Streamline Diffusion Method

for Coupling of two Hyperbolic

Conservation Laws

M. Izadi

August 20, 2005

The Plane

- Review of Finite Element Method (FEM)
- The Coupled Problem
- Streamline-Diffusion Formulation
- A priori Error Estimates for Sd-Method
- Numerical Examples

\checkmark Why the Finite Element Method?

$>$ Finite element method provides a greater flexibility to model complex geometries than finite difference and finite volume methods do.

$>$ The construction of higher order approximation

Basic Principles of FEM

> Finding a variational formulation of the problem: Integrating by parts in order to decease the number of differentiations involved, thereby decreasing the smoothness demands on u.

- Retaining only the essential (Dirichlet) boundary conditions.
$>$ Approximating the solution by a finite number of degrees of freedom, i.e. within a finite dimensional space V.
$>$ Choosing basis functions, e.g. in V, that are locally supported (vanish on most of the domain)4

One Dimensional Example

We consider

$$
\begin{gathered}
-u^{\prime \prime}(x)=f(x), \quad 0<x<1 \\
u(0)=u(1)=0
\end{gathered}
$$

THE STRONG OR DIFFERENTIAL PROBLEM (D)

- $u^{\prime}=\frac{d u}{d x}$ and $f \in L_{2}(0,1)$,
- By integrating twice, we can see that this problem has a unique solution

The Sobolev Space

- Define

$$
\mathcal{V}=H_{0}^{1}(0,1)=\left\{v \in H^{1}(0,1): v(0)=v(1)=0\right\}
$$

where

- We define the space $H^{1}(I)$ as follows:

$$
H^{1}(I)=\left\{v: v \text { and } v^{\prime} \in L_{2}(I)\right\}
$$

- We associate $H^{1}(I)$ with the scalar product:

$$
(v, w)_{H^{1}(I)}=\int_{I}\left[v w+v^{\prime} w^{\prime}\right] d x
$$

- The corresponding norm is:

$$
\|v\|_{H^{1}(I)}=\left(\int_{I}\left[v^{2}+\left(v^{\prime}\right)^{2}\right] d x\right)^{1 / 2}
$$

Variational Formulation

- Multiplying both sides of (D) by any function $v \in \mathcal{V}$ yields

$$
\int_{0}^{1} f v d x=-\int_{0}^{1} u^{\prime \prime} v d x
$$

Integrating by part +
B.C.

- Find u such that

$$
\int_{0}^{1} f v d x=\int_{0}^{1} u^{\prime} v^{\prime} d x, \quad \forall v \in \mathcal{V} . \quad \text { (VF) }
$$

Variational Formulation

- Note that (D) is equivalent to (VF).
- With the notations

$$
\begin{gathered}
a(u, v)=\int_{0}^{1} u^{\prime} v^{\prime} d x \\
L(v)=\int_{0}^{1} f v d x
\end{gathered}
$$

(*) can be written as:
Find u such that $a(u, v)=L(v)$ for all admissible v

Uniqueness \& Existence Theorem

Thm.(Lax-Milgram) Let a(.,.) be a bilinear form on a Hilbert space \mathcal{H} equipped with $\|.\|_{\boldsymbol{H}}$ and the following properties:
$>\mathrm{a}(. .$.$) is continuous, that is$
$\exists \gamma_{1}>0$ such that $|a(w, v)| \leq \gamma_{1}\|w\|_{\mathcal{H}}\|v\|_{\mathcal{H}} \quad \forall w, v \in \mathcal{H}$,
$>\mathrm{a}(.,$.$) is coercive (or \mathcal{H}$-elliptic), that is

$$
\exists \alpha>0 \quad \text { such that } a(v, v) \geq \alpha\|v\|_{\mathcal{W}}^{2}, \quad \forall v \in \mathcal{H} \text {. }
$$

Further
$>L($.$) is a linear mapping on \mathcal{H}$, that is

$$
\exists \gamma_{2}>0 \quad \text { such that }|L(w)| \leq \gamma_{2}|w| \mathcal{H}, \quad \forall w \in \mathcal{H} .
$$

Then there exist a unique $u \in \mathcal{H}$ such that

$$
a(w, u)=L(w), \quad \forall w \in \mathcal{H}
$$

Example

- $a(.,$.$) is obviously symmetric and bilinear and L$ is linear.
- The continuity of L is shown using the Cauchy inequality in L_{2} :

$$
|L(v)| \leq\left|\delta_{\Omega} f v d x \leq\|f\|_{L_{2}(\Omega)}\|v\|_{L_{2}(\Omega)} \leq\right| f\left\|_{L_{2}(\Omega)}\right\| v \|_{H^{1}(\Omega)}
$$

- The continuity of $a(.,$.$) is shown as follows:$

$$
|a(v, w)| \leq\left\|v^{\prime}\right\|_{L_{2}(I)}\left\|w^{\prime}\right\|_{L_{2}(I)} \leq\|v\|_{H_{0}^{1}(I)}\|w\|_{H_{0}^{1}(I)}
$$

- The V-elliptic condition for $a(.,$.$) can be shown using the fact that$

$$
\varsigma_{I} v^{2} d x \leq \varsigma_{I}\left(v^{\prime}\right)^{2} d x \quad \forall v \in H_{0}^{1}(I)
$$

- $a(v, v)={ }_{I_{I}}\left(v^{\prime}\right)^{2} d x \geq \frac{1}{2}\left(s_{I} v^{2} d x+{J_{I}}\left(v^{\prime}\right)^{2} d x\right)=\frac{1}{2}\|v\|_{H_{0}^{1}(I)}, \forall v \in H_{0}^{1}(I)$.

I nterval Partition (FEM)

$>$ Construct a finite-dimensional subspace $\mathcal{V}_{h} \subset \mathcal{V}$ as follows:
For a given interval $I=[0,1]$ let

$$
\boldsymbol{T}_{\boldsymbol{h}}^{\prime}: 0=x_{0}<x_{1}<x_{2}<\ldots<x_{M+1}=1
$$

be a partition of I into intervals $I_{i}=\left(x_{i-1}, x_{i}\right)$ of length $h_{i}=x_{i}-x_{i-1}$.

- The quantity $h=\max _{j} h_{j}$ is a measure of how fine the partition is.

Finite Element Space

- Let \mathcal{V}_{h} be a set of functions v such that:
- v is linear on each subinterval I_{j}
- v is continuous on $[0,1]$ and
- $v(0)=v(1)=0$.

Continuous piecewise linear basis function

- A function $v \in V_{h}$ has the representation:

$$
v(x)=\Sigma_{i=1}^{M} \eta_{i} \phi_{i}(x), x \in[0,1], \text { where: }
$$

- $\eta_{i}=v\left(x_{i}\right)$ and
- $\phi_{j}\left(x_{i}\right)=\delta_{i j} \equiv\left\{\begin{array}{lll}1 & \text { if } & i=j \\ 0 & \text { if } & i \neq j\end{array} \quad i, j=1, \ldots, M\right.$.
- The space \mathcal{V}_{h} is a linear space of dimension M with basis $\left\{\phi_{i}\right\}_{i=1}^{M}$.

Finite Element Approximation

- The problem (VF) is reduced to

$$
\begin{cases}\text { Find } \quad u_{h} \in \mathcal{V}_{h}, & \text { such that } \\ a\left(u_{h}, v\right)=L(v), & \forall v \in \mathcal{V}_{h},\end{cases}
$$

- where

$$
\text { - } u_{h}(x)=\Sigma_{j=1}^{M} \xi_{j} \phi_{j}(x) \text {, with }
$$

- $\xi_{j}=u_{h}\left(x_{j}\right)$ (nodal values of $\left.u_{h}(x)\right)$.

Linear system of Equations

$\left(V_{h}\right): \quad$ Find $u_{h} \in V_{h}$ such that $\left(u_{h}^{\prime}, \phi_{i}^{\prime}\right)=\left(f, \phi_{i}\right), i=1,2, \ldots, M$.
We finally obtain the following linear system of equations:

$$
\Sigma_{j=1}^{M} \xi_{j}\left(\phi_{j}^{\prime}, \phi_{i}^{\prime}\right)=\left(\int, \phi_{i}\right), \quad i=1,2, \ldots, M
$$

- This is equivalent to the system $A=b$, where - $A=\left(a_{i j}\right)$ is the $M \times M$ stiffness matrix with $a_{i j}=\left(\phi_{j}^{\prime}, \phi_{i}^{\prime}\right)=\int_{0}^{1} \phi_{i}^{\prime}(x) \phi_{j}^{\prime}(x) d x$
- $b=\left(b_{i}\right)$ is the force vector with: $b_{i}=\left(f, \phi_{i}\right)=\int_{0}^{1} f \phi_{i}(x) d x$ and
- $\xi=\left(\xi_{i}\right)$ is the solution vector with: $\xi_{i}=u_{h}\left(x_{i}\right), \quad i=1,2, \ldots, M$.

Properties of the Stiffness matrix A

- A is symmetric, $A_{i j}=A_{j i},\left(\phi_{j}^{\prime}, \phi_{i}^{\prime}\right)=\left(\phi_{i}^{\prime}, \phi_{j}^{\prime}\right), i, j=1,2, \ldots, M$.
- A is sparse (i.e. only a few elements of A are nonzero)

$$
\begin{aligned}
& \left(\phi_{j}^{\prime}, \phi_{j}^{\prime}\right)=\frac{1}{h_{j}}+\frac{1}{h_{j+1}}, j=1,2, \ldots, M \\
& \left(\phi_{j}^{\prime}, \phi_{j-1}^{\prime}\right)=\left(\phi_{j-1}^{\prime}, \phi_{j}^{\prime}\right)=-\frac{1}{h_{j}}, j=2, \ldots, M
\end{aligned}
$$

$$
\left(\phi_{i}^{\prime}, \phi_{j}^{\prime}\right)=0 \text { if }|i-j|>1
$$

- A is positive definite. Indeed for $\forall \eta \in \Re^{M}$ we obtain:

$$
\begin{aligned}
\eta^{t} A \eta & =\Sigma_{i=1}^{M} \Sigma_{j=1}^{M} \eta_{i} A_{i j} \eta_{j}=\Sigma_{i=1}^{M} \Sigma_{j=1}^{M} \eta_{i}\left(\phi_{i}^{\prime}, \phi_{j}^{\prime}\right) \eta_{j} \\
& =\left(\Sigma_{i=1}^{M} \eta_{i} \phi_{i}^{\prime}, \Sigma_{j=1}^{M} \eta_{j} \phi_{j}^{\prime}\right)=\left(v^{\prime}, v^{\prime}\right) \geq 0, \quad v=\Sigma_{i=1}^{M} \eta_{i} \phi_{i}(x) .
\end{aligned}
$$

Also, $\quad \eta^{t} A \eta=0$ only if $\eta_{j}=0, j=1, \ldots, M$.

Properties of the Stiffness matrix A

- Since A is a positive definite matrix, we conclude that A is non-singular.
- It follows that the system $A \xi=b$ has a unique solution.
- For the particular case of $h_{j}=h=\frac{1}{M+1}$, the system $A \xi=b$ becomes:
$\frac{1}{h}\left[\begin{array}{rrrrrrrr}2 & -1 & 0 & 0 & 0 & . & . & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 & . & \cdot \\ 0 & -1 & 2 & -1 & 0 & 0 & . & . \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ . & . & . & . & . & . & . & . \\ . & . & . & . & . & . & . & . \\ . & . & . & 0 & 0 & -1 & 2 & -1 \\ 0 & . & . & 0 & 0 & 0 & -1 & 2\end{array}\right]\left[\begin{array}{l}\xi_{1} \\ . \\ . \\ . \\ \xi_{M}\end{array}\right]=\left[\begin{array}{c}b_{1} \\ . \\ . \\ . \\ . \\ b_{M}\end{array}\right]$

The Coupled Problem

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f_{R}(u)=0, \quad x>0, \quad t>0 \\
& \frac{\partial u}{\partial t}+\frac{\partial}{\partial x} f_{L}(u)=0, \quad x<0, \quad t>0
\end{aligned}
$$

$>$ Initial Condition

$$
u(x, 0)=u_{0}(x), \quad x \in \mathbb{R},
$$

$>$ Coupling Condition

$$
u(0, t)=u^{b}(t), \quad t \geq 0
$$

Coupled problem

- One dimensional example
$f_{L}=a_{L} u, \quad f_{R}=a_{R} u$,
$>a_{L}>0, a_{R}>0$ or $a_{L}<0, a_{R}<0$

Coupled problem

$>a_{L}<0, a_{R}>0$

Coupled problem

$$
>a_{L}>0, a_{R}<0
$$

In general

$$
\begin{array}{llll}
> & f_{R}^{\prime}(u) \leq 0 & \& & \frac{\partial}{\partial x}\left(f_{R}^{\prime}(u)\right) \leq 0 \\
\hline> & f_{L}^{\prime}(u) \geq 0 & \& & \frac{\partial}{\partial x}\left(f_{L}^{\prime}(u)\right) \geq 0
\end{array}
$$

\checkmark Sd-Formulation

- We consider

$$
\left\{\begin{align*}
\frac{\partial u}{\partial t}+f_{R}^{\prime}(u) \frac{\partial u}{\partial x} & =0, & & (x, t) \in \Omega:=\mathbb{R}_{+} \times(0, T), \\
u(x, 0) & =u_{0}, & & (x, t) \in \Omega_{0}:=\mathbb{R}_{+} \times\{0\}, \\
u(0, t) & =u^{b}, & & (x, t) \in \Gamma:=\{0\} \times(0, T),
\end{align*}\right.
$$

with T is a given final time value and

$$
f_{R}^{\prime}(u) \leq 0 \quad \& \quad \frac{\partial}{\partial x}\left(f_{R}^{\prime}(u)\right) \leq 0
$$

Space-time discretization

Let $\left\{0=t_{0}<t_{1}<\ldots<t_{N}=T\right\}$ be a partition of $I=(0, T)$
into $I_{n}=\left(t_{n}, t_{n+1}\right)$, with time steps $k_{n}=t_{n+1}-t_{n}$,
and introduce the corresponding space-time "slabs", i.e.,

$$
\mathrm{S}_{n}=\left\{(x, t): x>0, \quad t_{n}<t<t_{n+1}\right\}, \quad n=0,1, \ldots, N-1 .
$$

Figure: Space-time discretization.

Space-time discretization

For each slab S_{n}, let x_{i}^{n} be a mesh on \mathbb{R}_{+}, portioned in intervals $J_{i}^{n}=\left(x_{i-1}^{n}, x_{i}^{n}\right)$, with $h_{i}^{n}=x_{i}^{n}-x_{i-1}^{n}$.

For $h>0$, let T_{h}^{n} be a triangulation of the slab S_{n} into triangles K, satisfying quasi-uniformity conditions for finite element meshes

Figure 3.1: The space-time triangulation.

Finite element spaces

- Let k be a positive integer, introduce

$$
U_{h}^{n}=\left\{u \in H^{1}\left(\mathbf{S}_{n}\right):\left.u\right|_{K} \in P_{k}(K), \quad K \in T_{h}^{n}\right\},
$$

- Define the trial \& test function spaces

$$
\begin{gathered}
V_{h}^{n}=\left\{v \in U_{h}^{n}:\left.v\right|_{\Gamma}=u_{h}^{b}\right\}, \\
W_{h}^{n}=\left\{w \in U_{h}^{n}:\left.w\right|_{\Gamma}=0\right\},
\end{gathered}
$$

Some notations

$$
\begin{gathered}
(u, v)_{n}=\int_{\mathbf{S}_{n}} u v d x d t, \quad\|v\|_{n}=(v, v)_{n}^{1 / 2} \\
<u, v>_{n}=\int_{\mathbb{R}_{+}} u\left(x, t_{n}\right) v\left(x, t_{n}\right) d x, \quad|v|_{n}=\langle v, v\rangle_{n}^{1 / 2} \\
v_{+}=\lim _{s \rightarrow 0+} v(x, t+s), \quad v_{-}=\lim _{s \rightarrow 0-} v(x, t+s) \\
\|\cdot\|=\|\cdot\|_{L_{2}(Q)} \quad\|\cdot\|_{\infty, Q}=\|\cdot\|_{L_{\infty}(Q)} \\
\|\cdot\|_{s, Q}=\|\cdot\|_{H^{*}(Q)}
\end{gathered}
$$

Space-time Sd Formulation

$>$ Find $u \in H^{1}(\Omega)$ with $\left.u\right|_{\Gamma}=u^{b}$, such that

$$
\begin{align*}
\left(u_{t}+f_{R}^{\prime}(u) u_{x}, v\right. & \left.+\delta\left(v_{t}+f_{R}^{\prime}(u) v_{x}\right)\right)_{\Omega}+\int_{\Gamma} u v d \sigma d t \tag{2}\\
& =\int_{\Gamma} u^{b} v d \sigma d t, \quad \forall v \in H_{0}^{1}(\Omega)
\end{align*}
$$

$>$ For $n=0,1, \ldots, N-1$ find $u \in H^{1}\left(\mathbf{S}_{n}\right)$, such that

$$
\begin{align*}
& \left(u_{t}+f_{R}^{\prime}(u) u_{x}, v+\delta\left(v_{t}+f_{R}^{\prime}(u) v_{x}\right)\right)_{n}+<u_{+}, v_{+}>_{n} \tag{3}\\
& +\int_{\Gamma} u v d \sigma d t=<u_{-}, v_{+}>_{n}+\int_{\Gamma} u^{b} v d \sigma d t, \quad \forall v \in H_{0}^{1}\left(\mathrm{~S}_{n}\right)
\end{align*}
$$

Continue...

$>$ After summing over n, we rewrite (3) as follows
$>$ Find $u \in \prod_{n=0}^{N-1} H^{1}\left(\mathbf{S}_{n}\right)$, such that

$$
\begin{equation*}
B(u, v)=L(v), \quad \forall v \in \prod_{n=0}^{N-1} H_{0}^{1}\left(\mathbf{S}_{n}\right), \tag{4}
\end{equation*}
$$

where

$$
\begin{gathered}
B(u, v)=\sum_{n=0}^{N-1}\left\{\left(u_{t}+f_{R}^{\prime}(u) u_{x}, v+\delta\left(v_{t}+f_{R}^{\prime}(u) v_{x}\right)\right)_{n}+\left\langle u_{+}-u_{-}, v_{+}\right\rangle_{n}+\int_{\Gamma_{n}} u_{+} v_{+} d t\right\}, \\
L(v)=<u_{0}, v_{+}>_{0}+\int_{\Gamma} u^{b} v_{+} d t .
\end{gathered}
$$

Continue ...

and finally

$>$ Find $u_{h}^{n} \in V_{h}^{n}$, such that for $n=0,1, \ldots, N-1$

$$
\begin{align*}
& \left(u_{h, t}^{n}+f_{R}^{\prime}\left(u_{h}^{n}\right) u_{h, x}^{n}, v_{h}^{n}+\delta\left(v_{h, t}^{n}+f_{R}^{\prime}\left(u_{h}^{n}\right) v_{h, x}^{n}\right)\right)_{n}+<u_{h_{h}+}^{n}, v_{h,+}^{n}>_{n} \tag{5}\\
& +\int_{\Gamma_{n}} u_{h,+}^{n} v_{h,+}^{n} d t=<u_{h,-}^{n}, v_{h,+}^{n}>_{n}+\int_{\Gamma_{n}} u^{b} v_{h,+}^{n} d t, \quad \forall v_{h}^{n} \in W_{h}^{n}
\end{align*}
$$

$$
\delta=\bar{C} h \quad \Gamma_{n}=\{0\} \times I_{n}
$$

and $u_{h,-}^{0}=u_{0}$ is the initial data

Continue

$>$ After summing over n, we have

$$
\mathcal{V}_{h}=\prod_{n=0}^{N-1} V_{h}^{n}, \quad \mathcal{W}_{h}=\prod_{n=0}^{N-1} \mathcal{W}_{h}^{n},
$$

We shall seek an approximate solution $u_{h} \in \mathcal{V}_{h}$ such that for $n=0,1, \ldots, N$ we will have that $u_{h} \mid \mathbf{s}_{n}=u_{h}^{n}$.

Functions in $\mathcal{V}_{\boldsymbol{h}}$ are continuous in x \& discontinuous in t
$>$ Define

$$
[v]\left(x, t_{n}\right)= \begin{cases}v_{+}, & \text {if } n=0 \\ v_{+}-v_{-}, & \text {if } n \neq 0\end{cases}
$$

Continue ...

Summing (5) over $\mathrm{n}=0,1, \ldots, \mathrm{~N}-1$, we get the following analogue to (4)
$>$ Find $u_{h} \in \mathcal{V}_{h}$ such that

$$
\begin{equation*}
B\left(u_{h}, v\right)=L(v), \quad \forall v \in \mathcal{W}_{h} . \tag{6}
\end{equation*}
$$

Basic Stability Estimates for the Sd-method

$>$ Thm. For $u \in \prod_{n=0}^{N-1} H^{1}\left(S_{n}\right)$, and with the assumptions $f_{R}^{\prime}\left(u^{b}\right) \leq 0$, and $\frac{\partial}{\partial x}\left(f_{R}^{\prime}(u)\right) \leq 0$, we have that

$$
B(u, u) \geq\| \| u\| \|^{2},
$$

where

$$
\|\mid u\|^{2}:=\frac{1}{2}\left[\left|u_{-}\right|_{N}^{2}+\left|u_{+}\right|_{0}^{2}+\sum_{n=1}^{N-1} \mid\left[\left.u\right|_{n} ^{2}+2 \delta\left\|u_{t}+f_{R}^{\prime}(u) u_{x}\right\|_{\Omega}^{2}\right]+\left\|u_{+}\right\|_{\Gamma}^{2}\right.
$$

A priori Error Estimate for the Sd-method

To do this introduce interpolant $\mathcal{I}_{h} u \in \mathcal{V}_{h}$ of exact solution u and set

$$
\eta=u-\mathcal{I}_{h} u \quad \xi=u_{h}-\mathcal{I}_{h} u
$$

Then we have

$$
e:=u-u_{h}=\left(u-\mathcal{I}_{h} u\right)-\left(u_{h}-\mathcal{I}_{h} u\right)=\eta-\xi
$$

Continue ...

Theorem If $u_{h} \in \mathcal{V}_{h}$ satisisfes (6) and the exact solution u satisfies (1), and further

$$
\left\|f_{R}^{\prime}\right\|_{\infty, \Omega} \leq C,
$$

then there is a constant C such that

$$
\left\lvert\,\left\|u-u_{h}\right\|\left\|\leq C h^{k+\frac{1}{2}}\right\| u\right. \|_{k+1, \Omega} .
$$

Numerical Example

$$
f_{\alpha}(u)=a_{\alpha} u(\alpha=L, R)
$$

$$
\left\{\begin{array}{llll}
u_{t}+a_{R} u_{x}=0, & x>0, & t>0, \\
u_{t}+a_{L} u_{x} & =0, & x<0, & t>0, \\
u(x, 0) & =u_{0}(x), & x \in[-a, a], & \\
u(-a, t) & =g(t), & & t>0, \\
u(a, t) & =h(t), & & t>0,
\end{array}\right.
$$

where $a>0$. This problem has the explicit solution

$$
u(x, t)= \begin{cases}u_{0}\left(x-a_{R} t\right), & x \in(0, a] \\ u_{0}\left(x-a_{L} t\right), & x \in[-a, 0)\end{cases}
$$

Test problem 1

$$
\left\{\begin{array}{l}
u_{t}+u_{x}=0, \quad-1<x \leq 0, \quad t>0 \\
u_{t}-u_{x}=0, \quad 0 \leq x<1, \quad t>0 \\
u(x, 0)= \begin{cases}0.5+x & \text { if }-0.5 \leq x<0.5 \\
0 & \text { if } o . w\end{cases}
\end{array}\right.
$$

with the boundary conditions

$$
u(-1, t)=u(1, t)=0
$$

$\delta=h$

$$
\delta=0
$$

Test problem 2

$$
\begin{cases}u_{t}+3 u_{x}=0, & -1<x \leq 0, \quad t>0, \\ u_{t}-2 u_{x}=0, & 0 \leq x<1, \quad t>0\end{cases}
$$

with the following initial condition

$$
u_{0}(x)= \begin{cases}0, & x \leq 0.25 \\ 1, & 0.25<x \leq 0.5 \\ 0, & x>0.5\end{cases}
$$

and boundary condition

$$
u(-1, t)=u(1, t)=0
$$

Thank Youl!

