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v Why the Finite Element Method?

» Finite element method provides a greater
flexibility to model complex geometries than finite

difference and finite volume methods do.

> The construction of higher order approximati'on



Basic Principles of FEM

» Finding a variational formulation of the problem:

= Integrating by parts in order to decease the
number of differentiations involved, thereby
decreasing the smoothness demands on u.

= Retaining only the essential (Dirichlet ) boundary
conditions.

» Approximating the solution by a finite number of
degrees of freedom, I.e. within a finite
dimensional space V.

» Choosing basis functions, e.g. in V, that are
locally supported (vanish on most of the domain):



One Dimensional Example

We consider

THE STRONG OR DIFFERENTIAL PROBLEM (D)

L T and e ),

dzx

e By Integrating twice, we can see that this
problem has a unique solution



The Sobolev Space

e Define
V= H{(@0,1)={v e H'(0,1) : v(0) = v(1) =0}

where
e We define the space H1(I) as follows:

Hl(f) ={v: vand v € Ls(])}

o We associate F'(]) with the scalar product:

(v, w)Hl(I] T f; [vw + v'u|dz

e The corresponding norm is:

kuﬂl[fj == (l[ﬂ2+{ﬂ,}g]dz)1fﬂ




Variational Formulation

« Multiplying both sides of (D) by any function|v € ¥

yields N | -
f fudz = —f u"vdz
o | s

Integrating by part +

e Find u such that

fﬁ"ﬁ f“‘“  YeeV. (VF)



Variational Formulation
* Note that (D) Is equivalent to (VF). (%)

e \With the notations

1
ﬂ(u,w}:f u'v'dz,
0

and |

)= | 7

(*) can be written as:

Find u such that a(u,v)=L(v) for all admissible v
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Uniqueness & Existence Theorem

Thm.(Lax-Milgram ) Let a(.,.) be a bilinear form on a Hilbert
space # equipped with ||-||ﬁ and the following properties:

» al(.,.)Is continuous, that is
Im >0 such that |a(w,v)| < 1||lw|xy|v|y Yw,veH,

> a(.,.) Is coercive (or H-elliptic), that IS
Ja>0 suchthat ofv,v) > “H”H‘?{: YweH.
Further
» L(.)is a linear mapping on  ,that is
> 0 et (T < il Ve EH.

Then there exist a unique e H such that

o{w,n) = L{w), VYweH. )




Example

® a(.,-) is obviously symmetric and bilinear and L is linear.

e The continuity of L is shown using the Cauchy inequality in Lo:
L(v)| < | frede < | fllz@lv @ < | fllza@llv]are)

e The continuity of a(., .) is shown as follows:

(v, w)| <[V ypllwllzary < M1olagcnllewll g

e The V —elliptic condition for af.,.) can be shown using the fact that
pvide < p(v')’dz Vv e Hy(I)

Z=

o a(v,v) = ij(v')*dz > (5 v’dz + 5 (v')*dz) = 1H1:r||H&(I]j Vv e H(I).
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Interval Partition (FEM)

» Construct a finite-dimensional subspace V, C V as follows:
» For a given interval I = [0, 1] let

T-;;ZI]=:I?{]<:$1<::I:2{ {::‘UM+1 1?

be a partition of [ into intervals I; = (z;_1,x;) of
length h; = ; — x;_1.

0=mzg T] T3 T3 Tj—1 Ti Ti+1 el it i ==

o The quantity h = max; h; is a measure of how fine the partition is.
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Finite Element Space

= | et V;, be a set of functions» such that:

e v IS linear on each subinterval [ 5

¢ v is continuous on |0, 1] and

e v(0) =v(1) =0.
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Continuous piecewise linear basis function

e A function v € Y, has the repreéentatiﬂn:
o(z) == m ¢i(z), z € [0,1], where:

e 1, = v(z;) and

® $j(w3) = 0y

Loy =2y Sy _
{0 Tl R N

e The space V is a linear space of dimension M with basis {¢; }12;.

®j 4
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Finite Element Approximation

* The problem (VF) Is reduced to

Find wux € Vi, such that
a(up,v) = L(v), Yu € Vg,

. Whére
o un(z) ==, €6i(z), with

o {; = uy(x;) (nodal values of u(z)).

(Va)
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Linear system of Equations

(Vi):  Finduy € Vasuch that (u, @) = (f,é:), i =1,2,..., M.

We ﬁnaﬂy obtain the fDllDWlIlg linear system of equatmns
& () = (.6, i=12...,M

e This Is equivalent to the system A =Db, where

o A= (mj) is the M x M stiffness matrix with a;; = - 0)) / ¢\(z)
o b=(b;) is the force vector with: b; = (f,¢;) / f¢, (z)dz and
o { = (&) is the solution vector with: & =uy(z;), i=12,...,M.
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Properties of the Stiffness matrix A

e A is symmetric, A;; = Ay, (¢},¢)) = (¢,¢5), 1,7=12,..., M.

e A is sparse (i.e. only a few elements of A are nonzero)

(i) = oHip i=120,M.

( .;" .; 1) ( =i ?qblr) jl :2 ' ,r+,1 Pul

(05 @) =0l i alin T e o /W\

Ti-2 Ti-1 Ti Ti4l Tit2
e A is positive definite. Indeed for ¥ 1 € RM we obtain:

| tAT? o I"'a:—l Ej 171'?14137?3 . Ez ].Ej 17?1( ;:l qﬁ;)ﬂ?
b ( il ’!}'3(}5:? =1 ?}'th‘f’;) (T" U) > 01 s EzEl ﬂiqf’i(m)'
Also, 5An=0onlyifn;=0,57=1,..., M.
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Properties of the Stiffness matrix A

e Since A is a positive definite matrix, we conclude that A is nﬂn-singular_

o It follows that the system A€ = b has a unique solution.
pracl 2

e For the particular case of h; = h = the system A£ = b becomes:

M+1!
e RS e oA e
L S i R |
Y i 0 B R e
BT e SRR G
h : : : : )
- Jihy S Ly
0 0°0 0-1 2||&x| |bu
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v The Coupled Problem

t>10

z: if (u ]:EI,_ m‘,}ﬂ,_
gtu | ifL[u}:ﬂ, gl
» Initial Condition
u(z,0) =uo(z), zER,
» Coupling Condition
u(0,t) =u’(t), t>0

t >0,
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Coupled problem

1 One dimensional example

iL=arn, in—ogu;
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Coupled problem

> ar <0, ap >
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Coupled problem

» ap >0 ag < (0

ar, >0

In general
> fr) <0 &  Z(frw) <0
> fLw)>20 & Z(fi(w)=>0
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v Sd-Formulation

e We consider

S hWe =0, (@)eR=R,x (1),
“‘{Iu u:‘ — Uy, (ﬂ::t} €flp =R, X {ﬂ}'.l
w00=s,  (z)el=[0}x0OT),

with T is a given final time value and

) <0 & Z(faw) <0

(1)

22



Space-time discretization

Let {0 =ty <t; <. <ty =T} be a partition of I = (0, T)
into I, = (ty, tns), With time steps k, =1, —t,,

and introduce the corresponding space-time “-S]El,bﬁﬂ, Le.,

S,={58):2>0, ta<t<turl, n=0L..,N-1
{ _ _ _

Figure: .Sﬁace—ﬁme discretization. | 23



Space-time discretization
For each slab Sy, let zi' be a mesh on R,
portioned in intervals J* = (£ ., z7), with h? = z? — 2®

=11 % —1-

For > 0, let T be a triangulation of the slab S, into triangles K,

satisfying | quasi-uniformity conditicns | for finite element meshes

t:1 \ / - } S,

Figure 3.1: The space-time triangulation.
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Finite element spaces

* Let k be a positive integer, introduce
Up={ueH'(S:):u|, € B(K), KeTg},

e Define the trial & test function spaces

Vi ={v e Uy : v|. = w},

Wy = {w e Uy :w‘ = 0},

I’
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Some notations

(woha= [ wdsdt, [l = w,0),

< u,w}ﬂ:f u(z,t,)u(z, 1, )dz, 1], =< v,v }14’2
Ry

TR Eri]fr_lﬂJr viz,t+s), v_= ﬂ_ﬂ{:ﬂ’t + 3).

1l = e Mee=llew@

|-lls@ = || lz=10)
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Space-time Sd Formulation

> Find u € H'(Q) with u|p = «”, such that

(v e, ), [ %,

S fubﬂdﬂ'dt, Vv € Hy(9Q),
r
> Forn=0,1,...,N —1find v € H'(S,), such that

(1 + Frlu)ua, v+ 60 + fofupee) + S (3)

—I—/uvdadt: < U, Vs > +/uhuda'dt, Vv € H(S,).
2 | i | |
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Continue...

» After summing over n, we rewrite (3) as follows

> Find u €[], HY(S,), such that

N1 (4)
B(u,v) =L(v), Yve [] Hi(S.),
where
N-1
B(u0) = Y { (s ol o480 o)) + < wemmyoe o+ [ v,

L{v) =< ug, vy >y -I—fubiq_dt.
r
28



Continue ...

and finally
> Find o € V", such that for n=0,1,...,N —1

(“ht T fR(“h]“hmﬂh ‘|"5("”h¢‘|‘ fﬂ[“ﬁ)”hm)) ‘|‘ <y Uh }ﬂ

_|_f “h,+'”h,+dt =< uh!_,ﬂh# o —|—f U *uh _|_dt Yo, € W,

i n

(5)

where
d = Ch Fn B {{]]" bt In.

and uy _ = u is the initial data
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Continue ...

» After summing over n, we have

N-1

N-1
=[]V Wa= [ Wh
n=10

n=0

We shall seek an approximate solution uy € Vj, such that for n =0,1,... N
we will have that up, |s.= u}.

Functions In V¥, are continuous In X & discontinuous In t

> Define

17 if e = 0
ety =— { u::— v_, ;fn 2=

30




Continue ...

Summing (5) over n=0,1,...,N-1, we get the following
analogue to (4)

» Find uy € Vj, such that

Bl )= E6),  VieW " (B)
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Basic Stability Estimates for the Sd-method

» Thm. Foruce HHN:_HIHI(S“) , and with the assumptions fi(u) <0, and

%(ﬁg(u]) < 0, we have that

B(u,u) = |||ull|*

where
S i | i
]| =5 |ﬂ—|§f+|ﬂ+lg+z|[H]|ﬁ+95||ﬂt+f&(u)ﬂm||ﬁ + |lut |-
_ B _ Nl | £ P
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A priori Error Estimate for the Sd-method

To do this introduce Interpolant T = V, of exact solution U
and set

??:“_Ihu £ = up — Lpu.
Then we have

e =u—u, = (u—Thu) - ( —Thu) =n-§

33



Continue ...

Theorem [fuy, € V; satisfies (6) and the ezact solution u satisfies (1) ,
and further |

|fallon <€,
then there 1s a constant C' such that

1
|lu — unl]] < CR*T 7 ||u|ks1.0-
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Numerical Example

fatul=ngu to="5L 1)

Ui + aguy = 0, r >0, t =0,

U+ ar, =0, <% ] 1 t >0,
| u[::'-'":ﬂ} s ﬂﬂ[::':}: | = [_ﬂ’:.ﬂ‘]:
u(—a, t) = g(t), t >0,
- ula, t) =R ' | e B R

where a>0. This problem has the explicit solution

. T — agt), e (0,a
Ll { EE:{: - ﬂij].l, T : E—ﬂ;,,]l]}
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Test problem 1

Wt =0 et B S 250 U IERREE oot B 8
D i —0; P A el e i
SR 054 = if —05<z<0.5
u(r,0) = 0 if o.w

with the boundary conditions

u(—1,t) = u(l,¢) =0.
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Test problem 2

u+3u, =0, -1<z<0 t>0
Sl s B b

iy g =,

with the following initial condition

- B s
IRV A B i B b e s
| e B i

and boundary condition

u(—1,t) = u(l,t) =0

39



t=0.001

1.2

0.8}
06}
04Ff
0.2}

-0.2

1.2

=D

0.5

[ N

t=0.100

0.8}
0.6]
0.4}
0.2}

—0.2

-05

t=0.025

1.2

0.8}
06}
0.4f
0.2}

—0.2

0.5

[as N 1

—-0.5

t=0.250

0.6

0.5}
0.4}
0.3}
0.2}
0.1}

—0:1




t=0.001 t=0.025
1.5 T 1.5 T
1 o -
0.5} 1 = 05}
05 , . - 0.5 . : :
=1 —0.5 0] 0.5 1 = -0.5 0 05
X X
t=0.100
1.5 r 1.5
11
11 d
0.5F
0.5F - = 0
-0.5
0 —
=
-1 -0.5 0 0.5 1 -1 -0.5 0 05



© Thamkyow



