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=" A brief introdUctiontofithe backaround

= Comparing Sd-method and bipartition model
for electron transport

= Future work




= Radiation therapyrand TPS

= [Wo mathematical problems in TPS
= [ransport theory and conservative law

= Fguations

= Qverview of different research ways




Radlatlon therapy IS the
medical use of ionizing
radiation as part of cancer

treatment to control
malignant cells.

From the website of Medical Radiati
Physics, KI

Pencil beam




In‘radiotherapy, Treatment
Planning'is'the process In
which a team consisting of el P
radiation oncologists, medical T *58A - AS"

radiation physicists and
dosimetrists plan the
ppropriate. external beam
Sradietherapy.treatment
NEChguerioraipatient with
cancer.

From Phoenix TPS
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Radiation transport simulations: This process
Involves selecting the appropriate beam type
(electron or photon), energy (e.g. 6MV, 12MeV)
and arrangements.

Our problem! General, flexible, accuratepeificient
algorithm/!

= Optimization: The more formal optimization

o precess,is typically referred terasiionward plannings
L anenverseplanming IAfeErence o intensity
“modulated radiation therapy (IMRT).
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GMMC, Dep. of Math. Sci., CTH:
Research project: Cancer treatment through the
IMRT technique: modeling and biological

optimization
= Models and methods for light ion-beam transport

w2 Bielogical'medels and optimization, for IMRB.I.
s ___planning S -




How to describe this kind of physical
phenomena?




Transport theory:

Transporttheory Is based on nuclear physics, guantum
physics, statistical physics, etc.

Gas dynamic, neutron transport (nuclear weapon after
WWII), astrophysics, plasma, medical physics

Transport theory (discontinuous field)risrmore

microscopic compared with fluid dynamic or heat transter

(continuous field) and more macroscopic compared with

guantum mechanics or nuclear physics, It describesar
_ group of particiessVERNmperamiiIe

AR Ersilidy” charged particle transporstieeny!




The particle phase space density: Boltzmann

froauE)  r=(xy,2) u=(6,9)

*Cross sections!
Particle phase space density!
*6 variables!

Photon: Compton scattering, pair
production, photon-electron

Electron: elastic scattering, inelastic
scattering, bremsstrahlung
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-Transport equation (Boltzmann equatlon)
u-Vf —L Lﬂf(r,u sEYo (E', E,u'u)du' dE—f(r,u,E)jO L”O'S(E,E ,u'u)du'deE'+ S

Fokker-Planck equation (approximation)
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Fermi equation (approximation)
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= -B|part|t|on model

Our final goal is to solve the 6
dimensional pencil beam equation!!!
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Which equation we should begin with? (M)

The approximation (Fermi and Fokker-Planck) is accurate?
In which cases they are accurate? (M)

Which particle we should begin with? (photon - popular,
electron - complex, ion - hot topic, proton) (M)

How to solve the equation? Analyticalimethod (ET),
numerical method (FEM), stochastic method (MC). (S)

Obyvieusly.it.will be difficult to solve the 6 dimensional
eguations,directly,. then how to simplifyitiierequations2a(S)s
. Pread beamimedelfanarZDrpencilfioeam model

""How to go back to 6D model from simplified equations?
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Electron transport (more complex thaniion)

1-50 MeV (Fokker-Planck approximation is
accurate)

Fokker-Planck equation (PDE)
Broad beam model (3. dimensions)
~ =iinite element method (Sd=method)
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= Fokker-Planck equiation for 1-50. MeV
electron transport

= Broad beam and 2D pencil beam models

= Bipartition model
= Besults by Sd-method




Transport equation
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The screened Rutherford cross section:

GN(E’ é:) =
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Bremsstrahlung cross section
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How to derive Fokker-Planck equation from
transport equation and check the accuracy?




VIeN/"ElaCtrof

The classical contributions about the Fokker-Planck
approximation are summarized by Chandrasekhar in [28] and
Rosenbluth in [32]. [29,30,31] are studying the case of the
linear particle transport. These works give a heuristic
derivation of the Fokker-Planck operator. In [33] Pemraning
gave a formalized derivation of the Fokker-Planck operator as
an asymptotic limit of the integral scattering operator where a

SpEaked scattering kernel is a necessany,butnotsufiicientus
condition, in the asymptotic treatment.

SR
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Laplace’s method for'Laplace integrals

I(x) = jb F()eVdr

If ¢(t) has a global maximum at f = c witha < c < b and if
. f(c) #0, then it 1s only the neighbourhood of ¢ = ¢ that
contributes to the full asymptotic expaﬁ.s-i-0n of /(x)as x — +oo

—




Step 1. we may approximate /(x) by I(x; ) where

e
*C

ks () 1.
fe™dt, if a<c<b,
E
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f(t)e?"dt, if c =a,
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b

- (e dt, if e=b.
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— This 1s a justified approximation since the changing limits

—

~ of inte grati(;_n only introduces exponentially small errors.




Step 2. Now € > 0 can be chosen small enough so that
it 1s valid to replace ¢(¢) by the first few terms in 1its

Taylor or asymptotic series expansion.

Step 3. Having substituted the approximations for ¢ and with f

. bemng defined above (cont. f (c) # 0), we now extend the endpoints

of integration to infinity, in order to evaluate the resulting integrals

~ (again this only introduces exponentially small errors).




Sl_Jrfaée harmonic expansion and Legendre
polynomial expansion (Important part no used in
the heuristic derivation for the angular integration)

Frue)=3"Y (2’”1) a, f. (rnEY, (u)

n=0 m=—n

2k +1
O, E E,u -u
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Example: the screened Rutherford cross section
for elastic scattering

3% (2n+1) B, @) P, (E.E)dé
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[ P(&)oy(E.£)ae

= [  P(&)o (E.EdE+[ P(&)oy (Edé=1+1,

Choose €€ (£, ,1). Here & is the largest positive root
of the Legendre polynomial P, (<).
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1 "0, (E,)dE
< lim =0 = I=1,

£ “*‘”P(e)j oy (E,E)dE
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Step 2: I, ~ f (pn Gy e (1)(5—1))0N(E,§)dcf =i

Step 3:  1=[ (P.)+ P O)E-D)o, (E.£)dé
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The screened Rutherford cross section
without corrections for low energy
electron transport
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EPiIS S he advantage of bipartiton
model for large angle!




Breméstrahlung anad'inelastic scattering are similar
withrelastic scattering, we won't repeat them again.

Then we have:

_9S(BV | O’R(E)f
oE oE’
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Fokker-Planck equation
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We could'consider it asa menoenergetic and
moenedirectional-plane source embedded in
an infinite homogeneous medium. We
should emphasize that the emission
direction of the source is paralled to x-axis.
So by the symmetry f(r,u.E) is independent
of y, z and phi, and we may simplify the
Fokker Planck equation to obtain the broad
Jbeamieguation:

- Of(x,U,E
ﬂf(xﬂ )
ox

=T(E)=_ {(l u)—f(qu)}
u




The 2D pencil beam model has been used
in Fermi-Eyges theory in [30,40]. We may.
View It as a projection of 3Dpencil beam
model on yz-plane. Note that the emission
direction of the source is now paralled to
the y-axis. Because if we use the same
emission direction as the broad beam
model, then only mu will not be sufficient
to characterize the particle phase density
and we should still keep phi. But if we use
y-axis as the emission direction, we may
neglectymu.and just keep phi. Finally we

assume; that 2PBM is independent of
enengy. Tthen we simplify/ e Fekker
Rlanck eguation terget:

°f(y,2,0)
dy 0z P
Mohammad: [19,20,21,22,25,27,26]

Jf (y,z,0) o (3.2,9)

~T(E)

Cos ¢ + sin @
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Bipartition model was presented in 1967 by Luo in [3]. The main ideaof this model
is.to_separate the beam into a diffusion group and a straight forward group and
deal with them separately. [4,7] are the two most important papers about
bipartition model for electron transport. In [4] Luo used bipartition model for 20
keV-1 MeV electron transport which takes into account both elastic and inelastic
scatterings. In [7] Luo extended bipartition model into the energy range 1-50 MeV,

considered the influence of the energy-loss straggling, secondary-electron
production, and bremsstrahlung. The applications of bipartition model for
inhomogeneous problems and ion transport are discussed in [5,6]. The history and
development of the transport theory of charged particles and bipartition model are
. summarized in [8,9]. Bipartiton model could also be combined with Fermi-Eyges
- theory to produce the hybrid electron pencil beam model for 3D problems. —
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Lewis transport equation (broad beam model,
-only-Fokker-Planck approximation for energy,
the asymptotic approximation for screened
Rutherford cross section not accurate)

d o 1 0°

2o - L@ o s = [ e BV G (B B - E)aE

oFE ox 2 0E?

+C, (x, 1, E)+ S(x, 1, E)

(E,u-u)du’
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+ j[fd(X,ﬂI,E)_fd(X,ﬂ,E)] A O-MF(E’u,'u)du,_i_Sd +S(x,,u,E)




Kernel for
bipartition
model
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——SD 2cm
——SD 2.5¢cm
——SD 3cm
—Bipartition 2 cm |
- - - Bipartition 2.5 cm
Bipartition 3 cm




-- MC 2.4-2.6 cm
MC 2.8-3 cm

—MC 1.8-2cm

—=—SD 2.5¢cm

——SD 2cm
——SD 3cm
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SD2cm
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---SD 3 ¢cm
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——SD 3.8 cm
—=—SD 4.8cm
——SD 5.6 cm
— Bipartition 3.72 cm
- - - Bipartition 4.65 cm

Bipartition 5.58 cm -
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--MC 4.5-48cm |
MC 5.4-5.7 cm

—MC 3.6-3.9 cm

——SD 3.8 cm
—=—SD 4.8 cm
——SD 5.6 cm
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—SD 3.8 cm
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——SD 5.6 cm
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——SD 5.2cm
——SD 6.5cm
——SD 7.8 cm ,
—NMC 5.2-5.6 cm
---MC 6.4-6.8cm |
MC 7.6-8 cm
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= Energy deposition
= 3D pencil beam model
= Inhomogeneous medium and irregular

geometry
= |on transport

~ = More finite eI_ement methods
» Error estimates
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Lawrence H. Lanzl (University of Chicago, the Manhattan
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David Jette (Dep. of Med. Phy., Rush-Presbyterian-St
Luke's Medical Center, Chicago, lllinois)

- = Anders Brahme (Karolinska Institute).
» Zhengming Luo (Sichuan University)
= Mohammad Asadzadeh (CTH)




Thank you very much
for your listening!




