Streamline Diffusion Method for **Coupling of two Hyperbolic Conservation Laws** M. Izadi August 20, 2005

Institute for Advance studies in Basic Sciences

The Plane

- Review of Finite Element Method (FEM)
- The Coupled Problem
- Streamline-Diffusion Formulation
- A priori Error Estimates for Sd-Method
- Numerical Examples

Why the Finite Element Method?

Finite element method provides a greater flexibility to model complex geometries than finite difference and finite volume methods do.

The construction of higher order approximation

Basic Principles of FEM

- Finding a variational formulation of the problem:
- Integrating by parts in order to decease the number of differentiations involved, thereby decreasing the smoothness demands on u.
- Retaining only the essential (Dirichlet) boundary conditions.
- Approximating the solution by a finite number of degrees of freedom, i.e. within a finite dimensional space V.
- Choosing basis functions, e.g. in V, that are locally supported (vanish on most of the domain)⁴

One Dimensional Example

We consider

$$-u''(x) = f(x), \quad 0 < x < 1$$

 $u(0) = u(1) = 0$

THE STRONG OR DIFFERENTIAL PROBLEM (D)

$$u' = \frac{du}{dx}$$
 and $f \in L_2(0,1)$,

 By integrating twice, we can see that this problem has a unique solution

The Sobolev Space

• Define $\mathcal{V} = H^1_0(0,1) = \{ v \in H^1(0,1) : v(0) = v(1) = 0 \}$ where

We define the space H¹(I) as follows: H¹(I) = {v : v and v' ∈ L₂(I) }
We associate H¹(I) with the scalar product: (v, w)_{H¹(I)} = ∫_I[vw + v'w']dx
The corresponding norm is: ||v||_{H¹(I)} = (∫_I[v² + (v')²]dx)^{1/2}

Variational Formulation

Multiplying both sides of (D) by any function v ∈ V yields

$$\int_0^1 fv dx = -\int_0^1 u'' v dx$$

Integrating by part) +

B.C.

• Find u such that

$$\int_0^1 f v dx = \int_0^1 u' v' dx, \quad \forall v \in \mathcal{V}. \quad (VF)$$

Variational Formulation

- Note that (D) is equivalent to (VF). (*)
- With the notations $a(u,v) = \int_{0}^{1} u'v' dx,$ and $L(v) = \int_{0}^{1} fv dx,$

(*) can be written as:

Find u such that a(u,v)=L(v) for all admissible v

Uniqueness & Existence Theorem

Thm.(Lax-Milgram) Let a(.,.) be a bilinear form on a Hilbert space \mathcal{H} equipped with $\|.\|_{\mathcal{H}}$ and the following properties: \succ a(.,.) is continuous, that is $\exists \gamma_1 > 0 \quad such that \quad |a(w,v)| \leq \gamma_1 ||w||_{\mathcal{H}} ||v||_{\mathcal{H}} \quad \forall w,v \in \mathcal{H},$ \succ a(.,.) is coercive (or H-elliptic), that is $\exists \alpha > 0$ such that $a(v, v) \ge \alpha \|v\|_{\mathcal{H}}^2$, $\forall v \in \mathcal{H}$. Further \succ L(.) is a linear mapping on \mathcal{H} , that is

 $\exists \gamma_2 > 0 \quad \text{such that} \quad |L(w)| \leq \gamma_2 ||w||_{\mathcal{H}}, \quad \forall w \in \mathcal{H}.$ Then there exist a unique $u \in \mathcal{H}$ such that

 $a(w,u) = L(w), \quad \forall w \in \mathcal{H}.$

Example

• a(.,.) is obviously symmetric and bilinear and L is linear.

- The continuity of L is shown using the Cauchy inequality in L_2 : $|L(v)| \leq |\int_{\Omega} f v dx \leq ||f||_{L_2(\Omega)} ||v||_{L_2(\Omega)} \leq |f||_{L_2(\Omega)} ||v||_{H^1(\Omega)}$
- The continuity of a(.,.) is shown as follows: $|a(v,w)| \le \|v'\|_{L_2(I)} \|w'\|_{L_2(I)} \le \|v\|_{H_0^1(I)} \|w\|_{H_0^1(I)}$

• The V-elliptic condition for a(.,.) can be shown using the fact that $I_I v^2 dx \leq I_I(v')^2 dx \quad \forall v \in H_0^1(I)$ • $a(v,v) = I_I(v')^2 dx \geq \frac{1}{2} \left(I_I v^2 dx + I_I(v')^2 dx \right) = \frac{1}{2} ||v||_{H_0^1(I)}, \ \forall v \in H_0^1(I).$

Interval Partition (FEM)

- > Construct a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ as follows:
- For a given interval I = [0, 1] let

$$T_h$$
: 0 = $x_0 < x_1 < x_2 < \ldots < x_{M+1} = 1$

be a partition of I into intervals $I_i = (x_{i-1}, x_i)$ of length $h_i = x_i - x_{i-1}$.

• The quantity $h = \max_{j} h_{j}$ is a measure of how fine the partition is.

Finite Element Space

• Let \mathcal{V}_h be a set of functions v such that:

- v is linear on each subinterval I_j
- v is continuous on [0, 1] and

•
$$v(0) = v(1) = 0.$$

• A function
$$v \in \mathcal{V}_h$$
 has the representation:
 $v(x) = \sum_{i=1}^{M} \eta_i \phi_i(x), x \in [0, 1]$, where:
• $\eta_i = v(x_i)$ and
• $\phi_j(x_i) = \delta_{ij} \equiv \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$ $i, j = 1, \dots, M$.
• The space \mathcal{V}_h is a linear space of dimension M with basis $\{\phi_i\}_{i=1}^{M}$.

x_{i-1

Ti

 $\overline{x_{i+1}}$

Tr .

13

Finite Element Approximation

The problem (VF) is reduced to

 $\begin{cases} \text{Find} \quad u_h \in \mathcal{V}_h, \quad \text{such that} \\ a(u_h, v) = L(v), \quad \forall v \in \mathcal{V}_h, \end{cases}$

• $u_h(x) = \sum_{j=1}^M \xi_j \phi_j(x)$, with

• $\xi_j = u_h(x_j)$ (nodal values of $u_h(x)$).

 (V_h)

Linear system of Equations

(V_h): Find
$$u_h \in \mathcal{V}_h$$
 such that $(u'_h, \phi'_i) = (f, \phi_i), i = 1, 2, \dots, M$.

We finally obtain the following linear system of equations: $\Sigma_{j=1}^{M} \xi_j \ (\phi'_j, \phi'_i) = (f, \phi_i), \quad i = 1, 2, \dots, M$

• This is equivalent to the system A =b, where

- $A = (a_{ij})$ is the $M \times M$ stiffness matrix with $a_{ij} = (\phi'_j, \phi'_i) = \int_0^1 \phi'_i(x)\phi'_j(x)dx$ • $b = (b_i)$ is the force vector with: $b_i = (f, \phi_i) = \int_0^1 f\phi_i(x)dx$ and
- $\xi = (\xi_i)$ is the <u>solution vector</u> with: $\xi_i = u_h(x_i), \quad i = 1, 2, ..., M.$

Properties of the Stiffness matrix A

• A is symmetric, $A_{ij} = A_{ji}$, $(\phi'_i, \phi'_i) = (\phi'_i, \phi'_j)$, i, j = 1, 2, ..., M. • A is sparse (i.e. only a few elements of A are nonzero) $(\phi'_j, \phi'_j) = \frac{1}{h_i} + \frac{1}{h_{j+1}}, \ j = 1, 2, \dots, M.$ $(\phi'_j, \phi'_{j-1}) = (\phi'_{j-1}, \phi'_j) = -\frac{1}{h_i}, j = 2, \dots, M.$ $\varphi_{i-1}(x) \varphi_i(x) \varphi_{i+1}(x)$ $(\phi'_i, \phi'_i) = 0$ if |i - j| > 1. $x_{i+1} \quad x_{i+2}$ x_{i-2} x_{i-1} x_i • A is positive definite. Indeed for $\forall \eta \in \Re^M$ we obtain: $\eta^t A \eta = \sum_{i=1}^M \sum_{j=1}^M \eta_i A_{ij} \eta_j = \sum_{i=1}^M \sum_{j=1}^M \eta_i (\phi'_i, \phi'_j) \eta_j$ $= (\sum_{i=1}^{M} \eta_i \phi'_i, \sum_{i=1}^{M} \eta_i \phi'_i) = (v', v') \ge 0, \ v = \sum_{i=1}^{M} \eta_i \phi_i(x).$ Also, $\eta^t A \eta = 0$ only if $\eta_j = 0, j = 1, \dots, M$.

Properties of the Stiffness matrix A

- Since A is a positive definite matrix, we conclude that A is non-singular.
- It follows that the system $A\xi = b$ has a unique solution.
- For the particular case of $h_j = h = \frac{1}{M+1}$, the system $A\xi = b$ becomes:

The Coupled Problem

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} f_R(u) = 0, \quad x > 0, \quad t > 0,$$

 $\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} f_L(u) = 0, \quad x < 0, \quad t > 0,$

Initial Condition

 $u(x,0) = u_0(x), \quad x \in \mathbb{R},$

Coupling Condition

$$u(0,t)=u^b(t), \quad t\geq 0,$$

Coupled problem

One dimensional example

$$f_L = a_L u, \quad f_R = a_R u,$$

We can impose coupling condition at X=0 $a_L > 0, a_R > 0$ or $a_L < 0, a_R < 0$ \triangleright

 $a_L > 0$

19

✓ Sd-Formulation

• We consider

$$\begin{cases} \frac{\partial u}{\partial t} + f'_R(u)\frac{\partial u}{\partial x} = 0, & (x,t) \in \Omega := \mathbb{R}_+ \times (0,T), \\ u(x,0) = u_0, & (x,t) \in \Omega_0 := \mathbb{R}_+ \times \{0\}, \\ u(0,t) = u^b, & (x,t) \in \Gamma := \{0\} \times (0,T), \end{cases}$$

with T is a given final time value and

$$f'_R(u) \leq 0$$
 & $\frac{\partial}{\partial x}(f'_R(u)) \leq 0$

(1)

Space-time discretization

Let $\{0 = t_0 < t_1 < ... < t_N = T\}$ be a partition of I = (0, T)into $I_n = (t_n, t_{n+1})$, with time steps $k_n = t_{n+1} - t_n$, and introduce the corresponding space-time "slabs", i.e.,

Space-time discretization

For each slab S_n , let x_i^n be a mesh on \mathbb{R}_+ , portioned in intervals $J_i^n = (x_{i-1}^n, x_i^n)$, with $h_i^n = x_i^n - x_{i-1}^n$. For h > 0, let T_h^n be a triangulation of the slab S_n into triangles K, satisfying quasi-uniformity conditions for finite element meshes

Figure 3.1: The space-time triangulation.

Finite element spaces

• Let *k* be a positive integer, introduce

$$U_h^n = \{ u \in H^1(\mathbf{S}_n) : u \big|_K \in P_k(K), \quad K \in T_h^n \},$$

Define the trial & test function spaces

$$\begin{split} V_h^n &= \{ v \in U_h^n : v \big|_{\Gamma} = u_h^b \}, \\ W_h^n &= \{ w \in U_h^n : w \big|_{\Gamma} = 0 \}, \end{split}$$

Some notations

$$(u, v)_{n} = \int_{\mathbf{S}_{n}} uv dx dt, \qquad ||v||_{n} = (v, v)_{n}^{1/2},$$

$$< u, v >_{n} = \int_{\mathbb{R}_{+}} u(x, t_{n})v(x, t_{n})dx, \qquad |v|_{n} = \langle v, v \rangle_{n}^{1/2},$$

$$v_{+} = \lim_{s \to 0+} v(x, t+s), \qquad v_{-} = \lim_{s \to 0-} v(x, t+s).$$

$$||.|| = ||.||_{L_{2}(Q)} \qquad ||.||_{\infty,Q} = ||.||_{L_{\infty}(Q)}$$

 $||\cdot||_{s,Q} = ||\cdot||_{H^{\sigma}(Q)}$

Space-time Sd Formulation

 \succ Find $u \in H^1(\Omega)$ with $u|_{\Gamma} = u^b$, such that

$$\begin{pmatrix} u_t + f'_R(u)u_x, & v + \delta(v_t + f'_R(u)v_x) \end{pmatrix}_{\Omega} + \int_{\Gamma} uv \, d\sigma dt \\ = \int_{\Gamma} u^b v \, d\sigma dt, & \forall v \in H^1_0(\Omega), \end{cases}$$

(2)

For $n = 0, 1, \ldots, N - 1$ find $u \in H^1(\mathbf{S}_n)$, such that

$$\left(u_t + f'_R(u)u_x, v + \delta(v_t + f'_R(u)v_x) \right)_n + |\langle u_+, v_+ \rangle_n$$

$$+ \int_{\Gamma} uv \, d\sigma dt = |\langle u_-, v_+ \rangle_n + \int_{\Gamma} u^b v \, d\sigma dt, \quad \forall v \in H^1_0(\mathbf{S}_n).$$

$$(3)$$

Continue...

> After summing over n, we rewrite (3) as follows > Find $u \in \prod_{n=0}^{N-1} H^1(\mathbf{S}_n)$, such that

$$B(u,v) = L(v), \quad \forall v \in \prod_{n=0}^{N-1} H_0^1(\mathbf{S}_n),$$

where

$$B(u,v) = \sum_{n=0}^{N-1} \left\{ \left(u_t + f'_R(u)u_x, v + \delta(v_t + f'_R(u)v_x) \right)_n + \langle u_t - u_-, v_t \rangle_n + \int_{\Gamma_n} u_t + v_t dt \right\},$$

$$L(v) = \langle u_0, v_+ \rangle_0 + \int u^b v_+ dt.$$

1.1

(4)

Continue ...

and finally

and $u_{h,-}^0 = u_0$ is the initial data

29

> After summing over n, we have

$$\mathcal{V}_h = \prod_{n=0}^{N-1} V_h^n, \qquad \mathcal{W}_h = \prod_{n=0}^{N-1} \mathcal{W}_h^n,$$

We shall seek an approximate solution $u_h \in \mathcal{V}_h$ such that for n = 0, 1, ..., Nwe will have that $u_h |_{\mathbf{S}_n} = u_h^n$.

Functions in v_h are continuous in x & discontinuous in t

➢ Define

$$[v](x,t_n) = \begin{cases} v_+, & \text{if } n = 0\\ v_+ - v_-, & \text{if } n \neq 0 \end{cases}$$

Continue ...

Summing (5) over n=0,1,...,N-1, we get the following analogue to (4)

 $B(u_h, v) = L(v), \quad \forall v \in \mathcal{W}_h.$

(6)

➤ Thm. For $u \in \prod_{n=0}^{N-1} H^1(S_n)$, and with the assumptions $f'_R(u^b) \leq 0$, and $\frac{\partial}{\partial x}(f'_R(u)) \leq 0$, we have that

$B(u,u) \ge |||u|||^2,$

where

$$|||u|||^{2} := \frac{1}{2} \left[|u_{-}|_{N}^{2} + |u_{+}|_{0}^{2} + \sum_{n=1}^{N-1} |[u]|_{n}^{2} + 2\delta ||u_{t} + f_{R}'(u)u_{x}||_{\Omega}^{2} \right] + ||u_{+}||_{\Gamma}^{2}.$$

A priori Error Estimate for the Sd-method

To do this introduce interpolant $\mathcal{I}_h u \in \mathcal{V}_h$ of exact solution **u** and set

$$\eta = u - \mathcal{I}_h u \qquad \quad \xi = u_h - \mathcal{I}_h u$$

Then we have

 $e := u - u_h = (u - \mathcal{I}_h u) - (u_h - \mathcal{I}_h u) = \eta - \xi.$

Continue ...

Theorem If $u_h \in \mathcal{V}_h$ satisfies (6) and the exact solution u satisfies (1), and further

 $||f_R'||_{\infty,\Omega} \le C,$

then there is a constant C such that

$$|||u - u_h||| \le Ch^{k+\frac{1}{2}} ||u||_{k+1,\Omega}.$$

$$f_{\alpha}(u) = a_{\alpha}u \ (\alpha = L, R)$$

$u_t + a_R u_x$	= 0,	x > 0,	t > 0,
$u_t + a_L u_x$	=0,	x < 0,	t > 0,
u(x,0)	$=u_0(x),$	$x \in [-a, a],$	
u(-a,t)	=g(t),		t > 0,
u(a,t)	=h(t),		t > 0,

where a>0. This problem has the explicit solution

$$u(x,t) = \begin{cases} u_0(x - a_R t), & x \in (0,a] \\ u_0(x - a_L t), & x \in [-a,0) \end{cases}$$

Test problem 1

$$\begin{cases} u_t + u_x = 0, & -1 < x \le 0, \quad t > 0, \\ u_t - u_x = 0, & 0 \le x < 1, \quad t > 0, \\ u(x,0) = \begin{cases} 0.5 + x & \text{if } -0.5 \le x < 0.5, \\ 0 & \text{if } o.w \end{cases}$$

with the boundary conditions

$$u(-1,t) = u(1,t) = 0.$$

$\delta = h$

 $\delta = 0$

38

$$\begin{cases} u_t + 3u_x = 0, & -1 < x \le 0, \quad t > 0, \\ u_t - 2u_x = 0, & 0 \le x < 1, \quad t > 0, \end{cases}$$

with the following initial condition

$$u_0(x) = \begin{cases} 0, & x \le 0.25, \\ 1, & 0.25 < x \le 0.5, \\ 0, & x > 0.5. \end{cases}$$

and **boundary** condition

$$u(-1,t) = u(1,t) = 0$$

$\delta = h$

 $\delta = 0$

