p = −i}∇, (2)

where t denotes the time, } is the Planck constant divided by 2π, and ∇ =
( ∂

∂x1
, ∂

∂x2
, ∂

∂x3
). Using (2), equation (1) can be written in the form

i}
∂

∂t
u(x, t) =

√
−c2}24+m2c4 u(x, t). (3)

The problem with the existence of the Laplace operator under the square root
was solved by Paul Dirac who derived the well-known Dirac equation that pro-
vides a description of the electron motion consistent with both the principles of
quantum mechanics and the theory of special relativity. The free Dirac space-
time equation (see [23] for more details) has the form

i}
∂

∂t
u(x, t) = H0u(x, t) , (4)

where H0 : H1(R3;C4) → L2(R3;C4) is the free Dirac operator given as

H0 = −i}cα ·∇ +mc2β , (5)

the symbols α=(α1, α2, α3) and β are the 4× 4 Dirac matrices given by

αj =
(

0 σj

σj 0

)
and β =

(
I 0
0 −I

)
.

Here I and 0 are the 2× 2 unity and zero matrices respectively, and σj’s are the
2× 2 Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0
0 −1

)
.

In the sequel we shall use the following notations; D, R, and N to denote re-
spectively the domain, range, and null spaces of a given operator. The notations
σ, σp, σac, and σess will denote respectively to the spectrum, point spectrum,
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absolutely continuous spectrum, and essential spectrum of operators. For sim-
plicity, we defineX=H1(R3,C4) and Y =L2(R3,C4). Separation of variables
in (4) yields the free Dirac eigenvalue problem

H0u(x) = λu(x) . (6)
The free operator H0 is essentially self-adjoint on C∞0 (R3;C4) and self-adjoint
on X , moreover σ(H0) = (−∞,−mc2]∪ [mc2,+∞). The free Dirac operator
with an additional field V is given by

H = H0 + V . (7)
where V is a 4 × 4 matrix-valued function acting as a multiplication opera-
tor in Y . The operator H is essentially self-adjoint on C∞0 (R3;C4) and self-
adjoint on X provided that the function V is Hermitian and for all x ∈ R3\{0}
and i, j = 1, 2, 3, 4, satisfies |Vij(x)| ≤ a c

2|x| + b, where c is the speed of
light, a < 1, and b > 0, see e.g. [50]. From now on, the function V will
be considered as the Coulomb potential which has the form V (x) = −Z

|x| I ,
here I is the 4 × 4 identity matrix (I will be dropped from the definition of
the Coulomb potential for simplicity), and Z ∈ {1, 2, . . . 137} is the electric
charge number. The spectrum of the Dirac operator with Coulomb potential is
(−∞,−mc2] ∪ {λk}k∈N ∪ [mc2,+∞), where {λk}k∈N is a discrete sequence
of eigenvalues.

For simple computations, to obtain the eigenvalues of the Dirac operator
with Coulomb potential, the radial part of the operator is considered. Before
proceeding, from now on, for simplicity, by the radial Dirac operator (eigen-
value problem) we shall mean the radial Dirac operator (eigenvalue problem)
with Coulomb potential. The radial Dirac eigenvalue problem is obtained by
separation of variables of the radial and angular parts, i.e., by assuming u(x) =
1
r

(
f(r)Zκ,m($, θ)
i g(r)Z−κ,m($, θ)

)
, where r represents the radial variable, f and g are

the Dirac radial functions referred to as the large and small components respec-
tively, and Z·,m is the angular part of the wave function u. The radial Dirac
eigenvalue problem is then given by

Hκϕ(r) = λϕ(r) , where (8)

Hκ =




mc2 + V (r) c
(
− d

dr
+
κ

r

)

c
( d
dr

+
κ

r

)
−mc2 + V (r)


 and ϕ(r) =

(
f(r)
g(r)

)
. (9)

As defined before, λ is the relativistic energy, V (r) = −Z/r is the radial
Coulomb potential, and κ is the spin-orbit coupling parameter defined as κ =
(−1)+`+ 1

2 ( + 1
2), where  and ` are the total and orbital angular momentum

numbers respectively.
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3 Computation of the eigenvalues of the Dirac operator

Accurate and stable computation of the electron energies (eigenvalues) in single-
electron systems (Hydrogen-like ions) is of vital interest in many applications.
Approximation of electron eigenvalues in many-electron systems, as in Helium-
like ions, is based on studying quantum electrodynamic effects (QED-effects).
QED-effects are known as a perturbation procedure which mainly concerns the
interactions between the existing electrons in the system where these interac-
tions are used to measure the electron correlation. An approach for calculating
QED-effects, see [31, 40], is based on a basis set of eigenstates of Hydrogen-like
ions (the radial Dirac operator). The main difficulty in computing the eigenval-
ues of the radial Dirac operator is the presence of unphysical values (eigenvalues
that do not match the physical observations) among the genuine eigenvalues.
These values are considered as a pollution to the spectrum and known as spu-
rious eigenvalues. The spurious eigenvalues result in oscillations in the wave
functions and the emergence of states that originally do not exist. In many
cases, this will substantially reduce the computation reliability of the basis set
(partially or may be completely) in the practical atomic calculations.

The spuriosity problem in the computation of the radial Dirac operator eigen-
values is a challenging issue which makes obtaining accurate and stable compu-
tation for these eigenvalues a field of study by itself. Spurious eigenvalues are
reported in most computational methods of eigenvalue problems, whether it is
the finite element method (FEM), the finite difference method (FDM), the spec-
tral domain approach (SDA), the boundary element method (BEM), the point
matching method (PMM), or, further, the meshfree methods (MMs). Thus,
spuriosity is an effect of the numerical methods and is found in the compu-
tational solution of many problems, rather than the Dirac eigenvalue problem
[1, 38, 43], such as electromagnetic problems [34, 42] and general eigenvalue
problems [60].

Below we present a classification of the spuriosity in the computation of the
radial Dirac operator eigenvalues and its causes, we also explain the occurrence
of spuriosity in the computation of general eigenvalue problems. We present
some stable approaches for accurate computations with complete removal of
spurious eigenvalues.

3.1 Spurious eigenvalues in the computation

We classify the spuriosity in the computation of the eigenvalues of the radial
Dirac operator in two categories

(i) The instilled spuriosity.
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(ii) The unphysical coincidence phenomenon.

The first category consists of those spurious eigenvalues that may occur within
the genuine eigenvalues (they occur between the true energy levels). This type
of spuriosity occurs for all values of the quantum number κ. The second type is
the unphysical assigning of almost the same first eigenvalue (or almost the same
entire set of eigenvalues) for 2s1/2(κ = −1) and 2p1/2(κ = 1), 3p3/2(κ =
−2) and 3d3/2(κ = 2), 4d5/2(κ = −3) and 4f5/2(κ = 3), and so on. To
clarify, consider the computation of the electron eigenvalues in the Hydrogen
atom using the FEM with linear basis functions (hat functions) given in Table 1,
see Paper I in the appendix.

Table 1: The first computed eigenvalues, given in atomic unit, of the electron in
the Hydrogen atom for point nucleus.

Level κ = 1 κ = −1 Exact, κ = −1

1 -0.50000665661 -0.50000665659 -0.50000665659
2 -0.12500208841 -0.12500208839 -0.12500208018
3 -0.05555631532 -0.05555631532 -0.05555629517
V -0.03141172061 -0.03141172060 Spurious Eigenvalue
4 -0.03118772526 -0.03118772524 -0.03125033803
5 -0.01974434510 -0.01974434508 -0.02000018105

The shaded value in the first level of Table 1 is what meant by the unphysical
coincidence phenomenon, and the other two shaded values are the so-called
instilled spuriosity. The right column contains the exact eigenvalues for κ = −1
obtained using the relativistic formula.

3.1.1 Spuriosity in general eigenvalue problems

The numerical computation of the eigenvalue problems that is based on the pro-
jection method onto finite dimensional subspaces is often polluted by the pres-
ence of spurious eigenvalues [7]. The spurious eigenvalues appear particularly
in the computation for those problems with eigenvalues in gaps of their essential
spectrum. To understand why the projection method generates spurious eigen-
values, consider a self-adjoint operator T defined on a Hilbert space T , and
consider an orthogonal projection Π : T → L, where L is a finite dimensional
subspace of D(T ). Let z ∈ C and define

Θ(z) = min
f∈L
f 6=0

‖Π(z − T )f‖T

‖f‖T
. (10)

6



If Θ(µ) = 0, then µ = µ(L) is a solution to the Rayleigh-Ritz problem

µ = min
dim(S)=k

S⊆L

max
g∈S

R(g) = min
dim(S)=k

S⊆L

max
g∈S

〈Tg, g〉
‖g‖2

T

, (11)

where the opposite of the assertion is also true. Moreover, by assuming Θ(µ) =
0, we conclude that there exists f0 ∈ L such that

(µ− T )f0⊥L, (12)

which particularly means that R(f0) = µ. Thus µ is close to the point spec-
trum σp(T ). But, generally, as ‖(µ − T )f‖T /‖f‖T is not necessary small for
f = f0, any other f ∈ L, or any f ∈ T , then (12) does not guarantee that µ is
close to the spectrum σ(T ) of T .

To verify the above theory, consider the following operator, see [7],

(Tf)(x) = sgn(x)f(x), (13)

defined on T = L2(−π, π), where sgn(x) = x/|x|. Since ‖T‖ = 1, then
σ(T ) ⊆ [−1, 1], but for µ ∈ (−1, 1), the resolvent operator (T − µ)−1 is well-
defined and bounded, therefore σ(T ) ⊆ {−1, 1}. However, it is easy to show
that ±1 are eigenvalues of T , these two eigenvalues are of infinite multiplicity,
i.e., N(µ − T ) is infinite, µ = ±1. Thus these two eigenvalues belong to
σess(T ). On the other hand, if L ⊂ T is spanned by the set of Fourier basis
{ϕ−n, ϕ−n+1, . . . , ϕn−1, ϕn}, given by

ϕj(x) =
1√
2π
e−ijx, j = −n,−n+ 1, . . . , n− 1, n, (14)

then, the Galerkin approximation applied to T in the finite dimensional subspace
L implies that µj(T,L) are the eigenvalues of the (2n + 1) × (2n + 1) matrix
A with entries (ajk) defined as

ajk =
∫ π

−π
sgn(x)ϕj(x)ϕk(−x) dx =

{
0, for k − j even,
−2i

π(k−j) , for k − j odd. (15)

The matrix A looks like

A =




0 N 0 N . . . 0
N 0 N 0 . . . N
0 N 0 N . . . 0

N 0 N
. . . . . . N

...
. . .

...
0 N 0 N . . . 0




, (16)
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here the letter N is used just to refer to a quantity different from zero (i.e., a
number) and does not mean that these quantities are equal. It is clearly that
A consists of n + 1 columns (the first set) whose odd entries are zero, and n
columns (the second set) whose even entries are zero. If we disregard the zero
entries (which are only n+1 entries) in each element of the first set, then we end
with a set V = {v1, v2, . . . , vn+1}where vi ∈ Rn, i = 1, 2, . . . , n+1. The set V
is clearly linearly dependent, therefore the columns of the first set of the matrix
A is linearly dependent, hence 0 ∈ σ(A). This, of course, violates the fact that
0 ∈ Res(T ), where Res denotes the resolvent set. In this case, we conclude
that 0 is a spurious eigenvalue that appears in the computed spectrum of the
operator T caused by applying the projection method onto the finite dimensional
subspace L.

3.1.2 Spuriosity in the Dirac eigenvalue problem

The occurrence of the instilled spurious eigenvalues is a general phenomenon of
the projection method in the numerical computations, thus the previous discus-
sion can be considered as a good explanation for this type of spuriosity. Below
we discuss the unphysical coincidence phenomenon as explained in [52].

Consider the radial Dirac eigenvalue problem (8), after applying the shift by
−mc2 and assuming m = 1, it can be rewritten in the same form as (8) but with

Hκ =
(

V (r) c
(
− d

dr + κ
r

)

c
(

d
dr + κ

r

)
−2c2 + V (r)

)
, (17)

where the eigenvalues are also shifted but kept denoted as λ. Define the follow-
ing transformation

Uκ =
(

1 Uκ

Uκ 1

)
, (18)

where Uκ = −Zκ
c|κ|(|κ|+ς) , with ς =

√
κ2 − Z2/c2. We apply the above transfor-

mation to the radial function ϕ(r) given by (9) to get

ϕ̃κ(r) = Uκ

(
f(r)
g(r)

)
=
(
f(r) + Uκg(r)
g(r) + Uκf(r)

)
=:
(
f̃κ(r)
g̃κ(r)

)
. (19)

Using this transformation one can write

U−1
κ HκU−1

κ ϕ̃κ(r) = λκU−2
κ ϕ̃κ(r). (20)
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By (20), and after adding the term c2(1 − |κ|
ς )U−2

κ ϕ̃κ(r) to its both sides, the
radial Dirac eigenvalue problem, (8), can be written in the form

Hκ,µϕ̃κ(r) = µκU−2
κ ϕ̃κ(r), (21)

where the operator Hκ,µ is defined by

Hκ,µ = U−1
κ HκU−1

κ +4µκU−2
κ =

(
0 cB+

κ

cBκ −2c2

)
, (22)

and where4µκ = c2(1− |κ|
ς ), µκ = λκ+4µκ,Bκ = d/dr+ςκ/(|κ|r)−Z/κ,

and B+
κ = −B−κ. The same projection Uκ can be applied to the Galerkin

formulation of the radial Dirac eigenvalue problem in a finite dimensional sub-
space. In other words, if both radial functions f and g are expanded in a finite
orthonormal basis set (orthonormal is assumed for simplicity, and it is not a re-
quirement, since we can normalize, by a suitable linear transformation, any set
of basis functions without changing the spectrum), then the above transforma-
tion applied to the discretization of the Galerkin formulation of the radial Dirac
eigenvalue problem yields

(Hκ,µ)ij(ϕ̃κ)ij = µκU−2
κ (ϕ̃κ)ij . (23)

Here we have used the notation ()ij to denote for the matrices (regardless their
sizes) obtained from the Galerkin formulation. The vector (ϕ̃κ)ij = ((f̃κ)ij ,
(g̃κ)ij)t is the unknowns, and the matrix (Hκ,µ)ij is given by

(Hκ,µ)ij =
(

0 c(B+
κ )ij

c(Bκ)ij −2c2

)
, (24)

where (Bκ)ij is the matrix of elements resulted from the discretization of the
Galerkin formulation on the finite basis set.
We multiplying (23) from left by the matrix

Aκ =
(
Aκ 0
0 −A+

κ

)
, (25)

where Aκ = (Bκ)ij − µκκZ/(|κ|c2ς) and A+
κ = (B+

κ )ij − µκκZ/(|κ|c2ς), to
get

(H−κ,µ)ijAκ(ϕ̃κ)ij = µκU−2
−κAκ(ϕ̃κ)ij , (26)

where we have used the fact that

Aκ

(
(Hκ,µ)ij − µκU−2

κ

)
=
(
(H−κ,µ)ij − µκU−2

−κ

)
Aκ. (27)
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Now we define the normalization factor Nκ as

Nκ = 〈Aκ(f̃κ)ij , Aκ(f̃κ)ij〉+ 〈A+
κ (g̃κ)ij , A

+
κ (g̃κ)ij〉, (28)

here 〈·, ·〉 is the scalar product of vectors in the Euclidean space. Then for µκ 6=
0, the eigenfunctions of (Hκ,µ)ij and (H−κ,µ)ij are related by the following
equation

(ϕ̃−κ)ij = Aκ(ϕ̃κ)ij/
√

Nκ. (29)

Substituting (29) in (26) yields

(H−κ,µ)ij(ϕ̃−κ)ij = µκU−2
−κ(ϕ̃−κ)ij . (30)

Thus by (23) and (30), the nonzero eigenvalues of Hκ and H−κ would coin-
cide in the finite basis set. Since (H−κ,µ)ij and (H−κ,µ)ij are of the same size,
then the number of their zero eigenvalues is the same. To conclude, the eigen-
values of Hκ and H−κ would coincide in the projection method onto the finite
dimensional subspaces in the numerical computations.

3.1.3 More on spuriosity in the Dirac eigenvalue problem

Most of computational methods of the eigenvalues of the radial Dirac operator
consent that incorrect balancing and symmetric treatment of the large and small
components of the wave function are the core of the problem [1, 38, 43]. We re-
late the occurrence of spuriosity of both categories to unsuitable computational
spaces and to the symmetric treatment of the trial and test functions in the weak
formulation of the equation. To get more understanding, we rewrite (8) to obtain
explicit formulae for the radial functions f and g, see Paper I in the appendix,

f ′′(x) + γ1(x, λ)f ′(x) + γ2(x, λ)f(x) = 0 , (31)

g′′(x) + θ1(x, λ)g′(x) + θ2(x, λ)g(x) = 0, (32)

where

γ1(x, λ) = − V ′(x)
w−(x)− λ

, θ1(x, λ) = − V ′(x)
w+(x)− λ

,

γ2(x, λ) =

(
w+(x)− λ

)(
w−(x)− λ

)

c2
− κ2 + κ

x2
− κV ′(x)
x
(
w−(x)− λ

) ,

θ2(x, λ) =

(
w+(x)− λ

)(
w−(x)− λ

)

c2
− κ2 − κ

x2
+

κV ′(x)
x
(
w+(x)− λ

) ,
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andw±(x) = ±mc2+V (x). It is a well-known fact that the numerical methods
are not stable when they are applied to convection dominated problems causing
the solution to be disturbed by spurious oscillations. The following two cri-
teria are frequently used to determine whether a given equation is convection
dominated. Let

Pej =
|uj |hj

2K
and Daj =

sjhj

|uj |
, (33)

where Pej and Daj are known as the grid Peclet and Damköhler numbers
respectively, hj is the size of the element interval Ij , uj and sj are respec-
tively the coefficients of the convection and reaction terms corresponding to
Ij , and K is the diffusivity size. In general, when the convection coefficient
or the source term is larger than the diffusion coefficient, i.e., when Pej > 1
or 2PejDaj = (sjh

2
j/K) > 1, then the associated equation is a convection

dominated one.
For both (31) and (32), the quantity 2PeDa admits very large values if small

number of nodal points in the discretization of the weak form is considered re-
gardless the sizes of |λ|, Z, and κ. Even with mesh refinement (increasing the
number of nodal points), 2PeDa still admits very large values. For (31), Pe
is always less than one. As for (32), even with mesh refinement, Pe admits a
value greater than one, see Paper II in the appendix for more details. Therefore,
(31) and (32) are convection dominated equations. This means that the approx-
imated solutions, f and g, will be disturbed by unphysical oscillations, these
oscillations in the eigenfunctions are the cause of spurious eigenvalues.

3.2 Stable computation of the eigenvalues

In the coming discussion we present mesh-based and meshfree stable approaches
for the approximation of the radial Dirac operator eigenvalues. As a mesh-based
approach we use the finite element method (FEM), and as a meshfree approach
we apply the hp-cloud method [17, 61]. For the purpose of obtaining stabil-
ity scheme based on Petrov-Galerkin formulation with stability parameters for
the particular problem, the hp-cloud method applied in this work is based on
the Galerkin formulation. This means a background mesh must be employed in
evaluating the integrals in the weak form, hence, the hp-cloud method used here
is not really a truly meshfree method (MM). Therefore, the FEM and Galerkin-
based hp-cloud method are similar in principle, while the latter approach can be
regarded as a generalization of the FEM.

Based on (31) and (32), the radial functions f and g are continuous and have
continuous first derivatives. Thus, the suitable choice of computational spaces
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for the radial Dirac eigenvalue problem should possess these properties. Then,
with homogeneous Dirichlet boundary condition for both radial functions, the
proposed space is H(Ω) := C1(Ω) ∩H1

0 (Ω). Note that, except the states 1s1/2

and 2p1/2, the radial functions are vanishing on the boundary in a damping
way, consequently homogeneous Neumann boundary condition should be taken
into account. Meanwhile, the upper boundary of the states 1s1/2 and 2p1/2 is
treated as the others, but the first derivative of these states at the lower boundary
is not zero, see e.g. [41]. For simplicity and to avoid further remarks, in the
discussion below, general boundary conditions are assumed for all states, that is,
homogeneous Dirichlet boundary condition. Thus the spaceH(Ω) is considered.
However, for better rate of convergence of the approximation of the radial Dirac
operator eigenvalues, the suitable Neumann boundary conditions, as discussed
above, should be also implemented.

In our computation using the FEM, we use cubic Hermite basis functions,
these functions treat also the first derivative values of the approximated function
at the nodal values. Therefore, homogeneous Neumann boundary condition can
be easily implemented by omitting the two basis functions that treat the function
first derivative at the boundary nodal points, see the discussion below. Hence, in
the approximation of the eigenvalues of the radial Dirac operator using the FEM,
homogeneous Neumann boundary condition, as well homogeneous Dirichlet
boundary condition, is implemented for all states. For the approximation using
hp-cloud method, homogeneous Dirichlet boundary condition is only consid-
ered.

Since the radial Dirac eigenvalue problem is a convection dominated prob-
lem, the FEM and hp-cloud method for this problem will be unstable, thus the
occurrence of spurious eigenvalues. To stabilize the computation and to get
red of spurious eigenvalues completely, finite element Petrov-Galerkin (FEPG)
(called also Streamline Upwind Petrov-Galerkin (SUPG)) [2, 14, 27] and hp-
cloud Petrov-Galerkin (hp-CPG) (a technique of the general meshfree local
Petrov-Galerkin (MLPG) methods [3, 18, 30]) methods are used. Apart from
mesh consideration, the principle of FEPG method is similar to that of hp-CPG
method, while the two methods mainly vary in the set of basis functions. The
FEPG and hp-CPG methods are used to introduce artificial diffusion terms in
the weak formulation of the equation to stabilize the approximated solution in
a consistent way so that the solution of the original problem is also a solution
to the weak form. The size of the added diffusivity is controlled by a stability
parameter that is derived for the particular problem we consider.

12



To set the scheme, let Vh be a finite dimensional subspace spanned by a
suitable C1-basis set on a partition kh of the domain Ω, where exponentially
distributed nodal points are assumed to get sufficient information about the ra-
dial functions behavior near the origin where they oscillate heavily compared to
regions away from it. We consider the weak form of the radial Dirac eigenvalue
problem ∫

Ω
utHκϕdr = λ

∫

Ω
utϕdr , (34)

where, we recall that, Hκ is the radial Dirac operator given by

Hκ =




mc2 + V (r) c
(
− d

dr
+
κ

r

)

c
( d
dr

+
κ

r

)
−mc2 + V (r)


 , (35)

and ϕ is the radial function given by

ϕ(r) =
(
f(r)
g(r)

)
. (36)

The usual Galerkin formulation is to consider the test function u in the weak
form above as (v, 0) and (0, v), where v as well f and g is an element of Vh.
The FEPG and hp-CPG methods are formulated by considering u in (34) as
(v, τv′) and (τv′, v), where v′ means dv/dr and τ is the stability parameter
that controls the size of the artificial diffusivity. The stability parameter τ is
the main challenge in constructing the stability scheme and its derivation is the
major task.

The derivation of τ assumes leading simplification; the operator limit as the
radial variable r → ∞. This presumable simplification is inevitable and justi-
fiable: The derivation leads to an approximation of the limit point eigenvalue
depending on τ which can be compared to the theoretical limit [22]. Thus, min-
imizing the error between these two limits provides τ . By considering the limit
operator at infinity, we consider the part that includes the convection terms of
the operator which are mostly needed to be stabilized. Besides that, the stability
parameter should be applicable at all positions, particularly for the large values
of r. The derivation also considers the dominant terms with respect to the speed
of light, c, as another minor simplification.
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3.2.1 The FEPG approximation

In the FEPG method we let Vh be spanned by the cubic Hermite basis functions

φj,1(x)=

{ 1
h2

j
(x− xj−1)2 − 2

h3
j
(x− xj−1)2(x− xj) , x ∈ Ij ,

1− 1
h2

j+1
(x− xj)2 + 2

h3
j+1

(x− xj)2(x− xj+1) , x ∈ Ij+1 ,

φj,2(x)=

{ 1
h2

j
(x− xj−1)2(x− xj) , x ∈ Ij ,

(x− xj)− 1
hj+1

(x− xj)2 + 1
h2

j+1
(x− xj)2(x− xj+1) , x ∈ Ij+1 .

These functions are continuous and admit continuous first derivatives, so they
satisfy the continuity properties of the space H(Ω). Moreover, they consist of
two different bases, one treats the function values and the other treats the func-
tion first derivative values at the nodal points, see Figure 1. Thus any function
w ∈ Vh can be written as

w(r) =
n∑

j=1

wjφj,1(r) +
n∑

j=1

w′jφj,2(r), (37)

where wj and w′j are respectively the function and the function first derivative
values at the node rj , and n is the number of type one basis functions φ.,1 (which
is the same as the number of type two basis functions φ.,2) in the basis set.
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Figure 1: The CH basis functions with uniformly distributed nodal points (to
the left), and non-uniformly distributed nodal points (to the right).

To treat the homogeneous Dirichlet boundary condition, the two basis func-
tions of type φ·,1 at the boundary nodal points are omitted. Also, for simplicity,
we omit the two basis functions of type φ·,2 at the boundary nodes, thus homo-
geneous Neumann boundary condition is also implemented. In the weak for-
mulation (34), let v, f, g ∈ Vh, this leads to the generalized eigenvalue problem

AX = λBX . (38)
The perturbed block matrices are given by A = A + τA and B = B + τB,
where A and B are the matrices obtained from the FEM, and A and B are the
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matrices obtained as a result of the correction part, τv′, in the test function. Note
that τ must be correlated with the size of the generated mesh, i.e., for a fine-
structure mesh we expect τ to be relatively small compared to a coarse mesh.
On the other hand, to avoid the occurrence of complex eigenvalues, τ should
not be large compared to the mesh size. These properties are clear from the
representation of τ given by the following theorem, see Paper I in the appendix.

Theorem 1 Considering the behavior of the eigenvalues as r tends to infinity,
together with the dominant terms with respect to the speed of light, the mesh-
dependent stability parameter, τj , for an arbitrary jth row of the matrices A and
B in the generalized eigenvalue problem (38) has the form

τ := τj ∼=
9
35
hj+1

(hj+1 − hj)
(hj+1 + hj)

, (39)

where hj is the displacement between the nodes rj and rj−1.

Below, a numerical example of the computation of the eigenvalues of the
electron in the Hydrogen-like Magnesium ion using the FEPG method is pre-
sented for κ = ±2. Note that, in all our computations, the eigenvalues are given
in atomic unit. Table 2 shows the computation using the FEM with linear basis
functions with 400 interior nodal points for point nucleus. Table 3 shows the
same computation with the stability scheme.

Table 2: The first computed eigenvalues of the electron in the Hydrogen-like
Magnesium ion using the FEM with linear basis functions for point nucleus.

Level κ = 2 κ = −2 Exact, κ = −2

1 -18.0086349982 -18.0086349982 -18.0086349982
2 -8.00511829944 -8.00511829944 -8.00511739963
3 -4.50270135222 -4.50270135225 -4.50269856638
V -2.88546212211 -2.88546212205 Spurious Eigenvalue
4 -2.88155295096 -2.88155295095 -2.88154739168
5 -2.00096852250 -2.00096852249 -2.00095939879
6 -1.47003410346 -1.47003410350 -1.47002066823
V -1.13034880166 -1.13034880167 Spurious Eigenvalue
7 -1.12545691681 -1.12545691683 -1.12543844140
8 -.889228944495 -.889228944484 -.889204706429
9 -.720265553198 -.720265553187 -.720234829539
V -.600492562625 -.600492562622 Spurious Eigenvalue
10 -.595258516248 -.595258516277 -.595220579682
11 -.500185771976 -.500185772005 -.500139887884
12 -.426201311278 -.426201311300 -.426146735771
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Table 3: The first computed eigenvalues of the electron in the Hydrogen-like
Magnesium ion using the stability scheme for point nucleus.

Level κ = 2 κ = −2 Exact, κ = −2

1 -18.0086349985 -18.0086349982
2 -8.00511739978 -8.00511740020 -8.00511739963
3 -4.50269856669 -4.50269856719 -4.50269856638
4 -2.88154739219 -2.88154739270 -2.88154739168
5 -2.00095939948 -2.00095939991 -2.00095939879
6 -1.47002066888 -1.47002066924 -1.47002066823
7 -1.12543844176 -1.12543844201 -1.12543844140
8 -.889204706068 -.889204706109 -.889204706429
9 -.720234827833 -.720234827687 -.720234829539
10 -.595220575840 -.595220575531 -.595220579682
11 -.500139880950 -.500139880357 -.500139887884
12 -.426146724530 -.426146723650 -.426146735771
13 -.367436809137 -.367436807839 -.367436826403
14 -.320073519367 -.320073498169 -.320073665658
15 -.281295132797 -.281293164731 -.281311119433

In Table 4, the computation is performed for extended nucleus using uni-
formly distributed charge with 397 interior nodal points, where 16 nodal points
are considered in the domain [0 , R] (R is the radius of the nucleus).

Table 4: The first computed eigenvalues of the electron in the Hydrogen-like
Magnesium ion using the stability scheme for extended nucleus.

Level κ = 2 κ = −2 Exact, κ = −2

1 -18.0086349986 -18.0086349982
2 -8.00511739975 -8.00511740015 -8.00511739963
3 -4.50269856673 -4.50269856733 -4.50269856638
4 -2.88154739230 -2.88154739279 -2.88154739168
5 -2.00095939956 -2.00095940014 -2.00095939879
6 -1.47002066903 -1.47002066934 -1.47002066823
7 -1.12543844179 -1.12543844207 -1.12543844140
8 -.889204706021 -.889204706003 -.889204706429
9 -.720234827640 -.720234827433 -.720234829539
10 -.595220575309 -.595220574883 -.595220579682
11 -.500139879906 -.500139879215 -.500139887884
12 -.426146722827 -.426146721812 -.426146735771
13 -.367436806543 -.367436805088 -.367436826403
14 -.320073514034 -.320073492344 -.320073665658
15 -.281294966822 -.281292979627 -.281311119433

Note that the exact eigenvalues in the tables above (as well in the computations
below) are obtained, of course for point nucleus, using the relativistic formula.
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3.2.2 The hp-CPG approximation

The hp-Cloud basis functions are obtained using moving least-squares (MLS)
approximation method which allows polynomial enrichment and desired funda-
mental characters of the sought solution to be constructed in the approximation.
The hp-Cloud basis functions take the form

ψj(r) = P t(r)M−1(r)ϕj(
r − rj
ρj

)P (rj)ψj , (40)

where M(r) =
n∑

j=1

ϕj(
r − rj
ρj

)P (rj)P t(rj) is the momentum matrix, P is a

vector of intrinsic enrichments, ϕj is a weight function, and ρj is the dilation
parameter that controls the support of the weight functions.

The weight function ϕj is the main feature in the definition of ψj , it is needed
to be C1-function in order to guarantee the continuity property of the space
H(Ω). For this purpose, we will consider quartic spline (which is aC2-function)
as a weight function defined as

ϕ(r̆) =
{

1− 6r̆2 + 8r̆3 − 3r̆4 , r̆ ≤ 1,
0 , r̆ > 1,

(41)

where r̆ = |r−rj |
ρj

. While the set of functions {ψj}n
j=1 builds a partition of

unity (PU) (
∑n

j=1 ψj(r) = 1, for all r ∈ Ω), the set of their first derivatives

{ψj,r}n
j=1 = {dψj(r)

dr }n
j=1 builds a partition of nullity (PN) (

∑n
j=1 ψj,r(r) = 0

for all r ∈ Ω), see Figure 2.
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Figure 2: PU hp-clouds (to the left) and their PN first derivatives (to the right).
Quartic spline is used as a weight function.

The invertibility of M depends on ρj , as ρj gets smaller as the matrixM has
more tendency to be singular. So, in order to maintain the invertibility of M , it
is necessary to keep ρj sufficiently large. However, ρj can be chosen fixed or
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arbitrary, in this work we consider (exponentially distributed nodal points are
used)

ρj = ν ·max{hj , hj+1} = νhj+1, (42)

where ν is the dimensionless size of the influence domain [29] which is chosen
to be fixed in our computation. Note that the maximum in (42) is crucial to
guarantee less possibility for singularity ofM . The choices of ν are constrained
by two restrictions; the values of ν should not be very small to ensure that any
region is covered by at least two clouds, thus the invertibility ofM . On the other
hand, the values of ν should not be very large to guarantee the local character
of the approximation. Noting that as ν→1, the hp-cloud, ψj , will act as a finite
element basis function, and thus the features of the hp-cloud approximation are
gradually lost. The optimal choices of ν are left undetermined in general, but
they can be individually specified for each problem by running numerical ex-
periments [32, 59]. For the computation of the radial Dirac eigenvalue problem,
for ν ∈ [2.2, 2.7] good approximation is achieved, see Figure 5, with complete
elimination of the spurious eigenvalues.

The intrinsic enrichment basis vector P is a very important ingredient in the
construction of the hp-cloud functions. Using the vector P , all fundamental
features of the sought solution as well as singularities and discontinuities can
be inherited by the hp-cloud basis functions. This distinguishes the hp-cloud
approximation by solving particular problems where much care is needed about
the approximated solution such as solving equations with rough coefficients,
problems with high oscillatory solutions, or eigenvalue problems that admit
spurious eigenvalues. Note that yet another type of enrichment, called extrinsic
enrichment, can be considered in the construction of the hp-cloud functions, but
this type of enrichment is not adequate when applying the hp-CPG method [3].
Thus, in this work, extrinsic enrichment is not considered.

The number and type of the intrinsic enrichment functions in the basis set
P can be chosen arbitrary for each cloud [20, 33], but for practical reasons
(lowering both the condition number of M and the computational costs) we
shall assume P (x) = [1, p1(x)], where the choices of p1(x) follow two main
properties; since ψj is needed to be a C1-function, which is guaranteed only if
both the weight function ϕj and the elements of P are also in C1, p1(x) should
be a C1-function as well. Secondly, p1(x) should possess the global behavior
of the electron motion.

Slater type orbital functions (STOs) and Gaussian type orbital functions
(GTOs) provide good description of the electron motion [10, 24]. But the
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quadratic term in the exponent of GTOs causes some numerical difficulty, in the
sense that, the matrix M rapidly becomes poorly conditioned, this is also what
is observed when applying quadratic basis enrichments, see [5]. Consequently,
STOs are considered as the intrinsic enrichment of the hp-cloud functions, thus
p1(x) can have, e.g., one of the following forms

exp(−x), x exp(−x/2), x(1− x/2) exp(−x/2), . . . etc.

Other possible intrinsic enrichments for the computation of the radial Dirac op-
erator eigenvalues can be found in Paper II in the appendix. In the computations
presented below, we consider p1(x) = x(1− x/2) exp(−x/2).

The boundary conditions need special treatment: For the computation of the
radial Dirac eigenvalue problem we assume homogeneous Dirichlet boundary
condition, while it is well-known that imposition of essential boundary condi-
tions (EBCs) in MMs, in general, is a difficulty which needs to be treated with
care. The reason is that the meshfree basis functions lack the Kronecker delta
property (ψj(ri) 6= δji), thus EBCs are not directly imposed as for the FEM.
To circumvent this difficulty, a coupling with finite element basis functions is
considered, see Figure 3. By coupling with finite element basis functions at
the lower and upper boundaries, the imposition of the homogeneous Dirichlet
boundary condition is straightforward, e.g., by eliminating the two finite ele-
ment basis functions at the boundary nodes.
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Figure 3: Coupled hp-cloud and finite element functions: general coupling (to
the left), and coupling for the purpose of imposing EBCs (to the right) (two
finite element shape functions are sufficient). Linear functions are used as finite
element functions, and quartic spline as a weight function in the hp-clouds.

Two efficient approaches of coupling MMs with FEM are coupling with
Ramp functions [4] and coupling with reproducing conditions [25]. Using the
former one, the derivative of the coupled approximation function on the bound-
ary of the interface region, Ωtsn in Figure 3, is discontinuous, for this reason we
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use the latter coupling approach, see e.g. [19]. The coupled hp-cloud and finite
element function with the reproducing conditions is given as

ψj(r) =
(
P t(r)− Gj(r)P t(rj)χΩFEM(rj)

)
M−1(r)ϕj(

r−rj

ρj
)×

×P (rj)χΩMM(rj)ψj + Gj(r)χΩFEM(rj)ψj ,
(43)

where χΩFEM and χΩMM are respectively the characteristic functions of the do-
mains ΩFEM and ΩMM, see Figure 3, and Gj is the finite element function.

To enhance the stability of the computation and to maintain the accuracy that
may be affected or lost due to the round-off error, and also to get a lower con-
dition number for the matrix M , the origin should be shifted to the evaluation
point in the meshfree basis functions in general [19, 26, 29].

After constructing the hp-cloud basis functions, the hp-CPG method is for-
mulated by assuming the weak form (34) where u, as before, takes the forms
(v, τv′) and (τv′, v), and v, f, g ∈ Vh, where Vh is now spanned by a set of
functions of the form (43). This yields similar generalized eigenvalue problem
as of (38). The stability parameter, τ , is now different from the one given by
Theorem 1, and can be considered as a generalization of it. The same principle
as in Theorem 1 is used in deriving τ by using the hp-cloud basis functions. The
following theorem provides the representation of τ which will be still denoted
by the same notation.

Theorem 2 Let M000 and M100 be the n × n matrices (n is the number of
hp-cloud basis functions) defined as

(M000)ij =
∫

Ω
ψj ψi dr, and (M100)ij =

∫

Ω
ψj ψ

′
i dr, (44)

and let σji and ηji be the corresponding entries respectively. Define ϑ as

ϑji =





−
j∑

k=i+1

hk , i < j,

0 , i = j,
i∑

k=j+1

hk , i > j,

where hk is the displacement between the adjacent nodes rk and rk−1. Then the
stability parameter, τj , for an arbitrary jth row of the matrices A and B in the
generalized eigenvalue problem (38) is given by

τ := τj =
∣∣∣

n∑

i=1

σjiϑji

/ n∑

i=1

ηjiϑji

∣∣∣. (45)
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The advantage of the hp-CPG stability parameter (45) is that it can be applied
for general basis functions and not for particular ones as of the FEPG stability
parameter (39).

Remark 1 To capture the behavior of the radial functions near the origin where
they oscillate heavily compared to regions away from it, the computation of the
radial Dirac operator eigenvalues requires, as we mentioned before, exponen-
tially distributed nodal points. In this regard, the following formula is used to
discretize Ω

ri = exp
(
ln(Ia + ε) +

( ln(Ib + ε)− ln(Ia + ε)
n

)
i
)
− ε , i = 0, 1, 2, . . . , n,

(46)
where n is the total number of nodal points, Ia and Ib are the lower and upper
boundaries of Ω, and ε ∈ [0 , 1] is the nodes intensity parameter. The main
role of ε is to control the intensity of the nodal points close to the origin (Ia).
As ε gets smaller as more nodes are dragged to the origin. In Paper II in the
appendix, a study is carried out concerning the suitable choices of ε, it is shown
that the most appropriate values for ε that provide good results are in the interval
[10−6 , 10−4].

The results of the computation using the hp-CPG method with the stability
parameter (45) are presented in Tables 5 and 6. In Table 5, the approximated
eigenvalues of the electron in the Hydrogen-like Ununoctium ion are obtained
using the usual and the stabilized hp-cloud methods. The computation is ob-
tained at ρj = 2.2hj+1, ε = 10−5, and n = 600. In the hp-cloud method,
the instilled spurious eigenvalues appear for both positive and negative κ (the
two shaded values in the fourteenth level). Also the the so-called unphysical
coincidence phenomenon occurs for the positive κ (the shaded value in the first
level). Note that these spurious eigenvalues are removed by the stability scheme.

Table 6 represents the stabilized hp-cloud approximation of the electron in
the Hydrogen-like Ununoctium ion with different numbers of nodal points. The
convergence rate of the first five eigenvalues is studied in Figure 4. In Figure 4,
h is the maximum of the distances between the adjacent nodes, which equals to
hn = rn − rn−1 for exponentially distributed nodal points. It can be verified
from the figure that the convergence rates of the approximation of the first five
eigenvalues, λ1, λ2, . . . λ5, are nearly 3.09, 2.66, 2.62, 2.59, and 2.56 respec-
tively.
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Table 5: The first computed eigenvalues of the electron in the Hydrogen-like
Ununoctium ion using the hp-cloud and hp-CPG methods for point nucleus.

Level hp-cloud hp-cloud Exact hp-CPG hp-CPG
κ = 2 κ = −2 κ = −2 κ = −2 κ = 2

1 -1829.6307 -1829.6307 -1829.6307 -1829.6283
2 -826.76981 -826.76981 -826.76835 -826.77147 -826.77388
3 -463.12149 -463.12149 -463.11832 -463.12471 -463.12611
4 -294.45523 -294.45523 -294.45098 -294.45915 -294.46006
5 -203.24689 -203.24689 -203.24195 -203.25115 -203.25179
6 -148.55882 -148.55882 -148.55344 -148.56324 -148.56372
7 -113.25360 -113.25360 -113.24791 -113.25808 -113.25845
8 -89.163854 -89.163854 -89.157945 -89.168323 -89.168622
9 -72.004533 -72.004533 -71.998465 -72.008947 -72.009194
10 -59.354813 -59.354813 -59.348624 -59.359134 -59.359342
11 -49.764290 -49.764290 -49.758009 -49.768490 -49.768669
12 -42.321471 -42.321471 -42.315117 -42.325523 -42.325679
13 -36.430396 -36.430396 -36.423983 -36.434277 -36.434414
14 -33.965028 -33.965028 -31.681730 -31.691878 -31.692001
15 -31.688189 -31.688189 -27.808134 -27.818109 -27.818219

Table 6: The first computed eigenvalues of the electron in the Hydrogen-like
Ununoctium ion for κ = −2 for point nucleus with different number of nodes,
where ν = 2.2 and ε = 10−5 are used.

Level n = 200 n = 400 n = 600 n = 800 n = 1000 Exact, κ = −2

1 -1829.5628 -1829.6224 -1829.6283 -1829.6297 -1829.6302 -1829.6307
2 -826.82670 -826.77726 -826.77147 -826.76987 -826.76923 -826.76835
3 -463.23292 -463.13630 -463.12471 -463.12146 -463.12016 -463.11832
4 -294.59147 -294.47367 -294.45915 -294.45503 -294.45336 -294.45098
5 -203.39386 -203.26721 -203.25115 -203.24654 -203.24466 -203.24195
6 -148.70878 -148.58009 -148.56324 -148.55835 -148.55635 -148.55344
7 -113.40170 -113.27527 -113.25808 -113.25304 -113.25096 -113.24791
8 -89.306709 -89.185557 -89.168323 -89.163201 -89.161076 -89.157945
9 -72.139617 -72.026008 -72.008947 -72.003802 -72.001653 -71.998465
10 -59.480154 -59.375861 -59.359134 -59.354006 -59.351849 -59.348624
11 -49.878353 -49.784751 -49.768490 -49.763410 -49.761256 -49.758009
12 -42.423104 -42.341207 -42.325523 -42.320517 -42.318374 -42.315117
13 -36.518814 -36.449288 -36.434277 -36.429365 -36.427242 -36.423983
14 -31.762955 -31.706134 -31.691878 -31.687081 -31.684984 -31.681730
15 -27.875610 -27.831538 -27.818109 -27.813442 -27.811376 -27.808134
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Figure 4: Studying the convergence rate of the first five eigenvalues in Table 6.

In Figure 5, we study the effect of the influence domain factor ν. The
comparison is performed for the first five eigenvalues of the electron in the
Hydrogen-like Ununoctium ion for κ = −2 for point nucleus. The computation
is obtained at n = 600 and ε = 10−5.
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Figure 5: Studying the convergence rate with respect to ν.

Figure 5 shows that smaller ν gives better approximation. However, as we
have mentioned, the appropriate values of ν lie in [2.2, 2.7], while other smaller
values of ν cause spurious eigenvalues, see Paper II in the appendix. This is seen
evident since for small values of ν the cloud is not stretched enough to capture
the behavior of the sought solution. Also for small ν, some regions of Ω are
covered only with one cloud, which makes the momentum matrix M singular.

It is worth to mention that the FEPG method has a convergence rate higher
than that of the hp-CPG method. Further, the hp-CPG method is more expensive
due to the time consumption in evaluating the cloud functions that demand more
integration points as ν gets larger, which is the main disadvantage of MMs.
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4 G-convergence and eigenvalue problems

In this part, we study the convergence of the eigenvalues and the corresponding
eigenvalue problems for families of positive definite self-adjoint operators us-
ing the theory of G-convergence. First we discuss G-convergence of a class of
elliptic and bounded positive definite self-adjoint operators. Then we consider
G-convergence of a family of Dirac operators. Using the spectral measure, we
consider projected positive definite parts of this family of Dirac operators and
then apply the theory of G-convergence.

The theory of G-convergence was introduced in the late 1960’s [13, 44, 45,
46] for linear elliptic and parabolic operators with symmetric coefficient ma-
trices. The concept was further extended to non-symmetric coefficient matri-
ces [35, 47, 48, 49] and referred to as H-convergence. The theory was then
generalized to positive definite self-adjoint operators [11] under the name G-
convergence. The study of G-convergence of positive definite self-adjoint oper-
ators is often connected to the study of convergence of the associated quadratic
forms in the calculus of variations via the notion of Γ-convergence which was
introduced in the mid 1970’s [12]. The monographs [8, 11] contain comprehen-
sive material on the topic, where [11] deals with the connection to G-convergence.
In this work, we will use the name G-convergence for the case of non-symmetric
matrices as well.

4.1 Elliptic operators

4.1.1 An overview

Let Ω be an open bounded set in RN , N ≥ 1. To present the idea of G-
convergence, a heat conduction example is considered. The h-dependent sta-
tionary heat equation with heat source f(x) ∈ H−1(Ω) and periodic heat con-
ductivity matrix Ah(x) = A(hx), A is Y-periodic, is given by

{
− ∂

∂xi
((Ah(x))ij

∂uh
∂xj

) = f(x) in Ω,
uh = 0 on ∂Ω.

(47)

The operator − ∂
∂xi

((Ah(x))ij
∂

∂xj
) is defined on L2(Ω) with domain H1

0 (Ω),
h ∈ N is a parameter that tends to infinity, and L∞(Ω)N×N 3 (Ah(x))ij is
positive definite and bounded.

The difficulty arises when h tends to infinity, where the highly oscillating
coefficient matrix, Ah, makes (47) hard to solve with direct numerical methods
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with good accuracy. The idea we will advocate is to consider instead the limit
equation as h→∞ where the material is expected to behave as a homogeneous
one. In other words, we are interested in finding the properties of a homoge-
neous equation that gives the same overall response as the heterogeneous one.
This means that we look for the global macroscopic behavior of the solution.
The limit problem of (47), as h→∞, can formally be written as

{
− ∂

∂xi
((B(x))ij

∂u
∂xj

) = f(x) in Ω ,
u = 0 on ∂Ω .

(48)

In a successful approach, the problem (48) contains no oscillations and hence is
easier to be treated numerically. Thus, the task is to characterize the matrix B.

The way of specifying the limit matrix B is to let h → ∞ in the weak form
of (47): Find uh ∈ H1

0 (Ω) such that

〈Ah(x)∇uh(x),∇v(x)〉 = 〈f(x), v(x)〉 , ∀v ∈ H1
0 (Ω). (49)

By the boundedness and coercivity of Ah, the existence and uniqueness of a
solution uh to (47) are guaranteed by the Lax-Milgram theorem. Also these
assumptions imply the boundedness of uh and ∇uh in H1

0 (Ω) and L2(Ω) re-
spectively. Therefore, up to a subsequence of uh still denoted by uh,

uh(x) ⇀ u(x) in H1
0 (Ω) , (50)

∇uh(x) ⇀ ∇u(x) in L2(Ω)N , (51)

where the notation ⇀ refers to the weak convergence. Since Ah is an element
of L∞(Ω)N×N , then up to a subsequence denoted by Ah,

Ah ∗⇀M(A) , in L∞(Ω)N×N , (52)

where M(A) = 1
|Y|
∫

Y A(y)dy is the average of Ah, and ∗⇀ refers to the weak∗

convergence. We recall that (52) is also true in the L2(Ω)N×N sense, this is
because L2 is continuously embedded in L1, which implies L∞ = (L1)? ⊂⊂
(L2)? = L2 (? refers to the duality), hence the same topology on L∞(Ω) can
be also defined on L2(Ω). Thus, we have two sequences, ∇uh and Ah, which
converge only weakly. This is the intricate task that we face to pass to limit
as h → ∞ in (49) as nothing can be concluded about the limit of the product
of two sequences that are only weakly convergent, and generally the following
result is not true

Ah(x)∇uh(x) ⇀M(A)∇u(x) , in L2(Ω)N . (53)

Here, another technique is employed to study the existence and characterization
of the asymptotic limit of Ah(x)∇uh(x), namely the theory of G-convergence.
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4.1.2 A one dimensional example

Consider the following Dirichlet boundary value problem
{
− d

dx(Ah(x)duh
dx ) = f in Ω = (x0, x1) ⊂ R ,

uh ∈ H1
0 (Ω),

(54)

where f ∈ L2(Ω), and L∞(Ω) 3 Ah(x) = A(hx), with A : R → R is a Y-
periodic function satisfying, for α, β ∈ R, 0 < α ≤ A(x) ≤ β < ∞ a.e on R.
The bounds for Ah give the existence and uniqueness of a solution uh to (54).
Moreover the a priori estimate ||uh||H1

0 (Ω) ≤ C implies that the sequence uh

is uniformly bounded in H1
0 (Ω). Hence by Rellich-Kondrachov compactness

theorem, up to a subsequence still denoted by uh, there exists u0 ∈ H1
0 (Ω) such

that
uh ⇀ u0 in H1

0 (Ω). (55)

By the periodicity assumption on A we have

Ah ∗⇀M(A) in L∞(Ω), (also weakly in L2(Ω)). (56)

One hastily concludes that the asymptotic limit of (54) is
{
− d

dx(M(A)du0
dx ) = f in Ω ,

u0 ∈ H1
0 (Ω).

(57)

But this is not the case in general, since the weak limit of the product of two
sequences that are only weakly convergent is not the product of their individual
weak limits. Here, the role of G-convergence theory comes in, it gives a strategy
of identifying the correct limit of the problem.

In order to get the correct limit problem, we define

ξh = Ah(x)
duh

dx
. (58)

By the boundedness of Ah and the estimate ||uh||H1
0 (Ω) ≤ C, ξh is uniformly

bounded in L2(Ω). Since−dξh
dx = f ∈ L2(Ω), we conclude that ξh is uniformly

bounded in H1
0 (Ω). By the compact embedding of H1

0 (Ω) in L2(Ω), up to a
subsequence still denoted by ξh, we have

ξh → ξ0 in L2(Ω) , (59)

for some ξ0, consequently

dξh
dx

⇀
dξ0
dx

in L2(Ω) . (60)
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Note that 0 < 1
β <

1
Ah(x) <

1
α <∞, hence

1
Ah

∗⇀M(
1
A

) in L∞(Ω), (also weakly in L2(Ω)). (61)

Since 1
Ah(x)ξh = duh

dx , by (55) and (61) one gets

du0

dx
= M(

1
A

)ξ0 . (62)

By the result (60) together with (62) and a limit passage of −dξh
dx = f , we

conclude that u0 is the solution to the limit problem
{
− d

dx( 1
M( 1

A )
du0
dx ) = f in Ω,

u0 ∈ H1
0 (Ω).

(63)

By the uniqueness of the solution u0 to (63), and using Urysohn property, it fol-
lows that the whole sequence uh converges weakly to u0. The above conclusion
can be summarized as Ah G-converges to (1/M(1/A)) which is known as the
harmonic mean of Ah.

It is important to point out that in the previous example the weak∗ limit of 1
Ah

characterizes the limit problem. This is only true for one dimensional problem,
and it is not the case in higher dimensions (RN , n ≥ 2). For more discussion
on this issue we refer to [35].

4.1.3 The definition

Let α and β be two real numbers such that 0 < α ≤ β <∞, and let S(α, β,Ω)
be defined as S(α, β,Ω) = {A ∈ L∞(Ω)N×N ; (A(x, ξ), ξ) ≥ α|ξ|2 and
|A(x, ξ)| ≤ β|ξ| , ∀ξ ∈ RN and a.e x ∈ Ω}.

Definition 1 The sequence Ah ⊂ S(α, β,Ω) isG-convergent to A ∈ S(α, β,Ω),
denoted by Ah

G−−→ A, if for every f ∈ H−1(Ω), the sequence uh of solutions
to the equation {

−div(Ah(x,Duh)) = f in Ω,
uh ∈ H1

0 (Ω)
(64)

satisfies
uh ⇀ u in H1

0 (Ω),
Ah(·, Duh) ⇀ A(·, Du) in L2(Ω)N ,

where u is the unique solution of the problem
{
−div(A(x,Du)) = f in Ω,
u ∈ H1

0 (Ω).
(65)
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G-convergence possesses the compactness property, i.e., if Ah ⊂ S(α, β,Ω),
then there exists a subsequence, denoted by Ah, and A ∈ S(α, β,Ω), such that
Ah

G−−→ A. The G-limit is unique and local, also if Ah
G−−→ A, then At

h
G−−→ At,

here t denotes the transpose operator.

4.1.4 Convergence of elliptic eigenvalue problems

For elliptic boundary value problems with source function fh we have

Theorem 3 Consider the Dirichlet boundary value problem
{
−div(Ah(x)∇uh) = fh in Ω ,
uh ∈ H1

0 (Ω).
(66)

If Ah ∈ S(α, β,Ω) and fh converges in H−1(Ω) to f0, then the sequence uh of
solutions to (66) is weakly convergent in H1

0 (Ω) to the solution of the problem
{
−div(A0(x)∇u0) = f0 in Ω ,
u0 ∈ H1

0 (Ω),
(67)

where A0 is the G-limit of Ah.

The strength of G-convergence can be evidently seen by applying the concept
to elliptic eigenvalue problems. Consider the linear elliptic eigenvalue problem

{
−div(Ah(x)∇uk

h) = λk
hu

k
h in Ω ,

uk
h ∈ H1

0 (Ω) ,
(68)

where Ah ∈ S(α, β,Ω) is symmetric and positive definite. Then, the set of
eigenvalues {λk

h} is bounded and 0 < λ1
h ≤ λ2

h ≤ λ3
h ≤ · · · , also the multiplic-

ity of each λk
h is finite.

Theorem 4 The sequences of eigenvalues λk
h and the corresponding eigenfunc-

tions uk
h of (68) converge to λk

0 in R and weakly to uk
0 in H1

0 (Ω) respectively,
where the eigencouple {λk

0, u
k
0} is the solution to the G-limit problem

{
−div(A0(x)∇uk

0) = λk
0u

k
0 in Ω ,

uk
0 ∈ H1

0 (Ω).
(69)
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4.2 Positive definite self-adjoint operators

4.2.1 The definition

Let H be a Hilbert space and let λ ≥ 0 be a real number, by Pλ(H ) we denote
the class of self-adjoint operators A on a closed linear subspace D(A) of H
such that 〈Au, u〉 ≥ λ||u||2H , ∀u ∈ D(A).

Definition 2 Let λ ≥ 0, and let Ah ⊂ Pλ(H ). If λ > 0, we say that Ah
G−−→

A ∈ Pλ(H ) in H if A−1
h Phu → A−1Pu in H , ∀u ∈ H , where Ph and P

are the orthogonal projections onto D(Ah) and D(A) respectively. If λ = 0, we
say that Ah ⊂ P0(H ) converges to A ⊂ P0(H ) in the strong resolvent sense
(SRS) if (µI +Ah) G−−→ (µI +A) in H , ∀µ > 0.

G-convergence of positive definite self-adjoint operators can be studied us-
ing Γ-convergence of the corresponding quadratic forms [11], where, gener-
ally, proving Γ-limits is simpler than proving G-limits. Below we define Γ-
convergence and discuss its relation to G-convergence. First we need the fol-
lowing definitions.

Definition 3 A function F : H → [0,∞] is said to be lower semi-continuous
(lsc) at u ∈ H , if

F (u) ≤ sup
U∈N(u)

inf
v∈U

F (v) ,

where N(u) is the set of all open neighborhoods of u in H .

Definition 4 A function F in H is called a quadratic form if there exists a
linear dense subspace X of H and a symmetric bilinear form B : X ×X →
[0,∞) such that

F (u) =
{
B(u, u) , ∀u ∈ X ,
∞ , ∀u ∈ H \X .

Let F and B be as in the above definition, where D(F ) = {u ∈ H ; F (u) <
∞}. Then the operator associated to F is the linear operator A on D(F ) with
the domain being the set of all u ∈ D(F ) such that there exists v ∈ D(F )
satisfying B(u, f) = 〈v, f〉, ∀f ∈ D(F ) and Au = v, ∀u ∈ D(A). If f = u
then F (u) = 〈Au, u〉, ∀u ∈ D(A).

Let λ ≥ 0, by Q̃λ(H ) we denote the class of quadratic forms F : H →
[0,∞] such that F (u) ≥ λ||u||2H . And by Qλ(H ) we denote the subset of
Q̃λ(H ) whose elements are lsc.
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Definition 5 A sequence of functionals Fh : H → R is said to Γ-converge to
F : H → R, written as F (u) = Γ− lim

h→∞
Fh(u) and denoted by Fh

Γ−−→ F if

F (u) = Γ− lim inf
h→∞

Fh(u) = Γ− lim sup
h→∞

Fh(u) ,

where Γ− lim inf
h→∞

Fh(u) = sup
U∈N(u)

lim inf
h→∞

inf
v∈U

Fh(v) and Γ− lim sup
h→∞

Fh(u) =

sup
U∈N(u)

lim sup
h→∞

inf
v∈U

Fh(v).

Note that if H satisfies the first axiom of countability (the neighborhood system
of every point in H has a countable base), then Fh

Γ−−→ F in H if and only if
the following two conditions are satisfied

(i) (lim inf-inequality) ∀u ∈ H and ∀uh converging to u, F (u) ≤ lim inf
h→∞

Fh(uh).

(ii) (lim-equality) ∀u ∈ H , ∃uh converging to u such thatF (u) = lim
h→∞

Fh(uh).

It is worth to mention that Γ-limit is always lsc and unique, also Γ-limit of
non-negative quadratic form is also a non-negative quadratic form. Γ-convergence
possesses the compactness property, that is, if H is a separable metric space,
then every sequence Fh : H → R has a Γ-convergent subsequence.

The following theorem is the cornerstone of the relation between G-convergence
of operators of the class Pλ(H ) for λ ≥ 0 and Γ-convergence of the associated
quadratic forms of the class Qλ(H ).

Theorem 5 Let Fh and F be elements of Q0(H ), and letAh , A ∈ P0(H ) be

the associated operators respectively. Then Fh
Γ−−→ F if and only if Ah → A

in the SRS. Also, for µ > 0, if Fh , F ∈ Qµ(H ), and Ah , A ∈ Pµ(H ) are the

associated operators respectively, then Fh
Γ−−→ F if and only if Ah

G−−→ A.

4.2.2 G-convergence of positive definite self-adjoint operators

Let H0 be a positive definite bounded self-adjoint operator defined on L2(Ω)
and let D(H0) = H1

0 (Ω). Consider the perturbed operatorHh = H0+Vh where
Vh(x) is a positive bounded real-valued multiplication operator inL2(Ω). Using
G-convergence together with Γ-convergence, we state the following results, see
Paper IV in the appendix.

Theorem 6 Let Vh be a sequence in L∞(Ω) that converges weakly∗ to V , then
Hh G-converges to H = H0 + V .
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Theorem 7 If Vh is a weakly convergent sequence in Lp(Ω) for 2 ≤ p < ∞
with a weak limit denoted by V , then Hh G-converges to H=H0 + V .

Let X and H be two Hilbert spaces, and let B(H ) be the set of bounded
linear operators on H . As a generalization of Theorem 4, below we state the
relation between the eigenvalue problems of an operator and its G-limit of the
class Pλ(H ) for λ ≥ 0, see Paper III in the appendix.

Theorem 8 Let λ > 0, let Ah be a sequence in Pλ(H ) G-converging to A ∈
Pλ(H ), and let {µh, uh} be the solution of the eigenvalue problem Ahuh =
µhuh. If {µh, uh} → {µ, u} in R × H , then the limit couple {µ, u} is the
solution of the eigenvalue problem Au = µu.

It is clear that the assertion of Theorem 8 is also true if the sequence Ah ∈
P0(H ) is convergent in the SRS to A ∈ P0(H ).

Note that if a sequence Ah is convergent in the SRS (or strongly convergent)
to A, then every λ ∈ σ(A) is the limit of a sequence λh ∈ σ(Ah), but not the
limit of every sequence λh ∈ σ(Ah) lies in the spectrum of A, see [54]. Despite
of this fact, the following theorem provides conditions by which G-convergence
of an operator in Pλ(H ) (consequently the strong resolvent convergence in
P0(Y )) implies the convergence of the corresponding eigenvalues, see Paper III
in the appendix.

Theorem 9 Let X be compactly and densely embedded in H , and let Ah be
a family of operators in Pλ(H ), λ > 0, with domain X . If Ah G-converges to
A ∈ Pλ(H ), then A−1

h converges in the norm of B(H ) to A−1. Moreover, the
kth eigenvalue µk

h of Ah converges to the kth eigenvalue µk of A, ∀k ∈ N.

Theorem 9 implies that, for those perturbations considered in Theorems 6 and
7, the eigenvalues of Hh converge to the eigenvalues of the G-limit operator H .
Moreover, Theorem 8 guarantees that the eigenvalue problem Hhuh = µhuh

converges to the limit problem Hu = µu, where u is the limit of uh in L2(Ω).

Remark 2 Let EHh and EH be the spectral measures of Hh and H respec-
tively, then G-convergence ofHh toH implies thatEHh(λ) → EH(λ) strongly
for all λ ∈ R such that EH(λ) = EH(−λ).

4.3 Families of Dirac operators

Here we consider an h-dependent perturbation added to the Dirac operator with
Coulomb potential. The purpose is to apply G-convergence theory for positive
definite parts of the perturbed operator and to investigate the asymptotic behav-
ior of the corresponding eigenvalues in the gap.
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4.3.1 The Dirac operator with perturbation (H̃h)

Let Hh be defined as
Hh = H + Vh, (70)

where Vh = Vh(x) is a 4×4 matrix-valued function and, as defined before,
H = H0 + V , where again H0 and V are respectively the free Dirac operator
and the Coulomb potential. We recall here the spaces X = H1(R3,C4) and
Y =L2(R3,C4).
Recall that a function F is called homogeneous of degree p if for any nonzero
scalar a, F (ax)=apF (x). The next theorem is of profound importance [53, 55].

Theorem 10 Let, for h > 0, Vh be a measurable (−1)-homogeneous Hermi-
tian 4×4 matrix-valued function with entries in Lp

loc(R
3), p > 3. Then Hh

is essentially self-adjoint on C∞0 (R3;C4) and self-adjoint on X . Moreover,
σ(Hh) = (−∞,−mc2] ∪ {λk

h}k∈N ∪ [mc2,+∞), where {λk
h}k∈N is a dis-

crete sequence of h-dependent eigenvalues corresponding to the Dirac eigen-
value problem Hhuh = λhuh.

We assume further that the 4 × 4 matrix-valued function Vh is of the form
Vh(x) = V1(x)V2(hx), where V1 is (-1)-homogeneous and where the entries of
V2(y) are 1-periodic in y, i.e.,

V ij
2 (y + k) = V ij

2 (y), k ∈ Z3.

We also assume that the entries of V2 belong to L∞(R3). It is then well-known
that

V ij
2 (hx)∗⇀M(V ij

2 ) =
∫

T3

V ij
2 (y) dy, in L∞(R3), (71)

where T3 is the unit torus in R3. It easily follows from this mean-value property
that

Vh ⇀ V1M(V2), in Lp(R3), p > 3.

In the sequel, we consider a shifted family of Dirac operators denoted by H̃h

and defined as H̃h = H̃ + Vh, where H̃ = H + mc2I. Also without loss of
generality we set } = c = m = 1. By Theorem 10, for h > 0, we then get
σ(H̃h) = (−∞, 0] ∪ {λ̃k

h}k∈N ∪ [2,∞).

4.3.2 The spectral theorem

Let H be a Hilbert space, and let (U ,A ) be a measurable space where U ⊆ C
and A is a σ−algebra on U . Assume PH = P(H ) is the set of orthogonal
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projections onto H , thenE : A −→ PH is called a spectral measure ifE(∅) =
0, E(U ) = I (completeness), and if {Mn} ⊂ A is a finite or a countable
set of disjoint elements and M= ∪n Mn, then E(M) =

∑

n

E(Mn) (countable

additivity), see e.g. [6, 28, 53]. Further, let U = R, the spectral measure on
the real line corresponding to an operator S is given as ES(λ) = ES(M) where
M= (−∞, λ), λ ∈ R.

Theorem 11 The Spectral Theorem.
For a self-adjoint operator S defined on a Hilbert space H there exists a unique

spectral measure ES on H such that S =
∫

σ(S)
λ dES(λ).

4.3.3 G-convergence of projected parts of H̃h

LetX and Y be defined as before, and letEH̃h andEH̃ be the spectral measures
of the families H̃h and H̃ respectively, by the spectral theorem

H̃h =
∫

σ(H̃h)
λ dEH̃h(λ). (72)

Define Xp
h = ⊕k∈NN k

h where N k
h = {uh ∈ X; H̃huh = λk

huh}. Note that
Xp

h is a closed subspace of Y invariant with respect to H̃h. Then we have the
following theorem, see Paper III in the appendix.

Theorem 12 Let EH̃h,p be the point measure of H̃h, and consider the restric-
tion H̃

p
h of H̃h to Xp

h defined as

H̃
p
h =

∑

λ∈σp(H̃h)

λEH̃h,p(λ). (73)

The operator H̃
p
h is positive definite and self-adjoint onX with compact inverse

(H̃
p
h)−1. Then there exists a positive definite self-adjoint operator H̃

p
such

that, up to a subsequence, H̃
p
h G-converges to H̃

p
. The operator H̃

p
is given

by (H̃ + V1M(V2))|Xp , where D(H̃
p
) = Xp = ⊕k∈NN k and N k = {u ∈

X; H̃
p
u = λku}.

Now we can apply Theorem 9 to conclude that the sequence of kth eigenvalues
λk

h associated to H̃
p
h converges to the kth eigenvalue λk of H̃

p
.

For the absolutely continuous part of the operator H̃h, we let first Xac
h =

Xac,+
h ⊕ Xac,−

h , where Xac,+
h and Xac,−

h are the closed subspaces, invariant
with respect to H̃h, corresponding respectively to the absolutely continuous
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spectra σ+
ac(H̃h) = [2,+∞) and σ−ac(H̃h) = (−∞, 0]. Let EH̃h,ac,+(λ) be the

absolutely continuous spectral measure corresponding to H̃
ac,+
h and define

H̃
ac,+
h =

∫

λ∈σ+
ac(H̃h)

λdEH̃h,ac,+(λ). (74)

By this construction, the operator H̃
ac,+
h is the restriction of H̃h toXac,+

h , thus it
is positive definite and self-adjoint on X . Therefore, there exists a subsequence
of H̃

ac,+
h , still denoted by H̃

ac,+
h , which G-converges to a positive definite self-

adjoint operator H̃
ac,+

. Moreover, convergence in the SRS can be drawn for
−H̃

ac,−
h ,

H̃
ac,−
h =

∫

λ∈σ−ac(H̃h)
λdEH̃h,ac,−(λ), (75)

where EH̃h,ac,−(λ) is the absolutely continuous spectral measure correspond-
ing to the operator H̃

ac,−
h .
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5 The wave operators for h-dependent self-adjoint op-
erators

Scattering theory is a frame for comparing the dynamic behaviors of two quan-
tum systems, and is well-known as perturbation theory of self-adjoint opera-
tors on the absolutely continuous spectrum. More specifically, scattering theory
concerns studying the behavior, for large times, of the absolutely continuous
solution of the convolution equation i∂u/∂t = Hu = (H0 + Interaction)u
in terms of the absolutely continuous solution of the simple convolution equa-
tion i∂u0/∂t = H0u0. Here H0 and H are self-adjoint operators acting on
Hilbert spaces H0 and H respectively. That is, for a given initial solution f to
the equation with interaction above, if f is an eigenvector corresponding to an
eigenvalue µ, then u(t) = exp (−iµt)f , so that the time behavior is clear. But
if f ∈ H (ac) (the absolutely continuous subspace of H), it is not possible, in
general, to calculate u(t) explicitly. Using scattering theory, one may study the
asymptotic behavior of u(t) = exp (−iHt)f as t→ ±∞, f ∈ H (ac), in terms
of u0(t) = exp (−iH0t)f0 for f0 ∈ H

(ac)
0 (the absolutely continuous subspace

of H0).

5.1 A simple overview

Consider a self-adjoint operator H0 defined in a Hilbert space H0, and assume
that its absolutely continuous spectrum can be identified. LetH be another self-
adjoint operator defined in a Hilbert space H so that H is close to H0 in a
certain sense. Scattering theory concerns the study of the absolutely continuous
spectrum of the operator H and its connection to that of H0. It is generally as-
sumed that H = H0 + V , where V is, in a particular measure, small compared
to H0, and thus the deduction of the spectral properties of the absolutely con-
tinuous spectrum of H depends on the presumed knowledge of the absolutely
continuous spectrum for H0.

Consider the free evolution problem
{
i ∂
∂tu0(x, t) = H0u0(x, t) ,
u0(x, 0) = u0

0(x)
(76)

which has the solution u0(t) = e−iH0tu0
0. Let now

{
i ∂
∂tu(x, t) = Hu(x, t) ,
u(x, 0) = u0(x)

(77)
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be the evolution problem of the perturbed operator H = H0 + V , which has
the solution u(t) = e−iHtu0. The main task of scattering theory is to study the
conditions under which, for all u0 ∈ H (ac), there exist u0,±

0 ∈ H
(ac)

0 , such
that

lim
t→±∞

‖u(t)− Ju0(t)‖H = 0, (78)

for a bounded operator J, where u0(t) = e−iH0tu0,±
0 . Equivalently, scattering

theory concerns the study of existence and completeness of the wave operator
(WO) W±(H,H0; J),

W±(H,H0; J) = s−lim
t→±∞

eiHtJe−iH0tu0,±
0 , (79)

where the letter s refers to the strong sense convergence.

For comprehensive materials on scattering theory we refer to the monographs
[39, 56]. Following the general notation in scattering theory, below we use
s− lim and w− lim to denote the strong and weak limits respectively. Let H
and H0 be self-adjoint operators in H and H0 with spectral families E and E0

respectively, below we define the time-dependent and stationary WOs.

5.2 The time-dependent WO

There are two types of time-dependent WOs, the strong and weak WOs. In what
follows, the strong time-dependent WO will be referred to as just WO.

5.2.1 The strong time-dependent WO

The (modified or generalized) strong time-dependent WO W± is defined as fol-
lows

Definition 6 Let J : H0 → H be a bounded operator (identification), the WO
W± = W±(H,H0; J) for H and H0 is the operator

W±(H,H0; J) = s−lim
t→±∞

U(−t)JU0(t)P
(ac)
0 , (80)

provided that the corresponding strong limits exist (s refers to the strong sense
convergence), where P (ac)

0 is the orthogonal projection onto the absolutely con-
tinuous subspace H

(ac)
0 of H0, U(t) = e−iHt, and U0(t) = e−iH0t. If H =

H0 and J is the identity operator, then the WO is denoted by W±(H,H0).
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The WO W± = W±(H,H0; J) is bounded, and possesses the intertwining
property, that is, for any bounded Borel function φ,

φ(H)W±(H,H0; J) = W±(H,H0; J)φ(H0), (81)

also for any Borel set M⊂ R,

E(M)W±(H,H0; J) = W±(H,H0; J)E0(M). (82)

The WOW± admits the chain rule, i.e., ifW±(H,H1; J1) andW±(H1,H0; J0)
exist, then the WO W±(H,H0; J1,0) = W±(H,H1; J1)W±(H1,H0; J0) also
exists, where J1,0 = J1J0.
Note that U(−t)U0(t) is unitary, thus the operator W±(H,H0) is isometric.
To prove that W±(H,H0; J) is isometric is equivalent to prove that for any
u ∈ H

(ac)
0 , lim

t→±∞
‖JU0(t)u‖H = ‖u‖H0 .

The following remark states the equivalence between WOs with different
identifications.

Remark 3 Assume that, with an identification J1, the WO W±(H,H0; J1)
exists, and suppose that J2 is another identification such that J1−J2 is compact,
then the WO W±(H,H0; J2) exists and W±(H,H0; J1) = W±(H,H0; J2).
Moreover, the condition that J1−J2 is compact can be replaced by s−lim

t→±∞
(J1−

J2)U0(t)P
(ac)
0 = 0.

Assume the existence of the WO W±, another task that is not less important
is to show the completeness of W±.

Definition 7 The WO W± is said to be complete if R(W±) = H (ac).

If the WO W± is complete then the absolutely continuous operators H(ac)

andH(ac)
0 are unitary equivalent. Since, by the chain rule, P (ac) = W±(H,H) =

W±(H,H0)W ∗
±(H,H0) where P (ac) is the orthogonal projection onto the ab-

solutely continuous subspace H (ac) of H , to prove the completeness of the
WO W±(H,H0) is equivalent to prove the existence of the WO W ∗

±(H,H0) =
W±(H0,H). On the other hand, the completeness of the WO W±(H,H0; J)
is equivalent to the existence of W±(H0,H; J∗) and that the identification J is
boundedly invertible.

5.2.2 The weak time-dependent WO

The weak time-dependent WO W̃± is defined as follows
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Definition 8 Let J : H0 → H be a bounded identification, the weak WO
W̃±(H,H0; J) for H and H0 is the operator

W̃±(H,H0; J) = w−lim
t→±∞

P (ac)U(−t)JU0(t)P
(ac)
0 , (83)

provided that the corresponding weak limits exist (w refers to the weak sense
convergence).

Note that the boundedness and intertwining properties of the WO W± are
preserved for the WO W̃±, whereas the chain rule property is not valid for the
weak WO. This is evident since the weak limit of the product of two sequences
that are only weakly convergent is not necessarily the product of their weak
limits. On contrast to W±, if the weak WO W̃±(H,H0; J) exists, then it is
necessary that W̃±(H0,H; J∗) also exists.

5.3 The stationary WO

Let R(z) and R0(z) be the resolvent operators of H and H0 respectively, and
let M0 and M be dense sets in H0 and H respectively.
Let ε > 0, and let θ(λ, ε) be defined as

θ(λ, ε) =: (2πi)−1(R(λ+ iε)−R(λ− iε)) = π−1εR(λ+ iε)R(λ− iε). (84)

Further, let H be an auxiliary Hilbert space, the concept H-smoothness in
the strong and weak senses is defined as follows

Definition 9 An H-bounded operator, A : H → H, is called H-smooth (in
the strong sense) if one of the following bounds is satisfied

sup
‖v‖H =1,v∈D(H)

∫ ∞

−∞
‖Ae−iHtv‖2

H dt <∞.

sup
ε>0,µ∈R

‖AR(µ± iε)‖2
H <∞.

Definition 10 An H-bounded operator, A : H → H, is called H-smooth in
the weak sense if

w−lim
ε→∞

Aθ(λ, ε)A∗ (85)

exists for a.e. λ ∈ R.

Equivalent conditions for the weak H-smoothness are stated by the following
remark (other conditions can be found in [56]).
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Remark 4 An operator A : H → H is weakly H-smooth if and only if any of
the following two conditions is satisfied

‖Aθ(λ, ε)A∗‖H ≤ C(λ), a.e. λ ∈ R. (86)

ε1/2‖AR(λ± iε)‖H ≤ C(λ), a.e. λ ∈ R. (87)

To define the stationary WO, we first define the following

G±(H,H0; J) = lim
ε→0

π−1ε〈JR0(λ± iε)u0, R(λ± iε)u〉. (88)

Let, for all u0 ∈ M0 and u ∈ M , the limit (88) exist for a.e. λ ∈ R, then
the stationary WO W± = W±(H,H0; J) for the operators H and H0 with the
identification J is the operator onM0×M defined by the following sesquilinear
form

〈W±u0, u〉 =
∫ ∞

−∞
G±(H,H0; J)dλ. (89)

The WO W± is bounded, satisfies the intertwining property, and R(W±) ⊆
H (ac). Moreover, by the existence of W±(H,H0; J), then the adjoint WO
W∗
±(H,H0; J) also exists and given by

W∗
±(H,H0; J) = W±(H0,H; J∗). (90)

The importance of the stationary approach in scattering theory can be sum-
marized as:
Let the WOs W̃±(H,H0; J) and W̃±(H0,H0; J∗J) exist, and let

W∗
±(H,H0; J)W±(H,H0; J) = W±(H0,H0; J∗J) (91)

be satisfied, then the WO W±(H,H0; J) exists.

Below we define a particular class of pseudo-differential operators (PSDOs)
necessary to state the results on the convergence of the WOs for a family of
Dirac operators.

5.4 Pseudo-differential operators

The class Sr
ρ,δ(R3,R3) of symbols is defined as follows
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Definition 11 The class Sr
ρ,δ(R3,R3) is the vector space of all smooth func-

tions P(x, ζ) : R3 × R3 −→ C such that for all multi-indices α and γ

|∂α
x ∂

γ
ζ P(x, ζ)| ≤ cα,γ〈x〉r−ρ|α|+δ|γ|, (92)

where r ∈ R, ρ > 0, δ < 1, and 〈x〉 = (1 + |x|2)1/2. The function P is called
the symbol of the PSDO and r is called the order of P.

Let P(x, ζ) ∈ Sr
ρ,δ(R3,R3), the associated PSDO, P , to P is defined by the

following integral

(Pf)(x) = (2π)−3/2

∫

R3

eix·ζP(x, ζ)f̂(ζ) dζ, (93)

where f ∈ H and f̂(ζ) = (2π)−3/2

∫

R3

e−ix·ζf(x) dx is the Fourier transform

of f .

5.5 A family of Dirac operators

Consider the free Dirac operator H0, and let V be a short-range potential (de-
caying faster than the Coulomb potential), then the WOW±(H0+V,H0) exists
and is complete. The proofs of existence and completeness ofW±(H0+V,H0)
are similar to that of the Schrödinger operator. For V being the Coulomb poten-
tial, the WO W± = W±(H0 + V,H0; J), with a bounded identification J, has
been studied in [15, 16]. If V is of long-range type (decaying as the Coulomb
potential or slower), the existence and completeness of the WO W± have been
studied in [21, 36, 37, 51]. The asymptotic behavior of the WO W± with re-
spect to the speed of light, c, as c→∞, has been discussed for the short-range
potentials in [57] and for the long-range potentials in [58].

5.5.1 An h-dependent perturbation and the WO

Consider the free Dirac operator H0, and let Vh be an h-dependent potential.
We define the following family of Dirac operators

Hh = H0 + Vh. (94)

We assume the potential Vh is real and bounded, thus the operators Hh and H0

have the same domain X and that Hh is self-adjoint on X , for h > 0. Also, for
simplicity, we let } = c = 1.
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We assume further that Vh is of long-range type for all h > 0, that is, for all
multi-index α, Vh fulfills the following condition

|∂αVh(x)| ≤ C〈x〉−ρ−|α|, for all h > 0, and ρ ∈ (0, 1], (95)

where again 〈x〉 = (1 + |x|2)1/2, and C is a constant independent of x and h.

Let P (ac)
h be the orthogonal projection onto the absolutely continuous sub-

space of Hh, and define Uh(t) = e−iHht and U0(t) = e−iH0t. Now, by (95),
and according to [21], the WOs W±,h and W ∗

±,h, defined as

W±,h = W±(Hh,H0; J±,h) = s−lim
t→±∞

Uh(−t)J±,hU0(t) (96)

and

W ∗
±,h = W±(H0,Hh; J∗±,h) = s−lim

t→±∞
U0(−t)J∗±,hUh(t)P (ac)

h , (97)

exist, moreover the WOW±,h is complete. The identification J±,h is defined by
the following PSDO

(J±,hg)(x) = (2π)−3/2

∫

R3

eix·ζ+iΦ±,h(x,ζ)P±,h(x, ζ)C±(x, ζ)ψ(|ζ|2)ĝ(ζ) dζ,
(98)

where ψ ∈ C∞0 (R+) is introduced to localize J±,h in a compact interval of
(m,∞) and where C±(x, ζ) is a cut-off function defined as

C±(x, ζ) = θ(x)ω±(〈x̌, ζ̌〉), for all y ∈ R3\{0}, y̌ = y/|y|. (99)

The function θ is smooth and is introduced to avoid the singularity of x̌ at x = 0,
and ω±(τ) = 1 near ±1 and ω±(τ) = 0 near ∓1. Thus the cut-off function C±
is supported in the cone

Ξ±(%) = {(x, ζ) ∈ R6 : ±〈x, ζ〉 ≥ %|x||ζ|}, % ∈ (−1, 1). (100)

Below, in a chain of definitions, we give the construction of the phase function
Φ±,h(x, ζ) and the amplitude function P±,h(x, ζ). The function Φ±,h(x, ζ) is
defined as follows

Φ±,h(x, ζ) =
N∑

n=1

Φ(n)
±,h(x, ζ), x ∈ Ξ±(%), (101)

where N satisfies (N + 1)ρ > 1, and for n ≥ 0, Φ(n+1)
±,h (x, ζ) = Q±(ζ)F (n)

±,h,

(Q±(ζ)F )(x) = ±
∫ ∞

0
(F (x± tζ, ζ)− F (±tζ, ζ)) dt. (102)
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The functions F (n)
±,h are defined as

F
(0)
±,h(x, ζ) = η(ζ)Vh(x)− 1

2
V 2

h (x), F
(1)
±,h(x, ζ) =

1
2
|∇Φ(1)

±,h(x, ζ)|2, (103)

and for n ≥ 2

F
(n)
±,h(x, ζ) =

n−1∑

k=1

〈∇Φ(k)
±,h(x, ζ),∇Φ(n)

±,h(x, ζ)〉+
1
2
|∇Φ(n)

±,h(x, ζ)|2. (104)

The amplitude function P±,h(x, ζ) is defined by

P±,h(x, ζ) = (I − S±,h(x, ζ))−1p0(ζ), x ∈ Ξ±(%), (105)

where p0(ζ) = p+,0(ζ), and

p±,0(ζ) =
1
2
(
I ± η−1(ζ)(ζα +mc2β)

)
, (106)

with η(ζ) =
√
|ζ|2 +m2c4 and ζα = α · ζ =

3∑

k=1

αkζk. Finally, S±,h(x, ζ) is

given by

S±,h(x, ζ) = (2η(ζ))−1
(
Vh(x)+

3∑

k=1

∂kΦ±,h(x, ζ)αk

)
, x ∈ Ξ±(%). (107)

Note that the WOs defined above are for positive part of the spectrum (m,∞).
For the negative part of the spectrum (−∞,−m), the WOs can be defined in a
similar way with minor modifications, see [21]. The asymptotic study carried
out below can be applied for the WOs on the negative part as well.

5.5.2 The asymptotics of the WOs and some particular cases

Define the WOs W †
± := s−lim

h→∞
W±,h and W †,∗

± := s−lim
h→∞

W ∗
±,h. Let the

perturbed Dirac operator Hh converge in the SRS to H∞, and assume that the
identification J±,h converges strongly to J±,∞, then the WOs W †

± and W †,∗
±

exist. The task now is to characterize the limits, as h → ∞, of the WOs W±,h

and W ∗
±,h, which is equivalent to the problem of interchanging s−lim

h→∞
and s−

lim
t→±∞

. To this end, we state the following two lemmas.
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Lemma 1 Define the function K
(1)

u0,h as

K
(1)

u0,h(t)=
∥∥∥
(
Hhφ(Hh)J±,hφ(H0)−φ(Hh)J±,hH0φ(H0)

)
U0(t)u0

∥∥∥
Y
,

where u0 ∈ X . Then for some continuous function φ : R → R such that
xφ(x) is bounded on R and for any ε > 0 there exist D1, D2 ∈ R such that∫ ∞

D1

K
(1)

u0,h(t) dt ≤ ε and
∫ D2

−∞
K

(1)
u0,h(t) dt ≤ ε for all h > 0.

Lemma 2 Define the function K
(2)

u,h as

K
(2)

u,h (t) =
∥∥∥
(
H0φ(H0)J∗±,hφ(Hh)− φ(H0)J∗±,hHhφ(Hh)

)
Uh(t)u

∥∥∥
Y
,

where u0 ∈ X . Then for some continuous function φ : R → R such that
xφ(x) is bounded on R and for any ε > 0 there exist D3, D4 ∈ R such that∫ ∞

D3

K
(2)

u,h (t) dt ≤ ε and
∫ D4

−∞
K

(2)
u,h (t) dt ≤ ε for all h > 0.

By Lemmas 1 and 2, and according to [9], the limits s−lim
h→∞

and s−lim
t→±∞

in

the definition of the WOs W †
± and W †,∗

± are interchangeable. Thus we have the
following result.

Theorem 13 Let the WOs W±,h and W ∗
±,h be defined by (96) and (97) respec-

tively. Suppose that, as h → ∞, the Dirac operator Hh converges to H∞ in
the SRS, and the identification J±,h converges strongly to J±,∞. Then the WOs
W †
± and W †,∗

± exist,
W †
± = W±(H∞,H0; J±,∞),

and
W †,∗
± = W±(H0,H∞; J∗±,∞).

Remark 5 In Theorem 13 we assume that J±,h converges strongly to J±,∞,
this also implies that J∗±,h converges strongly to J∗±,∞. However, in general,
the strong convergence of an operator does not imply the strong convergence of
its adjoint operator to the adjoint of its strong limit. Hence, in order to study
the convergence of the adjoint WO in the strong sense for other self-adjoint
operators, we should assume if necessary, the strong convergence of the identi-
fications adjoint operators as well.
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In what follows we assume the hypotheses of Theorem 13 and study differ-
ent cases of the identification J±,h. Noted that, in the first case we also consider
short-range potentials, so the identification is just the identity operator. On the
other hand, the other two cases are stated briefly, where a dwell-upon discussion
is available in Paper V in the appendix.

The case ρ > 1.
In this case we can set J±,h = I , this due to the fact that for short-range poten-
tials, the WOs W±(Hh,H0) and W±(H0,Hh) exist and are complete. There-
fore the limits s−lim

h→∞
and s−lim

t→±∞
are interchangeable in the definitions of the

WOs W †
± and W †,∗

± . Thus, if Hh is convergent to H∞ in the SRS, then

W †
± = W±(H∞,H0) (108)

and
W †,∗
± = W±(H0,H∞). (109)

The case ρ = 1.
Let Φ±(x, ζ) be an h-free function satisfying

|∂α
x ∂

γ
ζ Φ±(x, ζ)| ≤ cα,γ〈x〉1−ρ−|α|, x ∈ Ξ±(%), (110)

and let J
(1)
± (with adjoint denoted by J

(1),∗
± ) be defined as

(J(1)
± g)(x) = (2π)−3/2

∫

R3

eix·ζ+iΦ±(x,ζ)p0(ζ)C±(x, ζ)ψ(|ζ|2)ĝ(ζ) dζ.
(111)

Then
W †
± = W±(H∞,H0; J

(1)
± ) (112)

and
W †,∗
± = W±(H0,H∞; J(1),∗

± ). (113)

The case ρ ∈ (1/2, 1).
Let J

(2)
±,h (with adjoint denoted by J

(2),∗
± ) be given by (98), but with Φ±,h(x, ζ)

defined as

Φ±,h(x, ζ) = ±η(ζ)
∫ ∞

0
(Vh(x± tζ)−Vh(±tζ)) dt (114)

and with p0(ζ) instead of P±,h(x, ζ). Assume further that Vh is given so that
Hh = H0 + Vh and Φ±,h(x, ζ) converge in the SRS respectively to H∞ =
H0 + V∞ and

Φ±,∞(x, ζ) = ±η(ζ)
∫ ∞

0
(V∞(x± tζ)−V∞(±tζ)) dt. (115)
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Then
W †
± = W±(H∞,H0; J

(2)
±,∞) (116)

and
W †,∗
± = W±(H0,H∞; J(2),∗

±,∞), (117)

where

(J(2)
±,∞g)(x) = (2π)−3/2

∫

R3

eix·ζ+iΦ±,∞(x,ζ)p0(ζ)C±(x, ζ)ψ(|ζ|2)ĝ(ζ) dζ.
(118)

5.6 Self-adjoint h-dependent operators

Let H0 and H be two Hilbert spaces, and let M0 and M be dense sets in H0

and H respectively. Let H0 and Hh be two self-adjoint operators in H0 and
H respectively, with D(H0) = X0 and D(Hh) = X , and with corresponding
resolvent operators R0 and Rh respectively. Let also P (ac)

0 and P (ac)
h be re-

spectively the orthogonal projections onto the absolutely continuous subspaces
of H0 and Hh. Assume that Hh = H0 + Vh, where Vh admits the following
factorization

Vh = HhJh − JhH0 = A∗hA0, (119)

where Jh : H0 → H is a bounded identification, and Ah : H → H and
A0 : H0 → H are respectively Hh-bounded, for all h > 0, and H0-bounded
operators, where H is an auxiliary Hilbert space. Note that (119) is understood
as the equalities of the corresponding sesquilinear forms.

Define the time-dependent WO W †
±(H,H0; J) as

W †
±(H,H0; J) = s−lim

h→∞
W±(Hh,H0; Jh)

= s−lim
h→∞

s−lim
t→±∞

Uh(−t)JhU0(t)P
(ac)
0 ,

(120)

where Uh(t) = e−iHht, U0(t) = e−iH0t, and H and J are limit operators in
appropriate sense of Hh and Jh respectively.

Let G †
±(H,H0; J) be defined as

G †
±(H,H0; J) = lim

h→∞
lim
ε→0

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉, (121)

where u0 ∈M0 and u ∈M . We define the stationary WO W
†
± = W

†
±(H,H0; J)

on M0 ×M by the sesquilinear form

〈W†
±u0, u〉 =

∫ ∞

−∞
G †
±(H,H0; J) dλ. (122)
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We also define the weak WO W̃ †
±(H,H0; J) as

W̃ †
±(H,H0; J) = w−lim

h→∞
W̃±(Hh, H0; Jh)

= w−lim
h→∞

w−lim
t→±∞

P
(ac)
h Uh(−t)JhU0(t)P

(ac)
0 .

(123)

In the coming discussion we state some results regarding the existence of the
WOs W

†
±, W̃ †

±, W †
±, and their adjoint operators that are denoted respectively

by W
†,∗
± , W̃ †,∗

± , and W †,∗
± , see Paper VI in the appendix for more details.

Theorem 14 Assume the following

(i) A0 is weakly H0-smooth.

(ii) For all h > 0, AhRh(λ ± iε) is strongly convergent as ε → 0 for a.e.
λ ∈ R.

(iii) If Th is the strong limit of AhRh(λ ± iε) as ε → 0 obtained in (ii), Th

converges weakly to some T∞ for a.e. λ ∈ R.

(iv) Jh converges weakly to J∞.

Then the WO W
†
±(H,H0; J) exists, also W

†
±(H0,H; J∗) exists and

W
†,∗
± (H,H0; J) = W

†
±(H0,H; J∗). (124)

Note that the assertions of Theorem 14 remain unchanged if its first three hy-
potheses are replaced by; for a.e. λ ∈ R, as ε → 0, the operator A0θ0(λ, ε) is
strongly convergent and Th,ε := AhRh(λ ± iε) is weakly convergent to some
Th,0 for all h > 0, and Th,0 converges weakly to some T∞,0 as h→∞.

Similar assertions as of Theorem 14 can be formulated as in the following
theorem.

Theorem 15 Assume the following

(i) For all h > 0, Ah is weakly Hh-smooth.

(ii) The operatorA0R0(λ±iε) is strongly convergent as ε→ 0 for a.e. λ ∈ R.

(iii) If Th is the weak limit of Ahθh(λ, ε) as ε → 0 obtained in (i), Th con-
verges weakly to some T∞ for a.e. λ ∈ R.

(iv) If Eh is the spectral family of Hh, then Eh(λ) and Jh converge weakly to
E∞(λ) and J∞ respectively for a.e. λ ∈ R.
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Then the WO W
†
±(H,H0; J) exists, also W

†
±(H0,H; J∗) exists and

W
†,∗
± (H,H0; J) = W

†
±(H0,H; J∗). (125)

The assertions of Theorem 15 are also true if its first three hypotheses are
replaced by the following; for a.e. λ ∈ R, as ε→ 0, the operator A0R0(λ± iε)
is weakly convergent and Sh,ε := Ahθh(λ, ε) is strongly convergent to some
Sh,0 for all h > 0, and Sh,0 converges weakly to some S∞,0 as h→∞.

The existence of W
†
±(H,H; JJ∗) and W

†
±(H0, H0; J∗J) is proved in Theo-

rems 16 and 17 respectively.

Theorem 16 Let the hypotheses of Theorem 14 be satisfied, and let further J∗h
and Rh be strongly convergent. Then the WO W

†
±(H,H; JJ∗) exists and

W
†
±(H,H0; J)W†,∗

± (H,H0; J) = W
†
±(H,H; JJ∗). (126)

Theorem 17 Let the hypotheses of Theorem 15 be satisfied, and let Jh be
strongly convergent. Then the WO W

†
±(H0,H0; J∗J) exists and

W
†,∗
± (H,H0; J)W†

±(H,H0; J) = W
†
±(H0,H0; J∗J). (127)

One of the important results is the equivalence between the stationary WO
W
†
± and the weak time-dependent WO W̃ †

±, that is, if both W
†
±(H,H0; J) and

W̃ †
±(H,H0; J) exist, then their sesquilinear forms are equivalent to each other.

The same conclusion can be drawn for the pairs (H0, H; J∗), (H0,H0; J∗J),
and (H,H; JJ∗).
Also, by the hypotheses of Theorem 14 (equivalently Theorem 15), the WO
W̃ †
±(H, H0; J) exists, consequently W̃ †

±(H0,H; J∗) exists and

W̃ †,∗
± (H,H0; J) = W̃ †

±(H0,H; J∗). (128)

For the WOs W̃ †
±(H,H; JJ∗) and W̃ †

±(H0,H0; J∗J), we have the following two
theorems.

Theorem 18 Suppose the hypotheses of Theorem 16 are satisfied, then the WO
W̃ †
±(H,H; JJ∗) exists.

Theorem 19 Suppose the hypotheses of Theorem 17 are satisfied, then the WO
W̃ †
±(H0,H0; J∗J) exists.
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The existence of the time-dependent WOsW †
±(H,H0; J) andW †

±(H0,H; J∗)
is summarized in the following theorems.

Theorem 20 If the hypotheses of Theorem 16 are satisfied, thenW †
±(H0,H; J∗)

exists.

Theorem 21 If the hypotheses of Theorem 17 are satisfied, thenW †
±(H,H0; J)

exists.

After proving the existence of the WOs W †
±(H,H0; J) and W †

±(H0,H; J∗),
we would like to study the asymptotic behavior, as h → ∞, of the WOs
W±(Hh,H0; Jh) and W±(H0,Hh; J∗h). The problem of finding these asymp-
totic limits is reduced, as we mentioned before, to the problem of interchanging
s−lim

h→∞
and s−lim

t→±∞
. By the existence of W †

±(H,H0; J) and W †
±(H0,H; J∗),

Lemmas 1 and 2 are satisfied for the collections (Hh, H0, Jh, H ) and (H0,
Hh, J∗h, H0) respectively. This implies that, according to [9], in the definitions
of W

†
±(H,H0; J) and W

†
±(H0,H; J∗), the limits s−lim

h→∞
and s−lim

t→±∞
are in-

terchangeable. Therefore, if Hh converges to H∞ in the SRS, and Jh and J∗h
converge strongly to J∞ and J∗∞ respectively, then

s−lim
h→∞

W±(Hh,H0; Jh) = W±(H∞,H0; J∞) (129)

and
s−lim

h→∞
W±(H0,Hh; J∗h) = W±(H0,H∞; J∗∞). (130)
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Paper I





STABILIZED FINITE ELEMENT METHOD FOR THE RADIAL
DIRAC EQUATION

HASAN ALMANASREH, STEN SALOMONSON, AND NILS SVANSTEDT

Abstract. A challenging difficulty in solving the radial Dirac eigenvalue prob-

lem numerically is the presence of spurious (unphysical) eigenvalues, among the

genuine ones, that are neither related to mathematical interpretations nor to phys-

ical explanations. Many attempts have been made and several numerical methods

have been applied to solve the problem using the finite element method (FEM),

the finite difference method, or other numerical schemes. Unfortunately most of

these attempts failed to overcome the difficulty. As a FEM approach, this work

can be regarded as a first promising scheme to solve the spuriosity problem com-

pletely. Our approach is based on an appropriate choice of trial and test function

spaces. We develop a Streamline Upwind Petrov-Galerkin method to the equation

and derive an explicit stability parameter.

1. Introduction.

The Dirac equation describes the electron relativistic behavior by means of spec-

ifying its energies (eigenvalues) in orbital levels around the nucleus. Approximating

the eigenvalues of an electron in the many-electron systems as in Helium-like ions is

based on studying the correlation between the existent electrons under the concept

of quantum electrodynamic effects (QED-effects). An approach, see e.g. [11, 17], for

calculating QED-effects is based on a basis set of eigenstates of the single-electron

system (Hydrogen-like ions). Unfortunately, computing the eigenvalues of the elec-

tron in the Hydrogen-like ions by numerical methods is upset by the presence of

Key words and phrases. Dirac operator, finite element scheme, spurious eigenvalue, cubic Her-

mite functions, Petrov-Galerkin, stability parameter.
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spurious solutions (eigenvalues do not match what is physically observed). The spu-

rious solutions annoy the computation, they disturb the solution in a way it becomes

no longer reliable. At the time, one can identify the spurious eigenvalues, but there is

no efficient method to just remove them from the entire spectrum without affecting

the genuine values.

The presence of spurious eigenvalues in the spectrum of the radial Dirac eigenvalue

problem and other problems has been addressed in most of numerical computations.

In [16], the occurrence of the spurious roots has been related to incorrect balancing

of the numerical spaces of the large and small components of the wave function,

and has been restricted to the positive quantum number κ. In solving the Dirac

eigenvalue problem by a mapped Fourier grid [1], spurious eigenvalues have been

detected for positive κ, where their occurrence has been recounted to the symmetric

treatment of the large and small components. For eigenvalue problems in general

[23], the occurrence of spectrum pollution has been related to the absence of suitable

constraints in the mathematical formulations, this results in mismatching of desired

physical properties of the problem. Shabaev and Tupitsyn et al. [19, 21] have also

allied the presence of spectrum pollution to the symmetric discretization of the small

and large components of the wave function. They have pointed out that using the

same finite space for both components is the essence of the problem. They have

proposed an alternative method to handle the difficulty by an addition of suitable

terms to the basis functions known as a basis correction. Also they have explained

the coincidence of the eigenvalues of the radial Dirac operator in a finite basis set

for each two values of κ that have the same magnitude but are different in sign.

The spuriosity in the eigenvalues computation using spectral Tau method has

been studied in [6]. Also the occurrence of the spurious solution in the electromag-

netic problems in general has been reported in [14]. To the radial Dirac eigenvalue

problem, we refer respectively to [22] and [8, 19] for finite difference and B-splines

approximations. For a brief finite element formulation of the Dirac operator see [15].

In the present work, we provide a finite element scheme for solving the radial

Coulomb-Dirac operator that guarantees complete treatment of the spurious eigen-

values. This scheme may be considered as the first stable finite element approach for

solving the radial Dirac eigenvalue problem. To proceed, we relate the occurrence

of spuriosity to the function spaces in the implemented numerical method. What
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ever the method is, the finite element method (FEM), the finite difference method

(FDM), the spectral domain approach (SDA), the boundary element method (BEM),

or the point matching method (PMM), the spuriosity persists. Hence, the spurios-

ity is priorly understood as not an effect of the applied numerical method, but to a

mismatching of some physical properties of the eigenstates in the computation. The

present work interprets the existence of spurious eigenvalues and their remedy as:

(1) The choice of suitable trial function space that meets the physical property

of the wave functions in the implemented numerical methods and its role of

spuriosity elimination.

(2) The choice of test function space, this treats what remains of spurious eigen-

values, and on the other hand, solves the coincidence of the eigenvalues of

the radial Dirac operator for two different values of κ that differ in sign.

In other words, we classify the spurious eigenvalues in the computation of the radial

Dirac eigenvalue problem in two categories. The first is those that appear within the

spectrum for all values of κ. We call this type the instilled spurious eigenvalues. It

is worth to mention that this type of spuriosity appears not only for positive κ, but

for negative κ as well. Instilled spurious eigenvalues affect the genuine eigenvalues or

may degenerate with them which results in some perturbed eigenfunctions. However,

this will be discussed in detail in the coming section, where, by means of choosing

appropriate function spaces, part of the instilled spurious eigenvalues is treated. The

second category can be understood as the coincidence of the first eigenvalue of the

radial Dirac operator for positive κ to that for the corresponding (has the same

magnitude) negative κ. We call this type of spuriosity the unphysical coincidence

phenomenon: The eigenvalues of the radial Dirac operator for positive κ have been

shown in finite basis sets to be a repetition to those for the corresponding negative

κ [21], which is not the case in the usual (infinite) space of the wave functions.

To overcome the difficulty, the last (main) section is devoted to set a scheme that

removes the spuriosity of both categories.

To present the scheme, consider the radial Coulomb-Dirac eigenvalue problem

(
mc2 + V (x) c

(
−Dx + κ

x

)

c
(
Dx + κ

x

)
−mc2 + V (x)

)

︸ ︷︷ ︸
Hκ

(
f(x)

g(x)

)

︸ ︷︷ ︸
ϕ

= λ

(
f(x)

g(x)

)

︸ ︷︷ ︸
ϕ

.
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Here m and c are respectively the mass of the electron and the speed of light, the

quantum number κ is the spin-orbit coupling parameter defined as κ=(−1)+`+ 1
2 (+

1
2), where  and ` are the total and the orbital angular momentum numbers respec-

tively, and Dx is the derivative with respect to x in R. The Coulomb potential, V (x),

is given by −Z
x , where Z ∈ [1 , 137] is the electric charge number. The unknown f

and g are the large and small components of the eigenfunction ϕ with corresponding

eigenvalue λ.

The presence of convection terms in the off diagonal and the absence of diffu-

sion terms cause numerical instability in the computation of the eigenvalues. In-

deed, in the standard Galerkin finite element solution of the equation one encoun-

ters spurious eigenvalues. In order to remove the spuriosity, we derive a stable

finite element scheme based on appropriate choice of spaces of the radial Dirac

functions. By obtaining the explicit equations of f and g by rewriting the ra-

dial Dirac eigenvalue problem, and applying suitable boundary conditions, the pro-

posed space of the radial Dirac wave functions is H0(Ω) = {v ∈ C1(Ω) ∩ H1
0 (Ω) :

v′|∂Ω = 0}, where C1 is the space of continuous functions which possess contin-

uous first derivatives, Ω is an open bounded domain in R+, and H1
0 (Ω) = {v :

v and v′ are elements of L2(Ω), and v|∂Ω = 0} (for all values of κ except ±1, where

for κ = ±1 the lower boundary condition of v′ should differ from zero, but for

generality and for sake of simplicity it is assumed to vanish, see Remark 1 below).

Thus, by this definition, H0(Ω) is the space of continuous functions, v, which admit

continuous first derivatives and vanishing smoothly on the boundaries.

Consider the weak form of the radial Dirac eigenvalue problem of finding {λ, ϕ} ∈
R×H0(Ω)2 such that

∫

Ω
utHκϕdx = λ

∫

Ω
utϕdx ,

where u is a test function, and the superscript t is the usual matrix transpose.

Cubic Hermite (CH) interpolation functions turn out to be a suitable choice which

sufficiently fulfill the requirements of H0(Ω). Let VH
h be the finite dimensional

subspace of H0 spanned by the piecewise CH basis functions on a partition kh.

Choosing u ∈ (VH
h )2 as (v, 0)t and (0, v)t, where v is an element of VH

h , and assuming

f , g ∈ VH
h , remove partially the first category of spuriosity (only for very small Z)

and do not help in solving the coincidence phenomenon.
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A complete treatment is achieved by letting the test function to live in another

space different from that of the trial function, i.e., applying the Streamline Upwind

Petrov-Galerkin (SUPG) method instead of the FEM. Mainly, by assuming u to be

(v, τv′)t and (τv′, v)t in the variational form above, where v′ = Dxv. This yields

〈w+f , v〉+ 〈−cg′ + cκ

x
g , v〉+ 〈R2

e(f, g) , τv
′〉 = λ〈f , v〉 ,

〈cf ′ + cκ

x
f , v〉+ 〈w−g , v〉+ 〈R1

e(f, g) , τv
′〉 = λ〈g , v〉 ,

where 〈· , ·〉 is the L2 scalar product. The residuals R1
e

(
f, g
)

and R2
e

(
f, g
)

are defined

as follows

R1
e

(
f, g
)
(x) = w+(x)f(x)− cg′(x) +

cκ

x
g(x)− λf(x) =

(
W+f − cg′ +

cκ

x
g
)
(x) ,

R2
e

(
f, g
)
(x) = cf ′(x) +

cκ

x
f(x) + w−(x)g(x)− λg(x) =

(
W−g + cf ′ +

cκ

x
f
)
(x) ,

where W±(x) = w±(x)− λ, and w±(x) = ±mc2 + V (x).

The scheme is accomplished by deriving the stability parameter τ , which turns out

to have the form τ := τj ∼= 9
35hj+1

(hj+1−hj

hj+1+hj

)
. The derivation is based on two leading

simplifications; to consider the limit operator in the vicinity of x at infinity (i.e.,

to consider the most numerically unstable part of the operator) and the dominant

parts corresponding to the speed of light (c) of the variational system. From the

weak form with the modified test function, and after applying these simplifications

we obtain an approximation λ(τ) of the accumulation eigenvalue. Knowing that the

limit point eigenvalue is mc2, we like to minimize the error |λ(τ)−mc2|, which gives

the desired formula of τ .

As a numerical method implemented in this work, the FEM is applied, with the

usual continuous Galerkin method in Section 2 and the Petrov-Galerkin method in

Section 3. For the integrals evaluation, four-point Gaussian quadrature rule is ap-

plied. Also, regarding the programming language, the computation provided here is

implemented by Matlab.

The paper is arranged as follows: In Section 2 we discuss the first category of the

spurious eigenvalues and how to treat it partially via choosing suitable trial function

space. A comparison is also performed between the incorrect and the correct function
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spaces through numerical examples. In Section 3, we discuss the completion of the

treatment. Basically we impose the test function to live in a space different from

that of the trial function. This is the well-known SUPG method [2, 7, 10]. Finally

a stability parameter is derived to achieve the desired goal.

2. Trial function space

Recall the radial Dirac eigenvalue problem

(1)

(
mc2 + V (x) c

(
−Dx + κ

x

)

c
(
Dx + κ

x

)
−mc2 + V (x)

)(
f(x)

g(x)

)
= λ

(
f(x)

g(x)

)
,

where, then, the two-equation system is

(2)
(
mc2 + V (x)

)
f(x) + c

(
− g′(x) +

κ

x
g(x)

)
= λf(x) ,

(3) c
(
f ′(x) +

κ

x
f(x)

)
+
(
−mc2 + V (x)

)
g(x) = λg(x) .

Since x ranges over [0 , ∞), x = 0 represents a singularity for the Coulomb po-

tential and hence careful treatment is needed, i.e., one should consider extended

nucleus on the entire domain (the case that we want to get the approximation for)

or assume point nucleus (the case we can compare our result to, where the exact

eigenvalues can be obtained by the relativistic formula) on a cut-off domain. In

the extended nucleus case, to avoid the singularity at x = 0, the Coulomb poten-

tial is modified so that in the range [0, R] (R is the radius of the nucleus) another

potential which has no singularity at x = 0 is assumed and keeping the Coulomb

potential defined on the rest of domain, where the total potential should be at least

C1([0,∞))-function. Thus, other distributions of the charge along the nucleus are

assumed, these distributions can be, e.g., Fermi or uniform distributions, in this

work we consider uniform distribution. However, computationally, the same tech-

nique is used for both extended and point nucleus cases. For simplicity we will treat

point nucleus model in all computations except in the last two tables where we apply

the stability scheme for extended nucleus.

To discretize (2) and (3), we divide the domain Ω = [a , b] into n+ 1 subintervals

with n interior points, x1, x2, . . . , xn, distributed exponentially where a = x0 < x1 <

x2 < · · · < xn+1 = b. Assume kh is the partition of Ω that consists of the resulted

nodal points, with mesh size hj = xj − xj−1.



STABILIZED FINITE ELEMENT METHOD FOR THE RADIAL DIRAC EQUATION 7

The exponential distribution of the nodal points is crucial for solving the radial

Dirac eigenvalue problem in order to get more nodal points near the singularity (x =

0). This is because the wave function oscillates much more near the nucleus which

means more information is needed about its behavior near that region. Whereas the

fine grid is not required at the positions away from the nucleus.

The choice of the computational space V is important and plays the most influ-

ential role in the core of the problem. To see that, let us first take the space of only

continuous functions as the function space V. We will show, by means of numerical

examples, how this space causes the occurrence of spurious eigenvalues.

For fast and simple algorithm, continuous linear basis functions are considered. So

let V = Vl be the space of continuous linear polynomials (the superscript l denotes

for the linear case), and let Vl
h ⊂ Vl be the finite subspace of piecewise continuous

linear polynomials spanned by the usual linear basis functions (φj) on the partition

kh. The basis function φj(x) has its support in [xj−1 , xj ] =: Ij and [xj , xj+1] = Ij+1

and defined as

φj(x) =

{
x−xj−1

hj
x ∈ Ij ,

xj+1−x
hj+1

x ∈ Ij+1 .

Assume that f and g belong to Vl
h, then they can be written as

f(x) =
n∑

j=1

ζjφj(x) ,(4)

g(x) =
n∑

j=1

ξjφj(x) ,(5)

where ζj and ξj are the unknown values of the functions f and g at the nodal point

xj respectively. Since the wave function vanishes in the vicinity of x at infinity

and at x = 0, homogeneous Dirichlet boundary condition is assumed. The problem

is now read as solving (2) and (3) such that f = 0 and g = 0 at x = a , b (i.e.,

ζ0 = ζn+1 = ξ0 = ξn+1 = 0). The FEM of the problem is to assume f and g as

above in (2) and (3), then multiply by a test function and integrate over the domain

Ω

(6)
n∑

j=1

〈w+(x)φj(x) , v(x)〉ζj +
n∑

j=1

〈−cφ′j(x) +
cκ

x
φj(x) , v(x)〉ξj = λ

n∑

j=1

〈φj(x) , v(x)〉ζj
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and

(7)
n∑

j=1

〈cφ′j(x) +
cκ

x
φj(x) , v(x)〉ζj +

n∑

j=1

〈w−(x)φj(x) , v(x)〉ξj = λ
n∑

j=1

〈φj(x) , v(x)〉ξj ,

where w±(x) = ±mc2 +V (x). Let v = φi be an element of the same space Vl
h in (6)

and (7), this leads to the symmetric generalized eigenvalue problem

(8) AX = λBX .

Here A and B are both symmetric block matrices defined by

(9) A =

(
mc2M000 +MV

000 −cM010 + cκM001

cM010 + cκM001 −mc2M000 +MV
000

)

and

(10) B =

(
M000 0

0 M000

)
,

where M q
rst are n× n matrices defined as

(11) (M q
rst)ij =

∫

Ω
φ

(s)
j φ

(r)
i x−t q(x) dx ,

(
φ(r)(x) =

dr

dxr
φ(x)

)
.

The vector X is the unknowns defined as (ζ , ξ)t, where

ζ = (ζ1, ζ2, . . . , ζn) and ξ = (ξ1, ξ2, . . . , ξn).

In Table 1 the first six computed eigenvalues of the electron in the Hydrogen atom

(Z = 1) are listed for |κ| = 1, these eigenvalues are obtained using n = 100 interior

nodal points and given, as of all other computations in this work, in atomic unit

(au). The exact solution for κ = −1 is shown in the right column of the table. Even

with mesh refinement the spuriosity is still present, see Table 2 with n = 400.

In Tables 1 and 2, the shaded value in the first level is what we mean by the un-

physical coincidence phenomenon, and the two shaded values after the third level are

the so-called instilled spuriosity. The spurious eigenvalues appear for both positive

and negative values of κ, and they persist despite of mesh refinement. Generally,

the spurious eigenvalues can be identified among the genuine ones, but there is no

efficient way to just exclude them as a hope of treatment.
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Table 1. The first six computed eigenvalues of the electron in the

Hydrogen atom using linear basis functions with 100 nodal points.

Level κ = 1 κ = −1 Rel. Form. κ = −1

1 -0.50000665661 -0.50000665659 -0.50000665659

2 -0.12500414297 -0.12500414298 -0.12500208018

3 -0.05556140476 -0.05556140479 -0.05555629517

V -0.03192157994 -0.03192157993 Spurious Eigenvalue

4 -0.03124489833 -0.03124489832 -0.03125033803

5 -0.01981075633 -0.19810756319 -0.02000018105

Table 2. The first six computed eigenvalues of the electron in the

Hydrogen atom using linear basis functions with 400 nodal points.

Level κ = 1 κ = −1 Rel. Form. κ = −1

1 -0.50000665661 -0.50000665659 -0.50000665659

2 -0.12500208841 -0.12500208839 -0.12500208018

3 -0.05555631532 -0.05555631532 -0.05555629517

V -0.03141172061 -0.03141172060 Spurious Eigenvalue

4 -0.03118772526 -0.03118772524 -0.03125033803

5 -0.01974434510 -0.01974434508 -0.02000018105

The accuracy of the computation in the case of point nucleus can be measured

since by relativistic formula we can obtain the exact eigenvalues. But, unfortunately,

with the existence of the spurious solutions, it is rather difficult to measure the

accuracy of the result in a complete picture. This is obvious because there will be

many unrelated eigenvalues in the list of the spectrum for which there are no exact

eigenvalues to compare with.

As we mentioned before, the occurrence of spuriosity is an effect of the applied

numerical method. Here the numerical scheme we assume for the computation in

Tables 1 and 2 is the FEM with the space Vl. Therefore, either of them holds

the responsibility of the spectrum pollution. At this end, it is worth to mention

that other methods like the FDM, the method of moments (MoM) [16, 18], and

others, have reported the occurrence of spuriosity in many computations for the

Dirac operator or else. So we conclude that the problem of spuriosity is certainly
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caused by the employed function spaces in the discretization, hence the cause of

spuriosity is Vl-problem and never FEM-problem.

We return to (2) and (3), rewrite both equations to obtain explicit formulae for

f and g

w+(x)
(
w−(x)− λ

)2
f(x)− cκ

x

(
w−(x)− λ

)(
cf ′(x) +

cκ

x
f(x)

)
+ c
[(
w−(x)− λ

)
×

(12)

(
cf ′′(x) +

cκ

x
f ′(x)− cκ

x2
f(x)

)
− V ′(x)

(
cf ′(x) +

cκ

x
f(x)

)]
= λ

(
w−(x)− λ

)2
f(x)

and

w−(x)
(
w+(x)− λ

)2
g(x) +

cκ

x

(
w+(x)− λ

)(
cg′(x)− cκ

x
g(x)

)
+ c
[(
w+(x)− λ

)
×

(13)

(
cg′′(x)− cκ

x
g′(x) +

cκ

x2
g(x)

)
− V ′(x)

(
cg′(x)− cκ

x
g(x)

)]
= λ

(
w+(x)− λ

)2
g(x) .

Equations (12) and (13) can be written in simpler forms as

(14) f ′′(x) + γ1(x, λ)f ′(x) + γ2(x, λ)f(x) = 0

and

(15) g′′(x) + θ1(x, λ)g′(x) + θ2(x, λ)g(x) = 0 ,

where

γ1(x, λ) = − V ′(x)
w−(x)− λ

,

γ2(x, λ) =

(
w+(x)− λ

)(
w−(x)− λ

)

c2
− κ2 + κ

x2
− κV ′(x)
x
(
w−(x)− λ

) ,

θ1(x, λ) = − V ′(x)
w+(x)− λ

,

and

θ2(x, λ) =

(
w+(x)− λ

)(
w−(x)− λ

)

c2
− κ2 − κ

x2
+

κV ′(x)
x
(
w+(x)− λ

) .

The terms f ′′ and g′′ in (14) and (15) propose further constraint on both com-

ponents of the wave function. By these equations, f and g are imposed to be twice

differentiable. This means that f and g should be continuous and having continuous

first derivatives, hence the proposed domain is C1(Ω) ∩H1
0 (Ω).

Instead of regarding Vl as the space of variational formulation, a space of contin-

uous functions which admit continuous first derivatives is considered to discretize
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both components of the wave function. To this end, one can think about a suitable

space which meets the properties of f and g; Lagrange interpolation functions are

not suitable in this situation, since their first derivatives do not match the continuity

property. So we consider instead a type of Hermite functions (known as a general-

ization of the Lagrange functions) which are continuous and admit continuous first

derivatives.

The boundary conditions need special care. Since the wave functions are assumed

to vanish at the boundaries, and by the smooth property of these functions, the

way they move toward the boundaries should be in damping manner, i.e., with

vanishing velocity. This implies homogeneous Neumann boundary condition should

be considered as well (except the case when κ = ±1 at the lower boundary, see

Remark 1). thus, after considering the suitable boundary conditions, the proposed

space is H0(Ω) = {v ∈ C1(Ω) ∩H1
0 (Ω) : v′|∂Ω =0}.

CH interpolation functions turn out to be sufficient to fulfill the requirements.

Such functions are third degree piecewise polynomials consisting of two control points

and two control tangent points for the interpolation. That means there is a control

for both the function values and its first derivative values at the nodal points.

Remark 1.
(i) For the states 1s1/2 and 2p1/2 (κ=−1 and 1 respectively), the first derivative

values of the components of the wave function at the boundaries are partially

different, specifically at the lower boundary. For these two states, if ∂Ωup and

∂Ωlo denote respectively the upper and lower boundaries, and if v represents

the two components of these states, then v′|∂Ωup = 0 but v′|∂Ωlo 6= 0. This

is due to the fact that the corresponding wave functions do not vanish in a

damping way near the origin, see [22] for more details. Thus, for the states

1s1/2 and 2p1/2, the same function space H0(Ω) can be considered but with

small modification on the functions first derivative at the lower boundary.

Here we will keep the same notation H0(Ω) for the space for all states, but

when we mean the states 1s1/2 and 2p1/2, the right Neumann lower boundary

conditions should be considered.

(ii) For the sake of simplicity and for comparative point of view, in the following

computation of the eigenvalues of the electron in the Hydrogen atom, we

do not use the right Neumann lower boundary conditions for the states
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1s1/2 and 2p1/2 as stated in part (i). Instead we also assume homogeneous

Neumann boundary condition for the components of these two states, where

the result might be slightly affected but the essence of comparison will not

be impacted.

Let VH
h be the finite dimensional subspace of H0(Ω) spanned by the CH basis

functions on the partition kh. To summarize, VH
h possesses the following properties:

(i) It is a set of continuous piecewise CH polynomials.

(ii) ∀v ∈ VH
h , v′ exists and piecewise continuous.

(iii) ∀v ∈ VH
h , v|∂Ω = v′|∂Ω = 0, where ∂Ω = {a, b}.

(iv) It is a finite dimensional vector space of dimension 2(n + 2) with basis

{φj,1}n+1
j=0 and {φj,2}n+1

j=0 given below.

To approximate a function uh ∈ VH
h , where the same partition kh is considered

as before, uh can be written as

(16) uh =
n∑

j=1

ξjφj,1 +
n∑

j=1

ξ′jφj,2 ,

ξj and ξ′j are the unknown value of the function and its corresponding derivative

at the nodal points xj respectively, and φj,1 and φj,2, j = 1, 2, . . . , n, are the basis

functions of the space VH
h having the following properties

φj,1(xi) =

{
1 , if j = i ,

0 , otherwise ,

φ′j,2(xi) =

{
1 , if j = i ,

0 , otherwise ,

and

φ′j,1(xi) = φj,2(xi) = 0 ∀i = 1, 2, . . . , n.

It follows from the conditions above that φj,1 interpolates the function values whereas

φj,2 is responsible of the function first derivatives at the nodal point xj . For non-

uniform mesh, φj,1 and φj,2 are given by the following formulae (see Figure 1 below,
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where the two basis functions are depicted for uniform and non-uniform meshes)

φj,1(x) =





1
h2

j
(x− xj−1)2 − 2

h3
j
(x− xj−1)2(x− xj), x ∈ Ij ,

1− 1
h2

j+1
(x− xj)2 + 2

h3
j+1

(x− xj)2(x− xj+1), x ∈ Ij+1 ,
(17)

φj,2(x) =





1
h2

j
(x− xj−1)2(x− xj), x ∈ Ij ,

(x− xj)− 1
hj+1

(x− xj)2 + 1
h2

j+1
(x− xj)2(x− xj+1), x ∈ Ij+1 .

(18)

The approximation error using CH basis functions in the subinterval Ij is given by

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

 φ
j,2

φ
j,1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

 φ
j,1

 φ
j,2

Figure 1. CH basis functions with uniformly distributed nodal

points(Left) and non-uniformly distributed nodal points(Right).

(19) |u− uh| ≤ c1h
4‖u(4)‖L∞(Ij) ,

where c1 = 1
384 , and h = maxj hj . So the error bound is obtained individually

for each subinterval Ij , yielding a fine-grained error bound, which means that the

CH basis produces more accuracy compared to the linear or quadratic interpolation

function in general. According to Remark 1 part (i), the choice of the CH basis

function is also necessary, from simplicity point of view, when the right first deriva-

tive of the wave functions at the lower boundary is treated for the states 1s1/2 and

2p1/2.

To construct the FEM for the radial Dirac eigenvalue problem using the CH basis

functions, we, as usual, multiply (2) and (3) by a test function v ∈ H0(Ω) and

integrate over Ω. To discretize the system, we assume f and g are elements of VH
h ,
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thus they can be written as

f(x) =
n∑

j=1

ζjφj,1(x) +
n∑

j=1

ζ ′jφj,2(x) ,(20)

g(x) =
n∑

j=1

ξjφj,1(x) +
n∑

j=1

ξ′jφj,2(x) ,(21)

where ζj and ζ ′j are the nodal value and the nodal derivative of f respectively at xj ,

and ξj and ξ′j are the corresponding ones associated to g. This yields

n∑

j=1

〈−cφ′j,1(x) +
cκ

x
φj,1(x) , v(x)〉ξj +

n∑

j=1

〈−cφ′j,2(x) +
cκ

x
φj,2(x) , v(x)〉ξ′j+(22)

+
n∑

j=1

〈w+(x)φj,1(x) , v(x)〉ζj +
n∑

j=1

〈w+(x)φj,2(x) , v(x)〉ζ ′j

= λ
[ n∑

j=1

〈φj,1(x) , v(x)〉ζj +
n∑

j=1

〈φj,2(x) , v(x)〉ζ ′j
]
,

n∑

j=1

〈cφ′j,1(x) +
cκ

x
φj,1(x) , v(x)〉ζj +

n∑

j=1

〈cφ′j,2(x) +
cκ

x
φj,2(x) , v(x)〉ζ ′j+(23)

+
n∑

j=1

〈w−(x)φj,1(x) , v(x)〉ξj +
n∑

j=1

〈w−(x)φj,2(x) , v(x)〉ξ′j

= λ
[ n∑

j=1

〈φj,1(x) , v(x)〉ξj +
n∑

j=1

〈φj,2(x) , v(x)〉ξ′j
]
.

Let v be an element of VH
h , and consider (22) and (23) first with v = φi,1 and then

with v = φi,2. This yields the following system

(24) AX = λBX ,

where

(25) A =

(
mc2MM000 +MMV

000 −cMM010 + cκMM001

cMM010 + cκMM001 −mc2MM000 +MMV
000

)

and

(26) B =

(
MM000 0

0 MM000

)
.
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The vector X is the unknowns given by X = (ζ, ζ ′, ξ, ξ′), and the general block

matrices MM q
rst are defined as

(27) MM q
rst =

(
M q

rst(1,1) M q
rst(1,2)

M q
rst(2,1) M q

rst(2,2)

)
,

where

(28) (M q
rst(k,l))ij =

∫

Ω
φ

(s)
j,l φ

(r)
i,k x

−t q(x) dx .

Tables 3 and 4 contain the first six computed eigenvalues of the electron in the

Hydrogen atom, with n = 100 and 400 interior nodal points using the CH basis

functions. The computation is performed for κ = ±1. The right columns of the

tables represent the exact solution for κ = −1 obtained by the relativistic formula.

Table 3. The first six computed eigenvalues of the electron in the

Hydrogen atom using the CH basis functions with 100 nodal points.

Level κ = 1 κ = −1 Rel. Form. κ = −1

1 -0.50000632471 -0.50000665659 -0.50000665659

2 -0.12500207951 -0.12500207951 -0.12500208018

3 -0.05555629341 -0.05555629338 -0.05555629517

4 -0.03125018386 -0.03125018404 -0.03125033803

5 -0.01982545837 -0.01982545886 -0.02000018105

6 -0.01085968925 -0.01085968695 -0.01388899674

Table 4. The first six computed eigenvalues of the electron in the

Hydrogen atom using the CH basis functions with 400 nodal points.

Level κ = 1 κ = −1 Rel. Form. κ = −1

1 -0.50013790178 -0.50000665659 -0.50000665659

2 -0.12500208021 -0.12500208018 -0.12500208018

3 -0.05555629517 -0.05555629518 -0.05555629517

4 -0.03125027925 -0.03125027916 -0.03125033803

5 -0.01985891281 -0.01985888664 -0.02000018105

6 -0.01116648473 -0.01116629119 -0.01388899674
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It is noted, from Tables 3 and 4, that the instilled spurious eigenvalues that were

present in Tables 1 and 2 are removed. Also the speed of convergence to the exact

eigenvalues is enhanced as the number of nodal points is increased. Unfortunately,

part of the instilled spuriosity is still present for most values of Z, also the unphysical

coincidence phenomenon remains unsolved. By (19), one argues that the approxima-

tion should converge to the exact solution and thus the spurious eigenvalues should

disappear if we refine the mesh. This is not the case and the spurious eigenvalues

persist even with mesh refinement, see [21], which is costly and also causes numerical

deficiencies as refining the mesh where it is not needed.

The unphysical coincidence phenomenon can be simply explained as the following

states have respectively almost the same eigenvalue

np
1
2 (κ = 1) and ns

1
2 (κ = −1) , n ≥ 2,

nd
3
2 (κ = 2) and np

3
2 (κ = −2) , n ≥ 3,(29)

nf
5
2 (κ = 3) and nd

5
2 (κ = −3) , n ≥ 4, etc.

The occurrence of this phenomenon is deeply studied for both nonrelativistic and

relativistic cases: In [20], the coincidence of the eigenvalues of each two states in (29)

is explained by studying the commutation of the Dirac operator with Biedenharn-

Johnson-Lippmann operator in the relativistic case. Also in the nonrelativistic case,

the eigenvalues dependence on the quantum number % = n + |κ| is proved, which

implies the eigenvalues independence of the sign of κ. The coincidence of the eigen-

values in the finite dimensional space is also studied in [21], where the spuriosity in

general is interpreted as an effect of the same treatment of both components of the

wave function.

As it is known that the exact solution of the Dirac operator with Coulomb po-

tential for point nucleus results in different lowest bound eigenvalues for different

values of κ. In this work, as it is pointed before, we relate the problem of eigenvalues

coincidence to the numerical implementation. Roughly speaking not to the method

of approximation, but to the proposed spaces of discretization.

In the previous computation we have imposed the test functions to live in the same

space as well as the trial functions, that is the usual Galerkin method. As we have

seen, this results in a solution not cleaned from spurious eigenvalues. However, it
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is well-known that the Galerkin method when it is applied to convection dominated

problem, the solution will be upset by spurious oscillations which are getting worse

with the increase in the convection size.

Nevertheless, it is assumed non-uniform mesh (exponentially distributed nodal

points) to match desirable requirements of high resolution near the nucleus, where

the wave functions oscillate rapidly compared to their oscillations in a region away

from it. This means that for each nodal point xj there are two adjacent systems of

what are called fine-mesh grid with much larger coarse mesh. Hence when the wave

function crosses the interface between these two regions, its phase is altered to fit

the unbalanced change in the displacement size. One can understand the issue by

regarding the variant mesh as different media to the generating waves, where most

of those waves are not resolvable in two different meshes at the same time. We refer

to [5, 12, 13] for more details.

Also, from numerical algebra point of view, one considers the linear system given

by (24) and posteriorly notes that the sign of κ that appears as a factor of the block

matrix MM001 does not contribute in determining the eigenvalues, which is entirely

incorrect from physical point of view. So what is needed is to let the sign of κ play a

role in eigenvalues definition. This can be achieved by clever and justified addition of

terms that include κ without deforming the original equations. These motivations

suggest to use an alternative method to the Galerkin formulation that does not

admit instability at the time treats the phenomenon of unphysical coincidence.

The SUPG method is used to solve the problem, which consistently introduces

additional stability terms in the upwind direction, these terms are based on the

residuals of the governing equations and on the modification of the test function

space. The latter is understood as adapting the test function u from (v, 0) and (0, v)

to (v, τv′) and (τv′, v) respectively. So, the scheme of stability that we consider is

a type of residual corrections added to the original equations. The mesh-dependent

τ is the stability parameter which we are investigating, where its derivation is the

main part of the upcoming section.

3. Test Function Space

To stabilize the FEM approximation applied to the radial Dirac operator, modified

SUPG method is used to formulate the problem. This consists in adding suitable
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stability terms to the standard Galerkin method. The SUPG method is designed to

maintain consistency, so that the solution of the original equation is still a solution

to the variational equation.

The idea of using the SUPG method is to introduce a diffusion term 〈u′, v′〉 which

eliminates the instability and enhances the approximation without modifying the

equation. Several approaches can be implemented to create such term, to mention,

we can just artificially add 〈au′, v′〉, where a is a constant that controls the diffusivity

size, this method is first order accurate at most. Or the artificial diffusion term can

be added in the direction of the streamlines to avoid excess diffusivity [3, 4], despite

this method introduces less crosswind diffusivity than the first mentioned, but it

is still inconsistent modification. The methods mentioned above result in modified

equations which are different from the original, consequently the exact solution will

be no longer satisfying the variational equations.

To formulate the method, consider the radial Dirac eigenvalue problem

Hκϕ = λϕ , where ϕ =
(
f(x) , g(x)

)t and

Hκ =

(
w+(x) c

(
−Dx + κ

x

)

c
(
Dx + κ

x

)
w−(x)

)
,

which is equivalent to

(30)

(
w+(x)f(x)− cg′(x) + cκ

x g(x)

cf ′(x) + cκ
x f(x) + w−(x)g(x)

)
= λ

(
f(x)

g(x)

)
.

Define the residual of each equation as

(31) R1
e

(
f, g
)
(x) = w+(x)f(x)−cg′(x)+

cκ

x
g(x)−λf(x) =

(
W+f−cg′+ cκ

x
g
)
(x) ,

(32) R2
e

(
f, g
)
(x) = cf ′(x)+

cκ

x
f(x)+w−(x)g(x)−λg(x) =

(
W−g+cf ′+

cκ

x
f
)
(x) ,

where W±(x) = w±(x)− λ.

The previously derived Galerkin formulation with CH basis functions is

(33)
∫

Ω
utHκϕdx = λ

∫

Ω
utϕdx ,

where u is (v, 0)t and (0, v)t, and v as well as f and g is an element of VH
h . The

SUPG method is formulated based on modifying the test function u to a form that
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includes v′ as a correction term to introduce the required diffusivity. Hence we

assume v ∈ VH
h as well f and g, but u /∈ (VH

h )2 is just continuous function. In this

regard, let u be (v, τv′)t and (τv′, v)t in (33), where τ is the stability parameter to

be studied soon. This leads to

(34) 〈w+f , v〉+ 〈−cg′ + cκ

x
g , v〉+ 〈R2

e(f, g) , τv
′〉 = λ〈f , v〉

and

(35) 〈cf ′ + cκ

x
f , v〉+ 〈w−g , v〉+ 〈R1

e(f, g) , τv
′〉 = λ〈g , v〉 ,

Each of the formulations above, using the new test functions, is the usual Galerkin

formulation with additional perturbation that consists of the variational form of the

residual of the opposite equation with test function τv′.

In matrix notations, the system AX = λBX is obtained as before, but A and B

are now perturbed by additional matrices factored by τ

(36) A =




mc2MM000 +MMV
000+ −cMM010 + cκMM001+

+cτMM110 + cτκMM101 −mc2τMM100 + τMMV
100

cMM010 + cκMM001+ −mc2MM000 +MMV
000+

mc2τMM100 + τMMV
100 −cτMM110 + cτκMM101




and

(37) B =

(
MM000 τMM100

τMM100 MM000

)
.

The unknowns vector X and the generalized block matrices MM q
rst are as defined

before. It is notable from the system above that the resulted block matrices A and

B are not symmetric any more, in this situation complex eigenvalues may appear,

which of course what we should avoid in the computation. To be more precise, the

appearance of complex eigenvalues depends on the size of τ , where they do appear

for large sizes. For small sizes of τ , one can consider the above system as the usual

system that corresponds to the Galerkin approximation (which is symmetric) with

an addition of small perturbation of size τ , which still admits real eigenvalues.

Now, the main task is to determine the stability parameter τ that completes the

scheme of removing the spuriosity of both categories and improves the convergence.
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The derivation of τ assumes non full dependence on the exact solution of the com-

plete operator for point nucleus, instead the limit operator in the vicinity of x at

infinity is assumed. Parallel with considering the dominant terms relative to the

speed of light (c). Before proceeding into details, we state the following lemmas.

The following lemma provides the approximated values of the radial functions f

and g at the nodal point xj , where backward and forward derivative approximations

are used, hence the error is O(h).

Lemma 1. For the Dirac functions f and g, let ζj−1, ζj+1, ξj−1, and ξj+1 be the

f ’s and g’s nodal values at xj−1 and xj+1 respectively, then the following holds

ζj−1
∼=
(
1 +

hjκ

xj

)
ζj +

(hj

c

(
−mc2 + V (xj)

)
− hj

c
λ
)
ξj .

ξj−1
∼=
(
1− hjκ

xj

)
ξj +

(
− hj

c

(
mc2 + V (xj)

)
+
hj

c
λ
)
ζj .

ζj+1
∼=
(
1− hj+1κ

xj

)
ζj +

(
− hj+1

c

(
−mc2 + V (xj)

)
+
hj+1

c
λ
)
ξj .

ξj+1
∼=
(
1 +

hj+1κ

xj

)
ξj +

(hj+1

c

(
mc2 + V (xj)

)
− hj+1

c
λ
)
ζj .

Proof . Consider the two-equation system of the radial Dirac eigenvalue problem
(
mc2 + V (x)

)
f(x) + c

(
− g′(x) +

κ

x
g(x)

)
= λf(x)

and

c
(
f ′(x) +

κ

x
f(x)

)
+
(
−mc2 + V (x)

)
g(x) = λg(x) .

Assuming the above system for arbitrary xj ∈ kh, j = 1, 2, . . . , n, and using

the backward and forward difference approximations for the derivatives (backward

⇒ f ′|xj
∼= f(xj)−f(xj−1)

xj−xj−1
= ζj−ζj−1

hj
and forward ⇒ f ′|xj

∼= f(xj+1)−f(xj)
xj+1−xj

= ζj+1−ζj

hj+1
),

one gets the desired results. ¥

For the computed matricesMM000, MM100, MM010, andMM110 in the block ma-

trices (36) and (37), the exact element integrals are obtained by the following lemma.

For the remaining matrices one can calculate the exact element integrals, but it is

rather hard to get them simplified. Therefore, we just write in Remark 3 notations

for the desired values without evaluating them.
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Lemma 2. The exact element integrals for some matrices in the generalized system

are given in Table 5.

Table 5. The exact element integrals for some matrices in the gen-

eralized system. Here M, I, R, and C refer respectively to Matrix,

Index, Row, and Column.

HHHHHM

I HHHHHR

C
j − 1 j j + 1 j − 1 + n j + n j + 1 + n

j 9
70 hj+1

13
35 (hj+1 + hj)

9
70 hj+1

13
420 h2

j+1
11
210 (h2

j+1 − h2
j ) − 13

420 h2
j+1

MM000 j + n − 13
420 h2

j+1
11
210 (h2

j+1 − h2
j ) 13

420 h2
j+1 − 1

140 h3
j+1

1
105 (h3

j+1 + h3
j ) − 1

140 h3
j+1

j 1
2 0 − 1

2
1
10 hj+1 − 1

10 (hj+1 + hj)
1
10 hj+1

MM100 j + n − 1
10 hj+1

1
10 (hj+1 + hj) − 1

10 hj+1 − 1
60 h2

j+1 0 1
60 h2

j+1

j − 1
2 0 1

2 − 1
10 hj+1

1
10 (hj+1 + hj) − 1

10 hj+1

MM010 j + n 1
10 hj+1 − 1

10 (hj+1 + hj)
1
10 hj+1

1
60 h2

j+1 0 − 1
60 h2

j+1

j − 6
5

1
hj+1

6
5

hj+1+hj
hj+1hj

− 6
5

1
hj+1

− 1
10 0 1

10

MM110 j + n 1
10 0 − 1

10 − 1
30 hj+1

2
15 (hj+1 + hj) − 1

30 hj+1

Proof . The proof is straightforward by evaluating the integrals. ¥

Remark 2. The basis functions consist of two parts, one corresponds to the function

value and the other to the function derivative at the nodal points. As a first attempt

to derive the stability parameter τ , we just take into account the part of the basis

functions that contributes to the function values at the nodal points. Thus, the

upper left (shaded) three-cell corner of each matrix of Table 5 is considered. This

simplification is crucial and justifiable since the basis functions that contribute to

the derivative have no considerable contribution to the function values, thus to

simplify the derivation we can neglect them, where a complete picture about τ can

be obtained by considering the full set of basis functions.

Remark 3. For the other matrices in the block matrix A, MM001 and MM101

(whereMMV
000 andMMV

100 can be written respectively as−ZMM001 and−ZMM101

for V (x) = −Z
x ), we will use the following notations to denote the element integral

obtained using the part of the basis functions that only contributes the function val-

ues at the nodal points as indicated in Remark 2. Namely we denote the following
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Table 6. The element integrals notations of the matrices MM001

and MM101 for the jth row.

PPPPPPPPPPPMatrix

Index
j − 1 j j + 1

MM001 sj−1 sj sj−1

MM101 rj−1 rj rj+1

Now we are at the position to state the main theorem of the stability parameter

τ . By considering the limit behavior of the eigenvalues in the vicinity of x at infinity,

together with the dominant terms with respect to the speed of light we have the

following main result

Theorem 1. The mesh-dependent stability parameter τ that appears in the formu-

lations (34) and (35) is approximated by

(38) τ := τj ∼=
9
35
hj+1

(hj+1 − hj)
(hj+1 + hj)

.

It is notable that τ is applicable only for non-uniform mesh (hj − hj−1 6= 0 for

j = 1, 2, . . . , n) and for uniform mesh it is identically zero. This is, of course, of our

interest since for the computation of the Dirac operator eigenvalues, the exponential

distribution of the nodal points is important and always assumed.

The expression of τ treats the difficulty of the wave transferring between any two

adjacent unbalanced mesh steps. The size of τ is proportional to the mesh size, i.e.,

since we are assuming exponentially distributed points, τ has small sizes near the

singularity x = 0 due to the small mesh size, while it takes relatively large values in

the region away from the origin which is dominated by coarse mesh.

Before proceeding, we introduce the following notations to ease handling the proof.

c1=−(hj+1 + hj)
2c

.

c2=− 9
70

(hj+1 − hj) .

c3=
9
70

κ

xj
hj+1(hj+1 − hj)− κsj−1(hj+1 − hj)−

Z

2cxj
(hj+1 + hj)τj +

+
Z

c
(rj+1hj+1 − rj−1hj)τj .
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c4=
6c
5

(hj+1 − hj)
hj+1hj

+
m2c3

2
(hj+1 + hj) +

1
xj

(
Z2

c
− cκ2)(rj+1hj+1 − rj−1hj) .

c5=−mcZ
2xj

(hj+1 + hj)−mcZ(rj+1hj+1−rj−1hj) +
6
5
cκ

xj

1
hj+1

(hj+1−hj) +

+cκ(rj−1 + rj + rj+1) .

c6=mc2
9
70

(hj+1 − hj) .

c7=−Z(2sj−1 + sj) +mc2κsj−1(hj+1 − hj) +
Z

2xj
(hj+1 + hj) +

− 9
70
mc2κ

xj
hj+1(hj+1 − hj) .

c8=− 9
70c

hj+1(hj+1 − hj) .

c9=−6
5

1
hj+1

(hj+1 − hj)τj .

c10=
κ

2xj
(hj+1 + hj)τj−

Zsj−1

c
(hj+1−hj) + κ(rj+1hj+1−rj−1hj)τj +

− 9
70

Z

cxj
hj+1(hj+1−hj) .

c11=−6mc2

5
1

hj+1
(hj+1 − hj) .

c12=−6
5
Z

xj

1
hj+1

(hj+1−hj)+mc2κ(rj+1hj+1−rj−1hj)−Z(rj−1+rj+rj+1) +

+
κmc2

2xj
(hj+1+hj) .

c13=
9
70
m2c3hj+1(hj+1 − hj) +

cκ2sj−1

xj
(hj+1 − hj) .

c14=
9
70
mcZ

xj
hj+1(hj+1 − hj) + cκ(2sj−1 + sj)−

cκ

2xj
(hj+1 + hj) .

c15=−Zsj−1

c
(mc2 +

Z

xj
)(hj+1 − hj) .

c16=−Zsj−1

c
(mc2 − Z

xj
)(hj+1 − hj) .

The following lemma provides the behavior of the eigenvalues in the vicinity of x at

infinity.
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Lemma 3. Define the operator

T =

(
mc2 −cDx

cDx −mc2

)
,

then for the radial Coulomb-Dirac eigenvalue problem
(

T +

(
V (x) cκ

x

cκ
x V (x)

))(
f(x)

g(x)

)
= λ

(
f(x)

g(x)

)
,

the only accumulation point of the eigenvalues λ is mc2.

Proof. See [9]. ¥

We now give the proof of the main theorem.

Proof . Consider the weak formulations (34) and (35), rewrite both of them as the

following matrix-system

(mc2 − λ)MM000ζ − cMM010ξ + cκMM001ξ − ZMM001ζ +(39)

+cτMM110ζ + cκτMM101ζ − (mc2 + λ)τMM100ξ − ZτMM101ξ = 0,

(mc2 − λ)τMM100ζ − cτMM110ξ + cκτMM101ξ − ZτMM101ζ +(40)

+cMM010ζ + cκMM001ζ − (mc2 + λ)MM000ξ − ZMM001ξ = 0 ,

where the unknowns ζ and ξ are given as

ζ = (ζ1, . . . , ζj−1, ζj , ζj+1, . . . , ζn, ζ
′
1, . . . , ζ

′
j−1, ζ

′
j , ζ

′
j+1, . . . , ζ

′
n)

and

ξ = (ξ1, . . . , ξj−1, ξj , ξj+1, . . . , ξn, ξ
′
1, . . . , ξ

′
j−1, ξ

′
j , ξ

′
j+1, . . . , ξ

′
n).

To get τ locally, that is τj , for each element of the mesh, we consider (39) and (40)

for arbitrary j cell. Employing Remarks 2 and 3 together with Lemma 2 we end up

with

(
mc2 − λ

)( 9
70
hj+1ζj−1 +

13
35

(hj+1 + hj)ζj +
9
70
hj+1ζj+1

)
− c
(
− 1

2
ξj−1 +

1
2
ξj+1

)
+

(41)

+cκ
(
sj−1ξj−1 + sjξj + sj−1ξj+1

)
− Z

(
sj−1ζj−1 + sjζj + sj−1ζj+1

)
+ · · ·
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· · ·+ τjc
(
− 6

5
1

hj+1
ζj−1 +

6
5

(hj+1 + hj)
hj+1hj

ζj −
6
5

1
hj+1

ζj+1

)
+ τjcκ

(
rj−1ζj−1 + rjζj+

+rj+1ζj+1

)
− τj

(
mc2 + λ

)(1
2
ξj−1 −

1
2
ξj+1

)
− τjZ

(
rj−1ξj−1 + rjξj + rj+1ξj+1

)
= 0 .

τj

(
mc2 − λ

)(1
2
ζj−1 −

1
2
ζj+1

)
− τjc

(
− 6

5
1

hj+1
ξj−1 +

6
5

(hj+1 + hj)
hj+1hj

ξj −
6
5

1
hj+1

ξj+1

)
+

(42)

+τjcκ
(
rj−1ξj−1 + rjξj + rj+1ξj+1

)
− τjZ

(
rj−1ζj−1 + rjζj + rj+1ζj+1

)
+

+c
(
− 1

2
ζj−1 +

1
2
ζj+1

)
+ cκ

(
sj−1ζj−1 + sjζj + sj−1ζj+1

)
−
(
mc2 + λ

)( 9
70
hj+1ξj−1+

+
13
35

(hj+1 + hj)ξj +
9
70
hj+1ξj+1

)
− Z

(
sj−1ξj−1 + sjξj + sj−1ξj+1

)
= 0 .

Using Lemma 1 to substitute the nodal values ζj−1, ζj+1, ξj−1, and ξj+1, and col-

lecting the terms of ζj and of ξj , (41) and (42) can be written as

[( 9
70
hj+1(mc2 − λ)− Zsj−1 −

6c
5

1
hj+1

τj

)(
2 +

κ

xj
(hj − hj+1)

)
+ cκ

(
rj−1 + rj+

(43)

+rj+1 +
κrj−1

xj
hj −

κrj+1

xj
hj+1

)
τj +

6c
5

(hj+1 + hj)
hj+1hj

τj +
13
35

(hj+1 + hj)(mc2 − λ)+

−Zsj +
(
mc2 − Z

xj
− λ

)(
− hj

2
− κsj−1hj +

hj

2c
(mc2 + λ)τj +

Zrj−1

c
hjτj −

hj+1

2
+

+κsj−1hj+1 +
hj+1

2c
(mc2 + λ)τj −

Zrj+1

c
hj+1τj

)]
ζj +

[(
mc2 +

Z

xj
+ λ

)
×

×
(
− 9

70c
hj+1hj(mc2 − λ) +

Zsj−1

c
hj +

6
5
hj

hj+1
τj − κrj−1hjτj +

9
70c

h2
j+1(mc

2 − λ)+

−Zsj−1

c
hj+1 −

6
5
τj + κrj+1hj+1τj

)
+ cκ(2sj−1 + sj)− Z(rj−1 + rj + rj+1)τj+

− cκ

2xj
(hj + hj+1) +

κ2csj−1

xj
(hj+1 − hj) +

κ

2xj
(mc2 + λ)(hj+1 + hj)τj +

Zrj−1κ

xj
hjτj+

−Zrj+1κ

xj
hj+1τj

]
ξj = 0 .

[
−Z(rj−1+rj+rj+1)τj + cκ(2sj−1 + sj) +

κ

2xj
(mc2−λ)(hj+1 + hj)τj −

cκ

2xj
(hj+1+

(44)

+hj)+
cκ2sj−1

xj
(hj − hj+1)−

Zrj−1κ

xj
hjτj +

Zrj+1κ

xj
hj+1τj +

(
mc2 − Z

xj
− λ

)
× · · ·
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· · · ×
( 9

70c
hj+1hj(mc2+λ)+

Zsj−1

c
hj−

6
5
hj

hj+1
τj − κrj−1hjτj −

9
70c

h2
j+1(mc

2 + λ)+

−Zsj−1

c
hj+1 +

6
5
τj + κrj+1hj+1τj

)]
ζj +

[(
− 9

70
hj+1(mc2 + λ)− Zsj−1+

+
6c
5

1
hj+1

τj

)(
2 +

κ

xj
(hj+1 − hj)

)
+ cκ

(
rj−1 + rj + rj+1 −

κrj−1

xj
hj+

+
κrj+1

xj
hj+1

)
τj −

6c
5

(hj+1 + hj)
hj+1hj

τj −
13
35

(hj+1 + hj)(mc2 + λ)− Zsj +
(
mc2+

+
Z

xj
+ λ

)(hj

2
− κsj−1hj −

hj

2c
(mc2 − λ)τj +

Zrj−1

c
hjτj +

hj+1

2
+ κsj−1hj+1+

−hj+1

2c
(mc2 − λ)τj −

Zrj+1

c
hj+1τj

)]
ξj = 0 .

Gathering the factors of λ2, λ, τj , and the free terms in each equation for ζj and

ξj , and using the above defined notations ci’s, one simplifies (43) and (44) as follows
[
c1τjλ

2 + (c2 + c3)λ+ (c4 + c5)τj + (c6 + c7)
]
ζj +(45)

+
[
c8λ

2 + (c9 + c10)λ+ (c11 + c12)τj + (c13 + c14 + c15)
]
ξj = 0 .

[
− c8λ

2 + (c9 − c10)λ+ (−c11 + c12)τj + (−c13 + c14 + c16)
]
ζj +(46)

+
[
− c1τjλ

2 + (c2 − c3)λ+ (−c4 + c5)τj + (−c6 + c7)
]
ξj = 0 .

We consider the case where major part of the difficulty of solving the radial Dirac

operators comes in. The above formulation is reduced to the operator T given

in Lemma 3, the limit equation at infinity. One can understand the issue as the

derived τj should guarantee the stability of the computation in the entire domain,

particularly for large x, which is the operator T, and on the other hand, to consider

the part of the operator which causes the instability in the computation. These

motivations allow to consider (45) and (46) as x→∞

[
− (hj+1 + hj)

2c
τjλ

2 − 9
70

(hj+1 − hj)λ+
(6c

5
(hj+1 − hj)
hj+1hj

+
m2c3

2
(hj+1 + hj)

)
τj+

(47)

+
9
70
mc2(hj+1 − hj)

]
ζj +

[
− 9

70c
hj+1(hj+1 − hj)λ2 − 6

5
1

hj+1
(hj+1 − hj)τjλ+

−6mc2

5
1

hj+1
(hj+1 − hj)τj +

9
70
m2c3hj+1(hj+1 − hj)

]
ξj = 0 .
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[ 9
70c

hj+1(hj+1 − hj)λ2 − 6
5

1
hj+1

(hj+1 − hj)τjλ+
6mc2

5
1

hj+1
(hj+1 − hj)τj+(48)

− 9
70
m2c3hj+1(hj+1 − hj)

]
ζj +

[(hj+1 + hj)
2c

τjλ
2 − 9

70
(hj+1 − hj)λ+

+
(
− 6c

5
(hj+1 − hj)
hj+1hj

− m2c3

2
(hj+1 + hj)

)
τj −

9
70
mc2(hj+1 − hj)

]
ξj = 0 .

Let m = 1, and define ∇j = (hj+1+hj)
(hj+1−hj)

and ρ = −9/70. Divide (47) and (48) by the

quantity hj+1 − hj . As c approaches infinity, one gets the following equations

(49) [ρλ− aj ]ζj + [djλ− bj ]ξj = 0 ,

(50) [djλ+ bj ]ζj + [ρλ+ aj ]ξj = 0 ,

where aj = −
(

6c
5

1
hj+1hj

+ c3

2 ∇j

)
τj+ρc2, bj = 6c2

5
1

hj+1
τj− 9c3

70 hj+1, and dj = −6
5

1
hj+1

τj .

Equations (49) and (50) can be written in a matrix form as

(51)

(
ρλ− aj djλ− bj

djλ+ bj ρλ+ aj

)(
ζj

ξj

)
=

(
0

0

)
.

Since ζj and ξj are not identically zero for all j, then

(52)

∣∣∣∣∣
ρλ− aj djλ− bj

djλ+ bj ρλ+ aj

∣∣∣∣∣ = 0 ,

which gives

(53) λ1,2 = ±
√

(a2
j − b2j )/(ρ2 − d2

j ) .

Since c2 is the accumulation eigenvalue (Lemma 3, with m = 1) we will only consider

the positive λ in (53) named as λ1. Now we would like to have

|λ1 − c2| = 0

⇐⇒ a2
j−b2j
c4

= ρ2 − d2
j

⇐⇒ c4(ρ2 − 36
25

1
h2

j+1
τ2
j ) = 36c2

25
1

h2
j+1h2

j
τ2
j + c6

4 ∇2
jτ

2
j + 6c4

5
1

hj+1hj
∇jτ

2
j +

−12c3

5
1

hj+1hj
ρτj − ρc5∇jτj − 36c4

25
1

h2
j+1

τ2
j +

+ρ2c4 + 54c5

175 τj − 81c6

4900h
2
j+1 .
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Keeping in mind the c limit at infinity, the above formulation gives

(54)
1
4
∇2

jτ
2
j −

81
4900

h2
j+1 = 0 .

The desired result is then obtained straightforward after substituting the value of

∇j as defined before, which ends the proof. ¥

The derivation of the stability parameter τ mainly depends on the limit behavior

of the eigenvalues in the vicinity of x at infinity. This assumption is crucial and

inevitable since knowing the theoretical limit of the eigenvalues as x → ∞, we can

compare it to the approximated one that depends on τ , thus minimizing the error

between these two accumulation values we get an approximation for τ . For the other

simplifications made in the proof of Theorem 1, on can avoid these simplifications to

some extent to derive an optimal value of τ or at least to obtain c-based corrections

to it, thus better approximation of the eigenvalues will be obtained.

The stability of the SUPG method is mainly measured by complete treatment

of the spurious eigenvalues and by the convergence property of the approximated

eigenvalues to the exact ones in case of point nucleus. The derived τ provides com-

plete cleaning of spectrum pollution of both categories for all values of Z ≤ 137 and

all κ ∈ Z\{0} without a need to mesh refinement, where the approximated result is

compared with the relativistic formula for point nucleus. Moreover, as the mesh is

refined as better convergence rate is obtained.

Tables 7, 8, and 9 show the first computed eigenvalues of the electron in the

Hydrogen-like Magnesium (Mg) ion for both point and extended nucleus with κ =

±2. Table 7 shows the computed eigenvalues using the FEM with linear basis func-

tions. The number of interior nodal points used is 400. Table 8 shows the same

computation using the stability scheme. Table 9 represents the computed eigen-

values for extended nucleus using uniformly distributed charge with interior nodal

points 397, where 16 nodal points are considered in the domain [0 , R] (R is the

radius of the nucleus).
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Table 7. The first computed eigenvalues of the electron in the Hydr-

ogen-like Mg ion using the FEM with linear basis for point nucleus.

Level κ = 2 κ = −2 Rel. Form. κ = −2

1 -18.0086349982 -18.0086349982 -18.0086349982

2 -8.00511829944 -8.00511829944 -8.00511739963

3 -4.50270135222 -4.50270135225 -4.50269856638

V -2.88546212211 -2.88546212205 Spurious Eigenvalue

4 -2.88155295096 -2.88155295095 -2.88154739168

5 -2.00096852250 -2.00096852249 -2.00095939879

6 -1.47003410346 -1.47003410350 -1.47002066823

V -1.13034880166 -1.13034880167 Spurious Eigenvalue

7 -1.12545691681 -1.12545691683 -1.12543844140

8 -.889228944495 -.889228944484 -.889204706429

9 -.720265553198 -.720265553187 -.720234829539

V -.600492562625 -.600492562622 Spurious Eigenvalue

10 -.595258516248 -.595258516277 -.595220579682

11 -.500185771976 -.500185772005 -.500139887884

12 -.426201311278 -.426201311300 -.426146735771

Table 8. The first computed eigenvalues of the electron in the

Hydrogen-like Mg ion using the stability scheme for point nucleus.

Level κ = 2 κ = −2 Rel. Form. κ = −2

1 -18.0086349985 -18.0086349982

2 -8.00511739978 -8.00511740020 -8.00511739963

3 -4.50269856669 -4.50269856719 -4.50269856638

4 -2.88154739219 -2.88154739270 -2.88154739168

5 -2.00095939948 -2.00095939991 -2.00095939879

6 -1.47002066888 -1.47002066924 -1.47002066823

7 -1.12543844176 -1.12543844201 -1.12543844140

8 -.889204706068 -.889204706109 -.889204706429

9 -.720234827833 -.720234827687 -.720234829539

10 -.595220575840 -.595220575531 -.595220579682

11 -.500139880950 -.500139880357 -.500139887884

12 -.426146724530 -.426146723650 -.426146735771
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Table 9. The first computed eigenvalues of the electron in the

Hydrogen-like Mg ion using the stability scheme for extended nu-

cleus.

Level κ = 2 κ = −2 Rel. Form. κ = −2

1 -18.0086349986 -18.0086349982

2 -8.00511739975 -8.00511740015 -8.00511739963

3 -4.50269856673 -4.50269856733 -4.50269856638

4 -2.88154739230 -2.88154739279 -2.88154739168

5 -2.00095939956 -2.00095940014 -2.00095939879

6 -1.47002066903 -1.47002066934 -1.47002066823

7 -1.12543844179 -1.12543844207 -1.12543844140

8 -.889204706021 -.889204706003 -.889204706429

9 -.720234827640 -.720234827433 -.720234829539

10 -.595220575309 -.595220574883 -.595220579682

11 -.500139879906 -.500139879215 -.500139887884

12 -.426146722827 -.426146721812 -.426146735771

To study the rate of convergence of the approximation using the derived scheme,

we compare the approximated eigenvalues of the electron in the Hydrogen-like Mag-

nesium ion for point nucleus using the FEM as in Table 7, to those eigenvalues

obtained by the stability scheme as in Table 8. Ignoring the presence of the spurious

eigenvalues, one notes that the relative error of the approximation of the first 12 gen-

uine eigenvalues using the FEM with linear basis functions is nearly 10−4. Whereas

the relative error for the same group of eigenvalues using the stability scheme is

not exceeding 3 ∗ 10−8. Thus, the speed of convergence is also enhanced. However,

the improvement in the convergence rate is mainly a result of using the CH basis

functions which provide better approximation according to (19).

In Table 10, we provide the approximated eigenvalues of the electron in the

Hydrogen-like Uranium (U) ion using the stability scheme. The computation is

obtained for different values of the quantum number κ for extended nucleus. The

number of nodal points used is 203 (13 out of them are used to discretize the segment

[0 , R]).
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Table 10. The first computed eigenvalues of the electron in the

Hydrogen-like U ion using the stability scheme for extended nucleus.

Level κ = −1 κ = 1 κ = −2 κ = 2 κ = −3

1 -4853.62949434

2 -1255.95827216 -1257.22738641

3 -538.661380908 -539.033990526 -1089.61141552

4 -295.078728020 -295.232044507 -489.037085134 -489.037084960

5 -185.395090636 -185.471947843 -274.407758128 -274.407757668 -476.261594535

6 -127.042256989 -127.086006093 -174.944613694 -174.944613207 -268.965877806

7 -92.4088112704 -92.4360075180 -121.057538281 -121.057537866 -172.155252828

8 -70.2043012114 -70.2223336849 -88.6717487653 -88.6717484812 -119.445272665

9 -55.1286483910 -55.1412076654 -67.7178951387 -67.7178950309 -87.6582879582

10 -44.4301782764 -44.4392710290 -53.3922002629 -53.3922003729 -67.0402332769

11 -36.5662117804 -36.5730039895 -43.1702540865 -43.1702544560 -52.9170997410

12 -30.6178633663 -30.6230696251 -35.6233695209 -35.6233701925 -42.8244637407

13 -26.0103096494 -26.0143875052 -29.8940993552 -29.8941003747 -35.3639479395

14 -22.3691011929 -22.3723545239 -25.4427187732 -25.4427201886 -29.6945373867

15 -19.4418733070 -19.4445102954 -21.9158181718 -21.9158200337 -25.2859399425

16 -17.0535375600 -17.0557046811 -19.0741660324 -19.0741683944 -21.7904231350

17 -15.0795424863 -15.0813452131 -16.7511595194 -16.7511624386 -18.9723111918

18 -13.4293342440 -13.4308500831 -14.8278955863 -14.8278991221 -16.6673054165

19 -12.0358025118 -12.0370894509 -13.2176791341 -13.2176833488 -14.7580403886

20 -10.8483590654 -10.8494611874 -11.8560968516 -11.8561018101 -13.1588737727

21 -9.82828760857 -9.82923891029 -10.6944840991 -10.6944898690 -11.8061295095

22 -8.94555154162 -8.94637858292 -9.69552155807 -9.69552820876 -10.6516697044

23 -8.17655984194 -8.17728361748 -8.83020376778 -8.83021137096 -9.65855817575

24 -7.50257602554 -7.50321330929 -8.07571205220 -8.07572068159 -8.79807266133

25 -6.90856705387 -6.90913137985 -7.41389618253 -7.41390591378 -8.04760687717

26 -6.38235847787 -6.38286086464 -6.83017355332 -6.83018446387 -7.38917199781

27 -5.91400613762 -5.91445563130 -6.31271965872 -6.31273182756 -6.80830955954

28 -5.49532323801 -5.49572732274 -5.85186500024 -5.85187850842 -6.29329159563

29 -5.11952039156 -5.11988530441 -5.43964039565 -5.43965532594 -5.83452444744

30 -4.78092881330 -4.78125978717 -5.06943037836 -5.06944681572 -5.42409906976

31 -4.47478541851 -4.47508687212 -4.73570629156 -4.73572432309 -5.05544809643

32 -4.19706449375 -4.19734018037 -4.43381880272 -4.43383851763 -4.72308165346

33 -3.94434475273 -3.94459787924 -4.15983518735 -4.15985667790 -4.42238191278

34 -3.71370352567 -3.71393684674 -3.91041067459 -3.91043403573 -4.14944192144

35 -3.50263193199 -3.50284782636 -3.68268594092 -3.68271127049 -3.90093812765
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Conclusion.

Our computations indicate that the SUPG scheme applied to solve the radial

Dirac eigenvalue problem is stable in the sense of complete elimination of spectrum

pollution. This approach is mainly compiled of two strategies; the first is the suitable

choice of the trial function space. The second is based on varying the test function to

live in another space different from that of the trial function. This strongly depends

on the derived stability parameter τ . The derived τ is a considerable achievement

where its formula is rather easy to implement and, it yields complete treatment of

the spuriosity of both categories.
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hp-CLOUD APPROXIMATION OF THE DIRAC EIGENVALUE
PROBLEM: THE WAY OF STABILITY

HASAN ALMANASREH

Abstract. We apply hp-cloud method to the radial Dirac eigenvalue problem.

The difficulty of occurrence of spurious eigenvalues among the genuine ones is

treated. The method of treatment is based on assuming hp-cloud Petrov-Galerkin

scheme to construct the weak formulation of the problem which adds a consis-

tent diffusivity to the variational formulation. The size of the artificially added

diffusion terms is controlled by a stability parameter (τ). The derivation of τ

assumes the limit behavior of the eigenvalues at infinity. The importance of τ

is of being applicable for generic basis functions. This is together with choosing

appropriate intrinsic enrichments in the construction of the cloud shape functions.

1. Introduction.

In the last decades, several numerical methods have been derived to compute

the eigenvalues of operators. The need of accurate computation of eigenvalues is

intensely considered due to their significant applications in many disciplines of sci-

ence: Mathematically, if a matrix or a linear operator is diagonalized, then by the

spectral theorem, it can be analyzed by studying their corresponding eigenvalues,

i.e., transforming the matrix or operator to a set of eigenfunctions which can be

easily studied. From physical point of view, the eigenvalues could have wide range

of information about the behavior of the desired system governed by an operator.

This information might be all what is needed to answer many questions regarding

the system properties such as stability, positivity, boundedness, asymptotic behav-

ior, etc. In mechanics, eigenvalues play a central role in several aspects such as

Key words and phrases. Dirac operator, spurious eigenvalues, meshfree method, clouds, moving

least-squares, intrinsic enrichment, Petrov-Galerkin, stability parameter.

Department of Mathematical Sciences and Department of Physics, University of Gothenburg,
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determining whether the automobile is noisy, whether a bridge will collapse by the

water waves, etc. Also, the eigenvalues describe how the quantum state of a phys-

ical system changes in time (Schrödinger equation). They represent the electrons

energies and describe their motion in the atomic levels, this is the well-known Dirac

equation, which is the core of the present work.

The calculation of energy levels in Helium-like ions, where the interaction between

two electrons takes place, can be determined by studying the electrons correlation

which is part of quantum electrodynamic effects (QED-effects). A scheme for calcu-

lating QED-effects [29, 33, 38, 40] is based on a basis set of relativistic Hydrogen-like

ion wave eigenfunctions (of the Dirac operator). Meanwhile, the numerical compu-

tation of the Dirac operator eigenvalues encounters unphysical values (do not match

the physical observations) called spurious eigenvalues or spectrum pollution. The

spurious eigenvalues result in rapid oscillations in the wave functions, hence, in many

cases, ruining the computation reliability of the basis set (partially or in some cases

even completely) in the practical atomic calculations.

The spurious eigenvalues are an effect of the numerical methods and are found

in the computation of many problems other than the Dirac eigenvalue problem

[1, 2, 37, 41]. For general eigenvalue problems, spurious eigenvalues are reported in

[46]. The occurrence of the spuriosity is related to mismatching of desired proper-

ties of the original solution in the numerical formulation. Also in the computation

of electromagnetic problems the spuriosity is perceived [34, 39]. Two leading ap-

proaches are derived to solve this difficulty; Shabaev et al. [41] have related the

spuriosity to the same treatment of the large and small components of the Dirac

wave function. Their approach for removing the spurious eigenvalues is based on

deriving dual kinetic-balance (DKB) basis functions for the large and small com-

ponents. Almanasreh et al. [2] have allied the occurrence of spurious eigenvalues

to the same treatment of the trial and test functions in the finite element method

(FEM), they proposed stability scheme based on creating a consistent diffusivity by

modifying the test function so that it includes a derivative-based correction term.

In this work, we apply hp-cloud method [15, 47] to the radial Dirac eigenvalue

problem. The technique is known as one of the meshfree methods (MMs) [6, 18, 30,

31, 35] that allows to two different enrichments, intrinsic and extrinsic, to be built

in the construction of the basis functions. The method was previously applied for
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different problems, e.g., the Schrödinger equation [10], Mindlin’s thick plate model

[19], and Timoshenko beam problems [32], etc. Here, we apply hp-cloud method

based on the Galerkin formulation. This means that it is required to evaluate the

integrals in the weak formulation of the particular equation, thus a background

mesh must be employed in the integration techniques. Therefore, the hp-cloud

method used here is not really a truly MM. However, all other features of MMs are

maintained in our approximation.

In order to treat the spuriosity problem, we stabilize the computation by consid-

ering instead hp-cloud Petrov-Galerkin (hp-CPG) method which may be considered

as a new technique of the general meshfree local Petrov-Galerkin (MLPG) [4, 17, 28].

The stability scheme is based on adding consistent diffusion terms without changing

the structure of the equation, i.e., the original solution also satisfies the weak formu-

lation. The size of the additional diffusivity is controlled by a stability parameter.

Consider the radial Dirac eigenvalue problem HκΦ(x) = λΦ(x), where Φ(x) =

(F (x), G(x))t is the radial wave function, λ is the electron relativistic energies (eigen-

values), and Hκ is the radial Dirac operator given as

Hκ =

(
mc2 + V (x) c

(
−Dx + κ

x

)

c
(
Dx + κ

x

)
−mc2 + V (x)

)
.

The constant c is the speed of light, m is the electron mass, V is the Coulomb

potential, Dx = d/dx, and κ is the spin-orbit coupling parameter defined as κ =

(−1)+`+ 1
2 ( + 1

2), where  and ` are the total and the orbital angular momentum

quantum numbers respectively. The weak formulation of the problem is to find

λ ∈ R and Φ in a specified functions space such that for every test function Ψ

living in some suitable space we have
∫
Ω ΨtHκΦdx = λ

∫
Ω ΨtΦdx. The usual hp-

cloud Galerkin approximation is to let Ψ to be (ψ, 0)t and (0, ψ)t, where ψ lives in

the same space as of the two components of Φ. To discretize the weak form, the

components of the trial function Φ and the test function ψ are chosen from a finite

set of hp-cloud basis functions which are constructed using moving least-squares

method. Since the radial Dirac operator is dominated by advection (convection)

terms, the hp-cloud approximation will be upset by spurious eigenvalues.

To stabilize the hp-cloud approximation, the hp-CPG method is used instead to

formulate the problem. In this formulation, the test function Ψ is assumed to live in
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a functions space different from that of the trial function Φ, i.e., Ψ is chosen in the

form (ψ, τψ′)t and (τψ′, ψ)t where ψ belongs to the same space as the two compo-

nents of Φ. The correction term τψ′ is used to add artificial diffusivity to stabilize

the convection terms. The size of the diffusion terms is controlled by the stability

parameter τ . The derivation of τ follows the principle used in [2] for the FEM, but

a generalization of it. Two simplified leading assumptions are considered in deriving

τ ; the operator limit as the radial variable x tends to infinity, thus obtaining an

approximation of the limit point of the eigenvalues (depending on τ) which can be

compared to the theoretical limit point eigenvalue [20]. Along with considering the

dominant terms with respect to the speed of light (c).

The work is organized as follows; in Section 2, some preliminaries about the Dirac

equation are presented, also we shed some light over the occurrence of the spuriosity.

In Section 3, the construction of the hp-cloud functions is provided, also coupling

with the FEM to impose essential boundary conditions (EBCs) is explained. The

hp-CPG method and the derivation of the stability parameter are treated in Section

4. In the last section, Section 5, we present some numerical results and provide

necessary discussion about the stability scheme.

2. The radial Dirac eigenvalue problem and the spuriosity

The free Dirac space-time equation is given by

(1) i }
∂

∂t
u(x, t) = H0u(x, t) , u(x, 0) = u0(x),

where } is the Planck constant divided by 2π, and H0 : H1(R3;C4) −→ L2(R3;C4)

is the free Dirac operator acting on the four-component vector u, given by

(2) H0 = −i }cα · ∇+mc2β .

The 4× 4 Dirac matrices α = (α1, α2, α3) and β are given by

αj =

(
0 σj

σj 0

)
and β =

(
I 0

0 −I

)
.
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Here I and 0 are the 2 × 2 unity and zeros matrices respectively, and σj ’s are the

2× 2 Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, and σ3 =

(
1 0

0 −1

)
.

Note that separation of variable yields the Dirac eigenvalue problem, i.e., by assum-

ing u(x, t) = u(x)θ(t) in (1) one gets

(3) H0u(x) = λu(x).

The operator H0 is self adjoint on H1(R3;C4), it describes the motion of the electron

that moves freely without external forces. The free Dirac operator with Coulomb

potential is given as

(4) H = H0 + V (x)I ,

where V (x) = −Z
|x| , and I is the 4 × 4 unity matrix. The spectrum, denoted by

σ, of the Coulomb-Dirac operator is σ(H) = (−∞,−mc2] ∪ {λk}k∈N ∪ [mc2,+∞),

where {λk}k∈N is a discrete sequence of eigenvalues in the gap (−mc2,mc2) of the

continuous spectrum.

The radial Coulomb-Dirac operator (the radial Dirac operator) can be obtained

by separation of variables of the radial and angular parts, i.e., by assuming u(x) =
1
x

(
F (x)χκ,m($,Θ)

iG(x)χ−κ,m($,Θ)

)
, where x is the radial variable. The spherical symmetry

property of the angular function χ is the key point in the derivation of the radial

part. Let Φ(x) = (F (x), G(x))t, the radial Dirac eigenvalue problem is given as

(5) HκΦ(x) = λΦ(x), where

(6) Hκ =

(
mc2 + V (x) c

(
−Dx + κ

x

)

c
(
Dx + κ

x

)
−mc2 + V (x)

)
.

The radial functions F (x) and G(x) are called respectively the large and small

components of the wave function Φ(x).

The well-known difficulty of solving the radial Dirac eigenvalue problem numer-

ically is the presence of spurious eigenvalues among the genuine ones that disturb

the solution and consequently affect the reliability of the approximated eigenstates.

Here we follow [2] for the classification of the spurious eigenvalues; the first category
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is the so-called instilled spuriosity, and the second category is the unphysical coin-

cidence phenomenon. The first type is those spurious eigenvalues that may occur

within the true eigenvalues (i.e., they occur between the genuine energy levels),

this type of spuriosity appears for all values of κ. The second type is the unphys-

ical assigning of almost same first eigenvalue for 2s1/2(κ = −1) and 2p1/2(κ = 1),

3p3/2(κ = −2) and 3d3/2(κ = 2), 4d5/2(κ = −3) and 4f5/2(κ = 3), and so on. This

phenomenon is rigorously studied in [42] from theoretical aspect and in [43] from

numerical viewpoint.

Apparently, most authors [1, 2, 37, 41] agree that the incorrect balancing and the

symmetric treatment of the large and small components of the wave function or of

the test and trial functions in the numerical methods are the core of the problem.

In the present work, we relate the occurrence of spuriosity, of both categories, to

the unsuitable functions spaces and to the symmetric treatment of the trial and

test functions in the weak formulation of the equation. To clarify, we rewrite (5)

to obtain an explicit formula for each of the two radial functions, so by defining

w±(x) = ±mc2 + V (x) we have, see [2],

(7) F ′′(x) + γ1(x, λ)F ′(x) + γ2(x, λ)F (x) = 0 ,

(8) G′′(x) + θ1(x, λ)G′(x) + θ2(x, λ)G(x) = 0 ,

where

γ1(x, λ) = − V ′(x)
w−(x)− λ

, θ1(x, λ) = − V ′(x)
w+(x)− λ

,

γ2(x, λ) =

(
w+(x)− λ

)(
w−(x)− λ

)

c2
− κ2 + κ

x2
− κV ′(x)
x
(
w−(x)− λ

) ,

and

θ2(x, λ) =

(
w+(x)− λ

)(
w−(x)− λ

)

c2
− κ2 − κ

x2
+

κV ′(x)
x
(
w+(x)− λ

) .

According to (7) and (8), the components F and G should be continuous and have

continuous first derivatives. Thus, the suitable choices of functions spaces for the

computation of the radial Dirac eigenvalue problem are those that possessing these

properties. Assuming appropriate spaces helps in partial elimination of spurious

eigenvalues, and does not help overcoming the unphysical coincidence phenomenon.

In [2], the same argument is accounted, where the FEM is applied to approximate

the eigenvalues using linear basis functions.
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Table 1. This table, taken from [2], shows the first computed eigen-

values of the electron in the Hydrogen atom.

Level κ = 1 κ = −1 Rel. Form. κ = −1

1 -0.50000665661 -0.50000665659 -0.50000665659

2 -0.12500208841 -0.12500208839 -0.12500208018

3 -0.05555631532 -0.05555631532 -0.05555629517

V -0.03141172061 -0.03141172060 Spurious Eigenvalue

4 -0.03118772526 -0.03118772524 -0.03125033803

5 -0.01974434510 -0.01974434508 -0.02000018105

In Table 1, 400 nodal points are used to discretize the domain, and the compu-

tation is performed for point nucleus. The shaded value in the first level is what

meant by the unphysical coincidence phenomenon, and the two shaded values after

the third level are the so-called instilled spuriosity. If the basis functions are chosen

to be C1-functions, then some instilled spurious eigenvalues are avoided as indicated

in [2]. Therefore, after applying the boundary conditions, homogeneous Dirich-

let boundary condition is assumed for both radial functions, the proposed space is

H(Ω) := C1(Ω) ∩ H1
0 (Ω). Also, the radial functions are mostly like to vanish at

the boundaries in a damping way (except some states), consequently homogeneous

Neumann boundary condition should be taken into account. The exceptional states

are 1s1/2 and 2p1/2, in this case at the upper boundary the same treatment is con-

sidered as of the other states, but the first derivative of these two states at the lower

boundary is not zero. Here we will assume general boundary condition, that is,

homogeneous Dirichlet boundary condition. Thus, from now on, the space H(Ω) is

considered.

What deserves to dwell upon is that numerical methods when they are applied

to convection dominated problem, the solution is disturbed by spurious oscillations.

This instability gets worse as the convection size increases. The following two num-

bers are considered as tools to measure the dominance of the convection term

(9) Pej =
|uj |hj

2K
and Daj =

sjhj

|uj |
,
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where Pej and Daj are known as the grid Peclet and Damköhler numbers respec-

tively, hj is the size of the element interval Ij , uj and sj are respectively the co-

efficients of the convection and the reaction terms corresponding to Ij , and K is

the diffusivity size. The difficulty arises when either the convection coefficient or

the source term is larger than the diffusion coefficient, i.e., when Pej > 1 or when

2PejDaj =
sjh

2
j

K
> 1 respectively, then the associated equation is a convection

dominated one.

For the simplified equations (7) and (8), it is easy to check that 2PeDa admits

very large values if small number of nodal points is considered regardless the sizes

of |λ|, Z, and κ. Even with mesh refinement, 2PeDa still admits very large values

at some positions (2PejDaj >> 1 for some j). The Peclet number, Pe, for the

equation that involves the function F , is always less than 1. But for the equation

that corresponds toG, Pe admits a value greater than one, exactly at the nodal point

where uj changes its sign, here refining the mesh does not bring Pe below one for all

choices of λ, Z, and κ. Hence, (7) and (8) are dominated by convection terms. Thus

the approximated solutions F and G, will be upset by unphysical oscillations. The

Draw back is that these oscillations in the eigenfunctions result in some unphysical

eigenvalues, the spurious eigenvalues. For detailed study on convection dominated

problems we refer to [7, 8].

3. Moving least-squares (MLS) approximation

To build the hp-cloud functions, MLS method is applied which allows easily p-

enrichment to be implemented and to desired fundamental characters to be enriched

in the approximation. MLS is a well-known approximation technique for construct-

ing meshfree shape functions in general. It applies certain least square approach to

get the best local approximation, then the local variable is let to ’move’ to cover the

whole domain.

Consider an open bounded domain Ω ⊂ R with boundary ∂Ω, assumeX = {x1, x2, . . . ,

xn} is a set of n arbitrary points in Ω. Let W = {wi}n
i=1 be a set of open covering

of Ω defined by X such that wi is centered at xi and Ω ⊂ ∪n
i=1wi.

Definition 1. A set of functions {ψi}n
i=1 is called a partition of unity (PU) subor-

dinated to the cover W if
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(1)
∑n

i=1 ψi(x) = 1 for all x ∈ Ω.

(2) ψ ∈ Cs
0(wi) for i = 1, 2, . . . , n, where s ≥ 0.

Let P = {p1(x), p2(x), . . . , pm(x)} be a set of basis of polynomials (or any basis of

suitable intrinsic enrichments). Suppose that Ψ(x) is a continuous function defined

on Ω and that its values, Ψi, at the points xi ∈ Ω, i = 1, 2, . . . , n, are given. To

approximate Ψ(x) globally by Ψh(x), firstly Ψ(x) is approximated locally at x̃ ∈ Ω

by Jx̃Ψ defined in terms of the given basis set P as

(10) Jx̃Ψ(x) = P t(x)a(x̃),

where t denotes the usual transpose. The unknown coefficients a(x̃) are chosen so

that Jx̃Ψ is the best approximation of Ψ in a certain least squares sense, this is

achieved if a is selected to minimize the following weighted least squares L2-error

norm

(11) Ix̃(a) =
n∑

i=1

ϕi(
x− xi

ρi
)(P t(xi)a(x̃)−Ψi)2,

where ϕi is a weight function introduced to insure the locality of the approximation,

and ρi is the dilation parameter which controls the support radius of ϕi at xi. To

minimize Ix̃ with respect to the vector a, the first derivative test is applied, i.e., we

set ∂Ix̃
∂a = 0 which gives

∂Ix̃
∂aj

=
n∑

i=1

ϕi(
x− xi

ρi
)2pj(xi)(P t(xi)a(x̃)−Ψi) = 0, j = 1, 2, . . . ,m.

The above system can be written as

(12) M(x)a(x̃)−B(x)Ψ = 0,

where M(x) = PtΥ(x)P, B(x) = PtΥ(x), Ψt = [Ψ1,Ψ2, . . . ,Ψn], and at(x̃) =

[a1(x̃), a2(x̃), . . . , am(x̃)], with P and Υ(x) defined as

P =




p1(x1) p2(x1) . . . pm(x1)

p1(x2) p2(x2) . . . pm(x2)
...

...
. . .

...

p1(xn) p2(xn) . . . pm(xn)



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and

Υ(x) =




ϕ1(x−x1
ρ1

) 0 . . . 0

0 ϕ2(x−x2
ρ2

) . . . 0
...

...
. . .

...

0 0 . . . ϕn(x−xn
ρn

)



.

We proceed from equation (12) to get

(13) a(x̃) = M−1(x)B(x)Ψ.

Thus

Jx̃Ψ(x) = P t(x)a(x̃) = P t(x)M−1(x)B(x)Ψ.

The global approximations is then obtained by assuming x̃ arbitrary, i.e., by letting

x̃ move over the domain, viz, the solution is globalized by considering Ψ(x) ≈
lim
x̃→x

Jx̃Ψ(x) =: Ψh(x), thus

(14) Ψh(x) =
n∑

i=1

ψi(x)Ψi

with ψi(x) = P t(x)M−1(x)Bi(x), and Bi(x) = ϕi(x−xi
ρi

)P (xi). To sum up, Ψh can

be written as

(15) Ψh(x) = P t(x)
( n∑

i=1

ϕi(
x− xi

ρi
)P (xi)P t(xi)

)−1
n∑

i=1

ϕi(
x− xi

ρi
)P (xi)Ψi.

The first derivative of ψi is given by ψi,x = dψi(x)
dx = P t

xM
−1Bi−P tM−1MxM

−1Bi+

P tM−1Bi,x. Below we shall need the consistency concept definition.

Definition 2. A set of functions {ui(x)} is consistent of orderm if
∑

i

ui(x)P(xi) =

P(x) for all x ∈ Ω, where P(x) = {xς ; |ς| ≤ m}.

To increase the order of consistency of the approximation, the complete repre-

sentation of the hp-cloud functions consists of the set of PU functions ψi(x) and

monomial extrinsic enrichment basis functions P as

Ψh(x) =
n∑

i=1

ψi(x)
( n0∑

j=1

Pj(x)Ψ
j
i

)
=

n∑

i=1

n0∑

j=1

ψi(x)Pj(x)Ψ
j
i .

Note that P can be any type of basis functions, but the most used is monomials since

they provide good approximation for smooth functions. The monomials Pj(x), due
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to [47], should be normalized by the measure of the grid size at xj to prevent nu-

merical instability. Nevertheless, in applying the hp-cloud approximation for the

radial Dirac eigenvalue problem, we will use a stability scheme based on the MLPG

method, for that we will not be interested in concerning extrinsic enrichments in the

computation (P = {1}, a monomial of degree zero). The point of this setting follows

[4], where six different realizations of MLPG restricted only to intrinsic enrichment

basis are considered. It is found that extrinsic enrichments in the MLPG method

cause numerical stability problems, because the behavior of their derivatives has

large oscillations, which is not the case in the usual MMs. Hence, in the present

work, only intrinsic enrichments, P (x), are considered, and thus the approximation

with the hp-clouds is given by (14).

The weight function ϕi plays the most important role in the definition of the hp-

cloud shape function, it is defined locally on the cover wi around xi. The function

ϕi can also be chosen the same for all nodes, in this case we write ϕi = ϕ, which

is the case assumed in this work. The hp-cloud, ψi, inherits the properties of the

weight function ϕ such as continuity, smoothness, and others. In other words, if

ϕ is continuous with continuous first derivative, then so is ψi, provided that the

continuity of the enrichment basis P (x) and its first derivatives is ensured. As for

the Dirac large and small components, F and G, the proposed space is H, thus ,and

therefore, the weight function ϕ should be at least C1-function. For this purpose,

we will consider quartic spline (C2-function) as a weight function defined by

(16) ϕ(r) =

{
1− 6r2 + 8r3 − 3r4 , r ≤ 1,

0 , r > 1,

where r = |x−xi|
ρi

.

The set functions {ψi}n
i=1 builds a PU, also the set of their first derivatives

{ψi,x}n
i=1 builds a partition of nullity (PN) (

∑n
i=1 ψi,x(x) = 0 for all x ∈ Ω), see

Figure 1. The computational effort of evaluating the integrals in the weak form in

the hp-cloud approximation is more time consuming compared to mesh-based meth-

ods (the shape functions are of the form ϕi only), this is due to the fact that the

derivative of the shape function ψi tends to have non-polynomial characters, also

due to the time needed for matrix inversion in evaluating the shape functions.
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Figure 1. PU hp-clouds (to the left) and their PN first derivatives

(to the right). Quartic spline is used as a weight function.

Since the Kronecker delta property being not a character of ψi (ψi(xj) 6= δij),

then at each node there are at least two nonzero shape functions. Thus, to have the

value of the approximated function at a node, all nonzero shape functions values at

that node should be added. The missing of the Kronecker delta property causes a

problem in imposing EBCs, and thus other techniques are used to solve this difficulty,

see below.

The intrinsic enrichment P (x) has an important effect in the definition of the

hp-cloud functions. All known fundamental characters, such as discontinuities and

singularities, about the sought solution can be loaded on the intrinsic functions.

Consequently, more time is saved; it is not needed, in general, to assume very large

number of nodal points to capture a desired behavior of the approximated function

while most of the solution features are inserted in the approximation itself. On the

other hand, stability is enhanced particularly when there are some crucial characters

that can not be captured by usual numerical methods, for example solving equa-

tions with rough coefficients that appear, e.g., in composites and materials with

micro-structure, problems with high oscillatory solutions, or eigenvalue problems

that admit spurious solutions in the computation of the discrete spectrum.

Imposition of essential boundary conditions (EBCs)

The radial Dirac eigenvalue problem assumes homogeneous Dirichlet boundary

condition, while it is known that the hp-cloud approximation (MMs in general)

can not treat this condition naturally, this is because the lack of the Kronecker
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delta property of the shape function. This is in contrast with most mesh-based

methods, where the basis functions admit this property, and thus applying EBCs is

straightforward (as in FEM) by omitting the first and the last basis functions.

In MMs in general, the widely applied techniques for imposing EBCs are La-

grangian multipliers, penalty condition, and coupling with finite element shape

functions. Lagrangian multiplier is a very common and accurate approach for the

imposition of EBCs. The disadvantage of this technique, see e.g. [18, 45], is that

the resulted discrete equations for a self-adjoint operator are not positive definite

(contains zero at the main diagonal) nor banded. Also the structure of the system

becomes awkward, i.e., instead of having M as a resulting matrix of discretization

the Galerkin formulation, the system

(
M lm

lm 0

)
is obtained, where lm is the

EBC-enforcement vector. EBCs can also be imposed by penalty condition [18, 36],

the problem of applying this technique is the negative effect on the condition number

of the resulting discrete equations.

The most powerful and safe method to enforce EBCs is coupling MMs with the

FEM, applied for the first time in [26]. With this approach, the meshfree shape

functions of the nodes along boundaries are replaced by finite element basis functions.

In one dimensional case, the hp-cloud functions at the first two and the last two nodes

are replaced by finite element functions, and thus EBCs are simply imposed through

eliminating the first and last added finite element functions, see Figure 2.
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Figure 2. Coupled hp-cloud and finite element functions: general

coupling (to the left), and coupling for the purpose of imposing EBCs

(to the right) (two finite element functions are sufficient). Linear

(hat) functions are used as finite element functions, and quartic spline

as a weight function in the hp-clouds.
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Two efficient approaches of coupling MMs with the FEM, the first is coupling

with Ramp functions [5], and the second is coupling with reproducing conditions

[23]. With the first approach, the derivative of the resulting coupled approximation

at the boundary of the interface region, Ωtsn in Figure 2, is discontinuous and the

consistency is of first order. To ensure the continuity of the first derivative of the

coupled function and to obtain consistency of any order, we consider the second

approach. Using MLS method, the approximation resulting from coupling hp-cloud

and finite element functions with the reproducing conditions is given as (see [18])

Ψh(x) =
∑

xi∈ΩMM

ψi(x)Ψi +
∑

xi∈ΩFEM

Gi(x)Ψi

=
∑

xi∈ΩMM

(
P t(x)−

∑

xi∈ΩFEM

Gi(x)P t(xi)
)
M−1(x)ϕi(

x− xi

ρi
)P (xi)Ψi +

∑

xi∈ΩFEM

Gi(x)Ψi,

where Gi are the finite element shape functions, and M is as defined before. From

Figure 2, it can be seen that finite element functions are only complete in ΩFEM,

and that in ΩMM only hp-clouds are present. In the transition interface region, Ωtsn,

the existence of incomplete finite element functions modifies the existed hp-clouds

there, and thus coupled hp-cloud and finite element functions are obtained.

4. The scheme and the stability parameter

Since the radial Dirac eigenvalue problem is convection dominated, hp-cloud ap-

proximation for it will be unstable. As most of applications of numerical methods,

certain modifications are used to stabilize solutions [2, 3, 7, 8, 12, 25]. Therefore,

instead of considering the hp-cloud approximation for the radial Dirac eigenvalue

problem, we will apply the hp-CPG method to create diffusion terms to stabilize

the approximation. The hp-CPG method is a consistent method in the sense that

the solution of the original problem is also a solution to the weak form. The size

of the added diffusivity is controlled by a stability parameter. To set the scheme,

consider the radial Dirac eigenvalue problem HκΦ = λΦ, the usual hp-cloud method

is formulated by multiplying the equation by a test function Ψ and integrating over

the domain Ω

(17)
∫

Ω
ΨtHκΦdx = λ

∫

Ω
ΨtΦdx .
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To discretize (17) let Ψ be defined as (ψi, 0)t and (0, ψi)t, i = 1, 2, . . . , n, where ψi

is the hp-cloud basis function and

(18) Φ(x) =

(
F (x)

G(x)

)
=

( ∑n
j=1 fjψj(x)∑n
j=1 gjψj(x)

)
.

The elements fj and gj are the nodal values of F and G respectively. This yields

(19)
n∑

j=1

〈w+(x)ψj(x) , ψi(x)〉fj+
n∑

j=1

〈−cψ′j(x)+
cκ

x
ψj(x) , ψi(x)〉gj = λ

n∑

j=1

〈ψj(x) , ψi(x)〉fj

and

(20)
n∑

j=1

〈cψ′j(x)+
cκ

x
ψj(x) , ψi(x)〉fj+

n∑

j=1

〈w−(x)ψj(x) , ψi(x)〉gj = λ
n∑

j=1

〈ψj(x) , ψi(x)〉gj ,

the bracket 〈· , ·〉 is the usual L2(Ω) scalar product. After simplifying, equations

(19) and (20) lead to the symmetric generalized eigenvalue problem

(21) AX = λBX .

The block matrices A and B are defined by

(22)

A =

(
mc2M000 +MV

000 −cM010 + cκM001

cM010 + cκM001 −mc2M000 +MV
000

)
, and B =

(
M000 0

0 M000

)
,

where M q
rst are n× n matrices given as

(23) (M q
rst)ij =

∫

Ω
ψ

(s)
j ψ

(r)
i x−t q(x) dx ,

(
ψ(r)(x) =

dr

dxr
ψ(x)

)
.

The vector X is the unknowns defined as (f , g)t, where f = (f1, f2, . . . , fn) and

g = (g1, g2, . . . , gn).

To formulate the hp-CPG method, the test function Ψ is modified to include the

first derivative of the basis function in order to introduce the required diffusivity.

This leads to assume Ψ as (ψ, τψ′)t and (τψ′, ψ)t in (17), where τ is the stability

parameter that controls the size of the diffusion terms, ψ = ψi, and the functions F

and G are given by (18), thus we get

(24) 〈w+F , ψ〉+ 〈−cG′ + cκ

x
G , ψ〉+ 〈Re2(F,G) , τψ′〉 = λ〈F , ψ〉
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and

(25) 〈cF ′ + cκ

x
F , ψ〉+ 〈w−G , ψ〉+ 〈Re1(F,G) , τψ′〉 = λ〈G , ψ〉 .

The residuals Re1
(
F,G

)
(x) and Re2

(
F,G

)
(x) are defined as

(26) Re1
(
F,G

)
(x) =

(
W+F − cG′ +

cκ

x
G
)
(x) ,

(27) Re2
(
F,G

)
(x) =

(
W−G+ cF ′ +

cκ

x
F
)
(x) ,

where W±(x) = w±(x)− λ. This results in the usual hp-cloud approximation with

addition to perturbations sized by τ as follows

(28) AX = λBX .

The perturbed block matrices, A and B, are respectively in the forms A = A+ τA

and B = B + τB, where A and B are given by (22),

(29)

A =

(
cM110 + cκM101 −mc2M100 +MV

100

mc2M100 +MV
100 −cM110 + cκM101

)
, and B =

(
0 M100

M100 0

)
.

The system (28) is not symmetric, thus complex eigenvalues may appear if the

size of τ is relatively large. In the FEM, an explicit representation for τ is obtained

[2], where the basis functions have the Kronecker delta property, hence the basis

functions have regular distribution along the domain and only the adjacent basis

functions intersect in one and only one subinterval. Thus the resulted system con-

sists of tridiagonal matrices, this makes the derivation of τ easier and an explicit

representation is possible. In MMs in general, a basis function is represented by

cloud over a nodal point, with domain of influence, ρ, that may cover many other

nodal points. So the resulting matrices can be filled with many nonzero elements,

hence the number of non-vanishing diagonals in these matrices is arbitrary (greater

than 3) and depending on the size of ρ. Therefore, we can not write an explicit

representation for τ that depends only and completely on a given mesh. Instead,

τ will be mainly represented by some of the computed matrices obtained from the

usual hp-cloud method.

The derivation of τ assumes the limit Dirac operator in the vicinity of x at infinity.

This presumable simplification is inevitable and justifiable; the derivation leads to an



hp-CLOUD APPROXIMATION OF THE DIRAC EIGENVALUE PROBLEM 17

approximation of the limit point eigenvalue which depends on τ , where, in [20], the

theoretical limit is proved to be mc2, hence we can minimize the error between the

theoretical and the approximated limits to get τ . By considering the limit operator

at infinity, we consider the troublesome part (that includes the convection terms) of

the operator which is mostly needed to be stabilized. Besides that, one is obliged

to assume that the stability parameter should be applicable at all radial positions

x ∈ Ω, particularly the large values of x.

Theorem 1. Let M000 and M100 be the n×n computed matrices given by (23), and

let σji and ηji be the corresponding entries respectively. Define ϑ as

(30) ϑji =





−
j∑

k=i+1

hk , i < j,

0 , i = j,
i∑

k=j+1

hk , i > j,

where hk is the displacement between the nodes xk and xk−1. Then the stability

parameter, τj, for an arbitrary jth row of the matrices in A and B is given by

(31) τj =
∣∣∣

n∑

i=1

σjiϑji

/ n∑

i=1

ηjiϑji

∣∣∣.

Proof . Consider the limit operator of the radial Dirac eigenvalue problem in the

vicinity of x at infinity

(32)

(
mc2 −cDx

cDx −mc2

)(
F (x)

G(x)

)
= λ

(
F (x)

G(x)

)
.

The hp-CPG variational formulation of (32) (which is equivalent to assume a limit

passage as x→∞ of the equations (24) and (25)) provides

(mc2 − λ)M000f + τcM110f − (τmc2 − c+ τλ)M100g = 0(33)

and

(τmc2 − c− τλ)M100f − τcM110g − (mc2 + λ)M000g = 0 ,(34)

where, as defined before, f = (f1, f2, . . . , fn) and g = (g1, g2, . . . , gn). Let σk, ηk,

and %k, for k = 1, 2, . . . , n, be the corresponding jth row entries of M000, M100, and
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M110 respectively. To obtain τj , we consider the jth rows in (33) and (34), this

together with the Lemma 1 below gives

(
mc2−λ

)( n∑

k=1

σkfj+
n∑

k=1

σk

(
mcϑk+(ϑk/c)λ

)
gj

)
+τc

( n∑

k=1

%kfj+
n∑

k=1

%k

(
mcϑk+

(35)

+(ϑk/c)λ
)
gj

)
−
(
τmc2 − c+ τλ

)( n∑

k=1

ηkgj +
n∑

k=1

ηk

(
mcϑk − (ϑk/c)λ

)
fj

)
= 0

and

(
τmc2 − c− τλ

)( n∑

k=1

ηkfj +
n∑

k=1

ηk

(
mcϑk + (ϑk/c)λ

)
gj

)
− τc

( n∑

k=1

%kgj +
n∑

k=1

%k×

(36)

×
(
mcϑk − (ϑk/c)λ

)
fj

)
− (mc2 + λ)

( n∑

k=1

σkgj +
n∑

k=1

σk

(
mcϑk − (ϑk/c)λ

)
fj

)
= 0 .

Lemma 1. Let fi and gi be respectively the ith nodal values of F and G of the

limit equation (32). Freeze j, and let ϑi be given by (30) for the given j. Then for

i = 1, 2, . . . , n

fi
∼= fj +

(
mcϑi + (ϑi/c)λ

)
gj .

gi
∼= gj +

(
mcϑi − (ϑi/c)λ

)
fj .

Proof . Consider the limit equation (32) which can be written as

mc2F (x)− cG′(x) = λF (x) and cF ′(x)−mc2G(x) = λG(x) .(37)

If i = j, then the result is obvious. So let i 6= j, we treat the case i < j, where

the proof for i > j goes through mutatis mutandis by using forward difference

approximations for derivatives. Assume i < j, also we prove the first argument of

the lemma, the proof of the second argument is similar. Consider the second part

of (37) for xj

(38) cF ′(xj)−mc2G(xj) = λG(xj) .
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Using backward difference approximations for derivatives we can write

(39) F ′|xj
∼= F (xj)− F (xi)

−
j∑

k=i+1

hk

=
fj − fi

−
j∑

k=i+1

hk

.

Substituting (39) in (38) completes the proof. ¥

We continue the proof of Theorem 1, consider the dominant parts with respect to

c, so let c→∞ in (35) and (36) and simplify to get

[ n∑

k=1

((
− σk − ηkϑk

)
λ+

(
c%k −m2c3ηkϑk

)
τj +

(
mc2σk +mc2ηkϑk

))]
fj+(40)

+
[ n∑

k=1

((
τj%kϑk − τjηk

)
λ+

(
mc2%kϑk −mc2ηk

)
τj +

(
m2c3σkϑk + cηk

))]
gj = 0

and

+
[ n∑

k=1

((
− τjηk + τj%kϑk

)
λ+

(
mc2ηk −mc2%kϑk

)
τj +

(
− cηk −m2c3σkϑk

))]
fj+

(41)

+
[ n∑

k=1

((
− ηkϑk − σk

)
λ+

(
m2c3ηkϑk − c%k

)
τj +

(
−mc2ηkϑk −mc2σk

))]
gj = 0.

To make the derivation simpler, the following notations are introduced

a =
∑n

k=1 ak =
∑n

k=1(−σk − ηkϑk), b = cb1 −m2c3b2 =
∑n

k=1(c%k −m2c3ηkϑk),

d = mc2d1 =
∑n

k=1mc
2(σk + ηkϑk), e =

∑n
k=1 ek =

∑n
k=1(%kϑk − ηk),

q = mc2q1 =
∑n

k=1mc
2(%kϑk − ηk), ω = m2c3ω1 + cω2 =

∑n
k=1(m

2c3σkϑk + cηk).

By these notations, equations (40) and (41) can be written as

(42)

(
aλ+ bτj + d eτjλ+ qτj + ω

eτjλ− qτj − ω aλ− bτj − d

)(
fj

gj

)
=

(
0

0

)
.

Since fj and gj are not identically zero for all j, then we expect

(43) det

(
aλ+ bτj + d eτjλ+ qτj + ω

eτjλ− qτj − ω aλ− bτj − d

)
= 0,
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where det(·) is the determinant of matrix. After simplifying, equation (43) leads to

(44) λ±(τj) = ±
√

(bτj + d)2 − (qτj + ω)2

a2 − e2τ2
j

.

By [20], the only accumulation point for the eigenvalue for the radial Coulomb-Dirac

operator in the vicinity of x at infinity is mc2. So, we like to have

|λ+ −mc2| = 0

⇐⇒ m2c4(a2 − e2τ2
j ) = (bτj + d)2 − (qτj + ω)2

= (cb1τj −m2c3b2τj +mc2d1)2 − (mc2q1τj +m2c3ω1 + cω2)2.

Letting m = 1, dividing both sides by c6, and taking the limit as c→∞, we get

(45) b22τ
2
j − ω2

1 = 0.

Substituting back the values of b2 and ω1, the desired consequence is obtained for

the fixed j as

(46) τj =
∣∣∣

n∑

k=1

σkϑk

/ n∑

k=1

ηkϑk

∣∣∣.

The above result can be generalized for arbitrary j as

(47) τj =
∣∣∣

n∑

i=1

σjiϑji

/ n∑

i=1

ηjiϑji

∣∣∣,

and this ends the proof. ¥

The hp-cloud functions depend strongly on the dilation parameter ρj . As ρj

gets smaller, i.e., ρj → max{hj , hj+1} (= hj+1 for exponentially distributed nodal

points), as the shape functions of MMs in general become closer to the standard

finite element functions, see Figure 3. In this case the FEM stability parameter

might be applicable for MMs [17]

τFEM
j → τMMs

j , as ρj → hj+1.

On the other hand, one should be careful about the invertibility of the matrix M ,

i.e., we can not approach ρj = hj+1 which makes M singular. In Lemma 2, we derive

the stability parameter τFEM
j for the computation of the eigenvalues of the radial

Dirac operator, Hκ, using the FEM with quartic spline. The proof of the lemma
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Figure 3. PU hp-clouds with different dilation parameters: ρj =

4 ·hj+1 (up to the left), ρj = 2 ·hj+1 (up to the right), ρj = 1.5 ·hj+1

(below to the left), and ρj = 1.2 · hj+1 (below to the right). Quartic

spline is used as a weight function.

is simple and uses the same technique as of the theorem above, thus we directly

utilize the result of this theorem with minor modifications. In Table 7, the result of

applying τFEM
j for stabilizing the hp-cloud method with ρj = (1.1) ·hj+1 is obtained,

the approximation is good enough and the spuriosity seems to be eliminated. But

a difficulty arises, that is, the end of the spectrum (the spectrum tail) behaves in a

strange way, which may be regarded as spurious solutions.

Lemma 2. The FEM stability parameter for the computation of the eigenvalues of

the radial Dirac operator using quartic splines as a basis has the form

(48) τFEM
j =

3
17
hj+1

(hj+1 − hj)
(hj+1 + hj)

.

Proof . Consider the general formula derived in Theorem 1

(49) τj =
∣∣∣

n∑

i=1

σjiϑji

/ n∑

i=1

ηjiϑji

∣∣∣,
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where ϑji is defined by (30), and σji and ηji are respectively the entries of the

matrices M000 and M100. Note that in the FEM with quartic spline basis functions,

M000 and M100 are tridiagonal matrices with jth row elements as in Table 2.

Table 2. The element integrals of the matrices M000 and M100.

PPPPPPPPPPPMatrix

Index
j − 1 j j + 1

jth row of M000
3
70hj+1

20
70(hj + hj+1) 3

70hj+1

jth row of M100
17
70 0 −17

70

By Substituting the values of σji and ηji from Table 2 in (49) and using the

definition of ϑji, we get the desired consequence. ¥

5. Results and discussions

Since the main goal of this work is applying the hp-cloud method with the stability

scheme, most of the discussion (all figures and tables except Table 7) provided here

will be about the main stability parameter τj in (31) given in Theorem 1. However,

only Table 7 sheds some light on the FEM stability parameter given by Lemma 2.

This discussion takes a form of comparison with the main stability parameter.

For point nucleus, the relativistic formula is used to compare our results

(50) λnr,κ =
mc2√

1 + Z2α2

(nr−1+
√

κ2−Z2α2)2

,

where α is the fine structure constant which has, in atomic unit, the value 1/c,

and the orbital level number nr takes the values 1, 2, . . .. To ease performing the

comparison, the exact eigenvalues λnr,κ and the positive computed eigenvalues are

shifted by −mc2. All computations are performed for the Hydrogen-like Ununoctium

ion, where the atomic number and atomic weight for the Ununoctium element are

118 and 294 respectively. Consequently, and since the electron in the Hydrogen-like

Ununoctium ion admits relatively large magnitude eigenvalues, for better measuring

of the approximation accuracy, through out all computations we shall use the relative

error. To treat the singularity of the pure Coulomb potential at x = 0, extended

nucleus is assumed by modifying the potential to fit the finite nuclear size. The
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modified Coulomb potential considers another distribution of the charge along the

nucleus (in the region [0 , R] where R is the nucleus radius) and pure Coulomb

potential in the rest of domain. The continuity and the smoothness property (at

least C1) should be saved for the total modified potential. For the distribution of

charge along nucleus, one can consider, e.g., uniform or Fermi distributions, in this

work we consider uniformly distributed charge.

As for the boundary conditions, the homogeneous Dirichlet condition is assumed.

Note that for better approximation of the eigenstates 1s1/2 and 2p1/2, suitable Neu-

mann boundary conditions should also be considered, see [2]. However, here, we do

not treat these cases, instead, general computations are performed to account for the

essence of discussion. The homogeneous Dirichlet boundary condition is then sim-

ply implemented, after coupling with the FEM, by omitting the two finite element

functions at the lower and upper boundaries.

As mentioned before, the computation of the radial Dirac operator eigenvalues

requires exponential distribution of the nodal points in order to capture desired

behavior of the radial functions near the origin. For this purpose, we shall use the

following formula

(51) xi = exp
(
ln(Ia + ε) +

( ln(Ib + ε)− ln(Ia + ε)
n

)
i
)
− ε , i = 0, 1, 2, . . . , n,

where n is the total number of nodal points and ε ∈ [0 , 1] is the nodes intensity

parameter. The role of ε is to control the intensity of the nodal points close to

origin, as smaller ε as more nodes are dragged toward the origin, see the discussion

below. As for other approximation methods, increasing the number of nodal points

provides better approximation, but this, of course, on the account of the computa-

tional time. However, we can still obtain a good approximation with relatively less

time, compared with increasing the nodal points, if the number of integration points

is increased (the same size of the generalized matrices is obtained for a fixed num-

ber of nodal points, where increasing the number of integration points means more

time is needed for functional evaluations but the same time is used for eigenvalues

computation of the generalized system). This does not mean that we do not need

to increase the number of nodal points to obtain more computed eigenvalues and

improving the approximation, but to get better rate of convergence with less time
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consumption, increasing both the numbers of integration points and nodal points

are necessary. In this computation, we fix the number of integration points at 10 ·n.

Table 3 shows the approximated eigenvalues of the electron in the Hydrogen-like

Ununoctium ion obtained using the usual and the stabilized hp-cloud methods, the

computation is obtained at ρj = 2.2hj+1, ε = 10−5, and n = 600. The clouds

are enriched by P t(x) = [1 , x(1 − x/2) exp(−x/2)]. The eigenvalues, through out

the computations in this work, are given in atomic unit. In Table 3, with the

usual hp-cloud method, the instilled spurious eigenvalues appear for both positive

and negative κ (the two shaded values in the fourteenth level), also the unphysical

coincidence phenomenon occurs for the positive κ (the shaded value in the first

level). Note that these spuriosity of both categories are removed by the hp-CPG

method.

Table 3. The first computed eigenvalues of the electron in the

Hydrogen-like Ununoctium ion using the usual and the stabilized

hp-cloud methods for point nucleus.

Level hp-cloud hp-cloud Exact hp-CPG hp-CPG

κ = 2 κ = −2 κ = −2 κ = −2 κ = 2

1 -1829.630750899 -1829.630750902 -1829.630750908 -1829.628309112

2 -826.7698136330 -826.7698136329 -826.7683539069 -826.7714785272 -826.7738882959

3 -463.1214970564 -463.1214970566 -463.1183252634 -463.1247150569 -463.1261170024

4 -294.4552367950 -294.4552367952 -294.4509801141 -294.4591541031 -294.4600671778

5 -203.2468937049 -203.2468937047 -203.2419549027 -203.2511517040 -203.2517946674

6 -148.5588260984 -148.5588260983 -148.5534402360 -148.5632453116 -148.5637243357

7 -113.2536099083 -113.2536099084 -113.2479180697 -113.2580871797 -113.2584595495

8 -89.16385480233 -89.16385480237 -89.15794547564 -89.16832365853 -89.16862284813

9 -72.00453396071 -72.00453396065 -71.99846504808 -72.00894720487 -72.00919403005

10 -59.35481340095 -59.35481340100 -59.34862423729 -59.35913470352 -59.35934276227

11 -49.76429096817 -49.76429096819 -49.75800915710 -49.76849047005 -49.76866900765

12 -42.32147184311 -42.32147184312 -42.31511730902 -42.32552373918 -42.32567925216

13 -36.43039621976 -36.43039621984 -36.42398370073 -36.43427738957 -36.43441456989

14 -33.96502895994 -33.96502895893 -31.68173025393 -31.69187884728 -31.69200116063

15 -31.68818961940 -31.68818961935 -27.80813459180 -27.81810976712 -27.81821982418
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5.1. Integration of hp-cloud functions.

To approximate the integrals in the weak form in the Galerkin hp-cloud approx-

imation, we use two-point Gaussian quadrature rule. Gaussian quadrature rules

are the most used numerical techniques to evaluate the integrals in MMs due to

their exact integrating of polynomials of degree 2mq− 1, where mq is the number of

quadrature points [18]. However, using Gaussian quadrature rules yields integration

error when the grids are not coincident with the clouds covers, and thus instabilities

and spurious modes start to appear. Also for non-uniformly distributed points (the

case we assume in this work), Gaussian quadrature rules do not pass the patch test

(fail in consistency). Therefore, stabilizing conforming nodal integration (SCNI),

see [9], is introduced to overcome these difficulties. The main feature of SCNI is

using the divergence theorem to substitute the derivative, i.e., the derivative d
dxΨh

in the sub-domain Ωj = [xj , xj+1] is replaced by a smooth derivative (averaging

derivative) d
dxΨh at x̂ ∈ Ωj as

d

dx
Ψh(x) ∼= d

dx
Ψh(x̂) =

1
xj+1 − xj

∫ xj+1

xj

d

dx
Ψh(x)dx =

Ψh(xj+1)−Ψh(xj)
xj+1 − xj

.

This definition helps stabilizing the integration, further, it saves time in the com-

putation by not calculating the derivatives of the cloud functions. Thus no need to

evaluate (M−1)′ = −M−1M ′M−1, which is expensive to calculate. For integrating

and programming the weak form in MMs, the results from [13, 14] are useful.

The cloud shape functions are evaluated at the integration points (digital eval-

uation), since , practically, it is somehow impossible to write the cloud functions

explicitly without matrix inversion. Also, it is not recommended to obtain the in-

verse of M directly, instead, LU factorization is better to be used from cost (less time

consumption) and numerical stability point of views. Moreover, in MMs generally,

to enhance the stability of the computation and to maintain the accuracy (that may

be affected or lost due to the round-off error), and to get better conditioning of the

matrix M (lower condition number), the origin should be shifted to the evaluation

point [18, 24, 27], i.e., x is replaced by the transformation x = x−xorig, consequently

ψi(x) = P t(0)M−1(x)Bi(x) where M(x)=
n∑

i=1

ϕi(
x− xi

ρi
)P (xi − xorig)P t(xi − xorig)

and Bi(x) = ϕi(x−xi
ρi

)P (xi − xorig).
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5.2. Enrichment basis functions P (x).

For the reason discussed before, only intrinsic enrichment, P (x), is considered

in the definition of the hp-cloud functions for the computation of the eigenvalues

of the radial Dirac operator. The number and the type of enrichment functions in

the basis set P (x) can be chosen arbitrary for each cloud [19, 32], but for practical

reasons (lowering both the condition number of M and the computational time) we

assume P (x) = [1, p1(x)]. For the approximation of the radial Dirac operator eigen-

values, to enrich the cloud with a suitable basis P (x), two main properties should

be considered; firstly, and sufficient one, the elements of P (x) ought to have the

continuity properties (continuous with continuous first derivatives) of the space H

so that for all j, the cloud ψj is a C1-function, provided that ϕj is a C1-function.

Secondly, global behavior and fundamental characters about the electron motion of

the Hydrogen-like ion systems should be embedded in P (x). Slater type orbital func-

tions (STOs) and Gaussian type orbital functions (GTOs) provide good description

of the electron motion [10, 21]. The quadratic term in the exponent of the GTOs

causes numerical difficulty, that is, with the GTOs, the matrix M rapidly becomes

poorly conditioned, this is also what is observed when applying quadratic basis en-

richments, see [6]. Consequently, the STOs are considered as the enrichment of the

hp-cloud functions, thus p1(x) can have, e.g., the following forms

exp(−x), x exp(−x/2), x(1− x/2) exp(−x/2), . . . etc.

Note that, these functions should be multiplied by normalization parameters, but,

computationally, there is no effect of multiplication by these parameters.

Since the global behavior of the eigenstates of the Hydrogen-like ions in the rela-

tivistic case (Dirac operator) does not differ much from that of the non-relativistic

case (Schrödinger operator), one can also assume the solutions of the radial Coulomb-

Schrödinger eigenvalue problem as intrinsic enrichments (see e.g. [22])

Rnr`(x) = Nnr` (2Zx/nra0)` L2`+1
nr+`(2Zx/nra0) exp(−Zx/nra0),

where L2`+1
nr+`(x) =

nr+`∑

k=0

(−1)k

k!

(
nr + 3`+ 1

nr + `− k

)
xk is the Laguerre polynomial, a0 is

the Bohr radius, nr = 1, 2, . . . is the orbital level number, and ` is, as mentioned
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before, the orbital angular momentum number given to be zero for s-states, one

for p-states, two for d-states, etc. For general intrinsic enrichment, it is, some-

how, tedious to apply the above formula for each level nr, instead, good results are

still achievable even with, e.g., nr equals the first possible level of the given state

(i.e., nr = 1 for all s-states, nr = 2 for all p-states, nr = 3 for all d-states, etc.).

Moreover, it is also possible to consider enrichment based on the solution of the

radial Dirac eigenvalue problem, see e.g. [11], but the above enrichments are sim-

pler from practical point of view. In the coming discussion, the enrichment basis

P t(x) = [1 , x(1− x/2) exp(−x/2)] is assumed in all computations.

5.3. Dilation Parameter ρ.

The dilation parameter, ρ, plays a crucial role in the approximation accuracy and

stability, it serves as the element size in the FEM. The parameter ρ can be chosen

fixed or arbitrary, but it is often assumed to be constant for all hp-clouds when

uniformly distributed nodal points are used. In this work, exponentially distributed

nodal points are assumed to get enough information about the radial functions near

the origin where they oscillate heavily relative to a region away from it. Thus we

consider

ρj = ν ·max{hj , hj+1} = νhj+1,

where the maximum is considered to engage sufficiently large region where the cloud

function is defined so that possible singularity of the matrix M is substantially

decreased, further, ν is the dimensionless size of influence domain [27]. Moreover,

for non-uniform mesh, ν can be chosen locally, i.e., ν = νj , where, in this work,

we assume fixed ν. Now it remains to determine the value/values of ν taking into

account that ρj should be large enough (ν > 1) in order to ensure the invertibility of

M (to ensure that any region is covered by at least two clouds). On the other hand,

ρj should not be very large to maintain local character of the approximation. As

discussed before (see also Figure 3, the case ν = 1.2), if ν → 1, then ψj will act as

finite element shape function, and thus the features of the hp-clouds are gradually

lost, also large values of ν make ψj to behave like polynomial of higher degree (see

Figure 3, the case ν = 4). To conclude, ν should be chosen moderately and such

that it guarantees that no integration point is covered by only one cloud [27, 32].
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The optimal choices of ν can be determined individually for each problem by

carrying out numerical experiments. In [30, 44], it is shown that ν ∈ [2, 3] provides

nice results for the elasticity problem. For the computation of the radial Dirac

operator eigenvalues with the stability scheme, when ν ∈ [2.2, 2.7] good results are

obtained and the spurious eigenvalues are completely eliminated. Also as ν gets

smaller as better approximation is obtained, see Table 4.

Table 4. The first computed eigenvalues of the electron in the

Hydrogen-like Ununoctium ion for κ = −2 for point nucleus with

different values of ν, where n = 600 and ε = 10−5 are used.

Level ν = 2.0 ν = 2.2 ν = 2.5 ν = 2.7 Exact

1 -1829.6287 -1829.6283 -1829.6276 -1829.6270 -1829.6307

2 -826.77119 -826.77147 -826.77197 -826.77233 -826.76835

3 -463.12417 -463.12471 -463.12567 -463.12638 -463.11832

4 -294.45850 -294.45915 -294.46033 -294.46120 -294.45098

5 -203.25046 -203.25115 -203.25244 -203.25340 -203.24195

6 -148.56255 -148.56324 -148.56460 -148.56562 -148.55344

7 -113.25741 -113.25808 -113.25949 -113.26054 -113.24791

8 -89.167688 -89.168323 -89.169756 -89.170831 -89.157945

9 -72.008358 -72.008947 -72.010396 -72.011489 -71.998465

10 -59.358602 -59.359134 -59.360592 -59.361700 -59.348624

11 -49.768025 -49.768490 -49.769950 -49.771070 -49.758009

12 -42.325133 -42.325523 -42.326981 -42.328113 -42.315117

13 -36.433970 -36.434277 -36.435728 -36.436870 -36.423983

14 -31.691663 -31.691878 -31.693318 -31.694472 -31.681730

15 -27.817992 -27.818109 -27.819533 -27.820699 -27.808134

In Figure 4, we study the convergence rate of the first five eigenvalues in Table

4. It is clear how the smaller ν gives the better approximation. One argues, as it

is clear from the figure, that ν can be, e.g., of some value less than 2 in order to

achieve a better rate of convergence. However, this will be on the account of spurios-

ity elimination (the cloud is not stretched enough to capture the desired behavior

of the approximated solution) and on the account of the invertibility of the matrix

M (for small ν some regions are covered with one cloud). However, as in the FEM,

one can apply h-refinement in the hp-cloud method (see e.g. [16, 44]), this can be
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Figure 4. Studying the convergence rate with respect to the influ-

ence domain factor ν. The comparison is carried out for the first five

eigenvalues in Table 4.

done by assuming smaller values of the dilation parameter ρj (keeping ν fixed and

making hj+1 smaller by increasing the number of nodal points). Thus as ρj getting

smaller, more clouds of smaller domain sizes are added.

The intensity of the exponentially distributed nodal points near the origin has an

influence on the convergence rate of the approximation. The intensity of the nodes,

near the origin or away from it, is controlled by the nodes intensity parameter, ε,

via formula (51). As smaller value of ε is considered as more concentration of nodes

near the origin is obtained, see Figure 5 (the graph to the left).

Table 5 shows the computation of the eigenvalues with different values of ε with

600 nodal points. The computation with ε smaller than 10−7 is almost the same as

of ε = 10−7, thus it is not required to study smaller values of ε than 10−7.

In Figure 5 (the graph to the right), the first computed eigenvalues of Table 5 are

studied. It is clear that as ε gets larger (up to some limit), better approximation

is obtained. However, as mentioned before, the rate of convergence is almost the

same when ε ∈ (0 , 10−7) (ε = 0 is excluded to avoid ln(0) when extended nucleus

is assumed). Also ε does not admit relatively large values in order to get enough

nodes close to the origin, where the radial functions oscillate relatively more, without

increasing the number of nodal points. Therefore, the most appropriate values for ε

which provide good results, are somewhere in the interval [10−6 , 10−4].
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Table 5. The first computed eigenvalues of the electron in the

Hydrogen-like Ununoctium ion for κ = −2 for point nucleus with

different values of ε, where n = 600 and ν = 2.2 are used.

Level ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7 Exact

1 -1829.6289 -1829.6283 -1829.6280 -1829.6280 -1829.6307

2 -826.77073 -826.77147 -826.77170 -826.77173 -826.76835

3 -463.12322 -463.12471 -463.12517 -463.12523 -463.11832

4 -294.45726 -294.45915 -294.45973 -294.45981 -294.45098

5 -203.24904 -203.25115 -203.25180 -203.25188 -203.24195

6 -148.56101 -148.56324 -148.56393 -148.56402 -148.55344

7 -113.25578 -113.25808 -113.25879 -113.25888 -113.24791

8 -89.165992 -89.168323 -89.169039 -89.169131 -89.157945

9 -72.006610 -72.008947 -72.009662 -72.009755 -71.998465

10 -59.356811 -59.359134 -59.359844 -59.359936 -59.348624

11 -49.766195 -49.768490 -49.769189 -49.769279 -49.758009

12 -42.323268 -42.325523 -42.326208 -42.326296 -42.315117

13 -36.432073 -36.434277 -36.434943 -36.435030 -36.423983

14 -31.689734 -31.691878 -31.692524 -31.692607 -31.681730

15 -27.816033 -27.818109 -27.818732 -27.818812 -27.808134
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Figure 5. To the left, different exponentially distributed nodal

points are plotted using the formula (51). To the right, the effect

of nodes intensity near the origin on the convergence rate, the com-

parison is carried out for the first five eigenvalues in Table 5.
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The approximation of the stabilized hp-cloud scheme with different numbers of

nodal points is given in Table 6. The rate of convergence of the corresponding first

five eigenvalues is studied in Figure 6, where h is the maximum of all distances

between the adjacent nodes which equals to hn = xn − xn−1, the distance between

the last two nodes for exponentially distributed nodes.

Table 6. The first computed eigenvalues of the electron in the

Hydrogen-like Ununoctium ion for κ = −2 for point nucleus with

different number of nodes, where ν = 2.2 and ε = 10−5 are used.

Level n = 200 n = 400 n = 600 n = 800 n = 1000 Exact

1 -1829.5628 -1829.6224 -1829.6283 -1829.6297 -1829.6302 -1829.6307

2 -826.82670 -826.77726 -826.77147 -826.76987 -826.76923 -826.76835

3 -463.23292 -463.13630 -463.12471 -463.12146 -463.12016 -463.11832

4 -294.59147 -294.47367 -294.45915 -294.45503 -294.45336 -294.45098

5 -203.39386 -203.26721 -203.25115 -203.24654 -203.24466 -203.24195

6 -148.70878 -148.58009 -148.56324 -148.55835 -148.55635 -148.55344

7 -113.40170 -113.27527 -113.25808 -113.25304 -113.25096 -113.24791

8 -89.306709 -89.185557 -89.168323 -89.163201 -89.161076 -89.157945

9 -72.139617 -72.026008 -72.008947 -72.003802 -72.001653 -71.998465

10 -59.480154 -59.375861 -59.359134 -59.354006 -59.351849 -59.348624

11 -49.878353 -49.784751 -49.768490 -49.763410 -49.761256 -49.758009

12 -42.423104 -42.341207 -42.325523 -42.320517 -42.318374 -42.315117

13 -36.518814 -36.449288 -36.434277 -36.429365 -36.427242 -36.423983

14 -31.762955 -31.706134 -31.691878 -31.687081 -31.684984 -31.681730

15 -27.875610 -27.831538 -27.818109 -27.813442 -27.811376 -27.808134

The lack of error estimates for the approximation of the Dirac eigenvalue prob-

lem due to the boundedness problem results in an incomplete picture about the

convergence analysis. Nevertheless, from Figure 6, the convergence rate of the ap-

proximation of the first five eigenvalues, λ1, . . ., λ5, is nearly 3.09, 2.66, 2.62, 2.59,

and 2.56 respectively, which it takes a slight decreasing pattern as we go higher in

the spectrum levels, see the corresponding table.

With the stability parameter τFEM , the computation is presented in Table 7. The

computation is obtained with 600 nodal points at ν = 1.1 and ε = 10−5. The result

is compared with the same stability scheme but with the stability parameter τ at the
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Figure 6. Study the convergence rate of the first computed five

eigenvalues in Table 6.

same parameters but ν = 2.2, the comparison is also obtained in the non-relativistic

limit (very large c).

Table 7. The first computed eigenvalues of the electron in the

Hydrogen-like Ununoctium ion for κ = −2 for point nucleus using

the stability scheme with the stability parameters τ and τFEM .

The speed of light 100×The speed of light

Level τ τFEM Exact τ τFEM Exact

1 -1829.6283 -1829.6304 -1829.6307 -1740.2372 -1740.4777 -1740.5080

2 -826.77147 -826.76993 -826.76835 -773.73860 -773.57259 -773.56033

3 -463.12471 -463.12174 -463.11832 -435.46054 -435.14787 -435.12752

4 -294.45915 -294.45551 -294.45098 -278.88245 -278.49775 -278.48144

5 -203.25115 -203.24715 -203.24195 -193.82362 -193.39522 -193.38978

6 -148.56324 -148.55905 -148.55344 -142.53145 -142.07261 -142.08222

7 -113.25808 -113.25377 -113.24791 -109.23625 -108.75140 -108.78165

8 -89.168323 -89.163916 -89.157945 -86.404375 -85.894382 -85.950912

9 -72.008947 -72.004478 -71.998465 -70.067886 -69.534118 -69.620219

10 -59.359134 -59.354644 -59.348624 -57.975599 -57.420335 -57.537357

11 -49.768490 -49.764010 -49.758009 -48.773149 -48.197640 -48.347352

12 -42.325523 -42.321064 -42.315117 -41.606088 -41.009232 -41.195370

13 -36.434277 -36.429826 -36.423983 -35.913753 -35.292096 -35.520492

14 -31.691878 -31.687405 -31.681730 -31.315908 -30.664671 -30.942291

15 -27.818109 -27.813579 -27.808134 -27.547311 -26.861865 -27.195369
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It can be seen from Table 7, the convergence property with τFEM is slightly better.

Unfortunately, the approximation with τFEM seems to behave strangely at the end

of the spectrum, that is, only the spectrum tail has the following behavior (the last

eigenvalues of the computation in Table 7 with τFEM for the relativistic case)

λ+ −mc2 λ− +mc2

207072481.0215 -215565247.3448

211429663.4158* -220006205.1800*

226003907.3130 -235294474.7992

231896256.0483* -241138935.9851*

246890583.9362 -257366374.4374

257292411.7094* -267386241.2969*

267659710.2673* -279193268.7275*

291928112.6166 -303237209.5231

296228215.8873* -308029351.9019*

This behavior occurs only for few values at the end of the spectrum, and no such

effect is revealed in the rest of the spectrum. To our knowledge, the values marked

with ∗ might be spurious eigenvalues for some unknown origins in higher levels,

which, in calculating the correlation energy, seem to have no significant effect.

Table 8 shows the computation of the eigenvalues of the electron in the Hydrogen-

like Ununoctium ion with κ = −2. The computation is for extended nucleus ob-

tained using the stability scheme, where the first and the last computed eigenvalues

are presented. The number of nodes used is 1000, also the used values of ν and ε

are respectively 2.2 and 10−5.

Conclusion.

The scheme developed in this work, the hp-CPG method, for stabilizing the hp-cloud

approximation for solving the single-electron Coulomb-Dirac eigenvalue problem en-

sures complete treatment of the spurious eigenvalues. The scheme strongly depends

on the derived stability parameter τ , which is simple to implement and applicable

for general finite basis functions. The elimination of the spurious eigenvalues is also

affected by the influence domain factor ν, for ν less than 2, spurious eigenvalues

start to appear. The convergence rate is high for the first eigenvalues, while it



34 HASAN ALMANASREH

slowly decreases as the level gets higher. Comparing with the finite element sta-

bility approach [2], the scheme convergence rate is lower. We may state that, as

the main disadvantage of MMs in general, the hp-cloud method is more expensive

due to the time consumption in evaluating the shape function which demands more

integration point as ν gets larger to obtain the desired accuracy. The number of

integration points used here is ten times the number of nodal points (this large

number of points is assumed in order to study the effects of the other parameters

from a comparative point of view), which can be made smaller, i.e., ν ≥ 2 is enough

to get sufficient accuracy.
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G-CONVERGENCE OF DIRAC OPERATORS

HASAN ALMANASREH AND NILS SVANSTEDT

Abstract. We consider the linear Dirac operator with a (−1)-homogeneous lo-

cally periodic potential that varies with respect to a small parameter. Using the

notation of G-convergence of positive definite self-adjoint operators in Hilbert

spaces we prove G-compactness for families of projections of Dirac operators. We

also prove convergence of the corresponding point spectrum in the spectral gap.

1. Introduction

In the present work we study the asymptotic behavior of Dirac operators H̃h with

respect to a parameter h ∈ N as h→∞. We consider Dirac operators H̃h = H̃+Vh

on L2(R3; C4), where H̃ = H0 + W + I is a shifted Dirac operator. The operators

H0, W , I, and Vh are respectively the free Dirac operator, the Coulomb potential,

the 4×4 identity matrix, and a perturbation to H̃. We will study the asymptotic

behavior of H̃h and of the eigenvalues in the gap of the continuous spectrum with

respect to the perturbation parameter h.

G-convergence theory which deals with convergence of operators, is well-known

for its applications to homogenization of partial differential equations. The con-

cept was introduced in the late 60’s by De Giorgi and Spagnolo [5, 9, 10] for linear

elliptic and parabolic problems with symmetric coefficients matrices. Later on it

was extended to the non-symmetric case by Murat and Tartar [7, 12, 13] under the

name of H-convergence. A detailed exposition of G-convergence of positive definite

self-adjoint operators can be found in [3]. In the present work we will base a lot of

Key words and phrases. Dirac operator, G-convergence, spectral measure.
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our framework on the results in Chapter 12 and 13 in [3]. The Dirac operator is un-

bounded both from above and below. This means that the theory of G-convergence

of positive definite self-adjoint operators is not directly applicable to Dirac opera-

tors. In this work we study self-adjoint projections of Dirac operators which satisfy

the positivity so that the theory of G-convergence becomes applicable.

We will consider periodic perturbations, i.e., we will assume that the potential

Vh is a periodic function with respect to some regular lattice in RN . We are then

interested in the asymptotic behavior of shifted perturbed Dirac operators H̃h. This

yields homogenization problems for the evolution equation associated with the Dirac

operator H̃h {
i} ∂
∂tuh(x, t) = H̃huh(x, t) ,

uh(·, 0) = u0
h

and the corresponding eigenvalue problem

H̃huh(x) = λhuh(x).

The paper is arranged as follows: In Section 2 we provide the reader with basic

preliminaries on Dirac operators, G-convergence and on the concepts needed from

spectral theory. In Section 3 we present and prove the main results.

2. Preliminaries

Let A be a linear operator on a Hilbert space. By R(A), D(A), and N(A) we

mean the range, domain, and null-space of A respectively.

2.1. Dirac Operator. We recall some basic facts regarding the Dirac operator. For

more details we refer to the monographs [14, 15, 17].

Let X and Y denote the Hilbert spaces H1(R3; C4) and L2(R3; C4), respectively.

The free Dirac evolution equation reads

(1) i}
∂

∂t
u(x, t) = H0u(x, t) ,

where H0 : Y −→ Y is the free Dirac operator with domain D(H0) = X, which

acts on the four-component vector u. It is a first order linear hyperbolic partial

differential equation. The free Dirac operator H0 has the form

(2) H0 = −i}cα · ∇+mc2β .
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Here α · ∇ =
∑3

i=1 αi
∂
∂xi

, } is the Planck constant divided by 2π, the constant c is

the speed of light, m is the particle rest mass and α = (α1, α2, α3) and β are the

4×4 Dirac matrices given by

αj =

(
0 σj

σj 0

)
and β =

(
I 0

0 −I

)
.

Here I and 0 are the 2×2 unity and zero matrices, respectively, and the σj ’s are the

2×2 Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0

0 −1

)
.

Note that a separation of variables in (1) yields the Dirac eigenvalue problem

(3) H0u(x) = λu(x) ,

where u(x) is the spatial part of the wave function u(x, t) and λ is the total energy of

the particle. The free Dirac operator H0 is essentially self-adjoint on C∞0 (R3; C4) and

self-adjoint on X. Moreover, its spectrum, σ(H0), is purely absolutely continuous

(i.e., its spectral measure is absolutely continuous with respect to the Lebesgue

measure) and given by

σ(H0) = (−∞,−mc2] ∪ [mc2,+∞) .

H0 describes the motion of an electron that moves freely without external force. Let

us now introduce an external field given by a 4×4 matrix-valued function W ,

W (x) = Wij(x) i, j = 1, 2, 3, 4.

It acts as a multiplication operator in Y , thus the free Dirac operator with additional

field W is of the form

(4) H = H0 +W .

The operator H is essentially self-adjoint on C∞0 (R3; C4) and self-adjoint on X pro-

vided that W is Hermitian and satisfies the following estimate (see e.g. [14])

(5) |Wij(x)| ≤ a c

2|x| + b , ∀x ∈ R3\{0} i, j = 1, 2, 3, 4,

the constant c is the speed of light, a < 1, and b > 0. From now on we let W (x)

be the Coulomb potential W (x) = −Z
|x| I, where Z is the electric charge number
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(without ambiguity, I is usually dropped from the Coulomb term for simplicity).

The spectrum of the Dirac operator with Coulomb potential is given by

σ(H) = (−∞,−mc2] ∪ {λk}k∈N ∪ [mc2,+∞),

where {λk}k∈N is a discrete sequence of eigenvalues in the ”gap” and the remaining

part of the spectrum is the continuous part σ(H0).

In the present paper we consider a parameter-dependent perturbation added to the

Dirac operator with Coulomb potential. The purpose is to investigate the asymptotic

behavior of the corresponding eigenvalues in the gap and the convergence properties.

To this end we introduce a 4×4 matrix-valued function Vh = Vh(x) and define the

operator Hh as

(6) Hh = H + Vh .

We recall that a function F is called homogeneous of degree p if for any nonzero

scalar a, F (ax) = apF (x). The next theorem is of profound importance for the

present work.

Theorem 1. Let W be Hermitian and satisfy the bound (5) above. Further, for any

fixed h ∈ N, let Vh be a measurable (−1)-homogeneous Hermitian 4×4 matrix-valued

function with entries in Lploc(R
3), p > 3. Then Hh is essentially self-adjoint on

C∞0 (R3; C4) and self-adjoint on X. Moreover

σ(Hh) = (−∞,−mc2] ∪ {λkh}k∈N ∪ [mc2,+∞),

where {λkh}k∈N is a discrete sequence of parameter dependent eigenvalues correspond-

ing to the Dirac eigenvalue problem Hhuh(x) = λhuh(x).

Proof. See [15, 17]. �

We will as a motivating example consider perturbations which are locally periodic

and of the form Vh(x) = V1(x)V2(hx). The entries of V1 are assumed to be (−1)-

homogeneous. The entries of V2(y) are assumed to be periodic with respect to a

regular lattice in R3. This can also be phrased that they are defined on the unit

torus T3.
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The evolution equation associated with the Dirac operator Hh reads

(7)

{
i} ∂
∂tuh(x, t) = Hhuh(x, t) ,

uh(·, 0) = u0
h .

By the Stone theorem, since Hh is self-adjoint on X, there exists a unique solution

uh to (7) given by

(8) uh(·, t) = Uh(t)u0
h , ∀u0

h ∈ X ,

where Uh(t) = exp(−(i/})Hht) is the strongly continuous unitary operator gener-

ated by the infinitesimal operator −(i/})Hh on Y , see e.g. [6, 14].

In the sequel we will consider a shifted family of Dirac operators denoted by H̃h

and defined as H̃h = H̃ + Vh, where H̃ = H +mc2I. Also without loss of generality

we will in the sequel put } = c = m = 1. By Theorem 1, for any h ∈ N, we then get

σ(H̃h) = (−∞, 0] ∪ {λ̃kh}k∈N ∪ [2,∞).

2.2. G-convergence. For more detailed information on G-convergence we refer to

e.g. [4, 11] for the application to elliptic and parabolic partial differential operators,

and to the monograph [3] for the application to general positive definite self-adjoint

operators. Here we recall some basic facts about G-convergence of positive definite

self-adjoint operators in a Hilbert space Y.

In the present work we frequently write Ah converges to A when we mean that

the sequence {Ah} converges to A. Let λ ≥ 0, by Pλ(Y) we denote the class of

self-adjoint operators A on a closed linear subspace V = D(A) of Y such that

〈Au, u〉 ≥ λ||u||2Y ∀u ∈ D(A).

Definition 1. Let λ > 0, and let Ah ∈ Pλ(Y) then we say that Ah G-converges

to A ∈ Pλ(Y), denoted Ah
G,s−−−→
G,w

A in Y if A−1
h Phu

s−−→
w

A−1Pu in Y ∀u ∈ Y,

where s and w refer to strong and weak topologies respectively, and Ph and P are

the orthogonal projections onto Vh := D(Ah) and V := D(A) respectively. Also

we say Ah ∈ P0(Y) converges to A ∈ P0(Y) in the strong resolvent sense (SRS) if

(λI +Ah) G,s−−−→ (λI +A) in Y ∀λ > 0.

The following result provides a useful criterion for G-convergence of self-adjoint

operators of the class Pλ(Y), λ > 0. See [3] for a proof.
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Lemma 1. Given λ > 0, Ah ∈ Pλ(Y) and the orthogonal projection Ph onto Vh.

Suppose that for every u ∈ Y, A−1
h Phu converges strongly (resp. weakly) in Y, then

there exists an operator A ∈ Pλ(Y) such that Ah
G,s−−−→ A (resp. Ah

G,w−−−→ A) in

Pλ(Y).

From now on we will just use the word ”converge” instead of saying ”strongly

converge”, hence Ah
G−−→ A instead of Ah

G,s−−−→ A.

2.3. Some Basic Results in Spectral Theory. For more details see [2, 6, 15].

Given a Hilbert space Y, let (U ,A ) be a measurable space for U ⊆ C and A being

a σ−algebra on U . Let PY = P(Y) be the set of orthogonal projections onto Y, then

E : A −→ PY is called a spectral measure if it satisfies the following

(i) E(∅) = 0 (This condition is superfluous given the next properties).

(ii) Completeness; E(U ) = I.

(iii) Countable additivity; if {Mn} ⊂ A is a finite or a countable set of disjoint

elements and M= ∪nMn, then E(M) =
∑

n

E(Mn).

If E is spectral measure then E(M1 ∩ M2) = E(M1)E(M2) = E(M2)E(M1), also E

is modular, i.e., E(M1 ∪ M2) + E(M1 ∩ M2) = E(M1) + E(M2). For an increasing

sequence of sets Mn, lim
n→∞

E(Mn) = E(∪nMn), while if Mn is a decreasing sequence

then lim
n→∞

E(Mn) = E(∩nMn). Because of the idempotence property of the spectral

measure we have ‖Enu‖2Y = 〈Enu,Enu〉 = 〈E2
nu, u〉 = 〈Enu, u〉 → 〈Eu, u〉 = ‖Eu‖2Y,

which means that the weak convergence and the strong convergence of a sequence

of spectral measures En are equivalent.

Let Eu,u(M) be the finite scalar measure on A generated by E,

Eu,u(M) = 〈E(M)u, u〉 = ‖E(M)u‖2Y
and Eu,v(M) be the complex measure

Eu,v(M) = 〈E(M)u, v〉 , ∀u, v ∈ Y .

By the above notations Eu,v(M) ≤ ‖E(M)u‖Y‖E(M)v‖Y ≤ ‖u‖Y‖v‖Y.

Let U = R. The spectral measure on the real line corresponding to an operator

S is denoted by ES(λ) (where the superscript S indicates that the spectral measure

E corresponds to a specific operator S)

ES(λ) = ES(M) , where M= (−∞, λ) , for λ ∈ R .
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Clearly ES(λ) is monotonic (nondecreasing), i.e., ES(λ1) ≤ ES(λ2) for λ1 ≤ λ2.

Also lim
λ→−∞

ES(λ) = 0 and lim
λ→∞

ES(λ) = I. ES(λ) is self-adjoint, idempotent,

positive, bounded, right continuous operator ( lim
t→0+

ES(λ+ t) = ES(λ)), and discon-

tinuous at each eigenvalue of the spectrum. If λ is an eigenvalue, then we define

p(λ) = ES(λ)− ES(λ− 0) to be the point projection onto the eigenspace of λ. For

λ being in the continuous spectrum p(λ) = 0.

Now we state the spectral theorem for self-adjoint operators.

Theorem 2. For a self-adjoint operator S defined on a Hilbert space Y there exists

a unique spectral measure ES on Y such that

(i) S =
∫

σ(S)
λ dES(λ).

(ii) E(M) = 0 if M∩σ(S) = ∅.
(iii) If M⊂ R is open and M∩σ(S) 6= ∅, then E(M) 6= 0.

Proof. See e.g. [2]. �

3. The main results

Consider the family H̃h, h ∈ N, of Dirac operators with domain D(H̃h) = X. We

will state and prove some useful theorems for operators of the class Pλ(Y) for λ ≥ 0,

where we use the notations X and Y to denote for arbitrary Hilbert spaces.

The following theorem gives a bound for the inverse of operators of the class Pλ(Y)

for λ > 0.

Theorem 3. Let A be a positive and self-adjoint operator on Y and put B = A+λI.

Then for λ > 0

(i) B is injective. Moreover, for every v ∈ R(B), 〈B−1v, v〉 ≥ λ‖B−1v‖2Y and

‖B−1v‖Y ≤ λ−1‖v‖Y.

(ii) R(B) = Y.

Proof . See Propositions 12.1 and 12.3 in [3].

The connection between the eigenvalue problems of the operator and its G-limit

(respectively its SRS limit) of the class Pλ(Y) for λ > 0 (respectively for λ = 0) is
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addressed in the next two theorems. Here we prove the critical case when λ = 0,

where for λ > 0 the proof is analogous and even simpler.

Theorem 4. Given a family of operators Ah of the class P0(Y) converging to A ∈
P0(Y) in the SRS. Let uh be the solution of Ahuh = fh, where fh is converging to f

in Y. If uh converges to u in Y, then u solves the limit problem Au = f .

Proof . Since Ah converges to A in the SRS

(9) B−1
h Phv → B−1Pv , ∀v ∈ Y ,

where Bh and B are Ah + λI and A + λI respectively. Note that by Theorem 4,

D(B−1
h ) = R(Bh) = Y, so the projections Ph and P are unnecessary.

Consider Ahuh = fh which is equivalent to Bhuh = fh+λuh, by the definition of Bh
we have uh = B−1

h (fh + λuh). Define Jh = fh + λuh which is clearly convergent to

J = f + λu in Y by the assumptions. Therefore B−1
h Jh → B−1J , this is because

‖B−1
h Jh −B−1J ‖Y = ‖B−1

h Jh −B−1
h J +B−1

h J −B−1J ‖Y
≤ ‖B−1

h ‖Y ‖Jh −J ‖Y + ‖B−1
h J −B−1J ‖Y

−→ 0.

The convergence to zero follows with help of (9) and the boundedness of the inverse

operator B−1
h . Thus, for all v ∈ Y

〈u, v〉 = lim
h→∞
〈uh, v〉 = lim

h→∞
〈B−1

h Jh, v〉 = 〈B−1J , v〉 .

Hence 〈u−B−1J , v〉 = 0 for every v ∈ Y, which implies Bu = J , therefore Au = f .

�

Theorem 5. Let Ah be a sequence in P0(Y) converging to A ∈ P0(Y) in the SRS, and

let {µh, uh} be the solution of the eigenvalue problem Ahuh = µhuh. If {µh, uh} →
{µ, u} in R×Y, then the limit couple {µ, u} is the solution of the eigenvalue problem

Au = µu.

Proof . The proof is straightforward by assuming fh = µhuh (which converges to µu

in Y) in the previous theorem. �

The convergence properties of self-adjoint operators has quite different implica-

tions on the asymptotic behavior of the spectrum, in particular on the asymptotic



G-CONVERGENCE OF DIRAC OPERATORS 9

behavior of the eigenvalues, depending on the type of convergence. For a sequence

Ah of operators which converges uniformly to a limit operator A nice results can

be drawn for the spectrum. Exactly speaking σ(Ah) converges to σ(A) including

the isolated eigenvalues. The same conclusion holds if the uniform convergence is

replaced by the uniform resolvent convergence, see e.g. [6]. In the case of strong con-

vergence (the same for strong resolvent convergence), if the sequence Ah is strongly

convergent to A, then every λ ∈ σ(A) is the limit of a sequence λh where λh ∈ σ(Ah),

but not the limit of every such sequence λh lies in the spectrum of A, (see the below

example taken from [16]). For weakly convergent sequences of operators no spectral

implications can be extracted.

Example. Let Ai,h be an operator in L2(R) defined by

Ai,h = − d2

dx2
+ Vi,h(x) , for h ∈ N and i = 1, 2 ,

where

V1,h(x) =

{
−1 , if h ≤ x ≤ h+ 1 ,

0 , Otherwise ,
and V2,h(x) =

{
−1 , if x ≥ h ,
0 , Otherwise .

The operator Ai,h converges to A = − d2

dx2 in the SRS as h → ∞ for both i = 1, 2.

One can compute the spectrum for the three operators and obtain σ(A1,h) = [0,∞)∪
{µh} for µh being a simple eigenvalue in [−1, 0] and σ(A2,h) = [−1,∞), whereas for

the unperturbed limit operator A the spectrum consists of just the continuous spec-

trum, i.e., σ(A) = [0,∞).

Since the uniform convergence is not always the case for operators, the theo-

rem below provides some criteria by which G-convergence of an operator in the set

Pλ(Y) (hence convergence in the SRS of operators of the class P0(Y)) implies the

convergence of the corresponding eigenvalues.

Theorem 6. Let X be compactly and densely embedded in Y, and let Ah be a family

of operators in Pλ(Y), λ > 0, with domain X. If Ah G-converges to A ∈ Pλ(Y),

then Kh := A−1
h converges in the norm of B(Y) (B(Y) is the set of bounded linear

operators on Y) to K := A−1. Moreover the kth eigenvalue µkh of Ah converges to the
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kth eigenvalue µk of A and the associated kth eigenvector ukh converges to uk weakly

in X, ∀k ∈ N.

Proof . By the definition of supremum norm

(10) ‖Kh −K‖B(Y) = sup
‖v‖Y=1

‖Khv −Kv‖Y = sup
‖v‖Y≤1

‖Khv −Kv‖Y .

Also, by the definition of supremum norm there exists a sequence vh in Y with

‖vh‖Y ≤ 1 such that

(11) ‖Kh −K‖B(Y) ≤ ‖Khvh −Kvh‖Y +
1
h
.

It is well-known that Kh and K are compact self-adjoint operators on Y. Both are

bounded operators, by Theorem 3, with compact range X of Y.

Consider now the right hand side of (11). We write this as

‖Khvh −Kvh‖Y +
1
h
≤ ‖Khvh −Khv‖Y + ‖Khv −Kv‖Y + ‖Kvh −Kv‖Y +

1
h
.

The first and the third terms converge to zero by the compactness of Kh and K

on Y and the second term converges to zero by the G-convergence of Ah to A.

Consequently

(12) ‖Kh −K‖B(Y) → 0.

Consider the eigenvalue problems associated to A−1
h and A−1

(13) A−1
h vkh = λkhv

k
h , k ∈ N

and

(14) A−1vk = λkvk , k ∈ N .

Since A−1
h and A−1 are compact and self-adjoint operators it is well-known that

there exist infinite sequences of eigenvalues λ1
h ≥ λ2

h ≥ · · · and λ1 ≥ λ2 ≥ · · ·
accumulating at the origin, respectively. Define µkh := (λkh)−1 and µk := (λk)−1 for

all k ∈ N. Consider now the spectral problems associated to Ah and A

(15) Ahu
k
h = µkhu

k
h , k ∈ N

and

(16) Auk = µkuk , k ∈ N .
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There exist infinite sequences of eigenvalues 0 < µ1
h ≤ µ2

h ≤ · · · and 0 < µ1 ≤ µ2 ≤
· · · respectively. By the compactness of Kh and K the sets {λkh}∞k=1 and {λk}∞k=1

are bounded in R, thus the proof is complete by virtue of the following lemma. �

Lemma 2. Let X, Y, Kh, K, λkh and λk be as in Theorem 6, and let Ah ∈ Pλ(Y),

λ > 0. There is a sequence rkh converging to zero with 0 < rkh < λk such that

(17) |λkh − λk| ≤ c
λk

λk − rkh
sup

u∈N (λk,K)
‖u‖Y=1

‖Khu−Ku‖Y ,

where c is a constant independent of h, and N (λk,K) = {u ∈ D(K) ; Ku = λku}
is the eigenspace of K corresponding to λk.

Proof. See Theorem 1.4 and Lemma 1.6 in [8] Chapter 3. �

We can now complete the proof of Theorem 6. By the G-convergence of Ah to A

we obtain, by using Lemma 2 and (12), convergence of the eigenvalues and eigen-

vectors, i.e., µkh → µk and ukh → uk weakly in X as h→∞. �

Let us now return to the shifted and perturbed Dirac operator H̃h. We will

throughout this section assume the hypotheses of Theorem 1. We further assume

that the 4× 4 matrix-valued function Vh is of the form Vh(x) = V1(x)V2(hx) where

V1 is (-1)-homogeneous and where the entries of V2(y) are 1-periodic in y, i.e.,

V ij
2 (y + k) = V ij

2 (y), k ∈ Z3.

We also assume that the entries of V2 belong to L∞(R3). It is then well-known that

(18) V ij
2 (hx)→M(V ij

2 ) =
∫

T3

V ij
2 (y) dy,

in L∞(R3) weakly*, where T3 is the unit torus in R3. It easily also follows from this

mean-value property that

Vh → V1M(V2),

in Lp(R3) weakly for p > 3, cf the hypotheses in Theorem 1.
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We are now interested in the asymptotic behavior of the operator and the spec-

trum of the perturbed Dirac operator H̃h. We recall the spectral problem for H̃h,

i.e.,

H̃huh(x) = λ̃huh(x)

where there exists a discrete set of eigenvalues λ̃kh, k = 1, 2, . . . and a correspond-

ing set of mutually orthogonal eigenfunctions ukh. We know, by Theorem 1, that

the eigenvalues (or point spectrum) σp(H̃h) ⊂ (0, 2). We also know that H̃h has

absolutely continuous spectrum σac(H̃h) = (−∞, 0] ∪ [2,∞). This means that the

Dirac operator is neither a positive or negative (semi-definite) operator and thus

G-convergence method introduced in the previous section of positive definite self-

adjoint operators is not directly applicable. In order to use G-convergence methods

for the asymptotic analysis of H̃h we therefore use spectral projection and study

the corresponding asymptotic behavior of projected parts of H̃h which are positive

definite so that G-convergence methods apply.

Let A be a fixed σ-algebra of subsets of R, and let (R,A ) be a measurable space.

Consider the spectral measures EH̃h and EH̃ of the families of Dirac operators H̃h

and H̃ respectively, each one of these measures maps A onto PY , where PY is the

set of orthogonal projections onto Y . By the spectral theorem

(19) H̃h =
∫

σ(H̃h)
λ dEH̃h(λ).

By the spectral theorem we can also write

(20)
∫

σ(H̃)
λ dEH̃(λ) + Vh,

since Vh is a multiplication operator.

We recall that D(H̃h) = X, let now

N k
h = {uh ∈ X; H̃huh = λkhuh},

i.e., the eigenspace of H̃h corresponding to the eigenvalue λkh. Further define the

sum of mutual orthogonal eigenspaces

Xp
h = ⊕k∈NN k

h ,
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where Xp
h is a closed subspace of Y invariant with respect to H̃h.

It is clear that for uh ∈ Xp
h we have

〈H̃huh, uh〉 = λkh||uh||2Y > 0, k = 1, 2, . . . .

Let us now consider the restriction H̃ p
h of H̃h to Xp

h which can be written as

H̃ p
h =

∑

λ∈σp(H̃h)

λEH̃h,p(λ),

where the spectral measure EH̃h,p is the point measure, i.e., the orthogonal pro-

jection onto ker(H̃h − λI). With this construction, H̃ p
h is a positive definite and

self-adjoint operator on X with compact inverse (H̃ p
h )−1. By Lemma 1, we conclude

that there exists a positive definite and self-adjoint operator H̃ p such that, up to a

subsequence, H̃ p
h G-converges to H̃ p, where H̃ p has domain D(H̃ p) = Xp where

Xp = ⊕k∈NN k

is a closed subspace of Y and where

N k = {u ∈ X; H̃ pu = λku}.

Moreover, by Theorem 6, the sequence of kth eigenvalues λkh associated to the se-

quence H̃ p
h converges to the kth eigenvalue λk of H̃ p and the corresponding sequence

ukh converges to uk weakly in X. The limit shifted Dirac operator restricted to Xp

is explicitly given by

H̃ p = (H̃ + V1M(V2))|Xp .

This follows by standard arguments in homogenization theory, see e.g. [1].

We continue now to study the asymptotic analysis of the projection to the closed

subspace of Y corresponding to the positive part [2,+∞) of the continuous spectrum

of H̃h.

We denote by Xac
h the orthogonal complement in X to the eigenspace Xp

h. Thus,

Xac
h is the closed subspace invariant with respect to H̃h corresponding to the ab-

solutely continuous spectrum σac(H̃h) = (−∞, 0] ∪ [2,∞). We now define the two
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mutually orthogonal subspaces Xac,+
h and Xac,−

h with

Xac
h = Xac,+

h ⊕Xac,−
h

where Xac,+
h corresponds to the positive part [2,+∞) and Xac,−

h corresponds to the

negative part (−∞, 0], respectively. Next we define the restriction H̃ ac,+
h of H̃h to

Xac,+
h which can be written as

H̃ ac,+
h =

∫

λ∈σ+
ac(H̃h)

λdEH̃h,ac,+(λ),

where the spectral measure EH̃h,ac,+(λ) is the continuous spectral measure corre-

sponding to H̃ ac,+
h . By construction, H̃ ac,+

h is a positive definite and self-adjoint

operator on X. Therefore, by Lemma 1, there exists a subsequence of H̃ ac,+
h which

G-converges to a positive definite and self-adjoint operator H̃ ac,+. Moreover, since

λ is not an eigenvalue, the corresponding sequence EH̃h,ac,+(λ) of spectral measures

converges to the spectral measure EH̃ ,ac,+(λ) corresponding to H̃ ac,+.

Let us consider the evolution equation

(21)

{
i ∂∂tuh(x, t) = H̃ ac,+

h uh(x, t) ,

uh(·, 0) = u0
h .

By the Stone theorem, there exists a unique solution uh = u(x, t) to (21) given by

uh(·, t) = Uh(t)u0
h , ∀u0

h ∈ Xac,+
h ,

where Uh(t) = exp(−iH̃ ac,+
h t) is the strongly continuous unitary group of trans-

formations generated by the infinitesimal operator −iH̃ ac,+
h on Y . By the G-

convergence of a subsequence of H̃ ac,+
h it follows that the corresponding sequence

U
ac,+
h (t) of unitary groups of transformations converges to a unitary group of trans-

formations Uac,+(t) which for every u0 ∈ Xac,+ defines the solution u(·, t) = U(t)u0

to the limit evolution equation
{
i ∂∂tu(x, t) = H̃ ac,+u(x, t) ,

u(·, 0) = u0 .

Finally, by considering the operator −H̃ ac,−
h where H̃ ac,−

h is the restriction to

Xac,−
h , i.e., the closed subspace corresponding to the negative part (−∞, 0] of the

continuous spectrum we can repeat all arguments from the positive part of the
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continuous spectrum, where G-convergence of −H̃ ac,−
h should be understood as the

convergence in the SRS.
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Paper IV





ON G-CONVERGENCE OF POSITIVE SELF-ADJOINT
OPERATORS

HASAN ALMANASREH

Abstract. We apply G-convergence theory to study the asymptotic of the eigen-

value problems of positive definite bounded self-adjoint h-dependent operators as

h → ∞. Two operators are considered; a second order elliptic operator and a

general linear operator. Using the definition of G-convergence of elliptic opera-

tor, we review convergence results of the elliptic eigenvalue problem as h → ∞.

Also employing the general definition of G-convergence of positive definite self-

adjoint operator together with Γ-convergence of the associated quadratic form

we characterize the G-limit as h → ∞ of the general operator with some classes

of perturbations. As a consequence, we also prove the convergence of the corre-

sponding spectrum.

1. Introduction

Heterogeneous structures of materials appear often in physics, chemistry, mechan-

ics, life sciences, and engineering. Very often one is also led to consider heterogeneous

structures with a very fine and complicated microstructure. Phenomena like heat

conduction or transport phenomenon are such structures which typically modeled

by mathematical systems such as ordinary differential equations (ODE’s) or par-

tial differential equations (PDE’s), where the presence of fine microscopic scale is

reflected in rapid oscillations of the coefficients. This situation can in general not

be treated directly, and if it could be feasible, the numerical methods employed to

solve the problem require very fine degree of resolution so that the mesh can capture

the oscillations which of course costs a lot, and in some situations, despite of mesh

refinement, the solution will be out of reach.

Key words and phrases. G-convergence, Γ-convergence, quadratic form, elliptic operator, self-

adjoint, eigenvalues.

Department of Mathematical Sciences and Department of Physics, University of Gothenburg,

SE-412 96 Göteborg, Sweden.
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In the present work we consider the convergence of the eigenvalue problem

Hhuh = λhuh

for two different operators Hh defined in some suitable Hilbert spaces. We first

consider an elliptic eigenvalue problem where Hh = −div(Ah(x)∇) defined on L2(Ω)

with domain H1
0 (Ω) for some admissible coefficient matrix Ah(x), where Ω is an

open bounded subset of RN , N ≥ 1. We also consider another arbitrary operator

Hh = H0 +Vh defined on L2(Ω), where H0 is a positive definite bounded self-adjoint

operator and Vh is a positive bounded Hermitian multiplicative perturbation. We are

interested in the behavior of the operator Hh as the parameter h→∞, particularly

we are interested in the asymptotic behavior of the point spectrum (the eigenvalues).

We will use classical operator and variational convergence theory. G-convergence

theory is well-known for its applications in homogenization of partial differential

equations. The concept was introduced in the late 1960’s [9, 13, 14, 15] for linear

elliptic and parabolic problems with symmetric coefficient matrices. Then the con-

cept was extended to non-symmetric coefficient matrices [10, 19, 20, 21] known as

H-convergence. The definition was then generalized to positive definite self-adjoint

operators [6]. Later on, plenty of invaluable results are achieved for the elliptic and

hyperbolic problems. In [2, 4, 5] G-convergence of monotone operators is proved. In

[16, 17, 18] G-convergence of nonlinear parabolic operators is studied. The theory

of G-convergence of differential operators in general is treated in [23, 24]. Through

out this paper, we will use the name G-convergence of the case of non-symmetric

matrices as well.

The study of the convergence behavior for sequences of operators is often associ-

ated to the study of the asymptotic behavior for the associated quadratic forms in

the calculus of variations via the notion of Γ-convergence which was introduced in

the mid 1970’s [8]. Here, we utilize and combine the two concepts in order to prove

G-compactness for the operator Hh = H0 + Vh.

For the operator Hh = −div(Ah(x)∇), the coefficient matrix Ah is positive def-

inite and bounded, then by the G-compactness criterion for elliptic operators, Hh

has a G-limit as h→∞. The operator Hh = H0 + Vh is positive definite, bounded,

and self-adjoint, then using Γ-convergence for its associated quadratic form and the
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relation between G-convergence and Γ-convergence, we prove that Hh admits a G-

limit as h → ∞. Under suitable assumptions on the coefficient matrix Ah(x) and

on the perturbation Vh we characterize the G-limits. Consequently we prove the

convergence of the corresponding eigenvalues.

The paper is arranged as follows: In Section 2 we provide the reader with ba-

sic preliminaries on G-convergence and Γ-convergence. In Section 3 we discuss and

revisit G-convergence theory of elliptic operators, and study the convergence prop-

erties of the corresponding eigenvalue problems. In Section 4 we prove the G-limit

of the operator Hh = H0 + Vh.

2. Preliminaries

In what follows Ω will be an open bounded subset of RN , N ≥ 1, further the

notations ⇀ and ∗⇀ will denote weak and weak∗ convergence respectively. The

domain is denoted by D. Also c and C will denote real constants that might be

different at each occurrence and are independent of all parameters, unless otherwise

explicitly specified. The scalar products and norms are denoted by 〈·, ·〉 and ‖ · ‖
respectively, where the norms ‖ ·‖ will be given indices to distinguish between them,

while 〈·, ·〉 are left without indices and their current definitions are obvious from the

content.

2.1. G-convergence. For comprehensive materials on G-convergence we refer to

e.g. [7, 11, 12], and for a general setting to positive definite self-adjoint operators

to the monograph [6]. Below we state two definitions of G-convergence; of elliptic

operators and the general definition of positive definite self-adjoint operators.

Consider two positive real numbers α and β such that 0 < α ≤ β <∞, and define

the following set of matrices

S(α, β,Ω) = {A ∈ L∞(Ω)N×N ; (A(x, ξ), ξ) ≥ α|ξ|2 and |A(x, ξ)| ≤ β|ξ| , ∀ξ ∈ RN

and a.e x ∈ Ω} .
We shall define G-convergence of the following sequence of elliptic Dirichlet boundary
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value problem

(1)

{
−div(Ah(x,Duh)) = f in Ω,

uh ∈ H1
0 (Ω).

Definition 1. The sequence Ah in S(α, β,Ω) is said toG-converge to A ∈ S(α, β,Ω),

denoted by Ah
G−−→ A, if for every f ∈ H−1(Ω), the sequence uh of solutions of (1)

satisfies
uh ⇀ u in H1

0 (Ω),

Ah(·, Duh) ⇀ A(·, Du) in [L2(Ω)]N ,
where u is the unique solution of the problem

(2)

{
−div(A(x,Du)) = f in Ω,

u ∈ H1
0 (Ω).

In the sequel we will only consider the case of linear coefficients matrix Ah, i.e.,

from now on Ah(x, ξ) = Ah(x)ξ.

Here are some results that will be used later. These results are given without

proofs, for the proofs we refer to [7, 10].

Theorem 1. G-compactness Theorem.

For every sequence Ah in S(α, β,Ω) there exists a subsequence, still denoted by

Ah, and a map A ∈ S(α, β,Ω), such that Ah
G−−→ A.

Theorem 2. Uniqueness and Locality of G-limit.

(i) Ah has at most one G-limit.

(ii) If Ah = Ãh on ω ⊂⊂ Ω and Ah
G−−→ A and Ãh

G−−→ Ã then A = Ã on ω.

Theorem 3. If Ah
G−−→ A, then At

h
G−−→ At.

Let Y be a Hilbert space, we provide below the general definition of G-convergence,

first we set some useful definitions.

Definition 2. A function F : Y→ [0,∞] is said to be lower semi-continuous (lsc)

at u ∈ Y, if

F (u) ≤ sup
U∈N(u)

inf
v∈U

F (v) ,

where N(u) is the set of all open neighborhoods of u in Y.

As a consequence of the above definition we have the following
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(i) The inequality in the above definition can be replaced by equality due to the

fact that F (u) ≥ inf{F (v), v ∈ U}, ∀U ∈ N(u).

(ii) F is lsc on Y, if it is so at each u ∈ Y.

Definition 3. A function F in Y is called quadratic form if there exists a linear

dense subspace X of Y and a symmetric bilinear form B : X×X→ [0,∞) such that

F (u) =

{
B(u, u) , ∀u ∈ X ,

∞ , ∀u ∈ Y\X.

Let F and B be as in the definition above, where D(F ) = {u ∈ Y ; F (u) < ∞}.
The operator associated to F is the linear operator A on D(F ) with domain being the

set of all u ∈ D(F ) such that there exists v ∈ D(F ) satisfying B(u, f) = 〈v, f〉, ∀f ∈
D(F ) and Au = v, ∀u ∈ D(A). If f = u then F (u) = 〈Au, u〉, ∀u ∈ D(A).

For λ ≥ 0 we denote the following

(1) By Q̃λ(Y) we denote the class of quadratic forms F : Y → [0,∞] such that

F (u) ≥ λ||u||2Y, and by Qλ(Y) the subset of Q̃λ(Y) whose elements are lsc.

(2) By Pλ(Y) we denote the class of self-adjoint operators A on a closed linear

subspace V = D(A) of Y such that 〈Au, u〉 ≥ λ||u||2Y, ∀u ∈ D(A).

Definition 4. Let λ ≥ 0, and let Ah ∈ Pλ(Y). If λ > 0, we say that Ah
G−−→

A ∈ Pλ(Y) in Y if A−1
h Phu → A−1Pu in Y, ∀u ∈ Y, where Ph and P are the

orthogonal projections onto Vh := D(Ah) and V := D(A) respectively. If λ = 0, we

say that Ah ∈ P0(Y) converges to A ∈ P0(Y) in the strong resolvent sense (SRS) if

(µI +Ah) G−−→ (µI +A) in Y, ∀µ > 0.

The following result provides a useful criterion for G-convergence of positive def-

inite self-adjoint operators. See [6] for the proof.

Lemma 1. Given λ > 0, Ah ∈ Pλ(Y), and an orthogonal projection Ph onto Vh.

Suppose that for every u ∈ Y, A−1
h Phu converges in Y, then there exists an operator

A ∈ Pλ(Y) such that Ah
G−−→ A in Y.

2.2. Γ-convergence. For comprehensive introductions to Γ-convergence we refer to

the monographs [3, 6].

Let Y be a topological space, and let Fh be a sequence of functionals from Y to R.



6 HASAN ALMANASREH

Definition 5. A sequence of functionals Fh : Y → R is said to Γ-converge to

F : Y→ R, written as F (u) = Γ− lim
h→∞

Fh(u) and denoted by Fh
Γ−−→ F if

F (u) = Γ− lim inf
h→∞

Fh(u) = Γ− lim sup
h→∞

Fh(u) ,

where Γ − lim inf
h→∞

and Γ − lim sup
h→∞

are the Γ-lower and Γ-upper limits respectively

defined by

F i(u) := Γ− lim inf
h→∞

Fh(u) = sup
U∈N(u)

lim inf
h→∞

inf
v∈U

Fh(v)

and

F s(u) := Γ− lim sup
h→∞

Fh(u) = sup
U∈N(u)

lim sup
h→∞

inf
v∈U

Fh(v).

By the definition, it is obvious that the sequence Fh Γ-converges to F if and

only if F s ≤ F ≤ F i, this means that Γ-convergence and lower semi-continuity are

closely related concepts. If in addition Y satisfies the first axiom of countability (the

neighborhood system of every point in Y has a countable base), then Fh
Γ−−→ F in Y

if and only if the following two conditions are satisfied

(i) ∀u ∈ Y and ∀uh converging to u, F (u) ≤ lim inf
h→∞

Fh(uh).

(ii) ∀u ∈ Y, ∃uh converging to u such that F (u) = lim
h→∞

Fh(uh).

Remark 1. The following are some useful properties of Γ-convergence

(1) A constant sequence of functionals Fh = f does not necessarily Γ-converge

to f , but to the relaxation of f , the largest lsc functional below f . This is

due to the fact that f might not be lsc.

(2) The Γ-limit is always lsc.

(3) Γ-convergence is stable under continuous perturbation, i.e., if Fh
Γ−−→ F in

Y and G : Y→ [0,∞] is continuous, then Fh +G
Γ−−→ F +G.

(4) The Γ-limit of a non-negative quadratic form is also a non-negative quadratic

form.

Γ-convergence possesses the compactness property, that is, if Y is a separable metric

space, then every sequence of functionals Fh : Y → R has a Γ-convergent subse-

quence.

The following theorem is the cornerstone of the relation between Γ-convergence

of quadratic forms of the class Qλ(Y) (respectively Q0(Y)) and G-convergence of
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the associated operators of the class Pλ(Y) for λ > 0 (respectively strong resolvent

convergence of the associated operators of the class P0(Y) ). For the proof of this

theorem we refer to [3, 6].

Theorem 4. Let λ > 0 be a real number, Fh and F be elements of Q0(Y), and

let Ah , A ∈ P0(Y) be the associated operators respectively. Then the following are

equivalent

(a) Fh
Γ−−→ F .

(b) (Fh + λ|| · ||2Y) Γ−−→ (F + λ|| · ||2Y).

(c) (Ah + λI) G−−→ (A+ λI).

(d) Ah → A in the SRS.

Also if Fh , F ∈ Qµ(Y) for µ > 0, and Ah , A ∈ Pµ(Y) are the associated operators

respectively, then the following are equivalent

(e) Fh
Γ−−→ F .

(f) Ah
G−−→ A.

3. G-convergence of elliptic operators

This section is devoted to review some basic results of G-convergence of elliptic

operators with source function fh, at the same time holding in mind the main task,

the discussion of eigenvalue problems (fh = λhuh). Before proceeding, a time is

devoted to study the Dirichlet boundary value problem with h-dependent source

function, which turns out to be useful in setting the results of the homogenized

eigenvalue problem. The following two lemmata are employed while proving the

main results, we refer to [10] for the proofs.

Lemma 2. Let ξh ∈ [L2(Ω)]N be weakly convergent to u0 in [L2(Ω)]N , and vh ∈
H1(Ω) weakly convergent to v0 in H1(Ω), if

div(ξh)→ div(ξ0) in H−1(Ω) ,

then

〈ξh, Dvh〉 ∗⇀ 〈ξ0, Dv0〉 in D?(Ω) ,

where D?(Ω) is the dual space of the dense space D(Ω) = C∞0 (Ω).
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Lemma 3. Let Ah ∈ S(α, β,Ω), and assume uh and vh in H1(Ω) are weakly

convergent to u0 and v0 in H1(Ω) respectively, and such that

ξh = Ah∇uh ⇀ ξ0 in [L2(Ω)]N .

div(ξh)→ div(ξ0) in H−1(Ω) .

ζh = At
h∇vh ⇀ ζ0 in [L2(Ω)]N .

div(ζh)→ div(ζ0) in H−1(Ω) .

then

〈ξ0,∇v0〉 = 〈∇u0, ζ0〉 a.e in Ω.

The main homogenization results for the linear elliptic eigenvalue problem are

stated in the following theorem.

Theorem 5. Consider the linear elliptic eigenvalue problem

(3)

{
−div(Ah(x)∇ukh) = λkhu

k
h in Ω ,

ukh ∈ H1
0 (Ω) ,

where Ah ∈ S(α, β,Ω) is symmetric and positive definite. Then the sequences of

eigenvalues λkh and the corresponding eigenfunctions ukh of (3) converge to λk0 in

R and weakly to uk0 in H1
0 (Ω) respectively, where the eigencouple {λk0, uk0} is the

solution to the G-limit problem

(4)

{
−div(A0(x)∇uk0) = λk0u

k
0 in Ω ,

uk0 ∈ H1
0 (Ω).

Remark 2. For equation (3) the following are well-known facts

(i) 0 < λ1
h ≤ λ2

h ≤ λ3
h ≤ · · · <∞.

(ii) The multiplicity of λkh is finite.

(iii) The sequence ukh forms an orthonormal basis for L2(Ω).

Before proving Theorem 5, we state and prove the following theorem for elliptic

boundary value problem with source function fh.

Theorem 6. For the Dirichlet boundary value problem

(5)

{
−div(Ah(x)∇uh) = fh in Ω ,

uh ∈ H1
0 (Ω),
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if Ah ∈ S(α, β,Ω) and if fh converges in H−1(Ω) to f0, then the sequence uh of

solutions to (5) is weakly convergent in H1
0 (Ω) to the solution of

(6)

{
−div(A0(x)∇u0) = f0 in Ω ,

u0 ∈ H1
0 (Ω),

where A0 is the G-limit of Ah.

Proof. The weak form of (5) is to find uh ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω)

(7) ah(uh, v) = 〈fh, v〉,

where ah(uh, v) = 〈Ah∇uh,∇v〉. Since Ah ∈ S(α, β,Ω), we have the following a

priori estimates

α||uh||2H1
0 (Ω) ≤ ah(uh, uh) = 〈fh, uh〉 ≤ c||fh||H−1(Ω)||uh||H1

0 (Ω) ,

hence

(8) ||uh||H1
0 (Ω) ≤

C

α
.

By (8) and the upper bound of Ah

(9) ||Ah∇uh||L2(Ω) ≤ C
β

α
.

So both uh and Ah∇uh are bounded sequences in H1
0 (Ω) and [L2(Ω)]N respectively,

hence up to subsequences still denoted by uh and Ah∇uh

(10) uh ⇀ u0 in H1
0 (Ω)

and

(11) Ah∇uh ⇀ M in [L2(Ω)]N .

Claim: we argue that M = A0∇u0, where A0 is the G-limit of Ah (the existence

and uniqueness of A0 is guaranteed by virtue of Theorem 1 and 2).

Proof of the claim. By (11) it holds that

(12) −div(Ah∇uh) ⇀ −div(M) in H−1(Ω) ,

which means that ∀v ∈ H1
0 (Ω)

(13) lim
h→∞
〈−div(Ah∇uh) , v〉 = 〈−div(M) , v〉.
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Since fh converges to f0 in H−1(Ω) and by (5)

(14) lim
h→∞
〈−div(Ah∇uh) , v〉 = lim

h→∞
〈fh , v〉 = 〈f0 , v〉.

By the uniqueness of weak limit, together with (13) and (14) we get

(15) −div(M) = f0 .

Since Ah
G−−→ A0, by Theorem 3 it is also true that At

h
G−−→ At

0. Consider now

(16) 〈Ah∇uh,∇vh〉 = 〈∇uh,At
h∇vh〉

for a sequence vh ∈ H1
0 (Ω) converging weakly to v0 in H1

0 (Ω). The limit passage of

(16) together with Lemma 3 give

(17) 〈M,∇v0〉 = 〈∇u0, A
t
0∇v0〉 ,

hence

(18) 〈M,∇v0〉 = 〈A0∇u0,∇v0〉 .

Take ω ⊂⊂ Ω and vh such that ∇v0 = z ∈ RN on ω, then (18) can be written as

(19) 〈M−A0∇u0, z〉 = 0,

consequently, by the density of v0 in H1
0 (Ω) we have

(20) M−A0∇u0 = 0 ,

which completes the proof of the claim.

By virtue of (15) and (20), uh is convergent to u0, where u0 is the solution of the

homogenized equation

(21)

{
−div(A0(x)∇u0) = f0 in Ω ,

u0 ∈ H1
0 (Ω) ,

where A0(x) is the G-limit of Ah(x). �

By the uniqueness of the solution u0 to (21), one can drop the subsequence as-

sumption and conclude that the whole sequence is convergent to u0 (any other

subsequence of uh has to converge only to u0 by the uniqueness of solution, thus the

entire sequence converges to the same limit as its all subsequences).
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Now we give the proof of the main result of this section: Theorem 5.

Proof of Theorem 5.

By virtue of Theorem 6, it suffices to prove

(22) λkh → λk0 in R ,

(23) ukh → uk0 in L2(Ω) .

Indeed, since we can set in Theorem 6 fh = λkhu
k
h which, using (22) and (23), con-

verges to f0 = λk0u
k
0 in L2(Ω) ∀k by the following

‖fh − f0‖L2(Ω) = ‖λkhukh − λk0ukh + λk0u
k
h − λk0uk0‖L2(Ω)

≤ |λkh − λk0| ‖ukh‖L2(Ω) + |λk0| ‖ukh − uk0‖L2(Ω)

→ 0.

Hence if (22) and (23) are satisfied, then by Theorem 6 the eigencouple {λk0, uk0} is

the solution to the homogenized eigenvalue problem

(24)

{
−div(A0(x)∇uk0) = λk0u

k
0 in Ω ,

{λk0, uk0} ∈ R×H1
0 (Ω) .

Note that by Remark 2 part (i), the sequence λkh is bounded in R for all k, so a

subsequence, denoted by λkh, can be extracted from λkh such that

(25) λkh → λk0 in R .

Also, since Ah(x) ∈ S(α, β,Ω) we have

(26) α‖ukh‖2H1
0 (Ω) ≤ ah(uh, uh) = 〈Ahuh, uh〉 ≤ βλkh‖ukh‖2L2(Ω),

which implies ‖ukh‖H1
0 (Ω) ≤ C for all k. Thus, up to a subsequence still denoted by

ukh,

(27) ukh ⇀ uk0 in H1
0 (Ω).

Hence (23) is justified for a subsequence by Rellich-Kondrachov compactness the-

orem. The subsequence assumptions can be dropped by the uniqueness of limits,

thus the entire sequences λkh and ukh converge to λk0 and uk0 respectively. �
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4. G-convergence of positive definite bounded self-adjoint operators

Let H0 be a positive definite bounded self-adjoint operator defined on L2(Ω) with

domain H1
0 (Ω). Assume that Vh(x), x ∈ Ω, is a positive bounded real-valued per-

turbation. In this section we discuss the asymptotic limit of the eigenvalue problem

Hhuh = (H0 + Vh)uh = λhuh as the parameter h tends to infinity. We utilize the

general definition of G-convergence of positive definite self-adjoint operator together

with Γ-convergence of the associated quadratic form to characterize the G-limit of

Hh and to discuss the asymptotic limit of the corresponding eigenvalue problem.

The following theorem is a general setting for the relation between the eigenvalue

problems of an operator and its G-limit in the class Pλ(Y) for λ > 0. Here we assume

general Hilbert spaces X and Y.

Theorem 7. Let λ > 0, let Ah be a sequence in Pλ(Y) G-converging to A ∈
Pλ(Y), and let {µh, uh} be the solution of the eigenvalue problem Ahuh = µhuh.

If {µh, uh} → {µ, u} in R × Y, then the limit couple {µ, u} is the solution of the

eigenvalue problem Au = µu.

Proof . See [1]. �

On contrary to the uniform resolvent convergence (uniform convergence), the

strong resolvent convergence (strong convergence) does not imply the convergence

of the spectrum, but at most we have that, if a sequence Ah is convergent in the

SRS (or strongly convergent) to A, then every µ ∈ σ(A) is the limit of a sequence

µh where µh ∈ σ(Ah), but not the limit of every sequence µh lies in the spectrum of

A, see, e.g., [22]. The theorem below provides conditions on which G-convergence

of an operator in Pλ(Y) for λ > 0 (hence convergence in the SRS of operators of the

class P0(Y)) implies the convergence of the corresponding eigenvalues.

Theorem 8. Let X be compactly and densely embedded in Y, and let Ah be a

family of operators in Pλ(Y), λ > 0, with domain X. If Ah G-converges to A ∈ Pλ(Y),

then Kh := A−1
h converges in the norm of B(Y) (B(Y) is the set of bounded linear

operators on Y) to K := A−1. Moreover the kth eigenvalue µkh of Ah converges to

the kth eigenvalue µk of A, ∀k ∈ N.
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Proof . See [1]. �

The following lemma provides sufficient conditions for which Γ-convergence and

pointwise convergence are equivalent.

Lemma 4. Let Y be a normed vector space and let Fh be a sequence of convex

functions on Y. Suppose that Fh is equi-bounded in a neighborhood of u ∈ Y (i.e.,

there exists U ∈ N(u) such that |Fh(v)| ≤ C for every v ∈ U and all h), then

F i(u) = lim inf
h→∞

Fh(u), and F s(u) = lim sup
h→∞

Fh(u).

For the operators Hh = H0 + Vh and H = H0 + V we define respectively the

corresponding quadratic forms

Fh(u) =

{
〈Hhu, u〉 , u ∈ H1

0 (Ω) ,

∞ , u ∈ L2(Ω)\H1
0 (Ω) ,

and

F (u) =

{
〈Hu, u〉 , u ∈ H1

0 (Ω) ,

∞ , u ∈ L2(Ω)\H1
0 (Ω) .

Theorem 9. Let Vh be a sequence in L∞(Ω) that converges weakly∗ to V . Then

Hh G-converges to H = H0 + V .

Proof . By Theorem 4, it suffices to prove that the associated quadratic form Fh(u)

of Hh Γ-converges to the associated quadratic form F (u) of H. The convergence of

the quadratic form is clear since by the weak∗ convergence of Vh to V in L∞(Ω) we

have

lim
h→∞

Fh(u) = lim
h→∞

(
〈H0u, u〉+ 〈Vhu, u〉

)

= 〈H0u, u〉+ 〈V u, u〉
= F (u) .

Then using Lemma 4 above we conclude the proof. �

The following lemma proves the continuity of Fh in H1
0 (Ω).

Lemma 5. Fh(u) is continuous in H1
0 (Ω).
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Proof . Let u, v ∈ H1
0 (Ω) be such that ‖u− v‖H1

0 (Ω) < ε, then

∣∣Fh(u)− Fh(v)
∣∣ =

∣∣∣〈Hhu, u〉 − 〈Hhv, v〉
∣∣∣

≤
∣∣∣〈Hh(u+ v), (u− v)〉

∣∣∣
≤ ‖Hh(u+ v)‖L2(Ω) ‖u− v‖L2(Ω)

≤ ε‖Hh(u+ v)‖L2(Ω).

The term in the last inequality approaches zero as ε→ 0, thus the lemma is proved.�

The following theorem proves and characterizes the G-limit of Hh for another

class of potentials Vh.

Theorem 10. If Vh is a weakly convergent sequence in Lp(Ω), 2 ≤ p <∞, with a

weak limit denoted by V , then Hh G-converges to H.

Proof . Let Fh and F be the quadratic forms corresponding to Hh and H respectively.

Following Theorem 4, to prove that Hh G-converges to H, is equivalent to show that

Fh Γ-converges to F . To this end, we consider the quadratic form Fh of Hh,

Fh(u) =

{
〈Hhu, u〉 , u ∈ H1

0 (Ω) ,

∞ , u ∈ L2(Ω)\H1
0 (Ω) .

By the definition of Γ-convergence, to prove that F is the Γ-limit of Fh, is equivalent

to justify the following two conditions

(i) lim inf-inequality: For every sequence uh converging to u in L2(Ω), F (u) ≤
lim inf
h→∞

Fh(uh).

(ii) lim-equality: There exists a sequence uh converging to u in L2(Ω) such that

F (u) = lim
h→∞

Fh(uh).

To prove the lim inf-inequality we assume that uh ∈ H1
0 (Ω). Otherwise the proof

is obvious. By the continuity of Fh in H1
0 (Ω) and since piecewise affine functions

are dense in H1
0 (Ω), it suffices to prove the inequality for this class of functions (the

same holds true for the lim-equality).

Let Ω = ∪mj=1Ωj where Ωj are disjoint sets, and let uh be linear in each Ωj

converging in L2(Ω) to u =
m∑

j=1

(ajx + bj)χΩj , where aj and bj are elements of C3
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and the product ajx is understood to be componentwise. Consider now Fh with the

sequence uh,

(28) Fh(uh) = 〈H0uh, uh〉+ 〈Vhuh, uh〉 .

Since uh → u in L2(Ω),

(29) 〈H0u, u〉 = ‖H1/2
0 u‖2L2(Ω) ≤ lim inf

h→∞
‖H1/2

0 uh‖2L2(Ω) = lim inf
h→∞

〈H0uh, uh〉 .

Hence

(30) lim inf
h→∞

Fh(uh) ≥ 〈H0u, u〉 + lim inf
h→∞

∫

Ω
Vh|uh|2 dx .

For the last term of (30)

lim inf
h→∞

∫

Ω
Vh|uh|2 dx = lim inf

h→∞

∫

Ω
Vh|u+ uh − u|2 dx

≥ lim inf
h→∞

∫

Ω
Vh|u|2 dx+ lim inf

h→∞

∫

Ω
Vh u

∗ (uh − u) dx+

+ lim inf
h→∞

∫

Ω
Vh u (uh − u)∗ dx.

(31)

The symbol ∗ in (31) refers to the complex conjugate. The first term to the right

of the inequality of (31) converges to
∫

Ω
V |u|2 dx by the weak convergence of Vh

to V in Lp(Ω), 2 ≤ p < ∞. Since uh → u in L2(Ω), the second and third terms

to the right of the inequality of (31) are vanishing as h → ∞. Thus we have the

lim inf-inequality, namely

(32) lim inf
h→∞

Fh(uh) ≥ 〈H0u, u〉 + 〈V u, u〉 = F (u).

To prove the lim-equality for some convergent sequence, again by the continuity

argument it is enough to justify the equality for a piecewise affine sequence. So

consider uh = u = (ax+ b)χΩ, then

lim
h→∞

Fh(uh) = 〈H0u, u〉 + lim
h→∞
〈Vhu, u〉

= 〈H0u, u〉 + 〈V u, u〉 ,

the resulted limit is due to the boundedness of the set Ω and the linearity of u. �
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By Theorem 8, the eigenvalues of the operator Hh converge to the eigenvalues of

the G-limit operator H for those types of potentials considered in the last two the-

orems. Also employing Theorem 7, the eigenvalue problem Hhϕ
k
h = λ̃khϕ

k
h converges

to the limit problem Hϕk = λ̃kϕk for all k ∈ N.

As a consequence of G-convergence, if EHh and EH are the continuous spectral

measures of Hh and H respectively, then

EHh(λ)→ EH(λ) strongly, for all λ ∈ R such that EH(λ) = EH(−λ).

For the convergence of the associated unitary group, if UHh(t) and UH(t) are the

unitary operators generated by Hh and H respectively, then U
Hh
h (t)→ UH(t) for all

t ∈ R+.
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STRONG CONVERGENCE OF WAVE OPERATORS FOR A
FAMILY OF DIRAC OPERATORS

HASAN ALMANASREH

Abstract. We consider a family of Dirac operators with potentials varying with

respect to a parameter h. The set of potentials has different power-like decay

independent of h. The proofs of existence and completeness of the wave opera-

tors are similar to that given in [4]. We are mainly interested in the asymptotic

behavior of the wave operators as h→∞.

1. Introduction

In quantum mechanics, it is important to compare a given interacted operator with

a simpler (free) operator for which many spectral features are known. Scattering

theory is part of perturbation theory that concerns a comparative study of the

absolutely continuous spectrum of operators. That is, for two self-adjoint operators

T and T0 that are close to each other in an appropriate sense, scattering theory is

mainly the study of existence of s−lim
t→±∞

eiT tJe−iT0t where J is some bounded operator

(identification) and s refers to the strong convergence sense. Another important issue

is the case studied in the present work, where the operator T is h-dependent, with

h a parameter allowed to grow to infinity. For such operators, in addition to study

the existence of the time limit, a parallel question also emerges whether or not the

limit s−lim
h→∞

s− lim
t→±∞

eiThtJhe
−iT0t exists, where now Jh is an h-dependent bounded

identification.

Scattering theory for the Dirac operator with potentials decaying faster than

the Coulomb potential (short-range potentials) goes straightforward. In this case,

Key words and phrases. Dirac operator, wave operator, identification, pseudo-differential opera-

tor, completeness, asymptotic behavior, strong resolvent sense.
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the proofs of existence and completeness of the wave operator (WO) W (H,H0) =

s−lim
t→±∞

eiHte−iH0t, where H0 and H are respectively the free and the interacted

Dirac operators, are similar to that of the Schrödinger operator. In the Coulomb

interaction case, the modified WO W± = W±(H,H0, J) = s−lim
t→±∞

eiHtJe−iH0t has

been constructed in [2, 3], where J is a bounded identification. For potentials de-

caying as the Coulomb potential or slower (long-range potentials), the existence and

completeness of the modified WO W± have been studied in [4, 8, 9, 12, 18]. The

study of the asymptotic behavior of the WO W± with respect to the speed of light

(c), as c→∞, has been studied for short-range potential in [17] and for long-range

potential in [18].

Consider the family of Dirac operators Hh = H0 + Vh defined on the same space

and with the same domain as of H0, where H0 is the free Dirac operator defined

on the Hilbert space L2(R3,C4) with domain H1(R3,C4), and Vh is a bounded

interaction to H0. Under suitable power-like decay assumption on the potential Vh
the WO W±,h := W (Hh, H0; J±,h) = s− lim

t→±∞
eiHhtJ±,he

−iH0t exists and is complete

[4], where J±,h is a bounded identification. In other words, if for all h > 0, |Vh| ≤
〈x〉−ρ, where 〈x〉 = (1+|x|2)1/2, then the WO W±,h exists and is complete where J±,h
being just the identity operator for ρ > 1 (short-range). For 0 < ρ ≤ 1 (long-range),

the identification J±,h is a pseudo-differential operator (PSDO) defined as

(J±,hg)(x) = (2π)−3/2

∫

R3

eix·ζ+iΦ±,h(x,ζ)P±,h(x, ζ)C±(x, ζ)ψ(|ζ|2)ĝ(ζ) dζ,

where Φ±,h is a phase function, P±,h is an amplitude function, C± is a cut-off

function, and ψ is a smooth function introduced to localize J±,h in compact intervals

from the continuous spectrum.

The goal of the present work is to study the asymptotic behavior of the WO W±,h
and its adjoint W ∗±,h = W±(H0, Hh; J∗±,h) as h→∞. By the existence of W±,h, the

convergence of Hh in the strong resolvent sense (SRS), and the strong convergence

of the identification J±,h we prove that the two strong limits s−lim
h→∞

and s−lim
t→±∞

are

interchangeable. Hence, if the Dirac operator Hh converges in the SRS to H∞ and

J±,h converges strongly J±,∞, then we have

s−lim
h→∞

W±,h = W±(H∞, H0; J±,∞).
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By the strong convergence of the identification J±,h to J±,∞, then also J∗±,h con-

verges strongly to J∗±,∞ (this is not true in general, but it is valid for the type of

identifications we consider in this work), hence we also have

s−lim
h→∞

W ∗±,h = W±(H0, H∞; J∗±,∞).

Further, we consider different cases of potential decay, for these cases, the identi-

fication J±,h is simplified so that its strong convergence is easy to work out. In the

case ρ = 1, we prove that the phase and amplitude functions, Φ±,h and P±,h, can

be chosen independent of h, thus the convergence of the WOs W±,h and W ∗±,h, as

h→∞, is reduced to the convergence of the Dirac operator Hh in the SRS. In the

case ρ ∈ (1/2, 1), the amplitude function can be chosen independent of h, but not

the phase function. In this case, even that the phase function still depends on h,

but it can be simplified so that the convergence of the identification J±,h is simpler

to consider.

The paper is arranged as follows; in Section 2 we provide the reader with brief

preliminaries about the Dirac operator, scattering theory in general setting, basic

calculus of PSDO, and the existence and completeness of the WO W±,h. In Section

3, we state and prove the main results of the asymptotic limit of the WO W±,h as

h→∞, also different cases of potential decay are discussed.

2. Preliminaries

By R(A), D(A), and N(A) we refer respectively to the range, domain, and

null space of a given operator A, also we denote by X and Y the Hilbert spaces

H1(R3,C4) and L2(R3,C4) respectively.

2.1. The Dirac operator with an h-dependent potential. The free Dirac evo-

lution equation is given by

(1) i}
∂

∂t
u(x, t) = H0u(x, t), u(x, 0) = u0(x),

where H0 : X −→ Y is the free Dirac operator defined as

(2) H0 = }cDα +mc2β.
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Here, } is the Planck constant divided by 2π, Dα = α ·D where D = (D1, D2, D3)

and Dj = −i ∂
∂xj

for j = 1, 2, 3, the constant c is the speed of light, and m is the

particle rest mass. The notations α = (α1, α2, α3) and β are the 4×4 Dirac matrices

given by

αj =

(
0 σj

σj 0

)
and β =

(
I 0

0 −I

)
.

Here I and 0 are the 2×2 unity and zero matrices respectively, and σj ’s are the 2×2

Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0

0 −1

)
.

Note that separation of the variables x and t in (1) yields the free Dirac eigenvalue

problem

(3) H0u(x) = λu(x),

where u(x) is the spatial part of the wave function u(x, t), and λ is the total energy

of the particle. The free operator H0 is essentially self-adjoint on C∞0 (R3\ {0} ,C4)

and self-adjoint on X, its spectrum, σ(H0), is purely absolutely continuous and is

given by

σ(H0) = (−∞,−mc2] ∪ [mc2,+∞).

Let F be the Fourier transform operator

(4) (Fu)(ζ) = (2π)−3/2

∫

R3

e−ix·ζu(x)dx =: û(ζ),

then FH0F ∗ is the multiplication operator given by the matrix

(5) h0(ζ) = ζα +mc2β,

known as the symbol of H0, where ζα = α · ζ =
3∑

k=1

αkζk. The symbol h0(ζ) can be

written as

(6) h0(ζ) = η(ζ)p+,0(ζ)− η(ζ)p−,0(ζ),

where p±,0(ζ) are the orthogonal projections onto the eigenspaces of h0(ζ) and are

given by

(7) p±,0(ζ) =
1
2
(
I ± η−1(ζ)(ζα +mc2β)

)
,
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and ±η(ζ) = ±
√
|ζ|2 +m2c4 are the corresponding eigenvalues.

We consider an h-dependent potential, Vh(x), added to the free Dirac operator

and define

(8) Hh = H0 + Vh.

The potential Vh is assumed to be real and say bounded, thus, for all h > 0, Hh and

H0 have the same domain X and Hh is self-adjoint on X. For simplicity we assume

} = c = 1. The corresponding evolution equation reads

(9)

{
i ∂∂tuh(x, t) = Hhuh(x, t),

uh(x, 0) = u0
h(x).

By the Stone theorem, there exists a unique solution to (9) given by

(10) uh(x, t) = Uh(t)u0
h(x) , u0

h ∈ X,

where the strongly continuous unitary operator Uh(t) = exp(−iHht) is generated by

the operator −iHh, see e.g. [6, 11].

The potential Vh is assumed to fulfill the following condition for all multi-index α

(11) |∂αVh(x)| ≤ C〈x〉−ρ−|α|, for all h > 0, and ρ ∈ (0, 1],

the constant C is independent of x and h, and recall that 〈x〉 = (1 + |x|2)1/2. This

condition simply means that Vh is of long-range type for all h > 0.

2.2. Basic setting of scattering theory. Given self-adjoint operators H0 and H

in Hilbert spaces H0 and H respectively. Let P (ac)
0 and P (ac) be the orthogonal

projections onto the absolutely continuous subspaces, H
(ac)

0 and H (ac), of H0 and

H respectively.

Definition 1. The WO for H and H0, with a bounded identification J : H0 →H

is denoted by W±(H,H0; J) and defined as

(12) W±(H,H0; J) = s−lim
t→±∞

U(−t)JU0(t)P (ac)
0 ,

provided that the corresponding strong limits exist, where again the letter s refers

to the strong convergence sense, U(t) = e−iHt and U0(t) = e−iH0t. If H = H0 and

J is the identity operator, then the WO is denoted by W±(H,H0). Also if H0 has

only absolutely continuous spectrum, then P
(ac)
0 is superfluous.
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If the WO exists, then it is bounded. Since the operator U(−t)U0(t) is unitary, the

WO W±(H,H0) is isometric. In the case that J is not the identity operator, the WO

W±(H,H0; J) is isometric if lim
t→±∞

‖JU0(t)u0‖H = ‖u0‖H0 for any u0 ∈H
(ac)

0 . The

WO admits the chain rule, i.e., if W±(H,H1; J1) and W±(H1, H0; J0) exist, then the

WO W±(H,H0; J10) = W±(H,H1; J1)W±(H1, H0; J0) also exists, where J10 = J1J0.

The WO possesses the intertwining property, that is

(13) φ(H)W±(H,H0; J) = W±(H,H0; J)φ(H0),

for any bounded Borel function φ. Also for any Borel set M⊂ R

(14) E(M)W±(H,H0; J) = W±(H,H0; J)E0(M),

where E and E0 are the spectral families of H and H0 respectively. The following

remark is about the equivalence between WOs with different identifications.

Remark 1. Assume that the WO W±(H,H0; J1) exists with an identification J1,

and let J2 be another identification such that J1 − J2 is compact, then the WO

W±(H,H0; J2) exists and W±(H,H0; J1) = W±(H,H0; J2). Moreover, the condition

that J1 − J2 is compact can be replaced by s−lim
t→±∞

(J1 − J2)U0(t)P (ac)
0 = 0.

Another task of scattering theory is to study the completeness of WOs.

Definition 2. The WO W± is said to be complete if R(W±) = H (ac).

If the WO W±(H,H0; J) is complete, then the absolutely continuous part of H0 is

unitary equivalent to that of H. We refer to [14] for the completeness criteria. For

comprehensive materials on scattering theory we refer to [5, 6, 7, 10, 13, 14, 16].

Definition 3. Given a self-adjoint operator H in a Hilbert space H . An H-

bounded operator, A : H → H, where H is an auxiliary Hilbert space, is called

H-smooth if one of the following properties is fulfilled

sup
‖v‖H =1,v∈D(H)

∫ ∞

−∞
‖Ae−iHtv‖2H dt <∞.

sup
ε>0,µ∈R

‖ARH(µ± iε)‖2H <∞,

where RH(µ± iε) is the resolvent operator of H.
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2.3. Preliminaries regarding pseudo-differential operators. In this subsec-

tion we will introduce basic calculus about pseudo-differential operators (PSDO’s)

with symbols belonging to the class Srρ,δ(R3,R3).

Definition 4. The class Srρ,δ(R3,R3) is the vector space of all smooth functions

P(x, ζ) : R3 × R3 −→ C such that for all multi-indices α and γ

(15) |∂αx ∂γζ P(x, ζ)| ≤ cα,γ〈x〉r−ρ|α|+δ|γ|,

where r ∈ R, ρ > 0, and δ < 1. The function P is called the symbol of the PSDO

and r is called the order of P.

Let P(x, ζ) ∈ Srρ,δ(R3,R3), the associated PSDO, P, to P in Y is defined as the

following inverse Fourier integral

(16) (Pf)(x) = (2π)−3/2

∫

R3

eix·ζP(x, ζ)f̂(ζ) dζ,

where f ∈ Y and f̂(ζ) = (2π)−3/2

∫

R3

e−ix·ζf(x) dx its Fourier transform.

Definition 5. The class Cr(Φ) ⊂ Sr1−s,s, s ∈ [0, 1), consists of all oscillating symbols

P that have the representation P(x, ζ) = eiΦ(x,ζ)b(x, ζ), where Φ ∈ Ss1,0 and b ∈ Sr1,0.

The following two propositions are important, their proofs can be found in [15].

Proposition 1. Let P ∈ Sr0,0 be compactly supported in x, then the associated

PSDO P is bounded in Y if r = 0 and compact if r < 0.

Proposition 2. Let P ∈ Cr(Φ) be compactly supported in x, then the associated

PSDO P is bounded in Y if r = 0 and compact if r < 0.

2.4. The wave operator. In this subsection we adapt the proofs derived in [4] for

the class of potentials that we intend to study. Since the potentials we assume are

of long-range type for all h > 0, there is no need to discuss the construction of the

identification Jh upon the eikonal equation, and thus most of the materials set in

this subsection are similar to that given in [4].

Let C±(x, ζ) be a cut-off function defined as

(17) C±(x, ζ) = θ(x)ω±(〈x̌, ζ̌〉), for all y ∈ R3\{0}, y̌ = y/|y|.
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The function θ is a C∞(R3)-function such that θ(x) = 0 near x = 0 and θ(x) = 1 for

large x, thus θ(x) is introduced to avoid the singularity of x̌ at x = 0. The function

ω± ∈ C∞(−1, 1) is such that ω±(τ) = 1 near ±1 and ω±(τ) = 0 near ∓1. Thus the

cut-off function C± is supported in the cone

(18) Ξ±(ν) = {(x, ζ) ∈ R6 : ±〈x, ζ〉 ≥ ν|x||ζ|}, ν ∈ (−1, 1).

The purpose of defining the cut-off function is that the eikonal equation of the phase

function of the approximated eigenfunction of the Dirac equation is not solvable,

and thus it is obliged to remove a neighborhood of −ζ or ζ in order to find a global

solution, see [4] for more clarification. Let now Φ±,h(x, ζ) be defined as

(19) Φ±,h(x, ζ) =
N∑

n=1

Φ(n)
±,h(x, ζ), x ∈ Ξ±(ν),

where N satisfies (N + 1)ρ > 1, and for n ≥ 0

(20) Φ(n+1)
±,h (x, ζ) = Q±(ζ)F (n)

±,h,

where

(21) (Q±(ζ)F )(x) = ±
∫ ∞

0
(F (x± tζ, ζ)− F (±tζ, ζ)) dt.

Let F (n)
±,h’s be defined as

(22) F
(0)
±,h(x, ζ) = η(ζ)Vh(x)− 1

2
V 2
h (x), F

(1)
±,h(x, ζ) =

1
2
|∇Φ(1)

±,h(x, ζ)|2,

and for n ≥ 2

(23) F
(n)
±,h(x, ζ) =

n−1∑

k=1

〈∇Φ(k)
±,h(x, ζ),∇Φ(n)

±,h(x, ζ)〉+
1
2
|∇Φ(n)

±,h(x, ζ)|2.

Define the amplitude function P±,h(x, ζ) as

(24) P±,h(x, ζ) = (I − S±,h(x, ζ))−1p0(ζ), x ∈ Ξ±(ν),

where p0(ζ) = p+,0(ζ) and

(25) S±,h(x, ζ) = (2η(ζ))−1
(
Vh(x) +

3∑

k=1

∂kΦ±,h(x, ζ)αk
)
, x ∈ Ξ±(ν).
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Note that, all estimates are uniform in ζ through out the paper for 0 < c1 ≤ ζ ≤
c2 < ∞. By the definitions of the phase function Φ±,h(x, ζ) and the amplitude

function P±,h(x, ζ) we have for all multi-indices α and γ

(26) |∂αx ∂γζ Φ±,h(x, ζ)| ≤ cα,γ〈x〉1−ρ−|α|, x ∈ Ξ±(ν),

and

(27) |∂αx ∂γζ P±,h(x, ζ)| ≤ cα,γ〈x〉−ρ−|α|, x ∈ Ξ±(ν).

Hence, the approximation

(28) u±,h(x, ζ) = eiϕ±,h(x,ζ)P±,h(x, ζ) := eix·ζ+iΦ±,h(x,ζ)P±,h(x, ζ)

of the corresponding eigenvalue problem of (8) satisfies, as |x| → ∞,

(29) (Hh − η(ζ))u±,h(x, ζ) = O(|x|−1−ε), ε = (N + 1)ρ− 1 > 0.

Consider the identification J±,h given by the following PSDO

(30) (J±,hg)(x) = (2π)−3/2

∫

R3

eix·ζ+iΦ±,h(x,ζ)P±,h(x, ζ)C±(x, ζ)ψ(|ζ|2)ĝ(ζ) dζ,

where ψ ∈ C∞0 (R+) is introduced to localize the identification in a compact interval

of (m,∞). Consider the WOs W±,h and W ∗±,h defined as

(31) W±,h = W±(Hh, H0; J±,h) = s−lim
t→±∞

Uh(−t)J±,hU0(t)

and

(32) W ∗±,h = W±(H0, Hh; J∗±,h) = s−lim
t→±∞

U0(−t)J∗±,hUh(t)P (ac)
h ,

where P (ac)
h is the orthogonal projection onto the absolutely continuous subspace

of Hh, U0(t) = e−iH0t, and Uh(t) = e−iHht. Note that the free Dirac operator has

only absolutely continuous spectrum, so there is no need to write the corresponding

orthogonal projection onto the absolutely continuous subspace in the definition of

the WO W±,h. For the existence and completeness of the WO W±,h we have the

following theorem.

Theorem 1. Let Vh satisfy (11), and let J±,h be as defined in (30) where the

functions Φ±,h(x, ζ) and P±,h(x, ζ) are given by (19) and (24) respectively. Then

the WOsW±(Hh, H0; J±,h) andW±(H0, Hh; J∗±,h) exist for all h > 0 andW ∗±(Hh, H0;

J±,h) = W±(H0, Hh; J∗±,h). Moreover if M⊂ (m,∞) is a compact interval and ψ(µ2−



10 HASAN ALMANASREH

m2) = 1 for all µ ∈M, then the WO W±,h(Hh, H0; J±,h), for all h > 0, is isometric

on the subspace E0(M)H and is complete.

Proof . See [4]. �

Remark 2. It is worth to mention that the WOs defined above are for positive

part of the spectrum (m,∞). For the negative part of the spectrum (−∞,−m), the

WOs operator can be defined in the same way as above but η(ζ) in the definition

of Φ±,h(x, ζ) is replaced by −η(ζ), and η(ζ) and p0(ζ) = p+,0(ζ) in the definition

of P±,h(x, ζ) are replaced respectively by −η(ζ) and p0(ζ) = p−,0(ζ). Consequently,

and therefore, the corresponding identification J−±,h is given by the following PSDO

(33) (J−±,hg)(x) = (2π)−3/2

∫

R3

eix·ζ+iΦ∓,h(x,ζ)P∓,h(x, ζ)C∓(x, ζ)ψ(|ζ|2)ĝ(ζ) dζ.

In this work, we consider the WOs corresponding to the positive part of the

spectrum. However, the asymptotic study below can be carried out to the WOs on

the negative part of the spectrum in a similar way.

3. Asymptotic limit of the WO

We study the existence of the WOs W †± := s−lim
h→∞

W±,h and W †,∗± := s−lim
h→∞

W ∗±,h
given the existence of the WOs W±,h and W ∗±,h. We refer to [1] for comprehensive

materials on the asymptotic study of WOs.

Let the perturbed Dirac operator Hh be convergent in the SRS, and let the iden-

tification J±,h given by (30) be strongly convergent, then the WOs W †± and W †,∗±
exist, i.e., the strong limits as h → ∞ exist for both WOs W±,h and W ∗±,h. The

question now is about characterizing W †± and W †,∗± , in other words, characterizing

the strong limits of the WOs W±,h and W ∗±,h as h→∞.

Theorem 2. Let the WOs W±,h and W ∗±,h be defined by (31) and (32) respectively,

where the identification J±,h, the amplitude P±,h, and the phase Φ±,h are given

respectively by (30), (24), and (19). Suppose that, as h → ∞, the Dirac operator

Hh converges to H∞ in the SRS, and J±,h converges strongly to J±,∞. Then the

WOs W †± and W †,∗± exist,

W †± = s−lim
h→∞

W±(Hh, H0; J±,h) = W±(H∞, H0; J±,∞),



STRONG CONVERGENCE OF WAVE OPERATORS FOR A FAMILY OF DIRAC OPERATORS11

and

W †,∗± = s−lim
h→∞

W±(H0, Hh; J∗±,h) = W±(H0, H∞; J∗±,∞).

The proof follows Theorem 2.1 in [1], and is divided into several steps given by

the following lemmas, corollaries, and discussion. Firstly, by [4],

(34) HhJ±,h − J±,hH0 =
3∑

j=1

T ∗j B1,hTj + 〈x〉−(1+ρ)/2B2,h〈x〉−(1+ρ)/2,

where Tj = 〈x〉−1/2∇j , (∇jv)(x) = ∂jv(x)−|x|2xj
3∑

k=1

xk(∂kv)(x), and B1,h and B2,h

are bounded operators. Note that for all h > 0, 〈x〉−(1+ρ)/2 for all ρ > 0 and Tj

for j=1,2,3, are H0-smooth and Hh-smooth on any compact set M⊂ (−∞,−m) ∪
(m,∞) such that M ∩σp(Hh) = ∅. The H0-smoothness and Hh-smoothness of

〈x〉−(1+ρ)/2 and of Tj are known respectively as the limiting absorption principle

and the radiation estimate. It is a fact that operator-smoothness is invariant under

the multiplication by a bounded operator from left (or a bounded operator from

right provided it commutes with the spectral family of the given operator), thus we

can rewrite (34) as

(35) HhJ±,h − J±,hH0 =
2∑

i=1

K∗2,i,hK1,i,h.

The operators K2,1,h and K2,2,h are Hh-smooth for all h > 0, and K1,1,h and K1,2,h

are H0-smooth for all h > 0. Without loss of generality, we assume that

(36) HhJ±,h − J±,hH0 = G∗hG0,h

such that Gh and G0,h are Hh-smooth and H0-smooth respectively for all h > 0.

Lemma 1. For all h > 0 and for all u0 ∈ X the function

(37) K
(1)
u0,h

(t) = ‖(Hhφ(Hh)J±,hφ(H0)− φ(Hh)J±,hH0φ(H0))U0(t)u0‖Y
belongs to L1([−∞,∞); dt) for some continuous function φ : R→ R such that xφ(x)

is bounded on R.

Proof . Let φ(x) = (x − z)−1, z ∈ Res(Hh) ∩ Res(H0) where Res denotes the

resolvent set. Therefore, and since

(38) K
(1)
u0,h

(t) = ‖((Hh− z)φ(Hh)J±,hφ(H0)−φ(Hh)J±,h(H0− z)φ(H0))U0(t)u0‖Y ,
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to prove the assertion of the lemma, it is enough to prove that

(39) Ku0,h(t) = ‖(φ(Hh)J±,h − J±,hφ(H0))U0(t)u0‖Y

belongs to L1((−∞,∞); dt). To this end, for all u0, u ∈ X we have

(40) 〈J±,hu0, Hhu〉 − 〈J±,hH0u0, u〉 = 〈G0,hu0, Ghu〉.

By (40) we have for any v0, v ∈ Y

〈G0,hR0(z)v0, GhRh(z)v〉 = 〈J±,hR0(z)v0, HhRh(z)v〉 − 〈J±,hH0R0(z)v0, Rh(z)v〉
= 〈J±,hR0(z)v0, v〉 − 〈J±,hv0, Rh(z)v〉+
+〈J±,hR0(z)v0, zRh(z)v〉 − 〈zJ±,hR0(z)v0, Rh(z)v〉.

(41)

Since Gh and G0,h are Hh-bounded and H0-bounded respectively for all h > 0, all

operators in (41) are well-defined and bounded, thus for all v0, v ∈ Y ,

(42) 〈(J±,hR0(z)−Rh(z)J±,h)v0, v〉 = 〈(GhRh(z))∗G0,hR0(z)v0, v〉.

Hence

(43) J±,hR0(z)−Rh(z)J±,h = (GhRh(z))∗G0,hR0(z).

Therefore we have for all w0 ∈ X and for all h > 0,
∫ ±∞

0
‖(Rh(z)J±,h−J±,hR0(z))U0(t)w0‖Y dt =

∫ ±∞

0
‖(GhRh(z))∗G0,hR0(z)U0(t)w0‖Y dt

≤ C
∫ ±∞

0
‖G0,hU0(t)u0‖Y dt

<∞

where u0 = R0(z)w0 and C ∈ R. Here we have used the Hh-boundedness of Gh and

in the last inequality the H0-smoothness of G0,h for all h > 0. �

The following corollary is a direct consequence of Lemma 1.

Corollary 1. Given the hypotheses of Lemma 1, then for any ε > 0 there exist

D1, D2 ∈ R such that
∫ ∞

D1

K
(1)
u0,h

(t) dt ≤ ε and
∫ D2

−∞
K

(1)
u0,h

(t) dt ≤ ε.

Lemma 2. For all h > 0 and for all u ∈ X the function

(44) K
(2)
u,h (t) = ‖(H0φ(H0)J∗±,hφ(Hh)− φ(H0)J∗±,hHhφ(Hh))Uh(t)u‖Y



STRONG CONVERGENCE OF WAVE OPERATORS FOR A FAMILY OF DIRAC OPERATORS13

belongs to L1([−∞,∞); dt) for some continuous function φ : R→ R such that xφ(x)

is bounded on R.

Proof . The proof is similar to that of Lemma 1. �

The following corollary is a direct consequence of Lemma 2.

Corollary 2. Given the hypotheses of Lemma 2, then for any ε > 0 there exist

D3, D4 ∈ R such that
∫ ∞

D3

K
(2)
u,h (t) dt ≤ ε and

∫ D4

−∞
K

(2)
u,h (t) dt ≤ ε.

Since Hh is convergent to H∞ in the SRS, then for any continuous bounded

function F on R, F (Hh) is strongly convergent to F (H∞), thus e−iHht is strongly

convergent to e−iH∞t for all t ∈ R. Moreover, since J±,h is convergent strongly to

J±,∞, then W †± and W †,∗± exist, and the characterization of the asymptotic limits

of W±,h and W ∗±,h is reduced to the problem of interchanging s−lim
t→±∞

and s−lim
h→∞

.

In this context, the following theorem is important, it is an adaptation of a result

achieved in [1].

Theorem 3. Given self-adjoint operators Th and T0 defined in Hilbert spaces T

and T0 respectively, let the WOs W±(Th, T0; Jh) and W±(T0, Th; J∗h) exist, where

Jh is some bounded identification. Assume that, as h → ∞, the operator Th is

convergent in the SRS to T∞ and that Jh and J∗h converge strongly to J∞ and

J∗∞ respectively. If, for Th, T0, T , T0 and Jh, the functions K
(1)
u0,h

(t) and K
(2)
u,h (t),

given respectively by (37) and (44), satisfy the conclusions of Corollaries 1 and 2

respectively, then

(45) s−lim
h→∞

W±(Th, T0; Jh) = W±(T∞, T0; J∞)

and

(46) s−lim
h→∞

W±(T0, Th; J∗h) = W±(T0, T∞; J∗∞).

Proof . See Theorem 2.1 and Remark 2.3 in [1]. �

Since, in general, the strong convergence of an operator does not imply the strong

convergence of its adjoint to the adjoint of its strong limit, therefore we have assumed

the strong convergence of J∗h to J∗∞ parallel to the strong convergence of Jh to J∞ in
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Theorem 3. Fortunately, the identification operator J±,h defined by (30) is a PSDO

with the adjoint, J∗±,h, given by

(47) (J∗±,hg)(ζ) = (2π)−3/2

∫

R3

e−ix·ζ−iΦ±,h(x,ζ)P±,h(x, ζ)C±(x, ζ)ψ(|ζ|2)g(x) dx.

This implies that if J±,h is strongly convergent to J±,∞ as h→∞, then J∗±,h is also

strongly convergent to J∗±,∞.

The proof of Theorem 2 follows from Lemmas 1-2, Corollaries 1-2, and Theorem

3. Thus, we may conclude that the strong convergence as h → ∞ of W±,h =

W (Hh, H0; J±,h) and its adjoint W ∗±,h = W (H0, Hh; J∗±,h) to the WO W±,∞ =

W (H∞, H0; J±,∞) and W ∗±,∞ = W (H0, H∞; J∗±,∞) respectively is guaranteed if Hh

is convergent to H∞ in the SRS and J±,h is strongly convergent to J±,∞.

In the coming discussion we assume convergence in the SRS of Hh to H∞, and

study cases of the identification J±,h. In the second case we assume particular con-

dition so that Φ±,h is replaced with some h-free functions in the definition of J±,h
to obtain new equivalent identification J̃±,h. Even that this condition is stringent,

but this replacement is advantageous if we can also replace the amplitude func-

tions P±,h of the identification J̃±,h with h-free function P̃± so that the difference

(J̃±,h(P±,h) − J̃±(P̃±)) is compact for all h > 0, and then applying Remark 1. In

this case the study of the asymptotic behavior of the WO W±(Hh, H0; J̃±,h(P±,h))

is reduced to study the asymptotic behavior of the WO W±(Hh, H0; J̃±(P̃±)). Thus

no convergence conditions are needed on the identification operator in finding the

asymptotic limits of the WOs.

3.0.1. The case ρ > 1. Note that here we consider short-range potentials, while our

main assumption, (11), assumes potentials of long-range type. However, for ρ > 1,

we can set J±,h = I, this is because for short-range potentials, the WOs W±(Hh, H0)

and W±(H0, Hh) exist and are complete. The proofs of existence and completeness

of the WOs for the Dirac operator with short-range potential are similar to that for

the Schrödinger operator. Hence, the strong convergence of the WOs W±(Hh, H0)

and W±(H0, Hh), as h → ∞, is reduced to the convergence of the Dirac operator

Hh in the SRS. Therefore, by assuming the convergence in the SRS of Hh to H∞,
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we have

(48) W †± = W±(H∞, H0)

and

(49) W †,∗± = W±(H0, H∞).

3.0.2. The case ρ = 1. In this case, one can replace the h-dependent phase function

Φ±,h(x, ζ) with an h-free function by virtue of Remark 1 and Proposition 1 as follows.

Theorem 4. Let Φ±(x, ζ) be an h-free function satisfying estimate (26), and let the

identification J
(1)
±,h be given by (30) but where Φ±,h(x, ζ) is replaced by Φ±(x, ζ).

Then for ρ > 0 such that ρ/(1 − ρ) > |γ|/(1 + |α|), the operator J
(1)
±,h − J±,h is

compact.

Proof . By the estimate (27) the function P±,h belongs to the class S
−ρ
1,0(R3,R3)

which is a subset of S
−ρ
ρ,δ(R

3,R3) for δ = 1 − ρ. Since both Φ±,h(x, ζ) and Φ±(x, ζ)

satisfy the estimate (26), for x ∈ Ξ±(ν),

(50) |∂αx ∂γζ eiΦ±,h(x,ζ)| ≤ cα,γ〈x〉−ρ|α|+δ|γ|

and

(51) |∂αx ∂γζ eiΦ±(x,ζ)| ≤ cα,γ〈x〉−ρ|α|+δ|γ|.

Thus eiΦ±,hP±,h and eiΦ±P±,h are elements of S
−ρ
ρ,δ(R

3,R3), consequently the differ-

ence is also an element of S
−ρ
ρ,δ(R

3,R3). By Proposition 1, the operator J
(1)
±,h − J±,h

is compact if its symbol belongs to Sr0,0(R3,R3) for r < 0. This is achieved if

−ρ − ρ|α| + δ|γ| < 0 where again δ = 1 − ρ, i.e., J
(1)
±,h − J±,h is compact if

ρ/(1− ρ) > |γ|/(1 + |α|). �

According to Theorem 4, it is noted that if ρ = 1 (also if ρ→ 1−), then ρ/(1−ρ) >

|γ|/(1 + |α|) is satisfied for all multi-indices α and γ.

Regarding the amplitude function, we shall need the following proposition which is

due to Gâtel and Yafaev [4]. This proposition is an important tool in the convergence

results in the sense that it replaces the h-dependent amplitude function, P±,h(x, ζ),

with another h-free function.
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Proposition 3. For the identification

(52) (J±,hg)(x) = (2π)−3/2

∫

R3

eix·ζ+iΦ±,h(x,ζ)p0(ζ)C±(x, ζ)ψ(|ζ|2)ĝ(ζ) dζ

the difference J±,h − J±,h is a compact PSDO.

Proof . Note that the operator J±,h − J±,h is a PSDO with symbol

(53) eiΦ±,h(x,ζ)(p0(ζ)− P±,h(x, ζ))C±(x, ζ)ψ(|ζ|2).

It is clear that for all h > 0, |∂αx ∂γζ (p0(ζ)−P±,h(x, ζ))| ≤ Cα,γ〈x〉−ρ−|α|, thus the sym-

bol of J±,h− J±,h belongs to C−ρ(Φ±,h) for all h > 0. By Proposition 2, J±,h− J±,h
is compact. �

According to Remark 1, the WOs W±(Hh, H0; J±,h) and W±(H0, Hh; J∗±,h) exist

andW±(Hh, H0; J±,h) = W±(Hh, H0; J±,h) andW±(H0, Hh; J∗±,h) = W±(H0, Hh; J∗±,h).

To this end, if ρ = 1 (or ρ→ 1−), we have after applying Remark 1 and Proposition

3

(54) W †± = s−lim
h→∞

W±(Hh, H0; J±,h) = W±(H∞, H0; J(2)
± )

and

(55) W †,∗± = s−lim
h→∞

W±(H0, Hh; J∗±,h) = W±(H0, H∞; J(2),∗
± ),

where J
(2)
± (with adjoint denoted by J

(2),∗
± ) is given by

(56) (J(2)
± g)(x) = (2π)−3/2

∫

R3

eix·ζ+iΦ±(x,ζ)p0(ζ)C±(x, ζ)ψ(|ζ|2)ĝ(ζ) dζ.

Example 1. The function

(57) Φ±(x, ζ) = ±η(ζ)
∫ ∞

0
(〈x± tζ〉−ρ − 〈±tζ〉−ρ) dt

satisfies estimate (26). The proof is just a simple elementary calculus, where it is

simpler to show first

(58) |∂αx ∂γζΦ±(x, ζ)| ≤ cα,γ(1 + |x|)1−ρ−|α|, x ∈ Ξ±(ν),

and then use the inequalities

(59) 〈x〉 ≤ (1 + |x|) ≤
√

2〈x〉.
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3.0.3. The case ρ ∈ (1/2, 1). According to the definition of the phase function

Φ±,h(x, ζ) given by (19), if ρ ∈ (1/2, 1) then N = 1 satisfies the condition (N+1)ρ >

1. In this case Φ±,h(x, ζ) can be chosen as, after neglecting the quadratic terms,

(60) Φ±,h(x, ζ) = ±η(ζ)
∫ ∞

0
(Vh(x± tζ)− Vh(±tζ)) dt.

By Proposition 3, to study the strong convergence of W±,h with the identification

J±,h (respectively W ∗±,h with J∗±,h) is equivalent to study its strong convergence with

J
(3)
±,h (respectively with J

(3),∗
±,h , where J

(3),∗
±,h is the adjoint operator of J

(3)
±,h),

(61) (J(3)
±,hg)(x) = (2π)−3/2

∫

R3

eix·ζ+iΦ±,h(x,ζ)p0(ζ)C±(x, ζ)ψ(|ζ|2)ĝ(ζ) dζ,

where Φ±,h is given by (60). By dominated convergence theorem, and since the inte-

grand in (61) is bounded, then if Φ±,h(x, ζ), given by (60), converges to Φ±,∞(x, ζ)

in the SRS, then the identification J
(3)
±,h is strongly convergent to J

(3)
±,∞, where

(62) (J(3)
±,∞g)(x) = (2π)−3/2

∫

R3

eix·ζ+iΦ±,∞(x,ζ)p0(ζ)C±(x, ζ)ψ(|ζ|2)ĝ(ζ) dζ.

Therefore, for those types of potentials Vh that satisfy (11) with ρ ∈ (1/2, 1) and

such that Hh = H0 + Vh and Φ±,h(x, ζ) are convergent in the SRS respectively to

H∞ = H0 + V∞ and

(63) Φ±,∞(x, ζ) = ±η(ζ)
∫ ∞

0
(V∞(x± tζ)− V∞(±tζ)) dt,

we have

(64) W †± = s−lim
h→∞

W±(Hh, H0; J±,h) = W±(H∞, H0; J(3)
±,∞)

and

(65) W †,∗± = s−lim
h→∞

W±(H0, Hh; J∗±,h) = W±(H0, H∞; J(3),∗
±,∞).
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EXISTENCE AND ASYMPTOTICS OF WAVE OPERATORS FOR
SELF-ADJOINT OPERATORS

HASAN ALMANASREH

Abstract. We consider a family of h-dependent self-adjoint operators, Hh =

H0+Vh, whereH0 is a self-adjoint operator and Vh is some admissible h-dependent

interaction, and study the existence of the stationary wave operator (WO) W
†
±

defined by the form 〈W†±u0, u〉 =

∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈Jh(H0−(λ±iε))−1u0, (Hh+

−(λ ± iε))−1u〉 dλ, where Jh is a bounded identification. Also we study the

existence of the weak WO W̃ †±(H,H0; J) = w−lim
h→∞

w−lim
t→±∞

P
(ac)
h exp (iHht)×

×Jh exp (−iH0t)P
(ac)
0 , where P

(ac)
0 and P

(ac)
h are respectively the orthogonal pro-

jections onto the absolutely continuous subspaces of H0 and Hh. Using the ex-

istence of the stationary and weak WOs and under additional conditions, we prove

the existence of the time-dependent WOW †±(H,H0; J)=s−lim
h→∞

s−lim
t→±∞

exp (iHht)×
×Jh exp (−iH0t)P

(ac)
0 = s−lim

h→∞
W±(Hh, H0; Jh). Moreover, we study the asymp-

totic behavior of the WO W±(Hh, H0; Jh) as h→∞.

1. Introduction

In the present work we consider a self-adjoint operator Hh, defined in a Hilbert

space H , written in terms of a free self-adjoint operator H0 defined in H0 and an

h-dependent perturbation Vh as Hh = H0 + Vh, where h > 0. Given a bounded

operator (identification) Jh : H0 → H , and let Ah : H → H and A0 : H0 → H be

Hh-bounded for all h > 0 and H0-bounded operators respectively, where H is some

auxiliary Hilbert space, we assume that the perturbation Vh admits the following

factorization

Vh = HhJh − JhH0 = A∗hA0

Key words and phrases. Scattering theory, stationary approach, self-adjoint, wave operator,

operator-smoothness, isometry, asymptotic convergence.

Department of Mathematical Sciences and Department of Physics, University of Gothenburg,

SE-412 96 Göteborg, Sweden.
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which is understood as the equalities of the corresponding sesquilinear forms. Fol-

lowing [12], we study sufficient conditions under which the stationary wave operator

(WO) W
†
± = W

†
±(H,H0; J) (where H and J are used to indicate to h-free operators

and they can be regarded as some appropriate limits of Hh and Jh respectively),

defined by the sesquilinear form

〈W†±u0, u〉 =
∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉 dλ,

exists, where u0 and u belong to some dense sets M0 and M in H0 and H re-

spectively, and R0 and Rh are the resolvent operators of H0 and Hh respectively.

We prove that if A0 is weakly H0-smooth, for a.e. λ ∈ R, Sh,ε := AhRh(λ ± iε) is

strongly convergent as ε→ 0 to some Sh,0 for all h > 0, and the operators Sh,0 and

Jh are weakly convergent, then the WOs W
†
±(H,H0; J) and W

†
±(H0, H; J∗) exist,

and W
†,∗
± (H,H0; J) = W

†
±(H0, H; J∗). Other equivalent conditions are also proved

to ensure the existence of these WOs.

Also we study the existence of the weak time-dependent WO W̃ †± = W̃ †±(H,H0; J)

defined as

W̃ †±(H,H0; J) = w−lim
h→∞

W̃±(Hh, H0; Jh)

= w−lim
h→∞

w−lim
t→±∞

P
(ac)
h exp (iHht)Jh exp (−iH0t)P

(ac)
0 ,

where P (ac)
0 and P (ac)

h are the orthogonal projections onto the absolutely continuous

subspaces of H0 and Hh respectively, and w refers to the weak convergence. Under

the same conditions of existence of W
†
±(H,H0; J) and W

†
±(H0, H; J∗), we prove the

existence of the WOs W̃ †± = W̃ †±(H,H0; J) and W̃ †± = W̃ †±(H0, H; J∗). We discuss the

relation between the stationary and the weak time-dependent WOs, in particular, if

both WOs W
†
± and W̃ †± exist then their corresponding sesquilinear forms are equal.

To use the stationary method for proving the existence of the strong time-dependent

WOs, we further study the existence of the WOs W
†
±(H,H; JJ∗) and W

†
±(H0, H0; J∗J),

and discuss the validity of the relations

W
†
±(H,H0; J)W†±

∗
(H,H0; J) = W

†
±(H,H; JJ∗)

and

W
†
±
∗
(H,H0; J)W†±(H,H0; J) = W

†
±(H0, H0; J∗J).
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Also the existence of the WOs W̃ †±(H,H; JJ∗) and W̃ †±(H0, H0; J∗J) is studied for this

purpose. In this issue, we prove the existence of W
†
±(H,H; JJ∗), W

†
±(H0, H0; J∗J),

W̃ †±(H,H; JJ∗), W̃ †±(H0, H0; J∗J), and the validity of the relations above under the

same conditions of existence of W
†
±(H,H0; J) and W

†
±(H0, H; J∗) and the strong con-

vergence of the operators Jh, J∗h, and Rh. Finally, by the existence of the stationary

and weak time-dependent WOs and the relations above, we extend the stationary

approach for proving the time-dependent WOs for general h-dependent self-adjoint

operators, and prove the existence of the strong time-dependent WOs

W †± := s−lim
h→∞

W±(Hh, H0; Jh) = s−lim
h→∞

s−lim
t→±∞

exp (iHht)Jh exp (−iH0t)P
(ac)
0

and

W †,∗± := s−lim
h→∞

W±(H0, Hh; J∗h) = s−lim
h→∞

s−lim
t→±∞

exp (iH0t)J∗h exp (−iHht)P
(ac)
h ,

where s refers to the strong convergence. At the last, we discuss the limit behavior

of W±,h := W±(Hh, H0; Jh) and W ∗±,h := W±(H0, Hh; J∗h) as h → ∞, and consider

some examples.

For general scattering theory we refer to [2, 3, 7, 9, 11, 12, 13], also for general

perturbation theory we refer to [8, 10]. Asymptotic analysis of WOs is rarely stud-

ied, and for simple and particular cases we refer to [1, 5, 6, 14, 15], also [4] is a

crucial reference regarding the continuity of the strong time-dependent WO.

The paper is arranged as follows; in Section 2 we give necessary and basic prelim-

inaries on scattering theory for both the time-dependent and stationary approaches.

In Section 3 we state and prove the main results about the existence of the WOs

W
†
±, W̃ †±, and W †±, also we study the asymptotic behavior of the time-dependent

WO W±(Hh, H0; Jh) as h→∞.

2. Preliminaries

In the sequel we use H and H0 as notations for Hilbert spaces, and D and R as

notations for the domain and range of operators respectively. We assume self-adjoint

operators H and H0 in H and H0 respectively. To simplify the notations we define

U(t) = exp (−iHt) and U0(t) = exp (−iH0t), also we use P (ac)
H , simply P (ac), and

P
(ac)
H0

, simply P
(ac)
0 , to denote for the orthogonal projections onto the absolutely
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continuous subspaces H (ac) and H
(ac)

0 of H and H0 respectively. To H (ac) and

H
(ac)

0 we define the restrictions H(ac) and H
(ac)
0 respectively, which are known as

the absolutely continuous operators of H and H0 respectively.

2.1. Basic Setting. Let J : H0 → H be a bounded operator (identification), the

(modified or generalized) strong time-dependent WO W± = W±(H,H0; J) is defined

as follows.

Definition 1. The strong time-dependent WO for H and H0, with identification

J, is the operator W± defined as

(1) W±(H,H0; J) = s−lim
t→±∞

U(−t)JU0(t)P (ac)
0 ,

provided that the corresponding strong limits exist, where again the letter s refers

to the strong convergence sense. If H = H0 and J is the identity operator, the WO

is then denoted by W±(H,H0).

Remark 1. As for the usual WO W±, we define the weak time-dependent WO

W̃±(H,H0; J) as follows

(2) W̃±(H,H0; J) = w−lim
t→±∞

P (ac)U(−t)JU0(t)P (ac)
0 .

provided that the corresponding weak limits exist, where again the letter w refers

to the weak convergence sense.

To study the properties of the WO W±(H,H0; J), we assume first that this op-

erator exists. By ‖W±(H,H0; J)u‖H ≤ ‖J‖ ‖P (ac)
0 u‖H0 , the WO W±(H,H0; J) is

bounded. Since U(−t)U0(t) is unitary, the operator W±(H,H0) is isometric. To

prove that W±(H,H0; J) is isometric, it is necessary and sufficient to prove that for

any u ∈H
(ac)

0 , lim
t→±∞

‖JU0(t)u‖H = ‖u‖H0 . The WO W± possesses the intertwining

property, that is, for any bounded Borel function φ,

(3) φ(H)W±(H,H0; J) = W±(H,H0; J)φ(H0),

also for any Borel set M⊂ R,

(4) E(M)W±(H,H0; J) = W±(H,H0; J)E0(M),

where E and E0 are the spectral families of H and H0 respectively. The WO W±
admits the chain rule property, i.e., if W±(H,H1; J1) and W±(H1, H0; J0) exist,
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then the WO W±(H,H0; J1,0) = W±(H,H1; J1)W±(H1, H0; J0) also exists where

J1,0 = J1J0.

Remark 2. The WO W̃±(H,H0; J) is bounded and ‖W̃±(H,H0; J)u‖H ≤ ‖J‖×
×‖P (ac)

0 u‖H0 . The intertwining property is preserved for the WO W̃±, but the chain

rule is lost since, in general, the weak limit of the product of two sequences that are

only weakly convergent is not the product of their weak limits. On contrast of the

WO W±, the WO W̃± withstands conjugation, this means that W̃±(H0, H; J∗) =

W̃ ∗±(H,H0; J) necessarily exists alongside with W̃±(H,H0; J).

After proving the existence of the WO W±(H,H0; J), the main task is to show its

completeness.

Definition 2. The WO W± is said to be complete if R(W±) = H (ac).

The completeness of W± guarantees unitary equivalence of the operators H(ac)

and H
(ac)
0 . For the WO W±(H,H0), the proof of completeness is equivalent to the

existence of W ∗±(H,H0) = W±(H0, H). This is clear because, by the chain rule,

we have P (ac) = W±(H,H) = W±(H,H0)W ∗±(H,H0). The completeness of the

WO W±(H,H0; J) is equivalent to the existence of W±(H0, H; J∗) provided that the

identification J is boundedly invertible.

2.2. The stationary approach. On contrast to the time-dependent approach of

scattering theory, the stationary approach is comparably simpler. This is seen evi-

dent in general because dealing with resolvent operators in the mathematical analysis

is easier than treating unitary groups. For this reason, and others, the stationary

approach is often used to prove the existence and other properties of the time-

dependent WO W±(H,H0; J).

In this subsection we overview some basic definitions and results on the stationary

approach of scattering theory. Let R(z) and R0(z) be the resolvent operators of H

and H0 respectively, we define θ(λ, ε) as

(5) θ(λ, ε) = (2πi)−1(R(λ+ iε)−R(λ− iε)) = π−1εR(λ+ iε)R(λ− iε).

Note that it is not difficult to prove that lim
ε→0
〈θ(λ, ε)u, v〉 =

d

dλ
〈E(λ)u, v〉 for a.e.

λ ∈ R and all u, v ∈H .
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Let H be an auxiliary Hilbert space, the concept H-smoothness in the weak sense

is defined as follows.

Definition 3. An H-bounded operator A : H → H is called H-smooth in the

weak sense if

(6) w−lim
ε→∞

Aθ(λ, ε)A∗

exists for a.e. λ ∈ R.

It is clear that if the limit (6) exists then so is w−lim
ε→∞

Aθ(λ, ε). There are other

equivalent conditions for the weak H-smoothness, here we are interested in the

following two conditions: An operator A : H → H is weakly H-smooth if and only

if any of the following conditions is satisfied

(7) ‖Aθ(λ, ε)A∗‖H ≤ C(λ), a.e. λ ∈ R.

(8) ε1/2‖AR(λ± iε)‖H ≤ C(λ), a.e. λ ∈ R.

Let M0 and M be dense sets in H0 and H respectively, and let that for any

u0 ∈M0 and u ∈M the following limit exists for a.e. λ ∈ R

(9) G±(H,H0; J) = lim
ε→0

π−1ε〈JR0(λ± iε)u0, R(λ± iε)u〉,

then the stationary WO W± = W±(H,H0; J) for the operators H and H0 with the

identification J is the operator defined on M0 ×M by the sesquilinear form

(10) 〈W±u0, u〉 =
∫ ∞

−∞
G±(H,H0; J)dλ.

Remark 3.

(i) If u0 ∈ H
(ac)

0 and u ∈ H (ac), then the limit with respect to ε and the

integration over λ in the equality (10) are interchangeable.

(ii) For a.e. λ ∈ R, the limit (9) has the same value if {u0, u} is replaced by

either {P (ac)
0 u0, u}, {u0, P

(ac)u}, or {P (ac)
0 u0, P

(ac)u}.

The WO W± possesses most properties of the time-dependent WO; it is bounded,

satisfies the intertwining property, and R(W±) ⊆ H (ac). Also by the existence of

the limit (9), the WO

(11) W∗±(H,H0; J) = W±(H0, H; J∗)
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exists.

The stationary approach for proving the existence of the time-dependent WO

W±(H,H0; J) is based on the existence of the WOs W̃±(H,H0; J) and W̃±(H0, H0; J∗J),

and on the stationary proof of

(12) W∗±(H,H0; J)W±(H,H0; J) = W±(H0, H0; J∗J).

3. The main results

Define the self-adjoint operator Hh as

(13) Hh = H0 + Vh

in the Hilbert space H with domain D(Hh) = X independent of h, where the

parameter h > 0 grows to infinity, H0 is a self-adjoint operator defined in H0 with

domain D(H0) = X0, and Vh is some admissible h-dependent perturbation chosen so

that Hh is self-adjoint on X. Let H be an auxiliary Hilbert space, and let M and M0

be dense sets in H and H0 respectively. Assume that Vh admits the factorization

(14) Vh = HhJh − JhH0 = A∗hA0.

The equalities in (14) should be understood as the equalities of the corresponding

sesquilinear forms. The operator Jh : H0 → H is a bounded identification, and

Ah : H → H and A0 : H0 → H are respectively Hh-bounded for all h > 0 and

H0-bounded operators.

Let G †±(H,H0; J) be defined by

(15) G †±(H,H0; J) = lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉,

where H and J are limit operators in appropriate sense of Hh and Jh respectively,

R0 and Rh are the resolvent operators of H0 and Hh respectively, and u0 ∈M0 and

u ∈M . Then we define the stationary WO W
†
± = W

†
±(H,H0; J) on M0 ×M by the

sesquilinear form

(16) 〈W†±u0, u〉 =
∫ ∞

−∞
G †±(H,H0; J) dλ.
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Also, we define the weak time-dependent WO W̃ †±(H,H0; J) as

W̃ †±(H,H0; J) = w−lim
h→∞

W̃±(Hh, H0; Jh)

= w−lim
h→∞

w−lim
t→±∞

P
(ac)
h Uh(−t)JhU0(t)P (ac)

0 ,
(17)

where Uh(t) = exp (−iHht), U0(t) = exp (−iH0t), and P
(ac)
0 and P

(ac)
h are respec-

tively the orthogonal projections onto the absolutely continuous subspaces of H0

and Hh. The strong time-dependent WO W †±(H,H0; J) is defined as

(18) W †±(H,H0; J) = s−lim
h→∞

W±(Hh, H0; Jh) = s−lim
h→∞

s−lim
t→±∞

Uh(−t)JhU0(t)P (ac)
0 ,

Before proceeding, we should mention that some materials and helpful settings

are used from [12] for the construction of proofs of some results in this section. The

following two theorems provide sufficient conditions for the existence of the WO W
†
±

and its adjoint W
†,∗
± .

Theorem 1. Assume the following

(i) A0 is weakly H0-smooth.

(ii) For all h > 0, AhRh(λ± iε) is strongly convergent as ε→ 0 for a.e. λ ∈ R.

(iii) If Th is the strong limit of AhRh(λ ± iε) as ε → 0 obtained in (ii), then Th

converges weakly as h→∞ for a.e. λ ∈ R.

(iv) Jh is weakly convergent.

Then the WO W
†
±(H,H0; J) exists, also W

†
±(H0, H; J∗) exists and W

†,∗
± (H,H0; J) =

W
†
±(H0, H; J∗).

Proof . To prove the existence of W
†
±(H,H0; J), it is equivalent to prove the exis-

tence of the operator G †±(H,H0; J) for a.e. λ ∈ R, see definition (15). Using the

factorization (14), then for every z ∈ C such that the imaginary part of z, Im(z), is

different from zero,

(19) JhR0(z)−Rh(z)Jh = Rh(z)A∗hA0R0(z)

which implies

(20) J∗hRh(z) = R0(z)J∗h −R0(z)A∗0AhRh(z).
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Let z = λ± iε in (20), then for u0 ∈M0 and u ∈M we simplify

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉=
= π−1ε〈R0(λ± iε)u0, R0(λ± iε)J∗hu〉+
−π−1ε〈R0(λ± iε)u0, R0(λ± iε)A∗0AhRh(λ± iε)u〉

= 〈Jhθ0(λ, ε)u0, u〉 − 〈A0θ0(λ, ε)u0, AhRh(λ± iε)u〉.

(21)

Thus, the existence of G †±(H,H0; J) is equivalent to the existence of the limit

(22) lim
h→∞

lim
ε→0

(
〈Jhθ0(λ, ε)u0, u〉 − 〈A0θ0(λ, ε)u0, AhRh(λ± iε)u〉

)
.

Note that lim
ε→0
〈Jhθ0(λ, ε)u0, u〉 =

d

dλ
〈JhE0(λ)u0, u〉 for a.e. λ ∈ R, where E0 is the

spectral family of H0. Also condition (i) implies the existence of w−lim
ε→∞

A0θ0(λ, ε),

which together with condition (ii) imply the existence of the limit of the second scaler

product of (22) as ε→ 0. The limits as h→∞ also exist for the already found two

ε-limits by virtue of conditions (iii) and (iv). Therefore, for a.e λ ∈ R, the operator

G †±(H,H0; J) exists, which implies the existence of the WO W
†
±(H,H0; J). The exis-

tence of the WO W
†
±(H0, H; J∗) is a consequence of the existence of W

†
±(H,H0; J).

Moreover

〈W†,∗± (H,H0; J)u, u0〉 = 〈u,W†±(H,H0; J)u0〉
= 〈W†±(H,H0; J)u0, u〉∗

=
∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉 dλ

=
∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉∗ dλ

=
∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈J∗hRh(λ± iε)u,R0(λ± iε)u0〉 dλ

= 〈W†±(H0, H; J∗)u, u0〉.

(23)

This implies W
†,∗
± (H,H0; J) = W

†
±(H0, H; J∗) which ends the proof. �

The assertions of the previous theorem are still valid under some modifications of

its hypotheses, namely we have the following corollary.

Corollary 1. The assertions of Theorem 1 remain in force if its hypotheses (i)-(iii)

are replaced by the following; for a.e. λ ∈ R

(i) The operator A0θ0(λ, ε) is strongly convergent as ε→ 0.
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(ii) AhRh(λ± iε) is weakly convergent as ε→ 0 for all h > 0.

(iii) If Th is the weak limit of AhRh(λ ± iε) as ε → 0 obtained in (ii), then Th

converges weakly as h→∞.

Proof . The proof is similar to that of Theorem 1 and mainly depends on (21). �

Similar statement as that of Theorem 1 can be formulated as the following.

Theorem 2. Assume that

(i) For all h > 0, Ah is weakly Hh-smooth.

(ii) The operator A0R0(λ± iε) is strongly convergent as ε→ 0 for a.e. λ ∈ R.

(iii) If Th is the weak limit of Ahθh(λ, ε) as ε → 0 obtained in (i), then Th

converges weakly as h→∞ for a.e. λ ∈ R.

(iv) If Eh is the spectral family of Hh, Eh(λ) and Jh are weakly convergent for

a.e. λ ∈ R.

Then the WO W
†
±(H,H0; J) exists, also W

†
±(H0, H; J∗) exists and W

†,∗
± (H,H0; J) =

W
†
±(H0, H; J∗).

Proof . The proof is similar to that of Theorem 1, therefore we only prove the

existence of the WO W
†
±(H,H0; J). To complete the proof of the assertions, the

proof of Theorem 1 is considered. Using (19) with z = λ± iε, then for u0 ∈M0 and

u ∈M we have

(24)

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉 = 〈θh(λ, ε)Jhu0, u〉+ 〈A0R0(λ, ε)u0, Ahθh(λ, ε)u〉.

By (24), the existence of G †±(H,H0; J) is equivalent to the existence of

(25) lim
h→∞

lim
ε→0

(
〈θh(λ, ε)Jhu0, u〉+ 〈A0R0(λ, ε)u0, Ahθh(λ, ε)u〉

)
.

The first term, 〈θh(λ, ε)Jhu0, u〉, converges to
d

dλ
〈Eh(λ)Jhu0, u〉 ,as ε→ 0, for a.e.

λ ∈ R. By condition (iv), if E∞ and J∞ are the weak limits of Eh and Jh respec-

tively, then
d

dλ
〈Eh(λ)Jhu0, u〉 converges to

d

dλ
〈E∞(λ)J∞u0, u〉 as h→∞. Thus the

first term has a limit as both ε→ 0 and then as h→∞. Using conditions (i)− (iii),

the limit of the second scalar product exists as both ε → 0 and then as h → ∞.

Thus we conclude the existence of G †±(H,H0; J) for a.e. λ ∈ R, consequently the
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existence of the WO W
†
±(H,H0; J). �

The following corollary replaces some hypotheses of Theorem 2.

Corollary 2. The assertions of Theorem 2 remain in force if its hypotheses (i)-(iii)

are replaced by the following; for a.e. λ ∈ R

(i) For all h > 0, Ahθh(λ, ε) is strongly convergent as ε→ 0.

(ii) A0R0(λ± iε) is weakly convergent as ε→ 0.

(iii) If Th is the strong limit of Ahθh(λ, ε) as ε → 0 obtained in (i), then Th

converges weakly as h→∞.

Proof . The proof is straightforward by considering (24). �

In the coming discussion we mainly assume Theorems 1 and 2, while some of the

results below can be also proved depending on Corollaries 1 or 2 instead of Theorems

1 or 2 respectively.

Theorem 3. Let the hypotheses of Theorem 1 be satisfied, and let further J∗h and

Rh be strongly convergent. Then the WO W
†
±(H,H; JJ∗) exists and

(26) W
†
±(H,H0; J)W†,∗± (H,H0; J) = W

†
±(H,H; JJ∗).

Proof . First we prove (26), and the existence of W
†
±(H,H; JJ∗) will be a direct

consequence of it. Since, for all u0, v0 ∈ M0, lim
ε→0
〈θ0(λ, ε)u0, v0〉 =

d

dλ
〈E0(λ)u0, v0〉

for a.e. λ ∈ R, we have for u0 ∈M0 and u ∈M ,

(27) 〈u0, E0(M)W†,∗± u〉 =
∫

M
lim
h→∞

lim
ε→0
〈u0, θ0(λ, ε)W†,∗± u〉 dλ,

this is also due to the existence of W
†
± = W

†
±(H,H0; J). On the other hand

〈u0, E0(M)W†,∗± u〉 = 〈W†±E0(M)u0, u〉
=
∫

M
lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉 dλ.(28)

Thus we have the following equality

(29) lim
h→∞

lim
ε→0
〈u0, θ0(λ, ε)W†,∗± u〉 = lim

h→∞
lim
ε→0

π−1ε〈u0, R0(λ∓ iε)J∗hRh(λ± iε)u〉.
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By (29), the quantities θ0(λ, ε)W†,∗± u and π−1εR0(λ∓iε)J∗hRh(λ±iε)u are equivalent

in the limits first as ε→ 0 and then as h→∞. Note that by (14), (20), and defining

J εh = J∗h − V ∗hRh(λ± iε), we have

(30) J∗hRh(λ± iε) = R0(λ± iε)J εh
which provides

(31) π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉 = 〈θ0(λ, ε)u0, J
ε
hu〉.

Note that, by Theorem 1, lim
h→∞

lim
ε→0
〈θ0(λ, ε)u0, J

ε
hu〉 is well-defined. Also, by the

strong convergence of J∗h and Rh, the limit lim
h→∞

lim
ε→0
〈R0(λ ∓ iε)J∗hRh(λ ± iε)v, J εhu〉

is well-defined. Now, by the existence of the WO W
†
±, and assuming that u0 =

W
†,∗
± v in (31) with v ∈ M , we have using the notation Kh,ε(u, v) = π−1ε〈JhR0(λ±

iε)W†,∗± v,Rh(λ± iε)u〉 and the equality (29),

lim
h→∞

lim
ε→0

Kh,ε(u, v) = lim
h→∞

lim
ε→0
〈θ0(λ, ε)W†,∗± v, J

ε
hu〉

= lim
h→∞

lim
ε→0

π−1ε〈R0(λ∓ iε)J∗hRh(λ± iε)v, J εhu〉
= lim

h→∞
lim
ε→0

π−1ε〈J∗hRh(λ± iε)v, J∗hRh(λ± iε)u〉
= lim

h→∞
lim
ε→0

π−1ε〈JhJ∗hRh(λ± iε)v,Rh(λ± iε)u〉.

(32)

Therefore

〈W†±W
†,∗
± v, u〉 =

∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)W†,∗± v,Rh(λ± iε)u〉 dλ

=
∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈JhJ∗hRh(λ± iε)v,Rh(λ± iε)u〉 dλ

= 〈W†±(H,H; JJ∗)v, u〉.

(33)

Thus, the proof is complete. �

The existence of W
†
±(H0, H0; J∗J) is summarized in the following theorem.

Theorem 4. Let the hypotheses of Theorem 2 be satisfied, and let Jh be strongly

convergent. Then the WO W
†
±(H0, H0; J∗J) exists and

(34) W
†,∗
± (H,H0; J)W†±(H,H0; J) = W

†
±(H0, H0; J∗J).

Proof . We establish the proof of the equality (34), and the proof of the existence of

the WO W
†
±(H0, H0; J∗J) will be a consequence of (34) as indicated in the proof of
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Theorem 3. By condition (iv) of Theorem 2 and since the WO W
†
± = W

†
±(H,H0; J)

exists,

(35) 〈E∞(M)W†±u0, u〉 =
∫

M
lim
h→∞

lim
ε→0
〈θh(λ, ε)W†±u0, u〉 dλ.

for u0 ∈M0 and u ∈M . Also by the definition of W
†
±

(36) 〈E∞(M)W†±u0, u〉 =
∫

M
lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉 dλ.

Thus the following equality holds

(37) lim
h→∞

lim
ε→0
〈θh(λ, ε)W†±u0, u〉 = lim

h→∞
lim
ε→0

π−1ε〈Rh(λ∓ iε)JhR0(λ± iε)u0, u〉.

According to (37), the quantity θh(λ, ε)W†±u0 is equivalent in the limits to the quan-

tity π−1εRh(λ ∓ iε)JhR0(λ ± iε)u0 first as ε → 0 and then as h → ∞. Define

I ε
h = Jh + VhR0(λ± iε), then by virtue of (14) and (19) the following is obtained

(38) π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉 = 〈I ε
hu0, θh(λ, ε)u〉.

Note that the hypotheses of Theorem 2 imply the existence of lim
h→∞

lim
ε→0
〈I ε

hu0, θh(λ, ε)u〉,
thus, by also the strong convergence of Jh, the limits in (39) and (40) are well-defined.

Let now u = W
†
±v0 in (38), and consider the limit first as ε→ 0 and then as h→∞,

then using (14) and (37) we arrive at

lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)W†±v0〉 =

= lim
h→∞

lim
ε→0

π−1ε〈J∗hJhR0(λ± iε)u0, R0(λ± iε)v0〉.
(39)

Therefore

〈W†,∗± W
†
±u0, v0〉 = 〈W†±u0,W

†
±v0〉

=
∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)W†±v0〉 dλ

=
∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈J∗hJhR0(λ± iε)u0, R0(λ± iε)v0〉 dλ

= 〈W†±(H0, H0; J∗J)u0, v0〉.

(40)

Thus the proof of the theorem is complete. �

Theorem 5. If both W
†
± = W

†
±(H,H0; J) and W̃ †± = W̃ †±(H,H0; J) exist, then

they coincide with each other. This coincidence is understood of the corresponding

sesquilinear forms.



14 HASAN ALMANASREH

Proof . Recall the definition of the WO W̃ †± = W̃ †±(H,H0; J) given by (17) as

(41) W̃ †±(H,H0; J) = w−lim
h→∞

w−lim
t→±∞

P
(ac)
h Uh(−t)JhU0(t)P (ac)

0 .

By the existence of W̃ †±, we can replace w−lim
t→±∞

by its equivalent weak Abelian limit

(see e.g. [9, 12]) as

(42)

w−lim
t→±∞

P
(ac)
h Uh(−t)JhU0(t)P (ac)

0 = w−lim
ε→0

∫ ∞

0
2ε e−2εtP

(ac)
h Uh(∓t)JhU0(±t)P (ac)

0 dt.

By the definition of W̃ †± we have

(43) 〈W̃ †±(H,H0; J)u0, u〉 = lim
h→∞

lim
t→±∞

〈P (ac)
h Uh(−t)JhU0(t)P (ac)

0 u0, u〉,

where u0 and u belong respectively to H0 and H . By (42) the right hand side of

(43) can be transformed equivalently to

(44) lim
h→∞

lim
ε→0

2ε
∫ ∞

0
e−2εt〈JhU0(±t)P (ac)

0 u0, Uh(±t)P (ac)
h u〉 dt

which can be written as

(45) lim
h→∞

lim
ε→0

∫ ∞

0
2ε〈Jhe−εtU0(±t)P (ac)

0 u0, e
−εtUh(±t)P (ac)

h u〉 dt.

Let F denote the Fourier transform operator, (Ff)(λ) = (2π)−1/2

∫ ∞

−∞
e−iλtf(t) dt,

then by 〈f(t), g(t)〉 = 〈(Ff)(λ), (Fg)(λ)〉, (45) is equivalent to

(46) lim
h→∞

lim
ε→0

∫ ∞

−∞
2ε〈Jh(F e−εtU0(±t))P (ac)

0 u0, (F e−εtUh(±t))P (ac)
h u〉 dλ.

Using the identities

(47)

R0(λ± iε) = ±
∫ ∞

−∞
e(iε±λ)itU0(±t) dt and Rh(λ± iε) = ±

∫ ∞

−∞
e(iε±λ)itUh(±t) dt

we write (46) as

(48) lim
h→∞

lim
ε→0

∫ ∞

−∞
π−1ε〈JhR0(λ± iε)P (ac)

0 u0, Rh(λ± iε)P (ac)
h u〉 dλ.

Note that the integrand of (48) is in L1(R; dλ) for all h > 0 and all ε > 0. Also By

the existence of the WO W
†
±, the limits firstly as ε → 0 and then as h → ∞ of the

integrand exist. Thus using Lebesgue dominated convergence theorem we can move
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the limits with respect to ε first and then h under the integral sign in (48). Hence

(48) can be written equivalently as

(49)
∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)P (ac)
0 u0, Rh(λ± iε)P (ac)

h u〉 dλ.

Remark 3 part (ii) implies that (49) is equivalent to

(50)
∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉 dλ = 〈W†±(H,H0; J)u0, u〉,

and this ends the proof. �

Similar to Theorem 5, it is clear that if W
†
±(H0, H; J∗) and W̃ †±(H0, H; J∗) exist,

then their corresponding sesquilinear forms are equivalent to each other. The same

argument can be drawn for the pair W
†
±(H,H; JJ∗) and W̃ †±(H,H; JJ∗) and the pair

W
†
±(H0, H0; J∗J) and W̃ †±(H0, H0; J∗J).

For the WOs W̃ †±(H,H0; J) and W̃ †±(H0, H; J∗) we use the following result.

Proposition 1. Let M1 and M2 be dense linear manifolds in the Hilbert spaces

H1 and H2 respectively, and let H1 and H2 = H1 + V be self-adjoint operators in

H1 and H2 respectively, where V is some admissible perturbation. Suppose that

for a.e. λ ∈ R, w−lim
ε→0

A1θ1(λ, ε)u1 and w−lim
ε→0

A2θ2(λ, ε)u2 exist for all u1 ∈M1 and

u2 ∈M2, where A∗2A1 = H2J− JH1 = V , J : H1 →H2 is a bounded identification,

and A2 : H2 → H and A1 : H1 → H are respectively H2-bounded and H1-bounded

operators, then the WO W̃±(H2, H1; J) exists.

Proof . See [12]. �

Lemma 1. Suppose that the hypotheses of Theorem 1 are satisfied, then the WO

W̃ †±(H,H0; J) exists, consequently W̃ †±(H0, H; J∗) exists and

(51) W̃ †,∗± (H,H0; J) = W̃ †±(H0, H; J∗).

Proof . By conditions (i) and (ii) of Theorem 1, and according to Proposition 1, the

WO W̃±(Hh, H0; Jh) exists for all h > 0. By the existence of the WO W
†
±(H,H0; J),

the following limit is well-defined

(52)
∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈JhR0(λ± iε)u0, Rh(λ± iε)u〉 dλ,
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where u0 ∈ M0 and u ∈ M . Following the proof of Theorem 5 but in the reverse

way, the existence of (52) implies the existence of the following limit

(53) lim
h→∞

lim
ε→0

2ε
∫ ∞

0
e−2εt〈JhU0(±t)P (ac)

0 u0, Uh(±t)P (ac)
h u〉 dt.

Since the WO W̃±(Hh, H0; Jh) exists, then by (42) the following limit also exists

(54) lim
h→∞

lim
t→±∞

〈P (ac)
h Uh(−t)JhU0(t)P (ac)

0 u0, u〉,

consequently the existence of the WO W̃ †±(H,H0; J).

The conditions of Theorem 1 can be applied for the collection H0, Hh, and J∗h in

Lemma 2 to prove the existence of W̃ †±(H0, H; J∗). Clearly that the equality (51) is

a direct consequence of the definition of the weak WO. �

Lemma 2. The assertions of Lemma 1 remain in force if its hypotheses are replaced

with the hypotheses of Theorem 2.

Proof . The proof is similar to that of Lemma 1. �

Theorem 6. Suppose the hypotheses of Theorem 3 are satisfied, then the WO

W̃ †±(H,H; JJ∗) exists.

Proof . First we prove the existence of W̃±(Hh, Hh; JhJ∗h) for all h > 0. In this

regard, let u, v ∈ X, then by virtue of (14)

〈(HhJhJ
∗
h − JhJ

∗
hHh)u, v〉 = 〈(HhJhJ

∗
h − JhJ

∗
hHh + JhH0J

∗
h − JhH0J

∗
h)u, v〉

= 〈Jh(H0J
∗
h − J∗hHh)u, v〉 − 〈(JhH0 −HhJh)J∗hu, v〉

= 〈VhJ∗hu, v〉 − 〈JhV ∗h u, v〉
= 〈A∗hA0J

∗
hu, v〉 − 〈JhA∗0Ahu, v〉

= 〈A∗h(A0J
∗
h)u, v〉 − 〈(A0J

∗
h)∗Ahu, v〉.

(55)

Hence, we have the equality

(56) HhJhJ
∗
h − JhJ

∗
hHh = A∗h(A0J

∗
h)− (A0J

∗
h)∗Ah.

Using the representation (56), we apply Proposition 1 to the collection Hh, Hh, and

JhJ
∗
h. By Condition (ii) of Theorem 1, the operator Ah is weakly Hh-smooth for

all h > 0. What remains to prove is the weak Hh-smoothness of Ǎh = A0J
∗
h for all

h > 0. Apply A0 to both sides of (20) provides

(57) ǍhRh(z) = A0R0(z)J∗h −A0R0(z)A∗0AhRh(z).
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Thus, for u ∈M , we get for a.e. λ ∈ R

ε1/2‖ǍhRh(λ+ iε)u‖H ≤ ε1/2‖A0R0(λ+ iε)‖H ‖J∗hu‖H +

+‖A0R0(λ+ iε)A∗0‖H ‖AhRh(λ+ iε)u‖H
≤ C(λ).

(58)

Note that the boundedness in (58) by C(λ) is due to the hypotheses of Theorem 1

and the H0-boundedness of A0. This proves the existence of W̃±(Hh, Hh; JhJ∗h) for

all h > 0.

To prove the existence of W̃ †±(H,H; JJ∗) we use the same technique as of Lemma 1.

By the hypotheses of Theorem 1, the WO W
†
±(H,H; JJ∗) exists, thus the following

limit is well-defined

(59)
∫ ∞

−∞
lim
h→∞

lim
ε→0

π−1ε〈J∗hRh(λ± iε)u, J∗hRh(λ± iε)v〉 dλ,

where u, v ∈ M . By the existence of (59), and as a result of the proof of Theorem

5, the following limit is also well-defined

(60) lim
h→∞

lim
ε→0

2ε
∫ ∞

0
e−2εt〈J∗hUh(±t)P (ac)

h u, J∗hUh(±t)P (ac)
h v〉 dt.

Since the WO W̃±(Hh, Hh; JhJ∗h) exists for all h > 0, by virtue of (42) the following

limit exists

(61) lim
h→∞

lim
t→±∞

〈P (ac)
h Uh(−t)JhJ∗hUh(t)P (ac)

h u, v〉,

thus the existence of W̃ †±(H,H; JJ∗). �

Theorem 7. Suppose the hypotheses of Theorem 4 are satisfied, then the WO

W̃ †±(H0, H0; J∗J) exists.

Proof . The proof is similar to that of Theorem 6. �

Theorem 8. If the hypotheses of Theorem 4 are satisfied, then the WOW †±(H,H0; J)

exists.

Proof . By Theorem 7 which assumes Theorem 4, the WO W̃ †±(H0, H0; J∗J) exists.

Also Theorem 4 assumes the hypotheses of Theorem 2 which imply the existence

of W
†
±(H,H0; J) and W

†
±(H0, H; J∗). By Lemma 2 the WOs W̃ †±(H,H0; J) and

W̃ †±(H0, H; J∗) exist, and W̃ †,∗± (H,H0; J) = W̃ †±(H0, H; J∗). Moreover, by Theorem

4, the WO W
†
±(H0, H0; J∗J) exists and equality (34) holds. Applying Theorem 5
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which implies the equivalence between the stationary WO W
†
± and the weak WO

W̃ †±, together with (34) we arrive at

(62) W̃ †,∗± (H,H0; J)W̃ †±(H,H0; J) = W̃ †±(H0, H0; J∗J).

Let W̃ †± = W̃ †±(H,H0; J) and P
(ac)
∞ = lim

h→∞
P

(ac)
h , then by the existence of W̃ †± we

have

lim
h→∞

lim
t→±∞

Re〈(P (ac)
∞ − P (ac)

h )Uh(−t)JhU0(t)P (ac)
0 , W̃ †±u0〉

≤ lim
h→∞

lim
t→±∞

‖Uh(−t)JhU0(t)P (ac)
0 ‖H ‖(P (ac)

∞ − P (ac)
h )W̃ †±u0‖H

→ 0.

(63)

Without loss of generality we assumeRe〈(P (ac)
∞ −P (ac)

h )Uh(−t)JhU0(t)P (ac)
0 , W̃ †±u0〉 ≥

0, therefore in the limits first as t→ ±∞ and then as h→∞ we have the equality

(64) Re〈P (ac)
h Uh(−t)JhU0(t)P (ac)

0 , W̃ †±u0〉 = Re〈P (ac)
∞ Uh(−t)JhU0(t)P (ac)

0 , W̃ †±u0〉.

Now, for u0 ∈H0,

lim
h→∞

lim
t→±∞

‖Uh(−t)JhU0(t)P (ac)
0 u0 − W̃ †±u0‖2H =

= lim
h→∞

lim
t→±∞

〈P (ac)
0 U0(−t)J∗hJhU0(t)P (ac)

0 u0, u0〉+
− lim
h→∞

lim
t→±∞

2Re〈Uh(−t)JhU0(t)P (ac)
0 u0, W̃

†
±u0〉+ ‖W̃ †±u0‖2H

= lim
h→∞

lim
t→±∞

〈P (ac)
0 U0(−t)J∗hJhU0(t)P (ac)

0 u0, u0〉+
−2‖W̃ †±u0‖2H + ‖W̃ †±u0‖2H

= 〈W̃ †±(H0, H0; J∗J)u0, u0〉 − ‖W̃ †±u0‖2H .

(65)

By (62), 〈W̃ †±(H0, H0; J∗J)u0, u0〉 = ‖W̃ †±u0‖2H , thus the last equality is equal to

zero. Note that we have used the fact that P (ac)
∞ W̃ †± = W̃ †± together with (64)

to get the second term of the equality before the last one. Therefore, and as a

consequence of (65), s−lim
h→∞

s−lim
t→±∞

Uh(−t)JhU0(t)P (ac)
0 exists, i.e., the existence of

the WO W †±(H,H0; J). �

Theorem 9. Assume the hypotheses of Theorem 3. Then the WO W †±(H0, H; J∗)

exists.

Proof . The proof is similar to that of Theorem 8 but now using the assertions of

Theorem 3, Lemma 1, and Theorem 6 instead of those of Theorem 4, Lemma 2, and



EXISTENCE AND ASYMPTOTICS OF WAVE OPERATORS 19

Theorem 7 respectively. �

It is worth to mention that the equality in the limits of both sides of (64) in the

proof of Theorem 8 is not needed in the proof of Theorem 9. This is because (64) is

needed to guarantee the equality

(66)

lim
h→∞

lim
t→±∞

Re〈Uh(−t)JhU0(t)P (ac)
0 u0, W̃

†
±(H,H0; J)u0〉 = ‖W̃ †±(H,H0; J)u0‖2H .

In a similar way to the proof of Theorem 8, in the proof of Theorem 9 we have the

following term instead

(67) lim
h→∞

lim
t→±∞

Re〈U0(−t)J∗hUh(t)P (ac)
h u, W̃ †±(H0, H; J∗)u〉,

where u ∈ H . By the fact that W̃ †±(H0, H; J∗) = P
(ac)
0 W̃ †±(H0, H; J∗), then as a

direct consequence, (67) is equal to ‖W̃ †±(H0, H; J∗)u‖2H0
.

Once the existence of the WOs W †±(H,H0; J) and W †±(H0, H; J∗) is established,

the remaining question is to characterize these operators as h → ∞. In other

words, we would like to study the asymptotic behavior as h → ∞ of the WOs

W±(Hh, H0; Jh) and W±(H0, Hh; J∗h). To this end, by the existence of W †±(H,H0; J),

for all h > 0 and u0 ∈ X0, the function

(68) Tu0,h(t) = ‖(Hhφ(Hh)Jhφ(H0)− φ(Hh)JhH0φ(H0))U0(t)u0‖H

is in L1([−∞,∞); dt) for some continuous function φ : R → R such that xφ(x) is

bounded on R, see [1]. This means that for any ε > 0, there exist s1, s2 ∈ R such

that
∫ ∞

s1

Tu0,h(t) dt ≤ ε and
∫ s2

−∞
Tu0,h(t) dt ≤ ε.

Similarly, by the existence of W †±(H0, H; J∗), for a function φ as above, and for

all h > 0 and u ∈ X, the function

(69) Su,h(t) = ‖(H0φ(H0)J∗hφ(Hh)− φ(H0)J∗hHhφ(Hh))Uh(t)u‖H0

belongs to L1([−∞,∞); dt). This also implies that for any ε > 0, there exist r1, r2 ∈
R such that

∫ ∞

r1

Su,h(t) dt ≤ ε and
∫ r2

−∞
Su,h(t) dt ≤ ε. Therefore by (68) and (69),

and according to [4], if Hh → H∞ in the strong resolvent sense (SRS), Jh → J∞
strongly, and J∗h → J∗∞ strongly, then s−lim

h→∞
and s−lim

t→±∞
are interchangeable in
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the definition of the WOs W †±(H,H0; J) and W †±(H0, H; J∗). Thus we can state the

following results.

Proposition 2. Assume the assertions of Theorems 8 and 9. Suppose that Hh =

H0 + Vh converges in the SRS to H∞ = H0 + V∞, where Vh and V∞ are H0-

bounded operators. Let Jh = I, then W †±(H,H0) = W±(H∞, H0) and W †±(H0, H) =

W±(H0, H∞).

Also for an identity identification we have the following

Proposition 3. Assume the assertions of Theorems 8 and 9. Suppose that Hh =

H0 + A∗hA0 where Ah is Hh-bounded for all h > 0 and A0 is H0-bounded, and

suppose that ‖A0‖ < ∞, sup
h
‖Ah‖ < ∞, and lim

h→∞
‖Ah‖ = 0, then W †±(H,H0) = I,

also W †±(H0, H) = I.

In fact instead of strong convergence in Proposition 2 we have uniform convergence

of the WO W±,h, i.e., given the hypotheses of Proposition 2, then W±(Hh, H0)

and W±(H0, Hh) converge in norm to the identity operator. For a non-identity

identification Jh, we have the following

Proposition 4. Assume the assertions of Theorems 8 and 9. Suppose that Hh =

H0 +Vh converges in the SRS to H∞ = H0 +V∞, where Vh and V∞ are H0-bounded

operators. If the identification Jh converges strongly to J∞, then W †±(H,H0; J) =

W±(H∞, H0; J∞). Also if J∗h converges strongly to J∗∞, then W †±(H0, H; J∗) =

W±(H0, H∞; J∗∞).
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