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Abstract

In the present thesis we study the Streamline Diffusion Finite Element method for

one-space dimensional time dependent coupling equation of two hyperbolic conser-

vation laws. We derive optimal convergence rates; in particular we prove an a priori

error estimate of order O(hk+1/2) in domains where the exact solution is smooth;

here h is the mesh width and k is the degree of the piecewise polynomial functions

spanning the finite element subspace.

We also consider the a posteriori error estimate for our model problem and per-

form numerical implementation supporting the theory.
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PREFACE

The main objective in this study is to analyze the streamline diffusion finite element

approximation for the solution of the interface problem in a system of two, different,

partial differential equations describing, e.g., multifluids with different state equa-

tions and moving contact discontinuities. More specifically we consider the following

coupling of two hyperbolic conservation laws in one dimension:





ut + fR(u)x = 0, x > 0, t > 0,

ut + fL(u)x = 0, x < 0, t > 0,

u(x, 0) = u0, x ∈ R.

(1)

This type of phenomenon appears for example in an increasing number of problems

of fluid mechanics, among others, we emphasize the case of coupled problem involv-

ing Euler equation on one side of the interface and Navier-Stokes equation on the

other side [17], as well as modelling certain plasma physical problems cf [37]. In this

thesis we take a step towards the approximate solution for the problem stated in (1):

We construct, analyze and implement Streamline Diffusion Finite Element method

and prove a priori and a posteriori error estimates for the system of conservation

laws introduced in (1). In our knowledge, the only related previous works for the

numerical method for (1) are the studies by Godlewski and Raviart considering the

finite difference method for the scalar case in [37] and also for the system in [38].

vi
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The Streamline Diffusion method (for short Sd-method below), also referring to as

Galerkin/Least Square or SUPG (Streamline Upwind Petrov-Galerkin method) is

a general finite element method for hyperbolic type partial differential equations.

The Sd-method first was introduced, in the case of stationary problems, by Hughes

and Brooks [45, 46], in the beginning of eighties. The mathematical analysis of this

method for linear problems, together with extensions to time-dependent problems

using space-time elements, was started in Johnson and Nävert [52] and was contin-

ued in Johnson et al. [48], and [53] and Nävert [63] in the early eighties and has now

successfully been applied to stationary and time-dependent, convection-diffusion

problems [47], as well as hyperbolic conservation laws [71, 72, 66, 35], reactive com-

pressible flow [68], second order wave equations [51], incompressible and compressible

Euler and Navier-Stokes equations [53, 55, 50, 43]. The convergence analysis of the

method is extended to equations of gas dynamics and charged particle transport in

[5] for the Vlasov-Poisson equation, for the Fermi and Fokker-Planck pencil beam

equations in [6, 7] and for the Vlasov-Poisson-Fokker-Planck system in [8, 9]. Yet

a modified version: the characteristic streamline diffusion method, invokes the ad-

vantages of the method of characteristics, for certain problems, in the Sd-method,

see, e.g., [41, 42] and [12]. We recall that the conventional finite element methods

for hyperbolic problems lack in either stability, like the standard Galerkin method,

giving spurious oscillations if the exact solution is nonsmooth, or in accuracy, like

the classical artificial diffusion method with considerable smearing of sharp fronts

and at most first order accuracy. The outcome of this work is that the Sd-method

can be demonstrated to have good stability properties and high accuracy: For the

exact solution in the Sobolev space Hk+1, the error is of order O(hk+1/2). Below we

give a concise description. The Sd-method is a modified Galerkin method based on

piecewise polynomial approximation with the following three basic modifications:



Preface viii

• Consistent use of space-time finite element discretization for time dependent

problems, where the basis functions can be discontinuous in time but are

continuous in space.

• The test functions are modified by adding a small (∼ mesh size) multiple of

a linearized form of the hyperbolic operator involved, which results in a par-

ticular Petrov-Galerkin method with a weighted least squares control of the

residual R(uh) of the finite element solution uh. The residual is the error

(the difference between the left and the right hand side) when in the origi-

nal continuous equation the exact solution is replaced by the finite element

solution.

• Modification of a given viscosity ε to an artificial viscosity ε̂ of the form

ε̂ = max
(
ε, Ch|R(uh)|/|∇uh|, Ch3/2

)

or

ε̂ = max
(
ε, Ch2|R(uh)|/|uh|, Ch3/2

)

where h is the mesh size and C denotes a positive constant.

The last two features enhance the stability of the standard Galerkin method without

sacrificing accuracy. Further, the modifications play a crucial role in the adaptive

Sd-method based on a posteriori error estimates developed in ninties. The improved

stability properties of the Sd-method in particular makes it possible to prove sharp a

posterior error estimates which may be used to design reliable and efficient adaptive

algorithm of the Sd-method. Here we have not considered adaptive algorithms for

our model problem. Our focus has been on a priori and a posteriori error estimates

for the Sd-method. Some studies considering adaptivity can be found in [26]-[31]

and [11]. The a posteriori error estimates for the Sd-method for hyperbolic problems
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typically have the form:

‖u− uh‖L2 ≤ C‖h2ε̂−1R(uh)‖L2 , (2)

where u is the the exact solution, uh is the computed solution, R(uh) is the residual,

h is the mesh size and ε̂ is defined as above. This estimate should be compared to

the typical corresponding estimate for the standard Galerkin method for hyperbolic

problems derived in [30]:

‖u− uh‖L2 ≤ C‖R(uh)‖L2 , (3)

and the standard Galerkin method for elliptic problems derived in [27]:

‖u− uh‖L2 ≤ C‖h2R(uh)‖L2 . (4)

The proof of the a posteriori error estimate (2) has the following structure:

• Representation of the error in the terms of the residual of the finite element

solution and the solution of a continuous dual problem.

• Use of the Galerkin orthogonality built in the finite element method.

• Interpolation estimates for the dual solution.

• Strong stability estimates for the continuous dual problem.

A typical a priori error estimate for the Sd-approximation of the hyperbolic type

problems with piecewise polynomials of degree k takes the form

‖u− uh‖L2 ≤ Chk+1/2‖u‖Hk+1 , (5)

where u is the exact solution and Hk+1 is the Sobolev space consisting of all functions

having all their partial derivatives of order ≤ k + 1 in L2, see Folland [33] for the

details. The proof of the a priori error estimate typically has the following structure:



Preface x

• Representation of the error in the terms of the exact solution and a discretized

dual problem.

• Use of the Galerkin orthogonality to introduce the truncation error in the error

representation.

• Interpolation estimates for the truncation error.

• Strong stability for the discrete dual problem.

We note the similarity in the structure of the proofs of the a priori and a posteriori

error estimates, and also the differences: In the a priori case the key roles are played

by the truncation error and the strong stability of the discrete problem, and in the a

posteriori case these roles are taken by the residual and the stability of the continuous

problem. Both the a priori and a posteriori error estimates are fundamental: The a

priori error estimate shows that the discretization error (and the residual) will tend

to zero with decreasing mesh size, and the a posteriori error estimate is the basis

for adaptive quantitative error control. The above approaches for the a priori and

a posteriori error estimates are general in nature and was, systematically, used in

[26]- [30] for elliptic, parabolic and hyperbolic problems, as well as in [11] for the

integral equations. Our approach to a posteriori error analysis is slightly different

from (2) and has the following basic form

‖u− uh‖L2 ≤ SCi‖h2

ε̂
R(uh)‖L2 , (6)

where h is the mesh size, Ci is an interpolation constant depending only on the angles

of the elements of the computational mesh, and, most importantly, S is a stability

factor which is related to the regularity properties of an associated linearized dual

problem that measures how the error is propagated in time. All quantities, except

the stability factor, are given explicitly through the computation. There are two
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approaches to estimate the stability factor, analytically or computed a posteriori by

solving the dual problem numerically (see e.g., [59, 60]. In the first approach (see

[55], [18], [68]), the estimates are usually very pessimistic with exponential growth

in time, however, the estimates show that the stability factors are finite, that is

the dual problem has the required regularity properties, and also that they do not

exhibit blow-up, and in the second approach you can capture the true behavior of

the stability factors, at the price of a higher computational cost (see, [18], [68]).

In this thesis we extend the work in the above references to the case of coupled

problem, focusing on formulating the Sd-method, deriving a priori error estimates

of the form (5) and a posteriori error bounds of the form (6) with relevant analytical

stability factors. The outline of this thesis is as follows: Chapter 1, contains a brief

summary of the finite element method, and set up some notations that will be used

in the subsequent chapters. In chapter 2, we introduce the mathematical model,

and also summarize without proofs the relevant results on existence and uniqueness

of the coupled problem. In chapter 3, we introduce space-time discretization and

formulate the streamline diffusion method for the coupled problems. In chapter 4,

we derive basic stability estimate for the Sd-method, prove an a priori error estimate

and state the a posteriori error estimate for the coupled problems. In chapter 5,

we introduce a perturbation (adding a regularizing term of the form: −εuxx) to

the equation which is used to derive a linearized dual problem occurring in the

error representation formula, state a posteriori error estimate, and study the strong

stability analytically. Finally, Chapter 6 is devoted to numerical experiments testing

the reliability of out theoretical results in some concrete examples.



Chapter 1

THE FINITE ELEMENT METHOD

The mathematical models in science and technology mainly take the form of differen-

tial or integral equations. With rapid development of high speed computers over the

last decades the possibilities of efficiently utilizing these models have dramatically

increased. Using computer-implemented mathematical models, one can simulate

and analyze complicated systems in science and engineering. This reduces the need

for expensive and time-consuming experimental testing and makes it possible to

compare many different alternatives for optimization.

To use numerical models on a computer one needs numerical methods. Only

in the very simplest cases is it possible to find exact analytical solutions of the

equations in the model, and in general one has to rely on numerical techniques

for finding approximate solutions. The Finite Element Method (FEM) is a general

technique for numerical solution of ordinary and partial differential equations as well

as integral equations arising in science and engineering, both in deterministic and

stochastic versions. The equation system under consideration (1) is deterministic

and the Streamline Diffusion method used in this thesis is a modified form of the

1



The Finite Element Method 2

finite element method with certain improving features for the hyperbolic PDE’s.

Below we give an introduction to the finite element method as a general technique

for the numerical solution of partial differential and integral equations.

1.1 Introduction to the Finite Element Method

The basic idea in any numerical method for a differential equation is to discretize

the given continuous problem with infinitely many degrees of freedom to obtain a

discrete problem or system of equations with only finitely many unknowns that may

be solved by using a computer. A classical numerical method for partial differential

equations is the finite difference method where the discrete problem is obtained by

replacing derivatives with difference quotients involving the values of the unknown

at finitely many points. The discretization process using a finite element method is

different. The Finite Element Method (FEM) is a very powerful and flexible numer-

ical approach for solving partial differential equations. Its flexibility means that it

can be used to solve complicated equations in domains whose geometries range from

a simple polygon or polyhedron such as a square or a cube to more complex shapes

with curved boundaries. It is also easy to construct higher-order approximations.

However, the programming of finite element methods is more complicated than that

of finite differences, and hence in general requires standard software packages. The

topics is introduced, in different settings, by several authors; see, e.g., [20], [16], [40],

[24], [47, 48], [58], [61] and [76, 77, 78].

1.2 A Short History

The finite element method was first proposed in 1943 by the German Mathematician

Richard Courant [23] who solved the Poisson equation based on minimization of a

§1.2
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functional over piecewise linear approximations on subregions. However, it was

not until the 1950’s that work really began on finite element methods when it was

rediscovered by engineers working in the aircraft industry; some of the early papers

were by Argris and Kelsey [3, 4] and Turner, Clough, Martin and Topp [73] although

the name finite element method was not introduced until 1960 when it was proposed

by Clough [21, 22]. A short while later the first book on the subject was published

by Zienkiewicz [75]. The mathematical analysis of these methods began in the

1960’s. In 1962 Friedrichs [34] used piecewise linear function on triangles to derive

a system of equations for solving problems on a general domain. He was also able

to prove convergence in H1 and L2 (see Section 1.3 for definitions) although not

the rate of convergence. In 1963 Oganesjan [64] proved the first a priori estimate

for the error in H1 norm for Laplace’s and more second order elliptic equations,

e.g., for plates. The a priori error estimate for quadratic elements on triangles was

produced by Zlámal in 1968 [74]. There was then much more research into the

mathematical theory of the finite element method and many of the a priori error

estimation technique which are widely used today were derived. By the 1970’s this

theory was well developed, at least for linear elliptic problems. In parallel to this

engineers had produced sophisticated codes and the method was becoming widely

used. In the late 1970’s, work on a posteriori error analysis began. Previously all

error analysis had been of the a priori type; these are bounds on the error in the finite

element solution dependent upon the data of the problem, the mesh size, the degree

of the approximation polynomial and the (unknown) exact solution, thus they are

not computable, and are useful only as an indication of the rate of convergence of

the finite element approximation to the exact solution. In contrast an a posteriori

error bound provides a computable upper bound on the error in some norm using

the computed finite element solution. Such error bounds were first introduced by

Babuška and his co-workers in 1978 [13, 14]; they were used in adaptive finite element

§1.2
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computations, the error bound being used to guide mesh refinement.

Although the finite element method was first proposed in 1943, more recent

advances in the theory, i.e., a posteriori have made the method increasingly powerful;

such that there are various approaches to a posteriori error estimation and it has

now successfully applied to many problems by several authors, see e.g., [2], [36],

[49, 31].

1.3 Preliminary Notation and Function Space

One of the basic tools in the study of finite element methods is the theory of func-

tional analysis. Below we recall and introduce some definitions and notations which

will be used frequently in the sequel. For a complete presentation and proofs we

refer the reader to, e.g, Adams [1].

1.3.1 Lebesgue spaces

Let Q be an open set contained in Rn, n ≥ 1; we denote boundary of Q by ∂Q. For

1 ≤ p < ∞, let Lp(Q) denote the set of real-valued Lebesgue measurable functions u

defined on Q such that |u|p is integrable on Q with respect to the Lebesgue measure

dx = dx1 . . . dxn. We define the Lp norm, ‖.‖Lp(Q), by

‖u‖Lp(Q) =
( ∫

Q

|u(x)|pdx
)1/p

.

For p = 2, the space L2(Q), the space of square integrable functions will be seen to

be of particular importance. For real-valued functions u, v ∈ L2(Q), we define the

L2−inner product by

(u, v) =

∫

Q

u(x)v(x)dx.

§1.3
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Then for each u, v ∈ L2(Q) the Cauchy-Schwartz inequality states that uv ∈ L1(Q)

and

|(u, v)| ≤ ‖u‖L2(Q)‖v‖L2(Q).

For p = ∞, L∞(Q) denotes the set of all real-valued Lebesgue measurable functions

u defined on Q such that |u| has finite essential supremum; the essential supremum

of |u| is defined as

ess. sup
x∈Q

|u(x)| = inf{M ≥ 0 : |u(x)| ≤ M almost everywhere in Q} < ∞,

and

‖u‖L∞(Q) = ess. sup
x∈Q

|u(x)|,

where “almost everywhere in Q” means “except on a subset of Q having zero mea-

sure”.

1.3.2 Weak (Generalized) L2−derivatives

We want to generalize the concept of classical derivative to define what we refer

to as weak or generalized derivative and do it in such a way that if everything is

“smooth enough” the classical and weak derivatives coincide. The concept of a weak

derivative is an extension of the classical concept in which we want to maintain the

validity of integration by parts formulas. Our generalization will allow functions

such as u(x) = |x| on [−1, 1] to have a derivative in the weak sense (for more

details we refer to [16] ). As usual, we let Q be an open subset of Rn and let

x = (x1, . . . , xn) ∈ Q denote an arbitrary point in Q. The set of all real-valued

functions u(x) = u(x1, . . . , xn) which are defined and continuous in Q is denoted

by C(Q) and the set having all classical derivatives of order ≤ k continuous in Q

is denoted by Ck(Q). To simplify the notation for differentiation we introduce the

multi-index α which is defined by α = (α1, . . . , αn), where the αi, i = 1, . . . , n, are

§1.3
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nonnegative integers. The length of the multi-index α is defined to be

|α| =
n∑

i=1

αi.

In this way we can rewrite the |α|−th order differential operator Dα by

Dα =
∂|α|

∂x|α|
=

∂α1

∂xα1
1

. . .
∂αn

∂xαn
n

.

Using this notation we can define Ck(Q) as

Ck(Q) = {u : Dαu ∈ C(Q), |α| ≤ k}.

Now we define the set of locally integrable functions Lloc
1 by

Lloc
1 (Ω) = {u : u ∈ L1(Λ) for all measurable compact subset Λ ⊂⊂ Ω}.

Now we are in a position to define the concept of the weak (or generalized or distri-

butional) L2−derivatives of a function. Let u ∈ ÃLloc
1 (Q); we say that u has a weak

derivative of order α in the weak L2−sense if there exist a function v ∈ ÃLloc
1 (Q) such

that ∫

Q

v(x)φ(x)dx = (−1)|α|
∫

Q

u(x)Dαφ(x)dx,

holds for all φ ∈ C∞
0 (Q) which is the space of functions having continuous derivatives

of all order and compact support in Q. If φ has compact support in Q then φ = 0

outside a closed and bounded subset of Q; generally the support of a function φ(x)

(Suppφ) is the closure of the set {x ∈ Q : φ(x) 6= 0}. We call v = Dαu the weak

L2−derivative of u of order α.

1.3.3 Sobolev spaces

We finally introduce another class of Hilbert spaces that will be used to formulate

our weak problem. A comprehensive presentation of these spaces can be found in
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Adams [1]. Equipped with the definition of weak derivative we may define, for a

positive integer s, the Sobolev space Hs(Q) as the set of functions u ∈ L2(Q) which

possess generalized L2−derivatives Dαu ∈ L2(Q) for 0 ≤ |α| ≤ s; i.e.,

Hs(Q) = {u ∈ L2(Q) : Dαu ∈ L2(Q) for 0 ≤ |α| ≤ s}.

Clearly, Hs(Q) is a subspace of L2(Q) and H0(Q) = L2(Q). On Hs(Q) we define

the inner product

(u, v)s =
∑

|α|≤s

∫

Q

DαuDαvdQ

=
∑

|α|≤s

(Dαu,Dαv), ∀u, v ∈ Hs(Q),

where (., .) denotes the standard inner product in L2(Q). Using the definition of

inner product, we define the norm on Hs(Q) as

‖u‖s,Q = (u, u)1/2
s =

( ∑

|α|≤s

‖Dαu‖2
Q

)1/2

, ∀u ∈ Hs(Q),

where ‖.‖Q denotes the standard norm on L2(Q). Clearly, ‖.‖0,Q = ‖.‖Q so in the

sequel we will denote the L2−norm by ‖.‖Q. We will make extensive use of the space

H1(Q); if Q ⊂ R then the norm on H1(Q) is explicitly given by

‖u‖1,Q =
(
‖u‖2

Q + ‖u′‖2
Q

)1/2

.

We will also make use of the constrained space H1
0 (Q) which will be introduced by

two following Theorems:

TTTheorem 1.1 (Trace Theorem). Assume that Q is bounded and ∂Q is Lipschitz

continuous 1. Then there exist a bounded operator

γ : H1(Q) −→ L2(∂Q),

1A function f : Rn ⊃ D −→ Rm is called Lipschitz continuous provided that for some number

c, ‖f(x) − f(y)‖ ≤ c‖x − y‖ for all x, y ∈ D. A hypersurface in Rn is a graph whenever it can

§1.3



The Finite Element Method 8

such that

γu = u
∣∣
∂Q

if u ∈ H1(Q) ∩ C(Q̄),

and

‖γu‖L2(∂Q) ≤ C‖u‖1,Q,

for each u ∈ H1(Q), with the constant C depending only on Q.

Proof. See [32]. ¤

We call γu the trace of u on the boundary, i.e., “loosely speaking” the restriction

of u to the boundary. The above Theorem asserts that the restriction of u ∈ H1

to the boundary is at least an L2 function. Next we examine more closely what it

means for a function to have a zero trace.

TTTheorem 1.2 (Trace-zero functions in H1). Assume Q is bounded and ∂Q is

Lipschitz continuous. Suppose furthermore that u ∈ H1(Q). Then

u ∈ H1
0 (Q) if and only if γu = 0 on ∂Q.

Proof. See [32]. ¤

Thus we can rewrite

H1
0 (Q) = {u ∈ H1(Q) : γu = 0 on ∂Q}.

1.4 Weak Formulation

Before applying the FEM to solve given equation, it is necessary to transform the

equation into a more suitable form. Below we present two common approaches:

represented in the form xk = f(x1, . . . , xk−1, xk+1, . . . , xn), with 1 ≤ k ≤ n and some suitable

domain in Rn−1. A domain Ω ⊂ Rn is called a Lipschitz domain provided that for every x ∈ ∂Ω,

there exist a neighborhood Nx ⊂ ∂Ω of x which can be represented as the graph of a Lipschitz

continuous function.
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• One can derive an equivalent minimization problem, which has exactly the

same solution as the differential equation.

• One can derive a so called weak formulation.

Both methods leads finally to exactly the same results, however, we shall restrict

ourselves to second method and to give an idea we describe this approach for a

typical linear elliptic equation with Dirichlet boundary condition:



Lu = f, in Ω,

u = uΓ, on ∂Ω = Γ.
(1.1)

1.4.1 Trial solution and weighting functions

To define the weak, or variational, form of the boundary value problems, we need

to define two classes, or collections, of functions: the test or weighting functions

and the trial or admissible solutions. Here these spaces are defined in the context

of the standard Galerkin formulation. For the Dirichlet problem (1.1), the first

collection of functions, denoted by V , is composed of test functions and consist of

all functions which are square integrable, have square integrable first derivatives

over the computational domain Ω, and vanish on the boundary Γ. It is defined as

follows:

V = {w ∈ H1(Ω) : w = 0 on Γ} ≡ H1
Γ(Ω).

This is as previously noted a Sobolev space and its inner product and norm coincide

with those of H1(Ω).

The second collection of functions is called the trial solutions. This collection is

similar to the test function except that these admissible functions are required to

satisfy the Dirichlet conditions on Γ. This second collection is denoted by S and is

defined by

S = {u ∈ H1(Ω) : u = uΓ on Γ} ≡ V ⊕ {ūΓ},
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where ūΓ is any function in H1(Ω) such that ūΓ = uΓ on Γ. Thus, S can be viewed

as a translation of V and, consequently, it is an affine space. Note, for instance,

that, for uΓ 6= 0, the sum of two element of S is not an element of S. However, for

homogeneous boundary conditions, uΓ = 0, trial and test spaces coincide, S = V =

H1
0 (Ω).

The sets S and V clearly contain infinitely many functions. In the finite element

method, S and V are approximated by convenient finite dimensional subsets of these

collections which will be denoted by Sh and Vh, respectively. These finite element

spaces are characterized, among other things, by a partition of domain.

1.4.2 One-dimensional boundary value problem

The first step in the weighted residual formulation (Galerkin method) leading to the

finite element discretization of given boundary value problem consists of formulating

a weak (or variational) form of the boundary value problem. This is achieved by

multiplying the governing equation by a weighting function and integrating over the

computational domain Ω. To be more precise we consider a typical weak form, e.g.,

for Poisson’s equation in one dimension with zero Dirichlet boundary conditions for

simplicity, by taking L = − d
dx

(
a(x). d

dx

)
in (1.1):

− d

dx

(
a(x).

d

dx
u(x)

)
= f(x) x ∈ Ω,

u = 0 x ∈ Γ,

(1.2)

where Ω = (0, 1), f ∈ L2(Ω) and a(x) is piecewise continuous function on Ω. By

letting a(x) = 1 and integrating the equation −u′′ = f twice, it is easy to see that

this problem has a unique classical solution u. A classical solution of this problem

would satisfy the equation and boundary condition and would lie in the space C2(Ω).

Such a smooth solution may not exist if the data for the problem are not sufficiently
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smooth. Hence, we relax the requirement u ∈ C2(Ω) using weak derivatives, define

S = V = H1
0 (Ω) = {u ∈ H1(Ω) : u(0) = u(1) = 0},

then multiplying any function w ∈ V on both sides of (1.2) we have

−
∫

Ω

u′′wdx =

∫

Ω

fwdx,

using integrating by parts and boundary conditions we get

∫ 1

0

u′w′dx =

∫ 1

0

fwdx.

Now a sufficient requirement for both sides to be meaningful is that u ∈ H1(Ω), and

thus the weak (or variational) formulation of the problem is to find u ∈ H1(Ω) such

that ∫ 1

0

u′w′dx =

∫ 1

0

fwdx, ∀w ∈ V ≡ S. (1.3)

The solution u is then known as a weak solution to the problem (1.2). Let

a(u, v) =

∫ 1

0

u′v′dx,

L(v) =

∫ 1

0

fvdx,

(1.4)

we then reformulate the variational formulation (1.3) in an abstract form as follows:

Find u ∈ H1(Ω) such that

a(u, v) = L(v), ∀v ∈ S. (1.5)

Clearly if u is a classical solution to (1.2), then it is also a weak solution of (1.2).

However, the converse may not hold in general (for example if f has discontinuity)

although, if the solution is sufficiently smooth in a subdomain of Ω, reversing the

above argument shows that the solution satisfies the differential equation in that

subdomain in a classical sense. Thus the advantage of seeking a weak solution
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may be summerized as follows: through relaxing the regularity requirement (for the

solution) we may hope to find weak solutions for problems where classical solutions

may not exist and in the case where classical solutions do exist the two should

coincide. In addition it is helpful to address the issue of well-posedness of the

problem through a weak formulation.

1.5 Abstract Variational Formulation

We formulate the general theorems for existence and uniqueness in Hilbert space

framework and state the conditions that spaces and bilinear form should satisfy.

These results are applied to investigate solvability of particular partial differential

equations.

1.5.1 Existence and uniqueness theorem

The existence and uniqueness of a solution to the weak formulation of the prob-

lem can be proved using the Lax-Milgram Theorem. This states that the weak

formulation admits a unique solution.

TTTheorem 1.3. (Lax-Milgram lemma). Let a(., .) be a bilinear form on a Hilbert

space H equipped with norm ‖.‖H and the following properties:

I. a(., .) is continuous, that is

∃γ1 > 0 such that |a(w, v)| ≤ γ1‖w‖H‖v‖H ∀w, v ∈ H, (1.6)

II. a(., .) coercive (or H-elliptic), that is

∃α > 0 such that a(v, v) ≥ α‖v‖2
H, ∀v ∈ H. (1.7)

Further
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III. L is a linear mapping on H (thus L is continuous), that is

∃γ2 > 0 such that |L(w)| ≤ γ2‖w‖H, ∀w ∈ H.

Then there exists a unique u ∈ H such that

a(w, u) = L(w), ∀w ∈ H.

A proof can be found for instance in Ciarlet [20] or Brenner and Scott [16].

DDDefinition 1.4. The energy norm on H is defined by ‖v‖a =
√

a(v, v), v ∈ H.

Recalling the relations (1.6) and (1.7) above, the energy norm satisfies

α‖v‖2
H ≤ a(v, v) = ‖v‖2

a ≤ γ1‖v‖2
H.

Therefore the energy norm ‖v‖a is equivalent to the abstract norm ‖v‖H.

1.5.2 Applications to elliptic boundary value problems

The purpose now is to verify that properties of the Lax-Milgram lemma are fulfilled

in an example of a boundary value problem. To this end we need two inequalities,

the Cauchy-Schwarz inequality,

|(v, w)L2(Ω)| ≤ ‖v‖L2(Ω)‖v‖L2(Ω), v, w ∈ L2(Ω)

|(v, w)H1(Ω)| ≤ ‖v‖1,Ω‖w‖1,Ω, v, w ∈ H1(Ω),
(1.8)

and the Poincaré’s inequality,

‖v‖2
L2(Ω) ≤ CΩ‖v′‖2

L2(Ω), 0 < CΩ < ∞ and v ∈ H1
0 (Ω). (1.9)

EEExample 1.5. We consider again −u′′(x) = f(x) in Ω = (0, 1), with u(0) = u(1) =

0 and the relevant Hilbert space is H = H1
0 (Ω). The weak (varaitional) form is now

∫ 1

0

u′(x)v′(x)dx = a(u, v) = L(v) =

∫ 1

0

f(x)v(x)dx, ∀v ∈ H1
0 (Ω).
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It is clear that, due to the linearity of the integral operator, a(., .) and L(.) are bilinear

and linear forms, respectively. It is sufficient to show that a(., .) is continuous,

coercive and L(.) is bounded.

• To show that L(v) is bounded, we use the Cauchy-Schwarz inequality and the

fact that ‖v‖L2(Ω) ≤ ‖v‖1,Ω:

|L(v)| =
∣∣∣
∫ 1

0

fvdx
∣∣∣ = |(f, v)L2(Ω)| ≤ ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖1,Ω.

Hence, we can choose γ2 = ‖f‖L2(Ω). We now see why it is natural to demand

f ∈ L2(Ω).

• Continuity of a(., .) follows from the Cauchy-Schwarz inequality (this time in

L2(Ω)) and the fact that ‖v′‖L2(Ω) ≤ ‖v‖1,Ω,

|a(v, w)| = |(v′, w′)L2(Ω)| ≤ ‖v′‖L2(Ω)‖w′‖L2(Ω) ≤ ‖v‖1,Ω‖w‖1,Ω.

Hence, γ1 = 1.

• The H−ellipticity follows from Poincaré’s inequality,

‖v‖2
1,Ω =

∫ 1

0

(v2 + (v′)2)dx ≤ (CΩ + 1)

∫ 1

0

(v′)2dx = (cΩ + 1)a(v, v).

This means that α = 1
CΩ+1

.

Therefore from the Lax-Milgram lemma it follows that the above variational

problem has an unique solution u ∈ H1
0 (Ω) satisfying the bound ‖u‖1,Ω ≤ (1+cΩ)‖f‖L2(Ω).

1.6 Finite Element Spaces

In practice, the spaces over which we solve variational problems associated with

boundary value problems are called finite element spaces . We partition the given
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domain Ω into finitely many sub-domains, and consider functions which reduce to a

polynomial on each sub-domain. The sub-domains are called elements.

There is no change conceptually in going from one dimension to two or three

dimensions. The main practical difference is that instead of subintervals in one

dimension, the element become triangles or quadrilaterals in two dimensions, and

tetrahedra, cubes, rectangular parallelepiped, etc. in three dimensions. For simplic-

ity, we restrict our discussion primarily to one and two dimensional cases.

1.6.1 Finite element triangulations

As we mentioned, the idea of finite element method is to first split the computational

domain Ω into a set of elements K. The set of elements is known as the mesh and

the vertices of the elements are known as the nodes . For an admissible triangulation

(or subdivision) Th = {K} of Ω we require that:

• Ω̄ =
⋃

K∈Th
K,

• The intersection of any two distinct elements in Th either consists of a common

face, common side or common vertex, or is empty.

For any K ∈ Th, let

hK = diam(K), h = max
K∈Th

hK ,

and

ρK = sup{diam(B) : B is a ball contained in K}.

We assume that Th is quasi-uniform in sense of Ciarlet [20], i.e., the following two

conditions are satisfied:

(i) There exist a number % > 0, independent of h and K such that

ρK

hK

≥ %, ∀K ∈ Th,
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(ii) The parameter h approaches zero

This condition means that the triangles K ∈ Th are not allowed to be arbitrary thin,

or equivalently, the angels of the triangles K are not allowed to be arbitrary small.

The constant % is a measure of the smallest angle in any K ∈ Th.

We introduce the finite element spaces Sh, Vh; these defined to be finite dimen-

sional subspaces of the trial functions S, and test functions V , (see Section 1.2.1)

respectively, which consist of functions that are polynomials of degree ≤ k in each

element K, i.e.,

Vh := {w ∈ H1(Ω) : w
∣∣
K
∈ Pk(K), ∀K ∈ Th and w = 0 on Γ},

Sh := {u ∈ H1(Ω) : u
∣∣
K
∈ Pk(K), ∀K ∈ Th and u = uΓ on Γ}.

With these definitions, the finite element method for (1.5) can now be formulated

as follows: 



Find uh ∈ Sh(= Vh), such that

a(uh, v) = L(v), ∀v ∈ Vh,

1.6.2 Piecewise linear finite elements in one space dimen-

sion

In the piecewise linear version of finite element method we take k = 1. We will

now construct a finite element space Vh consisting of piecewise linear functions.

Let 0 = x0 < x1... < xM < xM+1 = 1, be a partition of the interval (0, 1) into

subintervals Ωj = (xj−1, xj) of length hj = xj − xj−1, where the set of points xj is

called nodes, j = 1, ..., M +1, and set h = max hj. The quantity h is then a measure

of how fine the partition is. One possible choice of the nodes is to place them at

the boundary of each element. One of the strengths of the finite element method

is the flexibility in the choice of elements. In regions where the solution is rapidly
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Figure 1.1: Example of a function ϕ ∈ Vh.

varying, one can have small elements. The smoother parts of the solution can have

an associated grid with larger elements and perhaps higher polynomial degrees for

ϕj’s. This flexibility is particularly important in 2 and 3 dimensions. We now let

Vh be the set of all functions ϕ, such that ϕ is linear on each subinterval Ωj and ϕ

is continuous on [0, 1]. An example of a function in Vh is shown in the Figure 1.1.

Apparently Vh is a linear space of dimension M and each internal nodal point

corresponds to a degree of freedom. Vh has a natural basis, known as nodal basis

(shape) functions, which is given by, for j = 1, ..., M

ψj(x) =





x−xj−1

hj
, x ∈ [xj−1, xj],

xj+1−x

hj+1
, x ∈ [xj, xj+1],

0 elsewhere.

Note that

ψj(xi) =





1 if i = j,

0 if i 6= j i, j = 1, ...,M,

i.e., ψj is the continuous piecewise linear function that takes the value 1 at node

point xj and the value 0 at other node points. See Figure 1.2. One often refers to

piecewise linear basis functions as linear elements.
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Figure 1.2: The basis function ψj in 1D for one element.

A function ϕ ∈ Vh then has the representation

ϕ(x) =
M∑
i=1

ϕiψi(x), ϕi = ϕ(xi), x ∈ [0, 1],

i.e., each ϕ ∈ Vh can be written in a unique way as a linear combination of the basis

functions ψi. In particular it follows that Vh is a linear space of dimension M with

basis {ψi}M
i=1.

The finite element method can now be formulated as follows: Find uh ∈ Vh = Sh

such that

a(uh, ϕ) = (f, ϕ), ∀ϕ ∈ Vh, (1.10)

where (v, w) =
∫

Ω
vwdx. This problem is usually referred to as Galerkin method.

We observe that if uh ∈ Vh satisfies (1.10), then in particular

a(uh, ψj) = (f, ψj), j = 1, ..., M, (1.11)

and if these equations hold, then by taking linear combinations, we see that uh

satisfies (1.10). Since

uh(x) =
M∑
i=1

µiψi(x), µi = uh(xi),

by linearity we can write (1.11) as

M∑
i=1

µia(ψi, ψj) = (f, ψj), j = 1, . . . , M, (1.12)
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which is a linear system of equations with M equations and M unknowns: µi :=

uh(xi), i = 1, . . . , M . In matrix form the linear system (1.12) can be written as

Aµ = f, (1.13)

where A = (aij) is the M ×M matrix with elements aij = a(ψi, ψj) :=
∫
Ω

ψ′iψ
′
j dx,

and where µ = (µ1, . . . , µM) and f = (f1, . . . , fM) with fi = (f, ψi) are M -vectors:

A =




a11 . . . a1M

· ·
· ·
· ·
aM1 . . . aMM




, µ =




µ1

·
·
·

µM




, f =




f1

·
·
·

fM




.

The matrix A is known as stiffness matrix with respect to the nodal basis {ψj}M
j=1

and f the load vector.

The elements aij = (ψi, ψj) in the matrix A can easily be computed: We first

observe that (ψi, ψj) = 0 if |i− j| > 1 since in this case for all x ∈ [0, 1] either ψi(x)

or ψj(x) is equal to zero (for more details see [10]). Therefor we have the following

Lemma:

LLLemma 1.6. The Stiffness matrix A has the following properties

1. A is symmetric,

2. A is positive definite.

Proof. Symmetry is obvious, because a(u, v) = a(v, u). To show that A is positive

definite, we first recall that an n × n matrix A is positive definite if vTAv > 0 for

all nonzero v ∈ Rn. Write v = (v1, . . . , vn) and v =
∑n

j=1 vjψj. Then by bilinearity

§1.6



The Finite Element Method 20

of a(·, ·) it follows that

vTAv =
n∑

i=1

n∑
j=1

viaijvj =
n∑

i=1

n∑
j=1

via(ψi, ψj)vj

= a
( n∑

i=1

viψi,

n∑
j=1

vjψj

)
= a(v, v) ≥ α‖v‖H > 0,

for any nonzero v. In other words, the positive definiteness of the coefficient matrix

comes form the H− ellipticity. ¤

To proceed we have the following results from matrix analysis:

PPProposition 1.7. Let the square matrix A be positive definite then

i. A−1∃ “A is invertible”

ii. Aµ = b has a unique solution.

Proof. (i) Suppose Ax=0 then xTAx=0, but A is positive definite, then x ≡ 0

hence A has full Range and therefore A is invertible

(ii) Since A is invertible Aµ = b has a unique solution µ = A−1b.

¤

We can now easily establish a discrete counterpart to the Lax-Milgram lemma:

TTTheorem 1.8. Existence and uniqueness of the solution to the discrete problem.

There exist a unique solution vector (µ1, . . . , µM)T of the linear system (1.13).

Proof. A is symmetric and positive definite matrix. Hence A is nonsingular. Thus

the solution of the corresponding linear system of equations exists and is unique. ¤
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1.7 Error Representation and Error Estimation

Consider the problem just described and let L be the differential operator

L = − d2

dx2
,

a(., .) the bilinear form

a(u, v) =

∫ 1

0

u′v′dx, u, v ∈ H1(Ω),

and L(.), the linear functional

L(v) =

∫

Ω

fvdx, ∀v ∈ H1(Ω).

Then the weak and corresponding finite element formulation of this problem are,

respectively: Find u ∈ H1(Ω) such that

a(u, v) = L(v), ∀v ∈ H1
0 (Ω), (1.14)

and find uh ∈ Sh such that

a(uh, vh) = L(vh), ∀vh ∈ Vh. (1.15)

Formulation (1.14) and (1.15) can be used to find an error representation formula,

i.e., a way of writing down what the discretization error u− uh is. Since all v ∈ Vh

are also in H1
0 (Ω), then (1.14) is valid also for v ∈ Vh. Therefore we may take v = vh

in (1.14); and then subtract (1.15) from the resulting equation to get

a(u− uh, vh) = 0, ∀vh ∈ Vh. (1.16)

or equivalently
∑
K

∫

K

(f − Luh)vhdx = 0, ∀vh ∈ Vh.
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This error representation is known as Galerkin orthogonality and tells us that the

residual R(uh) = f − Luh, is orthogonal (with respect to L2 inner product) to the

space Vh. The concept of Galerkin orthogonality will be seen to be a key result when

deriving the error bounds. We proved that (section 1.3.2) the bilinear form a(., .) is

coercive and continuous so that we have, for positive constants α, and γ1

a(u− uh, u− uh) ≥ α‖u− uh‖2
1,Ω,

and

a(u− uh, u− vh) ≤ γ1‖u− uh‖2
1,Ω‖u− vh‖2

1,Ω ∀vh ∈ Vh.

Using the linearity of a(., .) with respect to the second argument we have

a(u− uh, u− uh) = a(u− uh, u− vh) + a(u− uh, vh − uh),

for any vh ∈ Vh. Note that since vh − uh ∈ Vh, Galerkin orthogonality (1.16) tell us

that the second term is zero and hence

a(u− uh, u− uh) = a(u− uh, u− vh). (1.17)

Using the coercivity and continuity results we have

α‖u− uh‖2
1,Ω ≤ a(u− uh, u− vh) ≤ γ1‖u− uh‖1,Ω‖u− vh‖1,Ω.

Hence we have proved Céa’s lemma

‖u− uh‖1,Ω ≤ γ1

α
min{‖u− vh‖1,Ω : vh ∈ Vh}.

Thus the finite element solution uh is the near-best fit cf [20] to u in the H1(Ω)

norm. A refined version of Céa’s lemma may be proved in the case when we use the

energy norm ‖.‖a. In this case from the (1.17) we have

‖u− uh‖2
a = a(u− uh, u− vh) ≤ ‖u− uh‖a‖u− vh‖a,

§1.7



The Finite Element Method 23

for any vh ∈ Vh, using the Cauchy-Schwarz inequality. Hence we have the refined

version of Céa’s lemma in the case of energy norm

‖u− uh‖a = min{‖u− vh‖a : vh ∈ Vh}, (1.18)

which tell us that uh minimizes the error in the energy norm over all function in Vh

(cf. [10] ).

To make use of (1.18), we must now choose some v ∈ Vh that will yield some

information about the size of error. Usually one chooses to take v as the piecewise

polynomial (of the same degree as the finite element approximation) that interpo-

lates the exact solution. Clearly this polynomial is in Vh. Below we review some

basic concepts of polynomial interpolation and derive the interpolation error esti-

mates that play key roles in proving our convergence rates.

1.7.1 Interpolation error

The Lagrange polynomials play an important role in interpolation analysis. Given a

function u defined on an interval, the problem is to find a polynomial which equals

the function in n discrete separate points. There exists a unique (n − 1)-th order

polynomial Pn such that

Pn−1(xi) = u(xi), i = 1, . . . , n.

This polynomial may conveniently be defined by use of the Lagrange interpolation

polynomials defined as

ln−1
i (x) =

(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
, (1.19)

for i = 1, 2, . . . , n, if n > 1, and define l01 = 1. Since

ln−1
i (xj) =





1, if j = i

0, if j 6= i

§1.7



The Finite Element Method 24

we have that

Pn−1(x) =
n∑

i=1

u(xi)l
n−1
i (x).

To emphasize the fact that we are interested in interpolating functions, we will use

the notation Pn−1 = πn−1u(x) to make explicit which function is being interpolated.

Next, we wish to be able to say something about the interpolation error. Consider

an element of size h. We can let 0 ≤ x ≤ h without loss of generality. Now by the

Taylor series expansion centered at xi we have

u(x) =
n∑

k=0

1

k!
u(k)(xi)(x− xi)

k +
1

(n + 1)!
u(n+1)(ξx)(x− xi)

n+1,

for some ξx (depending on x) in the interval between x and ξ. If this interval is of

size h, we find that, for some constant C,

∣∣∣u(x)−
n∑

k=0

1

k!
u(k)(xi)(x− xi)

k
∣∣∣ ≤ Chn+1

∣∣∣d
n+1u(ξx)

dxn+1

∣∣∣.

The difference between the Taylor polynomial an the Lagrange interpolation poly-

nomial is that the former approximation quickly deteriorates away from xi.

Can we expect the interpolation polynomial to give about the same estimate?

Yes: recall from elementary numerical analysis courses that

u(x)− πnu(x) =
(x− x0)(x− x1) . . . (x− xn)

(n + 1)!

dn+1u(ξx)

dxn+1
.

Again we conclude that

|u(x)− πnu(x)| ≤ Chn+1
∣∣∣d

n+1u(ξx)

dxn+1

∣∣∣, (1.20)

for some (other) constant C. The important thing to remember is that the interpo-

lation error depends on the smoothness of the function to be approximated. If the

higher derivatives are very large, raising the polynomial degree will not improve the

approximation.
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Let us derive in more detail the interpolation error for a piecewise linear inter-

polation on the interval 0 ≤ x ≤ h. The linear interpolant can be written as

π1u(x) = u(0)
h− x

h
+ u(h)

x

h
. (1.21)

Choosing an arbitrary point x in the interval and using a Taylor expansion we find

that

u(ξ) = u(x) + u′(x)(ξ − x) +
1

2
u′′(η)(ξ − x)2,

where η lies between x and ξ. Using ξ = 0 and ξ = h we find, by use of (1.21), that

π1u(x) = u(x)
(h− x

h
+

x

h

)
+

+ u′(x)
(h− x

h
(−x) +

x

h
(h− x)

)
+

+
1

2

(
u′′(η1)x

2h− x

h
+ u′′(η2)(h− x)2 x

h

)
,

leading to

|u(x)− π1u(x)| ≤ 1

2
max
η∈[0,h]

|u′′(η)|
(
x2h− x

h
+ (h− x)2 x

h

)
≤ h2

8
max
η∈[0,h]

|u′′(η)|.

Similarly, by differentiating (1.21) and using the Taylor expansion, we find that

(π1u)′(x) = u(x)
(
− 1

h
+

1

h

)
+

+ u′(x)
(
(−1

h
)(−x) +

1

h
(h− x)

)
+

+
1

2

(
u′′(η1)x

2(−1

h
) + u′′(η2)(h− x)2 1

h

)

+
1

h

(
u′′(η1)x(h− x)− u′′(η2)x(h− x)

)
,

from which follows

|u′(x)− (π1u)′(x)| ≤ h

2
max
y∈[0,h]

|u′′(y)|.

These results have direct counterparts in integral norms. Below we give (without

proofs) some inequalities of this nature that will be used in deriving our a priori and

a posteriori error estimates.
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LLLemma 1.9. Let πhu(x) be the piecewise linear interpolant of u(x). There are

interpolation constants Ci such that

‖πhu(x)− u(x)‖Lp(Ω) ≤ Ci‖h2u′′(x)‖Lp(Ω), 1 ≤ p < ∞ (1.22a)

‖(πhu)′(x)− u′(x)‖Lp(Ω) ≤ Ci‖hu′′(x)‖Lp(Ω), 1 ≤ p < ∞ (1.22b)

‖πhu(x)− u(x)‖Lp(Ω) ≤ Ci‖hu′(x)‖Lp(Ω), 1 ≤ p < ∞. (1.22c)

Now, the energy norm is a weighted variant of (1.22b). As an example, we have

in (1.2) that

‖u‖a = ‖u′‖L2(Ω),

so that we may conclude that

‖u− πhu‖a ≤ Cih‖u′′‖L2(Ω). (1.23)

1.7.2 A priori error estimation in the energy norm

With the results of interpolation section we can now formulate error estimates for

the finite element methods for our elliptic boundary value problem. These estimates

are either in the a priori form: i.e., error estimates which are formulated in terms

of the exact solution, or in the a posteriori form: that is error estimates that are

formulated in terms of the computed solution and the data (right-hand side), which

we shall consider, for the same model problem, in the next subsection. We have the

following a priori bound for our model problem (see [10])

LLLemma 1.10. Let u and uh be the solutions of Dirichlet problem (1.2) and corre-

sponding finite element problem (1.15), respectively. Then there exist an interpola-

tion constant Ci such that

‖u− uh‖a ≤ Ci‖hu′′‖L2(Ω), ∀v ∈ Sh.
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Proof. According to the the refined version of Céa’s lemma (1.18), we have

‖u− uh‖a ≤ ‖u− v‖a, ∀v ∈ Sh.

But since πhu(x) ∈ Sh, then

‖u− uh‖a ≤ ‖u− πhu‖a = ‖u′ − (πhu)′‖L2(Ω) ≤ Ci‖hu′′‖L2(Ω)

= Ci

( ∫ 1

0

h2 (u′′(x))2dx
)1/2

,

where in the last inequality above we used (1.23). ¤

1.7.3 A posteriori error estimation in the energy norm

Now we want to study a posteriori error estimate, where instead of the unknown

value of u(x), we use the known values of the approximate solution to estimate

the error. This means that the error analysis performed after the computation is

completed. Then we have the following a posteriori error analysis for the problem

(1.2), without proof, for more details we refer to, e.g., [10].

LLLemma 1.11. There is an interpolation constant Ci, such that the error in the finite

element approximation satisfies

‖e(x)‖a ≤ Ci

( ∫ 1

0

h2R2(uh(x))dx
)1/2

.

Proof. See [10]. ¤

1.8 Comparison Results and Inequalities

In this part we present a comparison result and some inequalities, which will be

useful in the stability and error estimates as well as in convergent analysis of our

problem.
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LLLemma 1.12. (Grönwall’s inequality). Suppose that u(t) ≥ 0 and ϕ(t) ≥ 0 are

continuous, real-valued functions defined on the interval 0 ≤ t ≤ T and u0 ≥ 0 is a

constant. If u satisfies the inequality

u(t) ≤ u0 +

∫ t

0

ϕ(s)u(s)ds, ∀t ∈ [0, T ], (1.24)

then

u(t) ≤ u0 exp
( ∫ t

0

ϕ(s)ds
)
ds, ∀t ∈ [0, T ].

In particular, if u0 = 0 then u(t) ≡ 0.

Proof. Suppose first that u0 > 0. Let

U(t) = u0 +

∫ t

0

ϕ(s)u(s)ds.

Then, since u(t) ≤ U(t), we have that

U̇ = ϕu ≤ ϕU, U(0) = u0.

Since U(t) > 0, it follows that

d

dt
log U =

U̇

U
≤ ϕ.

Hence

log U(t) ≤ log u0 +

∫ t

0

ϕ(s)ds,

so

u(t) ≤ U(t) ≤ u0 exp
( ∫ t

0

ϕ(s) ds
)
. (1.25)

If the inequality (1.24) holds for u0 > 0, then it also holds for all u0 = 0. Taking

the limit of (1.25) as u0 −→ 0+, we conclude that u(t) ≡ 0, which proves the result

when u0 = 0. ¤
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LLLemma 1.13 (Inverse estimate inequality). . Let Th be a quasi-uniform family

of triangulation of Ω̄. Then there exist a positive constant C such that for each

vh ∈ Vh

‖Ovh‖2
L2(Ω) ≤ Ch−2‖vh‖2

L2(Ω). (1.26)

Proof. A proof can be founded in Quarteroni and et al. [65]. ¤

In the proofs below we shall frequently use the following Inequalities:

LLLemma 1.14. For a, b ∈ R, and ε > 0

ab ≤ εa2

2
+

b2

2ε
, (1.27a)

ab ≤ εa2 +
b2

4ε
. (1.27b)

Proof. The proof is straightforward. ¤
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Chapter 2

THE COUPLED PROBLEM

2.1 Continuous Model Problem

In this study we consider the coupling of two hyperbolic equations. The objective

is to find the function u : (x, t) ∈ R × R+ −→ u(x, t) ∈ R such that u = u(x, t)

satisfies the following nonlinear hyperbolic system of equations:

∂u

∂t
+

∂

∂x
fR(u) = 0, x > 0, t > 0, (2.1)

∂u

∂t
+

∂

∂x
fL(u) = 0, x < 0, t > 0, (2.2)

associated with an initial condition, viz

u(x, 0) = u0(x), x ∈ R, (2.3)

and also a suitable “continuity” condition or “coupling” condition

u(0, t) = ub(t), t ≥ 0, (2.4)

at the interface x = 0, to be specified below, where u0 : R −→ R is a given function

and fα : R −→ R, α = L,R, denote two “smooth” functions.
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This is a system of nonlinear conservation laws arising in the study of fluid problems

with two different systems of equations on each side of the interface which may be

fixed or moving with the flow. For instance, on one side of the interface, we assume

that the flow obeys the rules of a gas dynamical system while on the other side flow

is arbitrary. A more complex problem is the case of having to couple the isentropic

system of gas dynamics with the Euler system of gas dynamics.

The problem (2.1)-(2.3), in general is not well-posed when the boundary data

are imposed in the strong sense (2.4). In the case of nonlinear hyperbolic equations

with initial and boundary condition, a first question is to understand the sense

of boundary condition. In some particular cases, the boundary conditions can be

founded by physical consideration, but their derivation in the general case is not

obvious. The problem of finding the “correct” boundary conditions , i.e., which lead

to well-posed problem, is difficult in general from both the theotrical and practical

points of view. Here we review some features of these issues in details.

2.2 Initial Boundary Value Problems for Hyper-

bolic Equations

Numerical study of the industrial problems are, basically, consisting of simulating

efficient schemes in the sense that the obtained numerical solutions satisfy, for in-

stance, some natural constraints and which are seem to be in good agreement with

the experimental data. However, in many cases, it is not so clear to understand the

problem which is solved by the limit of the numerical solutions as the discretization

parameter tends to 0. In this section we focus on the case where the limit equation

is a hyperbolic (scalar) equation. In this case, as we mentioned earlier, the main

difficulty is to understand the boundary conditions which are satisfied by the limit
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Figure 2.1: The characteristic carrying the boundary data and initial data.

of the numerical solutions. An interesting example is given by the modelization of

a two phase flow in a porous medium used in reservoir simulation.

2.2.1 Linear scalar problems in one dimensional

We start with the simplest case “quarter plane problem” in one dimension, i.e., we

consider the simple case of linear advection equation

ut + aux = 0,

where a is a constant and u is scalar.

The question is: what prescribed data on {x = 0, t ≥ 0} and on {x ≥ 0, t =

0}, would guarantee a well-posed problem that we can hope to solve in the whole

R+ × R+? We split the cases a > 0 and a < 0 and illustrate the problem more

closely:

• a > 0.

In this case the characteristics are going from left to right. In particular they

enter the domain (i.e., R+×R+ from the boundary {x = 0, t ≥ 0}) as is shown

if Figure 2.1: therefore, one needs to prescribe the solution at the boundary
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x = 0. From the method of characteristics it is clear that if




u(x, 0) = u0(x),

u(0, t) = g(t),

are prescribed as the initial and boundary data, then the solution of ut+aux =

0 in R+ × R+ is given by,

u(x, t) =





u0(x− at), for x > at,

g(t− x/a), for x < at.
(2.5)

To have a smooth solution in the whole domain it is necessary that both g(t)

and u0(x) are smooth functions. It is also necessary that g(t) and u0(x) be

compatible or satisfy compatibility conditions. The most obvious necessary

conditions are

u0(0) = g(0),

u′0(0) = −g′(0)

a
,

otherwise, the solution (2.5) is a weak solution satisfying the Rankine-Hougoniot

jump condition on each side of the discontinuity x = at.

• a < 0.

In this case the characteristics are outgoing from the interior of the domain

and the information is carried from the given initial data u0. From drawing

the characteristics it is clear that in this case we are not free to prescribe the

boundary data on {x = 0, t > 0}; i.e., the initial data determines boundary

data (see Figure 2.2). The solution is

u(x, t) = u0(x− at), x ≥ 0, t ≥ 0,

in particular

u(0, t) = u0(−at).
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Figure 2.2: The characteristic carrying the initial data.
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Figure 2.3: The characteristic carrying the initial data.

Note that if a = 0, we do not need any boundary conditions because ∂u
∂x

= 0 implies

that

u(x, t) = u0(x).

Combining both cases enables one to treat the case of a bounded interval in space,

for instance the strip {(x, t)
∣∣0 ≤ x ≤ x̄, t ≥ 0}. The boundary that must be specified

corresponds to incoming characteristics (see Figure 2.3)





u(0, t) = g(t), for a > 0,

u(x̄, t) = h(t), for a < 0.
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Figure 2.4: The characteristic line for aR > 0 and aL > 0.

2.3 The One Dimensional Coupled problem

In order to make the coupling condition more explicit, we consider the following

example (see [37]):

EEExample 2.1. We start by considering the simplest case where

fL = aLu, fR = aRu,

for some nonzero constants aR and aL. Due to the sign of aL, aR and depending on

the directions of the characteristic lines we have the following cases:

1. aL > 0, aR > 0 or aL < 0, aR < 0 (aL aR < 0): we can impose the continuity

condition at x = 0 (cf. Figure 2.4).

2. aL > 0, aR < 0: no continuity condition is required at x = 0 (cf. Figure 2.5);

3. aL < 0, aR > 0: we need to specify u(0, t) at x = 0, otherwise the solution u

is not defined in the fan aLt < x < aRt (cf. Figure 2.6).
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Figure 2.5: The characteristic line for aR < 0 and aL > 0.
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Figure 2.6: The characteristic line for aR > 0 and aL < 0.

2.4 A General Existence and Uniqueness Results

for IBVP’s

To show the well-posedness of problem (2.1)-(2.3), we consider the general nonlinear

conservation laws and as a preliminary step we study the IBVP





ut + f(u)x = 0, x ∈ R+, ∈ (0, T ),

u(x, 0) = u0(x), x ∈ R+,

u(0, t) = ub(t), t ∈ (0, T ).

(2.6)

In this section we comment (without proofs) on the existence and uniqueness results

for the above IBVP and state two admissible boundary sets. For future details we

refer to Godlewski and Raviart [37] and relevant papers.

Searching for an existence and uniqueness theorem for IBVPs for scalar conser-

vation laws it is natural to apply the same method as for the Cauchy problem for
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“vanishing viscosity”: We thus pose the parabolic IBVP for ε > 0,

uε
t + f(uε)x − εuε

xx = 0, x ∈ R+, t ∈ (0, T ),

uε(x, 0) = u0(x), x ∈ R+,

uε(0, t) = ub(t), t ∈ (0, T ).

(2.7)

One can use the standard parabolic theory to show the existence of a unique solution

uε to this problem, and one can then attempt to take the limit of uε as ε ↓ 0. It

is known that uε will converge to a limiting function u(x, t), and this u is what we

would like to define as the (hopefully) unique entropy solution of the inviscid IBVP

(2.6).

Let us recall the sense of the weak entropy solution for IBVP (2.6).

DDDefinition 2.2. A function u ∈ L∞(R+ × R+) ∩ BVloc(R+ × R+) is called a weak

entropy solution of the initial-boundary value problem (2.6), if for each k ∈ R, and

for all nonnegative test functions φ ∈ C∞
0 (R+×R+), the following inequality holds:

∫ ∞

0

∫ ∞

0

{
|u− k|φt + sgn(u− k)(f(u)− f(k))φx

}
dxdt

+

∫ ∞

0

|u0(x)− k|φ(x, 0)dx

+

∫ ∞

0

sgn(ub(t)− k)(f(u(0, t))− f(k))φ(0, t)dt ≥ 0.

(2.8)

Indeed, we have the following result (cf. Bardos et al. [15], see also Godlewski et al.

[39] for instance):

TTTheorem 2.3. Suppose that u0 ∈ BV (R+) and ub ∈ BV (0, T ) for all T > 0. Then

there exists a unique entropy solution

u ∈ L∞(R+ × (0, T )) ∩BVloc(R+ × (0, T )) ∩ C0([0, T ]; L1(R)) for all T > 0,

of problem (2.6) in the sense of (2.8).

Let us interpret the definition of a weak entropy solution in (2.8). If the boundary

data g is given along x = 0, and u(t) denotes the “trace” u, i.e., the value we get by
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taking the limit from the interior (u(t) = limx−→0+ u(x, t)), then (2.8) says that

−sgn(u(t)− g(t))(f(u(t))− f(k)) ≥ 0,

for all k between u(t) and g(t), where

sgn(x) =





1, for x > 0,

0, for x = 0,

−1, for x < 0.

With this definition we have that the first set V(ub(t)) of the admissible values at

the boundary due to Bardos, Leroux, Nédéléc [15] (see for instance Godlewski [39]),

is defined as all u(0, t) such that for all t > 0




f(u(0, t)) ≤ f(k), for all k with ub(t) ≤ k ≤ u(0, t),

f(u(0, t)) ≥ f(k), for all k with u(0, t) ≤ k ≤ ub(t).

Then the boundary condition can be written as follows:

u(0, t) ∈ V(ub(t)), ∀t > 0. (2.9)

Also a second set of admissible boundary values , is given as

U(ub) = {v = w(0+; ub, uR) : uR ∈ R},

for all ub ∈ R, where (x, t) −→ w(x, t) = w(x/t; uL, uR) denotes the solution of the

Riemann problem

wt + f(w)x = 0, x ∈ R, t > 0,

with the initial data

u(x, 0) =





uL, for x < 0,

uR, for x > 0.

Then the admissible boundary condition reads (see [25])

u(0, t) ∈ U(ub(t)), t > 0. (2.10)
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By the above definition, the boundary condition for our main problem (2.1)-(2.3),

can be replaced by the following coupling conditions





u(0+, t) ∈ UR(u(0−, t)),

u(0−, t) ∈ UL(u(0+, t)),

where

UL(ub) = {v = wL(0−; uL, ub) : uL ∈ R},
UR(ub) = {v = wR(0+; ub, uR) : uR ∈ R},

wα(x/t; uL, uR) denotes the solution of the Riemann problem associated with the flux

functions fα, α = L,R and u(0±, t) is the trace of the solution u at the boundary

x = 0±.

RRRemark 2.4. It is known [25] that these two formulation are equivalent for scalar

conservation laws, namely, V(ub(t)) = U(ub(t)) for all t > 0.

RRRemark 2.5. If we suppose that f ′(v) > 0 for all v, both conditions (2.9) and

(2.10) are reduced to the boundary conditions u(0, t) = ub(t). On the other hand, if

f ′(v) < 0 for all v, these conditions are automatically satisfied and therefore we do

not need to involve any constraint on the boundary value u(0, t).
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Chapter 3

STREAMLINE DIFFUSION

FORMULATION

In this section we introduce the streamline diffusion finite element method (Sd-

method below) discretization of the coupled problem.

3.1 The Space-Time Discretizations and Finite El-

ement Spaces

We start with the first equation of the above system; (2.1), and reformulate it as the

following initial boundary value problem: Find a scalar function u = u(x, t), where

x is the space variable and t denotes the time, such that





∂u

∂t
+ f ′R(u)

∂u

∂x
= 0, (x, t) ∈ Ω := R+ × (0, T ),

u(x, 0) = u0, (x, t) ∈ Ω0 := R+ × {0},
u(0, t) = ub, (x, t) ∈ Γ := {0} × (0, T ),

(3.1)
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where (0, T ) is a given time interval. To derive the basic stability, it is necessary

to put some restrictions on fα(α = L,R) in the problems (1.1)-(1.3). Our basic

assumptions that we called non-rarefaction assumptions are:

• α = R, f ′R(u) ≤ 0 ( particular f ′R(ub) ≤ 0), ∂
∂x

(f ′R(u)) ≤ 0.

• α = L, f ′L(u) ≥ 0 ( particular f ′L(ub) ≥ 0), ∂
∂x

(f ′L(u)) ≥ 0.

In each case the first condition is required for existence and uniqueness of contin-

uous problem (1.1)-(1.3), while the second condition is required for existence and

uniqueness (in the discrete version of Lax-Milgram lemma) of discrete problem (see

Lemma 3.1 below).

In the numerical study of the problem (3.1), because of its hyperbolic nature,

the standard Galerkin finite element method does not give satisfactory convergence

rates, compared to elliptic or parabolic problems. This is due to the fact that a

regularizing diffusion term of the type uxx is missing in the hyperbolic equations.

To circumvent this phenomenon, below we shall introduce the streamline diffusion

method (Sd)-method for this problem. To this approach, let {0 = t0 < t1 < ... <

tN = T} be a partition of the time interval I = (0, T ) into the subintervals In =

(tn, tn+1), with time steps kn = tn+1 − tn , n = 0, 1, . . . , N − 1 and introduce the

corresponding space-time “slabs”, i.e.,

Sn = {(x, t) : x > 0, tn < t < tn+1}, n = 0, 1, . . . , N − 1.

For each slab Sn, let xn
i be a mesh on R+, portioned in intervals Jn

i = (xn
i−1, x

n
i ), with

hn
i = xn

i − xn
i−1. We define the global mesh function h = h(x, t) by h(x, t) = hn(x)

for x ∈ R+, t ∈ (tn, tn+1) and the function k = k(t) by k(t) = kn for t ∈ (tn, tn+1).

For h > 0, let T n
h be a triangulation of the slab Sn into triangles K (cf. Figure 4.),

satisfying as usual the minimum angle condition (see e.g., Ciarlet [20]), and indexed

by the parameter h representing the maximum diameter of the triangles K ∈ T n
h .
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Figure 3.1: The space-time triangulation.

The triangulation of Sn may be chosen independently of that of Sn−1, but for the

sake of simplicity it must satisfy the standard quasi-uniformity conditions for finite

element meshes (“uniform shape and size” condition), i.e., there exist a number

% > 0, independent of h and K such that

ρK

hK

≥ %, ∀K ∈ T n
h ,

where the parameters hK and ρK are defined as follows:

hK = diam(K),

and

ρK = sup{diam(B) : B is a ball contained in K}.

This condition means that the triangles K ∈ T n
h are not allowed to be arbitrary

thin, or equivalently, the angels of the triangles K are not allowed to be arbitrary

small. The constant % is a measure of the smallest angle in any K ∈ T n
h . Let now

k be a positive integer and introduce the finite element space

Un
h = {u ∈ H1(Sn) : u

∣∣
K
∈ Pk(K), K ∈ T n

h },

where Pk(K) denotes the set of polynomials on K of degree less than or equal to

k, i.e., Un
h is the space of all continuous piecewise polynomial functions, on Sn, of
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degree ≤ k. Then we define the trial and test function spaces as the subspaces of

Un
h by

V n
h = {v ∈ Un

h : v
∣∣
Γ

= ub
h},

and

W n
h = {w ∈ Un

h : w
∣∣
Γ

= 0},

respectively. Here ub
h is the trace of a function in Un

h approximating ub on Γ. Note

that we may assume that the functions v(x, t) ∈ Vn
h and w(x, t) ∈ Wn

h are vanishing

for sufficiently large |x|.
We shall use the following notation: recall that for a given domain Q we denote by

(., .)Q the usual L2(Q) scalar product, ||.|| = ‖.‖L2(Q) the corresponding L2 norm,

and for a positive integer s, Hs(Q) will denote the usual Sobolev space of functions

with square integrable derivative of order less than or equal s and with the norm

||.||s,Q. We also write ‖.‖∞,Q = ‖.‖L∞(Q). Further for piecewise polynomials wi

defined on the triangulation T ′
h = {K}, where T ′

h ⊂ Th and for Di, i = 1, 2, being

some differential operators, we use the notation

(D1w1, D2w2)Q′ =
∑

K∈T ′h

(D1w1, D2w2)K , Q′ =
⋃

K∈Th

K,

i.e., we just sum the integrals over each element K ∈ T ′
h. We also write

(u, v)n =

∫

Sn

uvdxdt, ||v||n = (v, v)1/2
n ,

< u, v >n=

∫

R+

u(x, tn)v(x, tn)dx, |v|n =< v, v >1/2
n ,

v+ = lim
s−→0+

v(x, t + s), v− = lim
s−→0−

v(x, t + s).
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3.2 Space-Time Streamline Diffusion Finite Ele-

ment Method

We start with a streamline diffusion variational formulation for the continuous prob-

lem (3.1) where, roughly speaking, in order to win a small diffusive term, we have test

functions of the form v + δ(vt + f ′R(u)vx) rather than only v: Given u(x, 0) = u0(x),

find u ∈ H1(Ω) with u|Γ = ub, such that

(
ut + f ′R(u)ux, v + δ(vt + f ′R(u)vx)

)
Ω

+

∫

Γ

uv dσdt

=

∫

Γ

ubv dσdt, ∀v ∈ H1
0 (Ω),

(3.2)

where dσ being surface element is assumed to be 1 in our one dimensional problem.

In the above, instead of using the standard Galerkin method for the one variable

(spatial or time) we used the Galerkin method simultaneously in space and time.

That is, we use finite element and interpolation functions depending on time and

space. Space-time Sd-method can be used to improve stabilization; however, used

without care, this would lead to a very large linear system to be solved. The reason

for this is that in this technique the use of continuous (in time) test and trial func-

tions coupled all levels of time. One way to avoid this difficulty, and decrease the

size of the corresponding linear system, is to work in slabs of space-time, with the

help of interpolation functions that will be continuous in the spatial variables but

will be discontinuous in the time variables at the common frontier of every two slabs.

With the test and trial functions continuous in space and with jump discontinuities

at the partition points on the time interval, this can be reformulated as follows: For

n = 0, 1, . . . , N − 1 find u ∈ H1(Sn), such that

(
ut + f ′R(u)ux, v + δ(vt + f ′R(u)vx)

)
n
+ < u+, v+ >n

+

∫

Γ

uv dσdt =< u−, v+ >n +

∫

Γ

ubv dσdt, ∀v ∈ H1
0 (Sn).

(3.3)
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The terms including < . > in the above formula is a jump conditions which im-

poses a weakly enforced continuity condition across the slab interfaces, at tn and

is the mechanism by which information is propogated from one slab to another.

For more concisely, after summing over n, we may rewrite (3.3) as follows: Find

u ∈ ∏N−1
n=0 H1(Sn), such that

B(u, v) = L(v), ∀v ∈
N−1∏
n=0

H1
0 (Sn), (3.4)

where the bilinear form B(., .) and the linear form L(.) are defined by

B(u, v) =
N−1∑
n=0

{(
ut+f ′R(u)ux, v+δ(vt+f ′R(u)vx)

)
n
+ < u+−u−, v+ >n +

∫

Γn

u+v+dt
}

,

and

L(v) =< u0, v+ >0 +

∫

Γ

ubv+dt.

We now formulate the, space-time, discrete streamline diffusion finite element method,

for the problem (3.1) as follows: Find un
h ∈ Vn

h , such that for n = 0, 1, . . . , N − 1

(
un

h,t + f ′R(un
h)un

h,x, v
n
h + δ(vn

h,t + f ′R(un
h)vn

h,x)
)

n
+ < un

h,+, vn
h,+ >n

+

∫

Γn

un
h,+vn

h,+dt =< un
h,−, vn

h,+ >n +

∫

Γn

ubvn
h,+dt, ∀vn

h ∈ Wn
h ,

(3.5)

where δ = C̄h with C̄ a suitably chosen (sufficiently small, see Johnson et al. [53],

[54]) positive constant, Γn = {0} × In and u0
h,− = u0 is the initial data. Formally,

(3.5) can be thought of as a perturbation of the standard Galerkin method corre-

sponding to δ ≡ 0. We can show that (see Nävert [63]) if uh,−(., tn) is given, then

(3.5) defines un
h uniquely in the slab Sn and thus un

h can be computed successively

on all the slabs Sn, n = 0, 1, . . . , N − 1, starting at S0, where u0
h,− = u0 is given.

For each n, (3.5) is equivalent to a (non) linear system of equations and thus (3.5)

corresponds to an implicit scheme for (3.1). Below, in Lemma 4.1, we prove the

uniqueness and hence also the existence of a solution for the (non) linear system of
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equations represented by (3.5). Summing over n, (taking all the slabs together) we

get the function spaces

Vh =
N−1∏
n=0

Vn
h , Wh =

N−1∏
n=0

Wn
h .

i.e., we shall seek an approximate solution uh ∈ Vh such that for n = 0, 1, ..., N − 1

we will have that uh |Sn= un
h.

We emphasize that the functions in Vh are continuous in x and possibly discontinuous

in t at discrete time levels tn. Similar properties are valid for wh ∈ Wh.

In order to write (3.1) in a compact form suitable for analysis, and because the

functions in Vh may be discontinuous in time, we introduce the jump terms [v]

across each time level by defining , for x > 0 and n = 0, 1, . . . , N − 1,

[v](x, tn) =





v+, if n = 0

v+ − v−, if n 6= 0.

And then summing (3.5) over n = 0, 1, . . . , N − 1, we get the following discrete

analogue of (3.3)-(3.4): Find uh ∈ Vh such that

B(uh, v) = L(v), ∀v ∈ Wh. (3.6)

Now subtracting (3.6) from (3.4) we get the Galerkin orthogonality relation:

B(u− uh, v) = 0, ∀v ∈ Wh. (3.7)

The Galerkin orthogonality relation: (3.7) is very useful in our error estimates below.
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Chapter 4

FINITE ELEMENT ANALYSIS FOR

THE STREAMLINE DIFFUSION

Goal of the design of any numerical computational method is

• Reliability: Computational error is controlled by a predefined tolerance,

• Efficiency : Computational work is as small as possible,

and these efficiency and reliability of numerical approaches are studied in two dif-

ferent settings: The a priori error estimates, which are of theoretical nature and

formulated in terms of the exact solution, and the a posteriori error estimates that

are employed in low regularity cases and are formulated in terms of the residual term,

i.e., computed solution and the data (right hand side) in the problem. The two ap-

proaches have different advantages and features and serve for theoretical numerical

convergence analysis and computational and implementing purposes, respectively.

In this section we derive the basic stability estimates for the Sd-method and also

study the convergence rate of the approximate solution for (3.6) and derive a priori
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error estimates. The, corresponding, a posteriori error estimates is the matter of the

next section. In what follows, C and c will denote positive constants, independent

of h, and not necessarily the same at each occurrence, unless otherwise explicitly

stated. Normally if C and c appear in the same chain of estimates, then we shall

mean Cc = O(1).

4.1 The Basic Stability Estimates for the Sd-Method

Below we derive the stability estimates for the Sd-method (2.2). These estimates

will be of crucial importance in proving the finite element error analysis. Stability

estimates would usually follow from the coercivity properties of the bilinear form

B(·, ·) associated to the variational formulation for the underlying problem. For our

problem we have the following stability lemma:

LLLemma 4.1. For u ∈ ∏N−1
n=0 H1(Sn), and with the non-rarefaction assumptions

f ′R(ub) ≤ 0, and ∂
∂x

(
f ′R(u)

)
≤ 0, we have that

B(u, u) ≥ |||u|||2, (4.1)

where

|||u|||2 :=
1

2

[
|u−|2N + |u+|20 +

N−1∑
n=1

|[u]|2n + 2δ‖ut + f ′R(u)ux‖2
Ω

]
+ ‖u+‖2

Γ.

Proof. Using the definition of the bilinear form B and setting u = v it follows that

B(u, u) = (ut, u)Ω + (f ′R(u)ux, u)Ω + δ‖ut + f ′R(u)ux‖2
Ω + ‖u+‖2

Γ

+
N−1∑
n=0

< [u], u+ >n .

Integrating by parts yields

(ut, u)Ω +
N−1∑
n=1

< [u], u+ >n + < u+, u+ >0=
1

2

[
|u−|2N + |u+|20 +

N−1∑
n=1

|[u]|2n
]

.
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Further we have that

(f ′R(u)ux, u)Ω = −1

2

[ ∫ ∞

0

∫ T

0

∂

∂x

(
f ′R(u)

)
u2 dx +

∫ T

0

f ′R(ub)(ub)2
]
,

which is obviously nonnegative by using the non-rarefaction assumptions. Thus the

proof is complete. ¤

Note that the above lemma implies that the discrete problem (3.6) possesses a

unique solution uh ∈ Vh and that the stability of the scheme is guaranteed, (see, e.g.,

Lax-Milgram Lemma). In the following lemma we obtain an estimate for ‖u(t)‖Ω

for all t > 0 as follows:

LLLemma 4.2. For any C > 0, we have for u ∈ ∏N−1
n=0 H1(Sn) that

‖u(t)‖2
Ω ≤

[
N∑

n=1

|u−|2n +
1

C
‖ut + f ′R(u)ux‖2

Ω

]
exp(Ch).

Proof. Using the inequality (1.27a), and c.f. Johnson and Szepessy [55] we have, for

tn < t < tn+1, that

‖u(t)‖2
R+

= |u−|2n+1 −
∫ tn+1

t

d

ds
‖u(s)‖2

R+
ds

= |u−|2n+1 − 2

∫ tn+1

t

∫

R+

(ut + f ′R(u)ux)u dx ds

≤ |u−|2n+1 +
1

C
‖ut + f ′R(u)ux‖2

n + C

∫ tn+1

t

‖u(s)‖2
R+

ds.

So that by Grönwall’s inequality (1.24) and for tn < t < tn+1 we get

‖u(t)‖2
R+
≤

[
1

C
‖ut + f ′R(u)ux‖2

n + |u−|2n+1

]
exp(Ch).

Integrating over tn < t < tn+1 and summing over n = 0, 1, . . . , N − 1, and using a

shifting as n− 1 ↪→ n, we obtain the desired result. ¤
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4.2 An a Priori Error Estimate for the Sd-Method

Let us prove an a priori error estimate for the Sd-method (3.6). To obtain global

error estimate; we use the standard argument for finite element and introduce the

linear nodal interpolant Ihu ∈ Vh of the exact solution u and set η = u − Ihu and

ξ = uh − Ihu. Then we have that

e := u− uh = (u− Ihu)− (uh − Ihu) = η − ξ.

Recalling the Galerkin orthogonality relation (3.7):

B(e, v) = 0, ∀v ∈ Vh (4.2)

We can now state and prove the basic global error estimate for (3.6).

TTTheorem 4.3. If uh ∈ Vh satisfies (3.6) and the exact solution u satisfies (3.1), and

further

||f ′R||∞,Ω ≤ C, (4.3)

then there is a constant C such that

|||u− uh||| ≤ Chk+ 1
2‖u‖k+1,Ω. (4.4)

Proof. Using the basic stability estimate (4.1) with u = e and (4.2), with v = ξ we
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get that

|||e|||2 ≤B(e, e) = B(e, η)−B(e, ξ) = B(e, η)

=
(
et + f ′R(e)ex, η + δ(ηt + f ′R(e)ηx)

)
Ω

+
N−1∑
n=0

< [e], η+ >n +

∫

Γ

e+η+dt

≤C
δ

8
‖et + f ′R(e)ex‖2

Ω + 8cδ−1‖η‖2
Ω

+ C
δ

8
‖et + f ′R(e)ex‖2

Ω + 8cδ‖ηt + f ′R(η)ηx‖2
Ω

+ C
δ

8
‖et + f ′R(e)ex‖2

Ω + 8cδ‖ηx(f
′
R(e)− f ′R(η))‖2

Ω

+
C

4

N−1∑
n=1

|[e]|2n +
1

4c

N−1∑
n=1

|η+|2n

+
C

4
|e+|20 +

1

4c
|η+|20 +

C

4
‖e+‖2

Γ +
1

4c
‖η+‖2

Γ

≤1

8
|‖e|‖2 + C

N−1∑
n=0

|η+|2n

+ C
[‖η+‖2

Γ + h−1‖η‖2
Ω + h‖ηt + f ′R(η)ηx‖2

Ω + h‖ηx(f
′
R(e)− f ′R(η))‖2

Ω

]
.

Further we have the triangle inequality

‖ηt + f ′R(η)ηx‖Ω ≤ ‖ηt‖Ω + ‖f ′R‖∞,Ω‖ηx‖Ω,

and

‖ηx(f
′
R(e)− f ′R(η))‖Ω ≤ 2‖f ′R‖∞,Ω‖ηx‖Ω.

So that by (4.3), and also using the inverse estimate inequality (1.26)

‖ηx‖Ω ≤ Ch−1‖η‖Ω,

and the fact that δ = C̄h, we get,

|‖e|‖2 ≤ C

[
‖η+‖2

Γ + h−1‖η‖2
Ω +

N−1∑
n=0

|η+|2n + h‖η‖2
1,Ω

]
.
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Finally, recalling interpolation estimates it follows that (see, e.g., Ciarlet[20])

[
h‖η+‖2

Γ + ‖η‖2
Ω + h

N−1∑
n=0

|η+|2n + h2‖η‖2
1,Ω

] 1
2

≤ Chk+1‖u‖k+1,Ω,

which proves the desired estimates. ¤

The basic a priori estimate (4.4) for the Sd-method should be compared with

the following estimate for the standard Galerkin method

‖u− uh‖Ω ≤ Chk‖u‖k+1,Ω,

for the hyperbolic problems. which, being of order O(hk), is obviously not-optimal.

Note that the corresponding optimal convergence rate for the standard Galerkin

method for elliptic and hyperbolic problems is of order O(hk+1). Hence (4.4) is an

improvement of the convergence order by O(h1/2), for the hyperbolic problems. It

appears that the order O(hk+1/2) given in (4.4) cannot be improved, and therefore is

indeed the optimal convergence rate for the hyperbolic problems, (see, Ciarlet [20]

or Johnson [47] for more details).

4.3 An a Posteriori Error Estimate for the Sd-

Method

In the last section we estimated the error in the standard approach, i.e., we derived

a priori error estimate which bound the error in term of stability properties of the

numerical method and derivatives of the exact solution. This estimate is very im-

portant since it proves the convergence of the family of discrete solution towards

the solution of the equation. However it involves the regularity of the exact solution

which is most often unknown, so that it cannot provide an explicit order of conver-

gence. In other words these kind of error bounds are not useful for practical error
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estimations because the derivatives of the exact solution, likewise the exact solution

itself, are unknowns. The a posteriori approach instead tries to estimate the error

of approximating a particular solution by using the information from computation.

The foundation is a rigorous a posteriori error estimate which bound the error by

computable quantities that depend on the “known computed” numerical solution

rather than the unknown exact solution. The key point is that, once the discrete

solution is known, the a posteriori error bound can be computed explicitly. The

process of a posteriori error estimates consists of the following four ingredients:

• “Stability factor” that measure the accumulation of error; the stability fac-

tor is determined by the solution of a dual problem, obtained by linearizing

the weak formulation of the differential equation around the solution to be

approximated.

• Interpolation constants Ci determined only by order of the finite element

method, such as angles of elements and degree of quadratures used to compute

the approximated solution.

• A power of the mesh size k and h

• A quantity that measures the residual error by regularity of the approximated

solution. The residual error is the remainder from substituting the approxi-

mated solution into the (weak form of the) differential equation.

In fact the a posteriori error bound for the Sd-method for hyperbolic problem have

the following basic form

‖e‖ ≤ CiSc‖hR(uh)‖, (4.5)

where h is the mesh size , Ci is the interpolation constant ,R(uh) is the residual

and Sc = Sc(u) is the computable stability factors defined through a continuous
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linearized dual problem and expresses the relevant stability properties of the solution

u being computed. The proof of the a posteriori error estimates (4.5) includes the

following steps:

• Representation of the error e in term of the residual of the finite element solu-

tion and the solution φ of a continuous (linearized) dual problem, introduced

below.

• Use of the Galerkin orthogonality to replace φ by φ − Φ, where Φ is the

L2−projection of φ.

• Interpolation error estimate for φ−Φ in the term of certain derivatives Dφ of

φ and the mesh size h.

• Strong stability estimates for the dual solution φ, estimating Dφ in term of

the data ψ (here, in our case, ψi, i = 1, 2, as below) of the dual problem.

In this section we consider again the following model problem: Find u such that

Lu ≡ ut + fR(u)x = 0, in Ω,

u(0, .) = ub, in (0, T ),

u(., 0) = u0, in R+,

(4.6)

where fR and Ω are defined in the preceding section and for simplicity we take

ub ≡ 0. Below we shall consider the following simplified version of Sd-method (3.5)

with δ = 0 in the problem (4.6): Find uh ∈ Vn
h , such that for n = 0, 1, . . . , N − 1

(
uh,t + fR(uh)x, v

)
n
+ < [uh], v+ >n= 0, ∀v ∈ Wn

h , (4.7)

where [uh] = un
h,+− un

h,− and u0
h,− = u0. Our aim will be to derive a posteriori error

estimates for the error e = u − uh , in the L2(L2) norm, see also [57, 18], where

u and uh are the solution of the (4.6) and (4.7) respectively. An error analysis for
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the case of δ 6= 0, is given in [56, 71]. Further we shall first introduce the following

notation:

‖v‖Lψ
2 (Ω) = (v, ψv)

1/2
Ω ,

where ψ is a positive weight function and recall that

(v, w)Ω =
N−1∑
n=0

∫

In

(v, w)dt,

where ‖v‖2
Ω = (v, v)Ω and (., .) is the inner product in L2(R+). The a posteriori

error estimates contain residual of computed solution uh defined by

R0 = uh,t + fR(uh)x,

R1 =
un

h,+ − un
h,−

kn

, on Sn,

R2 =
(Pn − I)un

h,−
kn

, on Sn,

where I is the identity operator and Pn is a projection operator which will be

defined below. As we mentioned above, standard a posteriori error estimates for

time-dependent problem as presented in [44, 57, 69, 70] and [26] typically rely on

Galerkin orthogonality, interpolation estimates and strong stability estimates for a

suitable dual problem running backward in time with a desired error functional as

initial data on the right hand side as key ingredient. Of course our approach to a

posteriori error analysis is slightly different of the above reference; we furthermore

use the concept of stability factor (see, [18, 68]). Below we, especially, consider these

issues in more details.
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4.3.1 The dual problem

In order to obtain a representation of the error, we consider the following auxiliary

problem, referred to as the linearized dual problem: Find φ such that

L∗φ ≡ −φt − AT φx = ψ1, in Ω,

φ(0, .) = 0, in (0, T ),

φ(., T ) = ψ2, in R+,

(4.8)

where

A =

∫ 1

0

f ′R(su + (1− s)uh)ds.

and L∗ denotes the adjoint of the operator L defined in (4.6). Note that this problem

is computed “backward”, but there is a corresponding change in sign. The a poste-

riori error estimates is expressed in terms of a scalar product with two functions ψ1

or ψ2 also appearing as data in the dual problem. Depending on the choice of ψ1 or

ψ2, we will get estimates of different norms or functionals of the error.

4.3.2 L2(L2) a posteriori error estimates

In this subsection we will obtain an a posteriori error estimate for the error e = u−uh

in the L2(L2) norm, where u and uh are the solutions of (4.6) and (4.7) respectively.

By choosing ψ1 = ψ−1e and ψ2 = 0 in (4.8) we get the following linearized dual

problem: Find φ such that

L∗φ ≡ −φt − AT φx = ψ−1e, in Ω, (4.9a)

φ(0, t) = 0, t ∈ (0, T ), (4.9b)

φ(x, T ) = 0, x ∈ R+, (4.9c)

where AT is defined as above and ψ is a positive weight function to be specified

below. Further we suppose that φ(x, t) −→ 0 as x −→ +∞. Multiplying (4.9) by e
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and integrating over each Sn, integrating by parts, and summing over n, we obtain

the following error representation formula:

‖e‖2

Lψ−1

2 (Ω)
= (e, ψ−1e)Ω = (e,L∗φ)

=
N−1∑
n=0

(e,−φt − AT φx)n

=
N−1∑
n=0

(et, φ)n −
N−1∑
n=0

∫

R+

[
eφ

]tn+1

tn
dx

+
N−1∑
n=0

((Ae)x, φ)n.

(4.10)

We rewrite the second sum as

J =
N−1∑
n=0

∫

R+

[
eφ

]tn+1

tn
dx

=
(

< e−, φ− >1 − < e+, φ+ >0

)
+

(
< e−, φ− >2 − < e+, φ+ >1

)
+ . . .

+
(

< e−, φ− >N−1 − < e+, φ+ >N−2

)
+

(
< e−, φ− >N − < e+, φ+ >N−1

)
.

To continue we write φi
− = (φi

− − φi
+ + φi

+), i = 1, . . . , N − 1, then we obtain

−J =< e−, φ− >N + < e+, φ+ >0 +
N−1∑
n=1

< [e], φ+ >n +
N−1∑
n=1

< e−, [φ] >n .

According to (4.9c), φ(., tN) = 0 and since e0
− = [u0] = 0, we get

J =
N−1∑
n=0

< [uh], φ+ >n .

Inserting J into the (4.10) we have that

‖e‖2

Lψ−1

2 (Ω)
=

N−1∑
n=0

(et + (Ae)x, φ)n −
N−1∑
n=0

< [uh], φ+ >n

=
N−1∑
n=0

(ut + fR(u)x, φ)n

−
N−1∑
n=0

(uh,t + fR(uh)x, φ)n −
N−1∑
n=0

< [uh], φ+ >n .
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So that recalling (4.6) and using the Galerkin orthogonality we obtain

‖e‖2

Lψ−1

2 (Ω)
=

N−1∑
n=0

(uh,t + fR(uh)x, Φ− φ)n

+
N−1∑
n=0

< [uh], (Φ− φ)+ >n≡ I + II.

(4.11)

where Φ ∈ Vh is an interpolant of φ. The idea is now to estimate Φ− φ in terms of

ψ−1e using a strong stability estimates for the solution φ of the dual problem (4.9).

4.3.3 Interpolation estimates for the dual solution

We shall now choose our interpolant Φ ∈ Vh in (4.11) to be the space-time L2−projection

of φ, namely if we first define the L2−projections:

Pn : L2(R+) −→Wn
h ,

πn : L2(Sn) −→ Π0,n = {v ∈ L2(Sn) : v(x, ·) is constant on In, x ∈ R+}
in space and in space-time, respectively, by

∫

R+

(Pnφ)vdx =

∫

R+

φvdx, ∀v ∈ Wn
h ,

πnv|Sn =
1

kn

∫

In

v(·, t)dt, ∀v ∈ Π0,n,

then, we can define Φ
∣∣
Sn
∈ Vn

h by letting

Φ
∣∣
Sn

= Pnπnφ = πnPnφ ∈ V n
h ,

where φ = φ
∣∣
Sn

. Further, if we introduce P and π defined by

(Pφ)
∣∣
Sn

= Pn(φ
∣∣
Sn

), and

(πφ)
∣∣
Sn

= πn(φ
∣∣
Sn

),

respectively, then we can let Φ ∈ Vh to be

Φ = Pπφ = πPφ ∈ Vh.
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In the end of this subsection, we shall state some interpolation estimates for the

projection operators P , leaving the overall estimates of I and II to next subsection.

LLLemma 4.4. There is a constant C such that for R ∈ L2(Ω),

|(R, φ− Pφ)Ω| ≤ C||h2(I − P)R)||
Lψ−1

2 (Ω)
||φxx||Lψ

2 (Ω). (4.12)

Proof. See [57, 68]. ¤

4.3.4 The completion of the proof of a posteriori error esti-

mates

In this subsection we state and prove a posteriori error estimate by estimating of

the terms I and II in the error representation formula (4.11). To this approach we

introduce the stability factors (see [18]) associated with discretization in time and

space, defined by

St
e =

‖φt‖Lψ
2 (Ω)

‖e‖
Lψ−1

2 (Ω)

, and

Sx
e =

‖φxx‖Lψ
2 (Ω)

‖e‖
Lψ−1

2 (Ω)

,

(4.13)

respectively. We now apply the results of the previous subsections; using Cauchy-

Schwarz inequality in (4.11) coupled with the interpolation estimate (4.12) and the

strong stability factors (4.13), to derive the L2(L2) a posteriori error estimates for

the scheme (4.7).

TTTheorem 4.5. The error e = u − uh, where u is the solution of the continuous

problem (4.6) and uh that of (4.7), satisfies the following stability estimate:

‖e‖
Lψ−1

2 (Ω)
≤ CSx

e ||h2(I − P)R0)||Lψ−1

2 (Ω)
+ CSt

e||knR1||Lψ−1

2 (Ω)

+ Sx
e ||h2R2||Lψ−1

2 (Ω)
+ St

e||knR2||Lψ−1

2 (Ω)
.

(4.14)
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Proof. Using the notation introduce above, we may write (4.11) as

‖e‖2

Lψ−1

2 (Ω)
=

N−1∑
n=0

(R0, Φ− φ)n +
N−1∑
n=0

< kn
[uh]

kn

, (Φ− φ)+ >n= I + II.

Below we shall estimate the terms I and II separately. splitting the interpolation

error by writing Φ− φ = Φ− Pφ + Pφ− φ and Φn = πnPφ, we have

I =
N−1∑
n=0

(R0, Φn − Pφ + Pφ− φ)n

=
N−1∑
n=0

(R0, Φn − Pφ)n +
N−1∑
n=0

(R0,Pφ− φ)n

≤ C||h2(I − P)R0)||Lψ−1

2 (Ω)
||φxx||Lψ

2 (Ω),

where we have used the fact that R0 is constant in time, (making the first integral

zero) and then using interpolation estimate (4.12) in the second integral. It remains

to estimate the term II, to this end, we need the following notation

ϕn
+(x) = ϕ(x, t)−

∫ t

tn

∂

∂τ
ϕ(x, τ)dτdt,

so that

knφ
n
+(x) =

∫

In

φ(x, t)dt−
∫

In

∫ t

tn

φτ (x, τ)dτdt, (4.15)

where φτ = ∂φ
∂τ

and φn = φ(., tn).

II =
N−1∑
n=0

< kn
[uh]

kn

, (Φ− φ)+ >n

=
N−1∑
n=0

< kn
[uh]

kn

, (Φn − Pφ + Pφ− φ)+ >n

=
N−1∑
n=0

< kn
[uh]

kn

, (Φn − Pφ)+ >n +
N−1∑
n=0

< kn
[uh]

kn

, (Pφ− φ)+ >n

:= II1 + II2.
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To estimate II1, we use (4.15) to get

II1 =
N−1∑
n=0

< knR1, (Φn)+ − Pφ+ >n

=
N−1∑
n=0

< R1, knΦn − Pknφ+ >n

=
N−1∑
n=0

(
< R1, knΦn −

∫

In

Pφ(·, t)dt +

∫

In

∫ t

tn

Pφτ (·, τ)dτdt >n

)

=
N−1∑
n=0

∫

In

∫ t

tn

< R1,Pφτ (·, τ) >n dτdt

≤ ‖knR1‖Lψ−1

2 (Ω)
‖Pφt‖Lψ

2 (Ω) ≤ ‖knR1‖Lψ−1

2 (Ω)
‖φt‖Lψ

2 (Ω).

As for the II2-term we can write

II2 =
N−1∑
n=0

< kn
[uh]

kn

, (Pφ− φ)+ >n

=
N−1∑
n=0

<
un

h,+ − un
h,−

kn

, (Pn − I)knφ+ >n

=
N−1∑
n=0

<
Pnu

n
h,− − un

h,−
kn

, (Pn − I)
( ∫

In

φ(·, t)dt−
∫

In

∫ t

tn

φτ (·, τ)dτdt
)

>n

≤
N−1∑
n=0

∫

In

<
(Pn − I)un

h,−
kn

, (Pn − I)φ(·, t) >n dt

+
N−1∑
n=0

∫

In

∫ t

tn

<
(Pn − I)un

h,−
kn

, (Pn − I)φτ (·, t) >n dτdt

≤ ‖knR2‖Lψ−1

2 (Ω)
‖φxx‖Lψ

2 (Ω) + ‖knR2‖Lψ−1

2 (Ω)
‖φt‖Lψ

2 (Ω).

The a posteriori estimate now follows immediately after collecting the terms and

using the definition of the stability factors (4.13). ¤
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4.3.5 Strong stability estimates

To give the above a posteriori estimate a quantitative meaning we need to estimate

the strong stability factors. In this subsection we will present some stability esti-

mates for the model problem indicating that the corresponding stability factor is

bounded by a moderate constant. More specifically, to get a quantitative estimate

of the computational error ‖u − uh‖ in terms of St
e and Sx

e , it is necessary that

these two quantities are bounded by some moderate constants. We now prove the

following strong stability estimate for the dual problem (4.9).

LLLemma 4.6. For a positive weight function ψ(x, t), the solution φ of the dual prob-

lem(4.9) satisfies the following estimate:

‖ψ1/2(φt + AT φx)‖Ω = ‖e‖
Lψ−1

2 (Ω)
.

Proof. First, multiplying the equation (4.9a) by −ψ(φt+AT φx) and integrating over

Ω we get
∫

Ω

ψ(φt + AT φx)
2dxdt = −

∫

Ω

e(φt + AT φx)dxdt

≤ 1

2
‖ψ−1/2e‖2

Ω +
1

2
‖ψ1/2(φt + AT φx)‖2

Ω.

which gives the inequality

‖ψ1/2(φt + AT φx)‖2
Ω ≤ ‖ψ−1/2e‖2

Ω. (4.16)

Similarly, multiplying (4.9a) by e and integrating over Ω we get
∫

Ω

e2ψ−1 = ‖ψ−1/2e‖2
Ω = −

∫

Ω

ψ1/2(φt + AT φx)

≤ 1

2
‖ψ−1/2e‖2

Ω +
1

2
‖ψ1/2(φt + AT φx)‖2

Ω.

So that we have

‖ψ−1/2e‖2
Ω ≤ ‖ψ1/2(φt + AT φx)‖2

Ω. (4.17)

Then combining (4.16) and (4.17) we get the desired result. ¤
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Also we have the following lemma:

LLLemma 4.7. There is constant C =
√

TeT such that if ψ(x, t) is a positive weight

function satisfying

ψt + AT ψx + AT
x ψ ≥ −ψ, in Ω, (4.18)

then the solution φ of (4.9) satisfies

‖ψ1/2φ‖Ω ≤ C‖e‖
Lψ−1

2 (Ω)
.

Proof. Multiplying (4.9a) by ψφ and integrating over R+ we get,

−(φt, ψφ(t))− (AT φx, ψφ(t)) = (e, φ(t)).

Integration by part yields

−1

2

d

dt
‖ψ1/2φ(t)‖2 +

1

2
(ψt, φ

2(t))− (AT φx, ψφ(t)) = (e, φ(t)).

Integrating by part in space, using (4.9b) and the Cauchy-Schwarz inequality, we

have that

−1

2

d

dt
‖ψ1/2φ(t)‖2 +

1

2
(ψt + AT ψx + AT

x ψ, φ2(t)) ≤ ‖ψ−1/2e‖2‖ψ1/2φ‖

≤ 1

2
‖ψ−1/2e‖2 +

1

2
‖ψ1/2φ‖2.

Now, integrating with respect to the time variable over the interval (t, T ), using

(4.9c) and assumption (4.18) we get

‖ψ1/2φ(t)‖2 ≤ ‖ψ−1/2e‖2
Ω + 2

∫ T

t

‖ψ1/2φ(t)‖2ds.

Furthermore, by the Grönwall’s inequality, we have

‖ψ1/2φ(t)‖2 ≤ e2T‖ψ−1/2e‖2
Ω.

Finally, integrating with respect to time over (0, T ) we obtain the desired result. ¤
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Chapter 5

A POSTERIORI ERROR ESTIMATE

IN THE CASE OF ADDING

ARTIFICIAL VISCOSITY

5.1 Introduction

In this chapter we continue in the framework of the Sd-method for hyperbolic prob-

lems (3.1), and add an extra artificial diffusion term of the form −εuxx, to our model

problem, i.e., we study the following problem: Find u such that

Lεu ≡ ut + fR(u)x − εuxx = 0, in Ω,

u(0, t) = ub, t ∈ (0, T ),

u(x, 0) = u0, x ∈ R+,

(5.1)

where ε is a positive viscosity coefficient, which we typically assume to be a ‘small’

constant specified below. Our main goal is to derive a posteriori error estimates for

the above problem based on the Sd-method. In the formulation of the Sd-method

64



A posteriori Error Analysis in the Case of Adding Artificial Viscosity 65

below, if the mesh size is not small enough, the given viscosity ε will be replaced by

an artificial viscosity ε̂ depending on the computed solution uh and the mesh size h.

Therefore it is convenient and natural to split the total error e = u− uh into

e = u− uh = (u− û) + (û− uh) = (u− û) + ê,

where û satisfies (5.1) with ε replaced by ε̂, i.e., û is the solution of the following

continuous problem

Lε̂û ≡ ût + fR(û)x − ε̂ûxx = 0, in Ω,

û(0, t) = ub, t ∈ (0, T ),

û(x, 0) = u0, x ∈ R+.

(5.2)

Now, the perturbation error, i.e., u− û is the difference between the solutions of two

continuous problems with different viscosity ε and ε̂, and û−uh is the discretization

error related to (5.2) with now ε̂ considered to be given. In this case, the a pos-

teriori error estimates (also underlying adaptive algorithm) is, in the case of space

discretization only, basically as follows:

‖ê‖A ≤ SCi‖h2

ε̂
R(uh)‖B, (5.3)

where ‖.‖A and ‖.‖B are some norms, e.g., an Lp(Lq) in time-space or L∞(H−1)

norm, h is the mesh size, and the residual R(uh) = Lε̂uh is obtained inserting the

computed finite element solution into the differential equation (5.2). Further Ci

is an interpolation constant depending only on the angels of the elements of the

computational mesh, and most importantly S is a stability factor which measures

certain stability properties of an associated continuous linearized dual problem. An

adaptive algorithm based on the a posteriori error estimate (5.3) seeks to realize the

stopping criterion

SCi‖h2

ε̂
R(uh)‖ ≤ TOL, (5.4)

at minimal computational cost, where TOL is a given tolerance.
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5.2 The Sd-Method

The Sd-method for (5.2) can now be formulated as follows: Find un
h ∈ Vn

h , such that

for n = 0, 1, . . . , N − 1
(
un

h,t + f ′R(un
h)un

h,x, v
n
h + δ(vn

h,t + f ′R(un
h)vn

h,x)
)

n
+

(
ε̂un

h,x, v
n
h,x

)
n

+ < [uh], v
n
h,+ >n +

∫

Γn

un
h,+vn

h,+dt =

∫

Γn

ubvn
h,+dt, ∀vn

h ∈ Wn
h ,

(5.5)

where u0
h,− = u0, [uh] = un

h,+ − un
h,−,

ε̂ = max(ε, C1h|R(uh)|/|∇uh|, C2h
3/2),

R(uh) = |uh,t + f(uh)x|+ |[uh]|
kn

, on Sn,

δ = C̄h,

with h denoting the mesh size, and Ci is a positive constant. The artificial viscosity

ε̂ acts in an implicit way to provide additional stability near to shocks (ε̂ ∼ C1h),

and less in smooth regions (ε̂ ∼ C2h
3/2). In order to estimate the error e = u− uh,

we also need to estimate u− û. To control the u− û, we may adaptively refine the

mesh until ε̂ = ε, giving u = û, or alternatively approximate ê in terms of ε − ε̂.

To approximately minimize the total number of degrees of freedom of a mesh with

mesh size h satisfying (5.4), typically a simple iterative procedure is used where a

new mesh-size is computed by ‘equi-distribution’ of element, (see [31] for parabolic

and elliptic equations ) contributions to the quantity SCi‖h2

ε̂
R(uh)‖ with the values

of ε̂ and R(uh) taken from the previous mesh. In the a posteriori error estimates for

the Sd-method (5.5), below for simplicity we assume that ub ≡ 0, ε̂ = ε is constant

and that the function h(x, t) is constant h(x, t) = h, for all x, t. Further we shall

consider the following simplified version of the Sd-method with ε̂ = C̄h and δ = 0:

Find uh ∈ Vn
h , such that for n = 0, 1, . . . , N − 1

(
uh,t + fR(uh)x, v

)
n

+
(
ε̂uh,x, vx

)
n
+ < [uh], v+ >n= 0, ∀v ∈ Wn

h , (5.6)
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where [uh] = uh,+ − uh,− and u0
h,− = u0.

5.3 L2(L2) a Posteriori Error Estimates

Let us now prove a basic a posteriori error estimate in the L2(L2)−norm. To prove

this, we introduce the following linearized dual problem: Find ϕ such that

L∗ε̂ϕ ≡ −ϕt − AT ϕx − ε̂ϕxx = ψ−1ê, in Ω, (5.7a)

ϕ(0, t) = 0, t ∈ (0, T ), (5.7b)

ϕ(x, T ) = 0, x ∈ R+, (5.7c)

where

A =

∫ 1

0

f ′R(su + (1− s)uh)ds,

L∗ε̂ denotes the adjoint of Lε̂ defined in (5.2) and ψ is a positive weight function

to be specified below. Further we suppose that ϕ(x, t) −→ 0 as x −→ +∞. The

error representation is now obtained multiplying (5.7a) by e and integrating in both

space and time, together with integration by parts and using similar arguments as

in (4.10):

‖e‖2

Lψ−1

2 (Ω)
= (e, ψ−1e)Ω = (e,L∗ε̂ϕ)

=
N−1∑
n=0

(e,−ϕt − AT ϕx − (ε̂ϕ)xx)n

=
N−1∑
n=0

{(et + (Ae)x, ϕ)n + (ε̂ex, ϕx)n} −
N−1∑
n=0

< [uh], ϕ+ >n

=
N−1∑
n=0

(ut + fR(u)x − (ε̂ux)x), ϕ)n

−
N−1∑
n=0

{(uh,t + fR(uh)x, ϕ)n + (ε̂uh,x, ϕx)n} −
N−1∑
n=0

< [uh], ϕ+ >n .
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So that recalling (5.2) and using the Galerkin orthogonality with Ψ ∈ Vh we have

‖e‖2

Lψ−1

2 (Ω)
=

N−1∑
n=0

(uh,t + fR(uh)x, Ψ− ϕ)n +
N−1∑
n=0

(ε̂uh,x, (Ψ− ϕ)x)n

+
N−1∑
n=0

< [uh], (Ψ− ϕ)+ >n≡ I + II + III,

(5.8)

where Ψ = πPϕ (see section 5.3) is assumed to be a suitable interpolant of ϕ. As

indicated earlier, the idea is now to estimate Ψ− ϕ in terms of ψ−1e using a strong

stability estimates for the solution ϕ of the dual problem. To proceed we will use

the following interpolation estimates, similar to Lemma 5.1:

LLLemma 5.1. There is a constant Ci such that for R ∈ L2(Ω)

|(R, ϕ− Pϕ)Ω| ≤ Ci||h
2

ε
(I − P)R)||

Lψ−1

2 (Ω)
||ε̂ϕxx||Lψ

2 (Ω), (5.9a)

|(ε̂uh,x, (ϕ− Pϕ)x)Ω| ≤ Ci||h
2

ε̂
D1uh||Lψ−1

2 (Ω)
||ε̂ϕxx||Lψ

2 (Ω), (5.9b)

where

D1uh(x, t) = max
∣∣∣ [uh,x(x

n
j , t)]

hn
j

∣∣∣, x ∈ (xn
i−1, x

n
i ), t ∈ In,

and

[v(xn
j )] = lim

ζ−→0+
(v(xn

j + ζ)− v(xn
j − ζ)).

Proof. See [57, 68]. ¤

Similarly we have also the following Lemma:

LLLemma 5.2. [44] There is a constant Ci such that for R ∈ Lψ−1

2 (Ω),

|(R,P(πϕ− ϕ))Ω| ≤ Ci||knR||Lψ−1

2 (Ω)
||ϕt||Lψ

2 (Ω). (5.10)

Proof. Using the Cauchy-Schwarz inequality, we get

|(R,P(πϕ− ϕ))Ω| ≤ ‖kR‖
Lψ−1

2 (Ω)
‖k−1(π(Pϕ)− (Pϕ))‖Lψ

2 (Ω).
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By reversing the order of integration, we have

‖k−1(π(Pϕ)− (Pϕ))‖Lψ
2 (Ω)

=
( N−1∑

n=0

∫ tn+1

tn

∫

Ω

k−2
n ψ2(πn(Pnϕ)− (Pnϕ))2dxdt

)1/2

=
( ∫

Ω

N−1∑
n=0

k−2
n ‖πn(Pnϕ)− (Pnϕ)‖2

Lψ
2 (In)

dxdt
)1/2

.

(5.11)

If we denote the piecewise constant interpolant of v on In at the point (tn + tn+1)/2

by In
I v, then using the fact that πnv is L2−projection of v onto the set of piecewise

constant functions, we have

|πn(Pnϕ)− (Pnϕ)‖2

Lψ
2 (In)

≤ |In
I (Pnϕ)− (Pnϕ)‖2

Lψ
2 (In)

.
(5.12)

Further, it can be easily proved that (see cf. chapter 1, section 1.6.1)

‖In
I (Pnϕ)− (Pnϕ)‖2

Lψ
2 (In)

≤ Cikn‖(Pnϕ)‖Lψ
2 (In). (5.13)

Using (5.12) and (5.13), (5.11) becomes

‖k−1(π(Pϕ)− (Pϕ))‖Lψ
2 (Ω)

≤
( ∫

Ω

N−1∑
n=0

C2
i ‖(Pnϕ)t‖2

Lψ
2 (In)

dx
)1/2

≤
( ∫

Ω

N−1∑
n=0

C2
i ‖Pnϕt‖2

Lψ
2 (In)

dx
)1/2

.

(5.14)

If we now reverse the order of integration in (5.14) and use that

‖Pnϕt‖L2(Ω) ≤ ‖ϕt‖L2(Ω),

then this proves the Lemma. ¤
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We shall now proceed to estimate the terms I-III in the error representation

formula (5.8), using the interpolation estimates in the Lemmas 5.1 and 5.2. We

shall below use the “discrete second derivative” D2 : Wn
h −→Wn

h defined by

(D2w, v)n = −(wx, vx)n, ∀v ∈ Wn
h ,

(Dε
2w, v)n = −(εwx, vx)n, ∀v ∈ Wn

h .

For the first term we have

I =
N−1∑
n=0

(uh,t + fR(uh)x, Ψ− ϕ)n

=
N−1∑
n=0

(R0, Ψn − Pϕ + Pϕ− ϕ)n

+
N−1∑
n=0

(R0,Pϕ− φ)n +
N−1∑
n=0

(R0,P(πϕ− ϕ))n ≡ I1 + I2,

where R0 = uh,t + fR(uh)x and Ψn, P and π are as defined in section 5.3. By (5.9a)

we have

|I1| ≤ Ci||h
2

ε̂
(I − P)R0)||Lψ−1

2 (Ω)
||ε̂ϕxx||Lψ

2 (Ω),

similarly, using (5.10), we have

|I2| ≤ Ci||knR0||Lψ−1

2 (Ω)
||ϕt||Lψ

2 (Ω).

Hence,

|I| ≤ Ci

(
||h

2

ε̂
(I − P)R0)||Lψ−1

2 (Ω)
||ε̂ϕxx||Lψ

2 (Ω) + ||knR0||Lψ−1

2 (Ω)
||ϕt||Lψ

2 (Ω)

)
.
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Next,

II =
N−1∑
n=0

(ε̂uh,x, (Ψ− ϕ)x)n

=
N−1∑
n=0

(ε̂uh,x, (Ψn − Pϕ + Pϕ− ϕ)x)n

=
N−1∑
n=0

(ε̂uh,x, (Pϕ− ϕ)x)n +
N−1∑
n=0

(ε̂uh,x, (Ψn − Pϕ)x)n

=
N−1∑
n=0

(ε̂uh,x, (Pϕ− ϕ)x)n +
N−1∑
n=0

(−Dε
2uh,P(πϕ− ϕ))n ≡ II1 + II2.

By (5.9b) we have

|II1| ≤ Ci||h
2

ε̂
D1uh||Lψ−1

2 (Ω)
||ε̂ϕxx||Lψ

2 (Ω),

and by (5.10)

|II2| ≤ Ci||knD
ε
2uh||Lψ−1

2 (Ω)
||ϕt||Lψ

2 (Ω).

Thus we have that

|II| ≤ Ci

(
||h

2

ε̂
D1uh||Lψ−1

2 (Ω)
||ε̂ϕxx||Lψ

2 (Ω) + ||knDε
2uh||Lψ−1

2 (Ω)
||ϕt||Lψ

2 (Ω)

)
.

Finally, for the third term III in the error representation we have

III =
N−1∑
n=0

< [uh], (Ψ− ϕ)+ >n

=
N−1∑
n=0

< [uh], (Pϕ− ϕ)+ >n +
N−1∑
n=0

< [uh], (πPϕ− Pϕ)+ >n

≡ III1 + III2.

Considering first III1, we have with the L2−projection Pn defined in previous chap-
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ter (section 5.3)

III1 =
N−1∑
n=0

< uh,+ − uh,−, (Pn − I)ϕ+ >n

=
N−1∑
n=0

< Pnuh,− − uh,−, (Pn − I)ϕ+ >n

=
N−1∑
n=0

< R2(tn)+, kn(Pn − I)ϕ+ >n

(5.15)

where we recall that we have defined

R2 ≡
(Pn − I)un

h,−
kn

, on Sn.

Now to estimate (I −Pn)ϕn
+, similarly as in (4.15) we note that

knϕn
+(x) =

∫

In

ϕ(x, t)−
∫

In

∫ t

tn

ϕτ (x, τ)dτdt. (5.16)

Inserting this representation into the right hand side of (5.15), using an estimate for

(Pn − I) analogous to (5.9a), we get

|III1| =
∣∣∣

N−1∑
n=0

< R2, (Pn − I)
( ∫

In

ϕ(x, t)dt−
∫

In

∫ t

tn

ϕτ (x, τ)dτdt
)

>n

∣∣∣

=
∣∣∣

N−1∑
n=0

∫

In

{
< R2, (Pn − I)ϕ >n − < R2, (Pn − I)

∫ t

tn

ϕτ (·, τ)dτ >n

}
dt

∣∣∣

=
∣∣∣

N−1∑
n=0

∫

In

{
< R2, (Pn − I)ϕ >n −

∫ t

tn

< R2, (Pn − I)ϕτ (·, τ) >n dτ
}

dt
∣∣∣

≤
N−1∑
n=0

{ ∫

In

∣∣∣h
2

ε̂
R2ψ

−1
∣∣∣
n

∣∣∣ε̂ψϕxx

∣∣∣
n
dt +

∫

In

∫

In

∣∣∣ψ−1R2

∣∣∣
n

∣∣∣(Pn − I)ϕτψ
∣∣∣
n
dτdt

}

≤ C
(
‖h2

ε̂
R2‖Lψ−1

2 (Ω)
‖ε̂ϕxx‖Lψ

2 (Ω) + ‖knR2‖Lψ−1

2 (Ω)
‖ϕt‖Lψ

2 (Ω)

)
,

where in the last inequality we have used that

‖Pnϕt‖Lψ
2 (Ω) ≤ ‖ϕt‖Lψ

2 (Ω).

§5.2



A posteriori Error Analysis in the Case of Adding Artificial Viscosity 73

Finally, for III2 we have with R1 ≡ (uh,+ − uh,−)/kn) on Sn,

|III2| =
∣∣∣

N−1∑
n=0

< kn
[uh]

kn

, (πPϕ− Pϕ)+ >n

∣∣∣

=
∣∣∣

N−1∑
n=0

< knR1, (πPϕ− Pϕ)+ >n

∣∣∣

=
∣∣∣

N−1∑
n=0

< R1, (πP − P)knϕ+ >n

∣∣∣

=
∣∣∣

N−1∑
n=0

< R1, (πP − P)
(∫

In

ϕ(x, t)−
∫

In

∫ t

tn

ϕτ (x, τ)dτdt) >n

)∣∣∣

=
∣∣∣

N−1∑
n=0

∫

In

{
< R1,P(πϕ− ϕ) >n −

∫ t

tn

< R2, (πP − P)ϕτ (·, τ) >n dτ
}

dt
∣∣∣

≤ C‖knR1‖Lψ−1

2 (Ω)
‖ϕt‖Lψ

2 (Ω).

We have now proved the following a posteriori error estimate:

TTTheorem 5.3. Suppose that the assumptions in Lemmas 5.1 and 5.2 are fulfilled.

Let uh and û be the solutions of (5.6) and (5.2) respectively. Then, there is a

constant C such that:

‖û− uh‖Lψ−1

2 (Ω)
≤ CSx

ê ||
h2

ε̂
(I − P)R0)||Lψ−1

2 (Ω)
+ CSt

ê||knR0||Lψ−1

2 (Ω)

+ CSx
ê ||

h2

ε̂
D1uh||Lψ−1

2 (Ω)
+ CSt

ê||knDε
2uh||Lψ−1

2 (Ω)

+ CSx
ê ||

h2

ε̂
R2||Lψ−1

2 (Ω)
+ CSt

ê||knR2||Lψ−1

2 (Ω)

+ CSt
ê||knR1||Lψ−1

2 (Ω)
,

(5.17)

where R0, R1,and R2 are defined as in chapter 5 and the stability factors St
ê, Sx

ê are
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defined by

St
ê =

‖ϕt‖Lψ
2 (Ω)

‖ê‖
Lψ−1

2 (Ω)

,

and

Sx
ê =

‖ε̂ϕxx‖Lψ
2 (Ω)

‖ê‖
Lψ−1

2 (Ω)

,

(5.18)

respectively.

5.4 Strong Stability Estimates

To give the above a posteriori error estimate a quantitative meaning, we need to

determine approximations of the relevant strong stability factors St
ê and Sx

ê . In this

section we will consider the a posteriori error estimate (5.17) derived in the previous

section based on the following dual problem

L∗ε̂ϕ ≡ −ϕt − AT ϕx − ε̂ϕxx = ψ−1e, in Ω, (5.19a)

ϕ(0, t) = 0, t ∈ (0, T ), (5.19b)

ϕ(x, T ) = 0, x ∈ R+, (5.19c)

assuming ϕ(x, t) −→ 0 for x −→∞,∀t. We have the following main result:

TTTheorem 5.4. Suppose ε̂ is a positive constant, α ≥ 0 and β ≥ 0 are constants.

Suppose further that ψ(x, t) is a positive weight function satisfying

ψt + AT ψx − AT
x ψ − 2ε̂ψ2

xψ
−1 ≥ α|AT

x |ψ + βψ, in Ω, (5.20)

then the solution ϕ of (5.19) satisfies

‖ϕt + AT ϕx‖2

Lψ
2 (Ω)

+ ‖ε̂ϕxx‖2

Lψ
2 (Ω)

+ ‖ε̂ 1
2 ϕx‖2

L∞(Lψ
2 (Ω))

+2‖ε̂ 1
2 (α|AT

x |+ β)
1
2 ϕx‖2

Lψ
2 (Ω)

≤ 6‖ê‖2

Lψ−1

2 (Ω)
.

(5.21)
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Proof. We multiply equation (5.19a) by −ψ(ϕt + AT ϕx) and integrate over Ωτ =

R+ × (τ, T ) to get

‖ψ 1
2 (ϕt + AT ϕx)‖2

Ωτ
+

∫

Ωτ

ψ(ϕt + AT ϕx)ε̂ϕxxdxdt

= −
∫

Ωτ

e(ϕt + AT ϕx)dxdt

≤
∫

Ωτ

ψ−1e2dxdt +
1

4
‖ψ1/2(ϕt + AT ϕx)‖2

Ωτ
.

Integrating by parts in both space and time variables in the second term on the

left-hand side yields

∫

Ωτ

ψ(ϕt + AT ϕx)ε̂ϕxxdxdt

=

∫

Ωτ

ψϕtε̂ϕxx +

∫

Ωτ

ψAT ϕxε̂ϕxxdxdt

= −
∫

Ωτ

ε̂ψxϕxϕtdxdt−
∫

Ωτ

ε̂ψϕxϕtxdxdt

− 1

2

∫

Ωτ

ε̂ψAT
x ϕ2

xdxdt− 1

2

∫

Ωτ

ε̂ψxA
T ϕ2

xdxdt

= −
∫

Ωτ

ε̂ψx(ϕt + AT ϕx)ϕxdxdt− 1

2

∫

Ωτ

(ε̂ψϕ2
x)tdxdt

+
1

2

∫

Ωτ

+ε̂ψtϕ
2
xdxdt +

1

2

∫

Ωτ

ε̂ϕ2
x(A

T ψx − AT
x ψ)dxdt.

(5.22)

By substituting into above inequality we have

3

4
‖ψ 1

2 (ϕt + AT ϕx)‖2
Ωτ

+
1

2

∫

R+

(ε̂ψϕ2
x)(x, τ)dx

+
1

2

∫

Ωτ

ε̂ϕ2
x(ψt + AT ψx − AT

x ψ)dxdt

≤ ‖ψ− 1
2 e‖2

Ωτ
+

∫

Ωτ

ε̂ψxϕx(ϕt + AT ϕx)dxdt

≤ ‖ψ− 1
2 e‖2

Ωτ
+

∫

Ωτ

ε̂2ψ2
xϕ

2
xψ

−1dxdt +
1

4
‖ψ 1

2 (ϕt + AT ϕx)‖2
Ωτ

.
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Collecting terms, we obtain that

‖ψ 1
2 (ϕt + AT ϕx)‖2

Ωτ
+

∫

R+

(ε̂ψϕ2
x)(x, τ)dx

+

∫

Ωτ

ε̂ϕ2
x(ψt + AT ψx − AT

x ψ − 2ε̂ψ2
xψ

−1)dxdt ≤ 2‖ψ− 1
2 e‖2

Ωτ
.

We may now choose τ such that
∫

R+

(ε̂ψϕ2
x)(x, τ)dx = sup

t∈[0,T ]

∫

R+

(ε̂ψϕ2
x)(·, t)dx = ‖ε̂ 1

2 ϕx‖2

L∞(Lψ
2 (Ωτ )

,

and use (5.20) to obtain

‖ε̂ 1
2 ϕx‖2

L∞(Lψ
2 (Ωτ )

+ ‖ε̂ 1
2 (α|AT

x |+ β)
1
2 ϕx‖2

Ωτ

≤ 2‖ψ− 1
2 e‖2

Ωτ
≤ 2‖ψ− 1

2 e‖Ω.
(5.23)

Choosing τ = 0 yields the following inequality

‖ψ 1
2 (ϕt + AT ϕx)‖2

Ω + ‖ε̂ 1
2 (α|AT

x |+ β)
1
2 ϕxψ

1
2‖2

Ω

≤ 2‖ψ− 1
2 e‖2

Ω.
(5.24)

Similarly, to obtain a bound for ‖ε̂ψ 1
2 ϕxx‖Ω, multiply equation (5.19a) by −ε̂ψϕxx

and integrating over Ωτ to get

‖ε̂ψ 1
2 ϕxx‖2

Ωτ
+

∫

Ωτ

ε̂ψϕxx(ϕt + AT ϕx)dxdt

= −
∫

Ωτ

ε̂ϕxxe ≤ ‖ψ− 1
2 e‖2

Ωτ
+

1

4
‖ε̂ψ 1

2 ϕxx‖2
Ωτ

.

Using the integration by part for the second term in the left-hand side as in (5.22)

and also using (5.20) we obtain

‖ε̂ψ 1
2 ϕxx‖2

Ω + ‖ε̂ 1
2 ψ

1
2 (α|AT

x |+ β)
1
2 ϕx‖2

Ω ≤ 2‖ψ− 1
2 e‖2

Ω. (5.25)

Adding estimate (5.23), (5.24), (5.25) we have

‖ψ 1
2 (ϕt + AT ϕx)‖2

Ω + ‖ε̂ψ 1
2 ϕxx‖2

Ω

+ 2‖ε̂ 1
2 (α|AT

x |+ β)
1
2 ϕxψ

1
2‖2

Ω + ‖ε̂ 1
2 ϕx(·, t)‖2

L∞(Lψ
2 (Ω))

≤ 6‖ψ− 1
2 e‖2

Ω,

which proves the theorem. ¤
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CCCorollary 5.5. The assumption (5.20) of Theorem 5.1 is satisfied in the following

basic cases:

• ψ ≡ 1 and AT
x ≤ 0, β = 0, α = 1, corresponding to a shock,

• ψ(x, t) = ( t
T
)1+α, max AT

x (·, t) ≤ 1
t
, β = 0, α ≥ 0, corresponding to rarefaction

wave u(x, t) = x
t
, and

• ψ = exp(3β(t − T )) and |AT
x | ≤ β, α = 1, corresponding to regular solution,

see [57].
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Chapter 6

NUMERICAL EXPERIMENTS

6.1 Space-Time Discretization Procedure

To give numerical results obtained using the following Sd-method with ub ≡ 0, that

is applied to the our model problem: Find un
h ∈ V n

h , such that for n = 0, 1, . . . , N−1
(
un

h,t + f ′R(un
h)un

h,x, v
n
h + δ(vn

h,t + f ′R(un
h)vn

h,x)
)

n
+

< un
h,+, vn

h,+ >n=< un
h,−, vn

h,+ >n, ∀vn
h ∈ W n

h ,

(6.1)

we shall use finite element approximation on a space-time slab with the trial func-

tions which are piecewise polynomials in space and linear in time; that is, for

(x, t) ∈ Sn, we let

un
h(x, t) =

M∑
i=1

ϕi(x)
(
θ1(t)ũ

n
i + θ2(t)u

n+1
i

)
. (6.2)

ϕi(x) = δij, (j = 0, . . . ,M) is the spatial shape functions at node i; θ1(t) and θ2(t)

are the time interpolation functions defined for the linear case as

θ1(t) =
tn+1 − t

tn+1 − tn
=

tn+1 − t

k
, and

θ2(t) =
t− tn

tn+1 − tn
=

t− tn
k

,
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tn

tn+1

t

x

}
k

h︷︸︸︷

+−r r r r r r r r r rb b b b b b b b b b

r r r r r r r r r r

-

6

Figure 6.1: Uniform mesh

and the nodal values of u for node i at (tn)+ and (tn+1)− are denoted by ũn
i and

un+1
i , respectively.

The test functions vn
h for each time slab are defined ϕj(x)θ1(t) and ϕj(x)θ2(t) for

j = 1, . . . ,M . For each n = 0, . . . , N−1, we have in this case that (6.1) is equivalent

to the following nonlinear system of (difference) equations [24] with unknown nodal

values ũn
i and un+1

i at the points marked by solid circles in the above Figure. Here,

also the known nodal values of un
i as data are indicated by open circle:

M∑
i=1

∫

Sn

[
ϕi(x)

(un+1
i − ũn

i

k

)
+ f ′R(un+1)ϕ′i(x)

(
θ1(t)ũ

n
i + θ2(t)u

n+1
i

)]×
[
ϕj(x)θ1(t) + δ

(
(−1

k
)ϕj(x) + f ′R(un+1)ϕ′j(x)θ1(t)

)]
dxdt = 0,

(6.3)

and

M∑
i=1

∫

Sn

[
ϕi(x)

(un+1
i − ũn

i

k

)
+ f ′R(un+1)ϕ′i(x)

(
θ1(t)ũ

n
i + θ2(t)u

n+1
i

)]×
[
ϕj(x)θ2(t) + δ

(
(
1

k
)ϕj(x) + f ′R(un+1)ϕ′j(x)θ2(t)

)]
dxdt

+
M∑
i=1

∫

R+

ϕj(x)ϕi(x)
(
ũn

i − un
i

)
dx = 0,

(6.4)
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for all j = 1, . . . , M . Since θ1(tn+1) = 0, the corresponding jump terms in (6.1) are

became zero in (6.4). At each time tn, n = 1, . . . , N−1, if we compute f ′R(un
h) at the

previous time step, i.e., f ′R(un
h =

∑M
i=1 ϕi(x)

(
θ1(t)ũ

n
i + θ2(t)u

n+1
i

)
) ' f ′R(un

i ), thus

we have a linear system of order 2M at each time step. Assuming piecewise linear

ϕi functions, for i = 1, . . . , M , i.e.,

ϕi(x) =





x−xi−1

h
, x ∈ [xi−1, xi],

xi+1−x
h

, x ∈ [xi, xi+1],

0 elsewhere,

we have

ϕ′i(x) =





1
h
, x ∈ [xi−1, xi],

− 1
h
, x ∈ [xi, xi+1],

0, elsewhere.

Thus we can compute the entries of mass, stiffness and convection matrices, viz

Mij =

∫

R+

ϕi(x)ϕj(x)dx =





2h
3
, j = i,

h
6
, j = i + 1, i− 1,

0, elsewhere,

Nij =

∫

R+

ϕ′i(x)ϕ′j(x)dx =





2
h
, j = i,

− 1
h
, j = i + 1, i− 1,

0, elsewhere,

Kij =

∫

R+

ϕi(x)ϕ′j(x)dx =





1
2
, j = i + 1,

−1
2
, j = i− 1,

0, elsewhere,
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Further using the fact that

∫

In

θ2
1(t)dt =

∫

In

θ2
2(t)dt =

k

3
,

∫

In

θ1(t)dt =

∫

In

θ2(t)dt =
k

2
,

∫

In

θ1(t)θ2(t)dt =
k

6
,

we have the following equivalent forms for (6.3) and (6.4), respectively:

M∑
i=1

{[1

2
Mij − δ

k
Mij +

δ

2
f ′R(un

i )Kij

]
un+1

i

−
[1

2
Mij − δ

k
Mij +

δ

2
f ′R(un

i )Kij

]
ũn

i

+
[k

3
f ′R(un

i )(−Kij)− δ

2
f ′R(un

i )(−Kij) +
δk

3

(
f ′R(un

i )
)2

Nij

]
ũn

i

+
[k

6
f ′R(un

i )(−Kij)− δ

2
f ′R(un

i )(−Kij) +
δk

6

(
f ′R(un

i )
)2

Nij

]
un+1

i = 0,

(6.5)

and

M∑
i=1

{[1

2
Mij +

δ

k
Mij +

δ

2
f ′R(un

i )Kij

]
un+1

i

−
[1

2
Mij +

δ

k
Mij +

δ

2
f ′R(un

i )Kij

]
ũn

i

+
[k

6
f ′R(un

i )(−Kij) +
δ

2
f ′R(un

i )(−Kij) +
δk

6

(
f ′R(un

i )
)2

Nij

]
ũn

i

+
[k

3
f ′R(un

i )(−Kij) +
δ

2
f ′R(un

i )(−Kij) +
δk

3

(
f ′R(un

i )
)2

Nij

]
un+1

i

}

+
[
Mijũ

n
i −Miju

n
i

]}
= 0, both for j = 1, . . . ,M.

(6.6)

We can rewrite the above equations in the following matrix forms:

[
(
1

2
− δ

k
)M + (δ − k

6
)Kf +

δk

6
Nf

]
Un+1

+
[
(−1

2
+

δ

k
)M − k

3
Kf +

δk

3
Nf

]
Ũn = 0,

n = 0, . . . , N − 1,
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and

[
(
1

2
+

δ

k
)M − k

3
Kf +

δk

3
Nf

]
Un+1

+
[
(
1

2
− δ

k
)M − (δ +

k

6
)Kf +

δk

6
Nf

]
Ũn = MUn,

n = 0, . . . , N − 1,

where

Un =
[
un

1 , . . . , u
n
M

]T

is the given data at the time level n,

Un+1 =
[
un+1

1 , . . . , un+1
M

]T

, Ũn =
[
ũn

1 , . . . , ũ
n
M

]T

,

and

(Kf )ij = f ′R(un
j )Kji,

(Nf )ij =
[
f ′R(un

j )
]2

Nji.



 for i, j = 1, . . . , M.

Similarly, we can obtain the equation systems for left side of domain, using f ′L.

Solving the resulting 4M × 4M linear systems of equations we obtain the solution

at each time step.

6.2 Numerical Results in the Linear Case

To show the performance of the previously describe method, we start with the

linear form of our problem (2.1)-(2.3). By putting fα(u) = aαu (α = L,R) we get

the following coupling of two advection equations:





ut + aRux = 0, x > 0, t > 0,

ut + aLux = 0, x < 0, t > 0,

u(x, 0) = u0(x), x ∈ [−a, a],

u(−a, t) = g(t), t > 0,

u(a, t) = h(t), t > 0,
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where a > 0. This problem has the explicit solution

u(x, t) =





u0(x− aRt), x ∈ (0, a]

u0(x− aLt), x ∈ [−a, 0)

for all t > 0 which is a weak solution (at least if u0 is “smooth” enough).

6.2.1 Test problem 1

We, first consider the following problem




ut + ux = 0, −1 < x ≤ 0, t > 0,

ut − ux = 0, 0 ≤ x < 1, t > 0,

u(x, 0) =





0.5 + x if − 0.5 ≤ x < 0.5,

0 if o.w

with the boundary conditions

u(−1, t) = u(1, t) = 0.

Figures 6.2 and 6.3 shows the numerical solution using streamline diffusion method

for h = 0.001 and k/h = 0.5. The results are given after 2, 51, 201 and 501 time

steps with δ = h and δ = 0. The exact solution is represented by the solid line.

6.2.2 Test problem 2

We consider the above problem with the following discontinuous initial condition

u0(x) =





0, x ≤ 0.25,

1, 0.25 < x ≤ 0.5,

0, x > 0.5,

with the boundary conditions u(−1, t) = u(1, t) = 0 and the parameters aL = 3 and

aR = −2, over the computational domain [−1, 1]. Figures 6.4 and 6.5 shows the
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numerical solution using streamline diffusion method for h = 0.001 and k/h = 0.5.

The results are given after 2, 51, 201 and 501 time steps with δ = h and δ = 0. The

exact solution is represented by the solid line.

6.3 Conclusion and Observation

All the numerical experiments show that, for the considered problems, the perfor-

mance of the Sd-method (δ = h) is better than Galerkin method (δ = 0) in terms

of quality of stability. The Galerkin method for these problems is unstable, because

we see that the solution is oscillating, whereas the Sd-method the solution is very

close to exact solution and is not oscillating or oscillate slightly. Therefore these

observation confirm the theory and show the advantages of the Sd-method.
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Figure 6.2: Streamline diffusion method for h = 0.001, k = 0.0005, aL = 1 and

aR = −1. The numerical solution is given, first row: after 2 times (left), after 51

times (right) and second row: after 201 times (left), after 501 times (right). The

exact solution is given by solid line.
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Figure 6.3: Streamline diffusion method for h = 0.001, k = 0.0005, aL = 1 and

aR = −1. The numerical solution is given, first row: after 2 times (left), after 51

times (right) and second row: after 201 times (left), after 501 times (right). The

exact solution is given by solid line.
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Figure 6.4: Streamline diffusion method for h = 0.001, k = 0.0005, aL = 3 and

aR = −2. The numerical solution is given, first row: after 2 times (left), after 51

times (right) and second row: after 201 times (left), after 501 times (right). The

exact solution is given by solid line.
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Figure 6.5: Streamline diffusion method for h = 0.001, k = 0.0005, aL = 3 and

aR = −2. The numerical solution is given, first row: after 2 times (left), after 51

times (right) and second row: after 201 times (left), after 501 times (right). The

exact solution is given by solid line.
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