Comparing the Streamline Diffusion Method and Bipartition Model for Electron Transport

Jiping Xin
Department of Mathematical Science, Chalmers University of Technology

Conterst

$\lrcorner A$ brief introduction of the backaround

- Comparing Sd-method and bipartition model for electron transport
- Future work

Eackisgrouricl

- Radiation therapy and TPS

Two mathematical problems in TPS

- Transport theory and conservative law
- Equations
- Overview of different research ways
Facdiation therapy ancl TPS

Radiation therapy is the medical use of ionizing radiation as part of cancer treatment to control malignant cells.

From the website of Medical Radiation Physics, KI

Fiacliation theralpy ancl TPS

In radiotherapy, Jreatiment Planning is the process in which a team consisting of radiation oncologists, medical radiation physicists and dosimetrists plan the
 appropriate external beam radiotherapy treatment technique for a patient with cancer.

From Phoenix TPS

Two nsatifernaticall problenss in TPS

Radiation transport simulations: This process involves selecting the appropriate beam type (electron or photon), energy (e.g. 6MV, 12MeV) and arrangements.
Our problem! General, flexible, accurate, efficient algorithm!

- Optimization: The more formal optimization process is typically referred to as forward planning and inverse planning inference to intensity modulated radiation therapy (IMRT).

Two snetirlersaticall problerns in TPS

GMMC, Dep. of Math. Sci., CTH:

Research project: Cancer treatment through the IMRT technique: modeling and biological optimization

- Models and methods for light ion-beam transport
\lrcorner Biological models and optimization for IMRT planning

Oulustions

How to describe this kind of physical phenomena?

Transport theory enicl conservative leny

Transport theory:

1. Transport theory is based on nuclear physics, quantum physics, statistical physics, etc.
2. Gas dynamic, neutron transport (nuclear weapon after WWII), astrophysics, plasma, medical physics
3. Transport theory (discontinuous field) is more microscopic compared with fluid dynamic or heat transfer (continuous field) and more macroscopic compared with quantum mechanics or nuclear physics, it describes a group of particles. Very importanit!!
4. We study charged particle transport theory!

Transport theory and conservative Ja!w

The particle phase space density: Boltzmann

$$
f(r, u, E) \quad r=(x, y, z) \quad u=(\theta, \phi)
$$

-Cross sections!
-Particle phase space density!

- 6 variables!

Photon: Compton scattering, pair production, photon-electron
Electron: elastic scattering, inelastic scattering, bremsstrahlung

Ec|untions (Models)

- Transport equation (Bolitzmann equation)
$u \cdot \nabla f=\int_{0}^{\infty} \int_{4 \pi} f\left(r, u^{\prime}, E^{\prime}\right) \sigma_{s}\left(E^{\prime}, E, u^{\prime} \cdot u\right) d u^{\prime} d E^{\prime}-f(r, u, E) \int_{0}^{\infty} \int_{4 \pi} \sigma_{s}\left(E, E^{\prime}, u^{\prime} \cdot u\right) d u^{\prime} d E^{\prime}+S$
-Fokker-Planck equation (approximation) $u \cdot \nabla f=T(E)\left[\frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial f}{\partial \mu}+\frac{1}{1-\mu^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}\right]+\frac{\partial f S}{\partial E}+\frac{\partial^{2} f R}{\partial E^{2}}+S$
-Fermi equation (approximation)
$\frac{\partial f}{\partial z}+\theta_{x} \frac{\partial f}{\partial x}+\theta \frac{\partial f}{\partial y} \frac{\partial f S}{\partial E}+\frac{1}{2} \frac{\partial^{2} f R}{\partial E^{2}}+T(E)\left[\frac{\partial^{2} f}{\partial \theta_{x}^{2}}+\frac{\partial^{2} f}{\partial \theta_{y}^{2}}\right]+S$
-Bipartition model
Our final goal is to solve the 6 dimensional pencil beam equation!!!

Oulestions

- Which equation we should begin with? (M)

The approximation (Fermi and Fokker-Planck) is accurate? In which cases they are accurate? (M)

- Which particle we should begin with? (photon - popular, electron - complex, ion - hot topic, proton) (M)
- How to solve the equation? Analytical method (FT), numerical method (FEM), stochastic method (MC). (S)
- Obviously it will be difficult to solve the 6 dimensional equations directly, then how to simplify the equations? (S) broad beam model and 2D pencil beam model
How to go back to 6D model from simplified equations?

Overview of clifferent research we!ys

Sichuan University Zhengming Luo's group

Electron: BiM, FT, FDM, 3 Hybrid PBM, 6
Photon:
TE, CL, 6

Karolinska Institute
Anders Brahme's group

Karolinska Institute
Anders Brahme's group

$1-2$

> University of Kuopio Jouko Tervo's group

Chalmers
Mohammad Asadzadeh

TP 4 FEM
 TP 6 FEM (failed)

EGSnrc
Monte Carlo

Overview of clifferent research wy!ys

Electron transport (more complex than ion)
1-50 MeV (Fokker-Planck approximation is accurate)

- Fokker-Planck equation (PDE)
- Broad beam model (3 dimensions)
\lrcorner Finitit element method (Sd-method)

Comparing Sd-method and bipartition model for electron transpoort
\perp Fokker-Planck equation for $1-50 \mathrm{MeV}$ electron transport

- Broad beam and 2D pencil beam models
- Bipartition model
- Results by Sd-method

Fokker-Planck equation for 1-50 MeV electron trensport

Transport equation

$$
\begin{aligned}
u \cdot \nabla f(r, u, E)= & \frac{N_{A} D}{A} \int_{4 \pi}\left[f\left(r, u^{\prime}, E\right)-f(r, u, E)\right] \sigma_{N}\left(E, u^{\prime} \cdot u\right) d u^{\prime} \\
& +\frac{N_{A} D}{A} \int_{E}^{E_{0}} f\left(r, u, E^{\prime}\right) \sigma_{r}\left(E^{\prime}, E^{\prime}-E\right) d E^{\prime}-\frac{N_{A} D}{A} \int_{0}^{E} f(r, u, E) \sigma_{r}\left(E, E-E^{\prime}\right) d E^{\prime} \\
& +\frac{N_{A} D}{A} Z \int_{E}^{E_{0}} \int_{4 \pi} f\left(r, u^{\prime}, E^{\prime}\right) \sigma_{M}\left(E^{\prime}, E^{\prime}-E\right) \delta\left[u^{\prime} \cdot u-\varphi\left(E^{\prime}, E^{\prime}-E\right)\right] d u^{\prime} d E^{\prime} \\
& -\frac{N_{A} D}{A} Z \int_{E / 2}^{E} \int_{4 \pi} f(r, u, E) \sigma_{M}\left(E, E-E^{\prime}\right) \delta\left[u^{\prime} \cdot u-\varphi\left(E, E-E^{\prime}\right)\right] d u^{\prime} d E^{\prime}
\end{aligned}
$$

Fokker-Planck equation for 1-50 MeV electron trensport

The screened Rutherford cross section:

$$
\begin{aligned}
& \sigma_{N}(E, \xi)=\frac{r_{0}^{2} Z(Z+1)\left(m_{0} c^{2}\right)^{2}\left(E+m_{0} c^{2}\right)^{2}}{E^{2}\left(E+2 m_{0} c^{2}\right)^{2}} {\left[\frac{1}{(1-\xi+2 \eta)^{2}}+\frac{\pi \beta}{\sqrt{2}} \frac{Z}{137} \frac{1}{(1-\xi)^{3 / 2}}-\frac{1}{2}\left(\beta^{2}+\frac{\pi \beta Z}{137}\right) \frac{1}{1-\xi}\right] } \\
& \eta=\frac{1}{4}\left[\frac{Z^{1 / 3}}{121.25}\right]^{2}\left[1.13+3.76\left(\frac{Z}{137}\right)^{2} \frac{\left(E+m_{0} c^{2}\right)^{2}}{E\left(E+2 m_{0} c^{2}\right)}\right] \frac{\left(m_{0} c^{2}\right)^{2}}{E\left(E+2 m_{0} c^{2}\right)} \\
& \beta=\frac{\sqrt{E\left(E+2 m_{0} c^{2}\right)}}{E+m_{0} c^{2}}
\end{aligned}
$$

Fokker-Planck equation for 1-50 MeV electron trensport

Bremsstrahlung cross section

$$
\begin{array}{r}
\sigma_{r}(E, T)=\frac{4 r_{0}^{2} Z^{2}}{137 T}\left[\left(1+\frac{(E-T)^{2}}{E^{2}}-\frac{2}{3} \frac{E-T}{E}\right)\left(\frac{\phi_{1}(\gamma)}{4}-\frac{1}{3} \ln Z\right)+\frac{E-T}{6 E} \Delta(\gamma)\right] \\
\gamma=100 \frac{m_{0} c^{2} T}{E(E-T) Z^{1 / 3}} \quad \phi_{1}(\gamma)=a_{1} e^{-a_{2} \gamma}+b_{1} e^{-b_{2} \gamma} \quad \Delta(\gamma)=c_{1} e^{-c_{2} \gamma}+d_{1} e^{-d_{2} \gamma}
\end{array}
$$

Moller cross section

$$
\sigma_{M}(E, T)=\frac{r_{0}^{2} m_{0} c^{2}\left(E+m_{0} c^{2}\right)^{2}}{E\left(E+2 m_{0} c^{2}\right)} \frac{1}{T^{2}}\left[1+\frac{T^{2}}{(E-T)^{2}}+\frac{E^{2}}{\left(E+m_{0} c^{2}\right)^{2}}\left(\frac{T}{E}\right)^{2}-\frac{\left(2 E+m_{0} c^{2}\right) m_{0} c^{2}}{\left(E+m_{0} c^{2}\right)^{2}} \frac{T}{E-T}\right]
$$

Ouestions

How to derive Fokker-Planck equation from transport equation and check the accuracy?

Fokker-Planck equation for 1-50 MeV electiron itensport

The classical contributions about the Fokker-Planck approximation are summarized by Chandrasekhar in [28] and Rosenbluth in [32]. [29,30,31] are studying the case of the linear particle transport. These works give a heuristic derivation of the Fokker-Planck operator. In [33] Pomraning gave a formalized derivation of the Fokker-Planck operator as an asymptotic limit of the integral scattering operator where a peaked scattering kernel is a necessary but not sufficient condition in the asymptotic treatiment.

Fokker-Planck equation for 1-50 MeV electiron irensport

Laplace's method for Laplace integrals

$$
I(x)=\int_{a}^{b} f(t) e^{x \phi(t)} d t
$$

If $\phi(t)$ has a global maximum at $t=c$ with $a \leq c \leq b$ and if $f(c) \neq 0$, then it is only the neighbourhood of $t=c$ that contributes to the full asymptotic expansion of $I(x)$ as $x \rightarrow+\infty$

Fokker-Planck equation for 1-50 MeV electron trensport

Step 1. we may approximate $I(x)$ by $I(x ; \varepsilon)$ where

$$
I(x ; \varepsilon)=\left\{\begin{array}{l}
\int_{c-\varepsilon}^{c+\varepsilon} f(t) e^{x \phi(t)} d t, \text { if } a<c<b, \\
\int_{a}^{a+\varepsilon} f(t) e^{x \phi(t)} d t, \text { if } c=a, \\
\int_{b-\varepsilon}^{b} f(t) e^{x \phi(t)} d t, \text { if } c=b .
\end{array}\right.
$$

This is a justified approximation since the changing limits of integration only introduces exponentially small errors.

Fokker-Planck equation for 1-50 MeV Electron itensport

Step 2. Now $\varepsilon>0$ can be chosen small enough so that it is valid to replace $\phi(t)$ by the first few terms in its Taylor or asymptotic series expansion.

Step 3. Having substituted the approximations for ϕ and with f being defined above (cont. $f(c) \neq 0$), we now extend the endpoints of integration to infinity, in order to evaluate the resulting integrals (again this only introduces exponentially small errors).

Fokker-Planck equation for 1-50 MeV Electrons itensport

Surface harmonic expansion and Legendre polynomial expansion (important part no used in the heuristic derivation for the angular integration)

$$
\begin{aligned}
& f(r, u, E)=\sum_{n=0}^{\infty} \sum_{m=n}^{n}\left(\frac{2 n+1}{4 \pi}\right) a_{m m} f_{m m}(r, E) Y_{m m}(u) \\
& \sigma_{s}\left(E^{\prime}, E, u^{\prime} \cdot u\right)=\sum_{k=0}^{\infty}\left(\frac{2 k+1}{4 \pi}\right) \sigma_{s_{k}\left(E^{\prime}, E\right) P_{t}\left(u^{\prime} \cdot u\right)} \\
& \int_{0}^{\infty} \int_{4 \pi} \sigma_{s}\left(E^{\prime}, E, u^{\prime} \cdot u\right) f\left(r, u^{\prime}, E^{\prime}\right) d u^{\prime} d E^{\prime}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n}\left(\frac{2 n+1}{2}\right) a_{n m} Y_{n m}(u) \text {. } \\
& \int_{0}^{\infty} f_{m m}\left(E^{\top} \int_{-1}^{1} P_{n} P_{(\xi)} \sigma_{s}\left(E^{\prime}, E, \xi\right) d \xi d E^{\prime}\right.
\end{aligned}
$$

Fokker-Planck equation for 1-50 MeV electron trensport

Example: the screened Rutherford cross section for elastic scattering

$$
\begin{gathered}
\frac{N_{A} D}{A} \int_{A \pi}\left[f\left(r, u^{\prime}, E\right)-f(r, u, E) \sigma_{N}\left(E, u^{\prime} \cdot u\right) d u^{\prime}\right. \\
\frac{N_{A} D}{A} \int_{d s} f\left(r, u^{\prime}, E\right) \sigma_{N}\left(E, u^{\prime} \cdot u\right) d u^{\prime}=\sum_{n=0}^{\infty} \sum_{m=n}^{n}\left(\frac{2 n+1}{2}\right) a_{m} f_{m(n}(r, E) Y_{m(u)}(u) \int_{-1}^{\prime} P_{n}(\xi) \sigma_{N}(E, \xi) d \xi \\
\int_{-1}^{1} P_{n}(\xi) \sigma_{N}(E, \xi) d \xi
\end{gathered}
$$

Fokker-Planck equation for 1-50 MeV electron trensport

Step 1:

$$
\begin{aligned}
I & =\int_{-1}^{1} P_{n}(\xi) \sigma_{N}(E, \xi) d \xi \\
& =\int_{-1}^{\varepsilon} P_{n}(\xi) \sigma_{N}(E, \xi) d \xi+\int_{\varepsilon}^{1} P_{n}(\xi) \sigma_{N}(E, \xi) d \xi:=I_{1}+I_{2}
\end{aligned}
$$

Choose $\varepsilon \in\left(\xi_{n}, 1\right)$. Here ξ_{n} is the largest positive root of the Legendre polynomial $P_{n}(\xi)$.

$$
\frac{\left|I_{1}\right|}{I_{2}} \leq \lim _{a \rightarrow 0^{+}} \frac{\int_{-1}^{e} \sigma_{N}(E, \xi) d \xi}{P_{n}(\varepsilon) J_{\varepsilon}-a} \sigma_{N}(E, \xi) d \xi \quad=0 \Rightarrow I \approx I_{2}
$$

Fokker-Planck equation for 1-50 MeV electiron transport

Step 2: $I_{2} \approx \int_{\varepsilon}^{1}\left(P_{n}(1)+P_{n}^{(1)}(1)(\xi-1)\right) \sigma_{N}(E, \xi) d \xi:=I_{2}^{\prime}$
Step 3: $\quad I_{1}^{\prime}:=\int_{-1}^{\varepsilon}\left(P_{n}(1)+P_{n}^{(1)}(1)(\xi-1)\right) \sigma_{N}(E, \xi) d \xi$

$$
\begin{gathered}
\left.\frac{I_{1}^{\prime}}{I_{2}^{\prime}}=\lim _{a \rightarrow 0+} \int_{-1}^{\varepsilon}\left(P_{\varepsilon}^{1-a}(1)+P_{n}^{(1)}(1)(\xi-1)\right) \sigma_{N}(E, \xi)+P_{n}^{(1)}(1)(\xi-1)\right) \sigma_{N}(E, \xi) d \xi \\
I \approx \int_{-1}^{1}\left(P_{n}(1)+P_{n}^{(1)}(1)(\xi-1)\right) \sigma_{N}(E, \xi) d \xi
\end{gathered}
$$

Fokker-Planck equation for 1-50 MeV electron trensport

$$
\begin{aligned}
& \frac{N_{A} D}{A} \int_{4 \pi}\left[f\left(r, u^{\prime}, E\right)-f(r, u, E)\right] \sigma_{N}\left(E, u^{\prime} \cdot u\right) d u^{\prime} \\
= & \frac{N_{A} D}{A} \sum_{n=0}^{\infty} \sum_{m=-n}^{n}\left(\frac{2 n+1}{2}\right) a_{n m} f_{n m}(r, E) Y_{n m}(u) \int_{-1}^{1}\left(P_{n}(1)+P_{n}^{(1)}(1)(\xi-1)\right) \sigma_{N}(E, \xi) d \xi \\
& -\frac{N_{A} D}{A} \int_{4 \pi} f(r, u, E) \sigma_{N}\left(E, u^{\prime} \cdot u\right) d u^{\prime} \\
= & \frac{N_{A} D}{A} \int_{4 \pi} f(r, u, E) \sigma_{N}\left(E, u^{\prime} \cdot u\right) d u^{\prime}+T_{1}(E)\left(\frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial}{\partial \mu}+\frac{1}{\left(1-\mu^{2}\right)} \frac{\partial^{2}}{\partial \phi^{2}}\right) f \\
& -\frac{N_{A} D}{A} \int_{4 \pi} f(r, u, E) \sigma_{N}\left(E, u^{\prime} \cdot u\right) d u^{\prime} \\
= & T_{1}(E)\left(\frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial}{\partial \mu}+\frac{1}{\left(1-\mu^{2}\right)} \frac{\partial^{2}}{\partial \phi^{2}}\right) f \\
& T_{1}(E)=\frac{N_{A} D}{A} \pi \int_{-1}^{1}(\xi-1) \sigma_{N}(E, \xi) d \xi
\end{aligned}
$$

Fokker-Planck equation for 1-50 MeV eleciron trensport

The screened Rutherford cross section without corrections for low energy electron transport

$$
\sigma_{N}(E, \xi)=\frac{r_{0}^{2} Z^{2}\left(m_{0} c^{2}\right)^{2}\left(E+m_{0} c^{2}\right)^{2}}{E^{2}\left(E+2 m_{0} c^{2}\right)^{2}} \frac{1}{(1-\xi+2 \eta)^{2}}
$$

This is the advantage of bipartiton model for large angle!

Fokker-Planck equation for 1-50 MeV electron trensport

Bremsstrahlung and inelastic scattering are similar with elastic scattering, we won't repeat them again. Then we have:

$$
\begin{aligned}
& \frac{N_{A} D}{A} \int_{E}^{E_{0}} f\left(r, u, E^{\prime}\right) \sigma_{r}\left(E^{\prime}, E^{\prime}-E\right) d E^{\prime}-\frac{N_{A} D}{A} \int_{0}^{E} f(r, u, E) \sigma_{r}\left(E, E-E^{\prime}\right) d E^{\prime}=\frac{\partial S_{1}(E) f}{\partial E}+\frac{\partial^{2} R_{1}(E) f}{\partial E^{2}} \\
& S_{1}(E)=\frac{N_{A} D}{A} \int_{0}^{E} \sigma_{r}(E, T) T d E^{\prime} \quad R_{1}(E)=\frac{N_{A} D}{2 A} \int_{0}^{E} \sigma_{r}(E, T) T^{2} d E^{\prime} \\
& \frac{N_{A} D}{A} Z \int_{E}^{E_{0}} \int_{4 \pi} f\left(r, u^{\prime}, E^{\prime}\right) \sigma_{M}\left(E^{\prime}, E^{\prime}-E\right) \delta\left[u^{\prime} \cdot u-\varphi\left(E^{\prime}, E^{\prime}-E\right)\right] d u^{\prime} d E^{\prime} \\
& -\frac{N_{A} D}{A} Z \int_{E / 2}^{E} \int_{4 \pi} f(r, u, E) \sigma_{M}\left(E, E-E^{\prime}\right) \delta\left[u^{\prime} \cdot u-\varphi\left(E, E-E^{\prime}\right)\right] d u^{\prime} d E^{\prime} \\
& =T_{2}(E)\left(\frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial}{\partial \mu}+\frac{1}{\left(1-\mu^{2}\right)} \frac{\partial^{2}}{\partial \phi^{2}}\right) f+\frac{\partial S_{2}(E) f}{\partial E}+\frac{\partial^{2} R_{2}(E) f}{\partial E^{2}}
\end{aligned}
$$

Fokker-Planck equation for 1-50 MeV electiron trensport

Fokker-Planck equation

$$
\begin{gathered}
u \cdot \nabla f=T(E)\left[\frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial f}{\partial \mu}+\frac{1}{1-\mu^{2}} \frac{\partial^{2} f}{\partial \phi^{2}}\right]+\frac{\partial f S}{\partial E}+\frac{\partial^{2} f R}{\partial E^{2}} \\
T(E)=T_{1}(E)+T_{2}(E) \\
S(E)=S_{1}(E)+S_{2}(E) \\
R(E)=R_{1}(E)+R_{2}(E)
\end{gathered}
$$

Broad bearru ancl 2D perncil beansu rnoclels

Broad bearru ancl 2D pericil bearru rroclels

We could consider it as a monoenergetic and monodirectional plane source embedded in an infinite homogeneous medium. We should emphasize that the emission direction of the source is paralled to x-axis. So by the symmetry $f(r, u$. $E)$ is independent of y, z and phi, and we may simplify the Fokker Planck equation to obtain the broad beam equation:

$$
\mu \frac{\partial f(x, \mu, E)}{\partial x}=T(E) \frac{\partial}{\partial \mu}\left[\left(1-\mu^{2}\right) \frac{\partial}{\partial \mu} f(x, \mu, E)\right]+\frac{\partial}{\partial E}[S(E) f(x, \mu, E)]+\frac{\partial^{2}}{\partial E_{2}}[R(E) f(x, \mu, E)]
$$

Broad beans anicl 2D perncil 'peans models

The 2D pencil beam model has been used in Fermi-Eyges theory in $[30,40]$. We may view it as a projection of 3Dpencil beam model on yz-plane. Note that the emission direction of the source is now paralled to the y-axis. Because if we use the same emission direction as the broad beam model, then only mu will not be sufficient to characterize the particle phase density and we should still keep phi. But if we use y-axis as the emission direction, we may neglect mu and just keep phi. Finally we
 assume that 2PBM is independent of energy. Then we simplify the Fokker-
Planck equation to get:

$$
\cos \phi \frac{\partial f(y, z, \phi)}{\partial y}+\sin \phi \frac{\partial f(y, z, \phi)}{\partial z}=T(E) \frac{\partial^{2} f(y, z, \phi)}{\partial \phi^{2}}
$$

Mohammad: [19,20,21,22,25,27,26]

Biparitition moclel

Bipartition model was presented in 1967 by Luo in [3]. The main ideaof this model is to separate the beam into a diffusion group and a straight forward group and deal with them separately. [4,7] are the two most important papers about bipartition model for electron transport. In [4] Luo used bipartition model for 20 $\mathrm{keV}-1 \mathrm{MeV}$ electron transport which takes into account both elastic and inelastic scatterings. In [7] Luo extended bipartition model into the energy range 1-50 MeV, considered the influence of the energy-loss straggling, secondary-electron production, and bremsstrahlung. The applications of bipartition model for inhomogeneous problems and ion transport are discussed in [5,6]. The history and development of the transport theory of charged particles and bipartition model are summarized in [8,9]. Bipartiton model could also be combined with Fermi-Eyges theory to produce the hybrid electron pencil beam model for 3D problems.

Biparitition rroclel

Lewis transport equation (broad beam model, only Fokker-Planck approximation for energy, the asymptotic approximation for screened
Rutherford cross section not accurate)

$$
\begin{aligned}
&-\frac{\partial}{\partial E}\left(\rho_{c} f\right)+\mu \frac{\partial f}{\partial x}-\frac{1}{2} \frac{\partial^{2}}{\partial E^{2}}\left(\Omega_{c} f\right)+\varphi_{r} f= \int_{E}^{E_{0}} f\left(x, \mu, E^{\prime}\right) \frac{N_{A} D}{A} \sigma_{r}\left(E^{\prime}, E^{\prime}-E\right) d E^{\prime} \\
&+C_{f}(x, \mu, E)+S(x, \mu, E) \\
& C_{f}(x, \mu, E)=\int_{4 \pi}\left[f\left(x, \mu^{\prime}, E\right)-f(x, \mu, E)\right] \frac{N_{A} D}{A} \sigma_{M F}\left(E, u^{\prime} \cdot u\right) d u^{\prime}
\end{aligned}
$$

Biparititions sroodel

$$
\begin{gathered}
f(x, \mu, E)=f_{s}(x, \mu, E)+f_{d}(x, \mu, E) \\
-\frac{\partial}{\partial E}\left(\rho_{c} f_{s}\right)+\mu \frac{\partial f_{s}}{\partial x}-\frac{1}{2} \frac{\partial^{2}}{\partial E^{2}}\left(\Omega_{c} f_{s}\right)+\varphi_{r} f_{s}= \\
\int_{4 \pi}\left[f_{s}\left(x, \mu^{\prime}, E\right)-f_{s}(x, \mu, E)\right] \frac{N_{A} D}{A} \sigma_{M F}\left(E, u^{\prime} \cdot u\right) d u^{\prime}-S_{d}+S(x, \mu, E) \\
-\frac{\partial}{\partial E}\left(\rho_{t} f_{d}\right)+\mu \frac{\partial f_{d}}{\partial x}-\frac{1}{2} \frac{\partial^{2}}{\partial E^{2}}\left(\Omega_{t} f_{d}\right)=\int_{E}^{E_{0}} f_{s}\left(x, \mu, E^{\prime}\right) \frac{N_{A} D}{A} \sigma_{r}\left(E^{\prime}, E^{\prime}-E\right) d E^{\prime} \\
+\int_{4 \pi}\left[f_{d}\left(x, \mu^{\prime}, E\right)-f_{d}(x, \mu, E)\right] \frac{N_{A} D}{A} \sigma_{M F}\left(E, u^{\prime} \cdot u\right) d u^{\prime}+S_{d}+S(x, \mu, E)
\end{gathered}
$$

Bipartition rriodel

$$
\begin{aligned}
& f_{s}(x, \mu, E)=\sum_{l=0}^{\infty} \frac{2 l+1}{4 \pi} p_{l}(\mu) A_{l}(x, E) \\
& f_{d}(x, \mu, E)=\sum_{l=0}^{\infty} \frac{2 l+1}{4 \pi} p_{l}(\mu) N_{l}(x, E) \\
& S_{d}(x, \mu, E)=\sum_{l=0}^{m} \frac{2 l+1}{4 \pi} p_{l}(\mu) S_{l}(x, E) \\
& \left.C_{f}=-\sum_{n=0}^{\infty} \frac{2 n+1}{4 \pi} P_{n}(\mu) A_{n}(x, t) \frac{a d_{n}}{t(t+\alpha)}\left(t=1-\frac{1}{R_{0}} \int_{E}^{E_{0}}\left[\frac{d E^{\prime}}{d x}\right]^{-1} d E^{\prime}\right)\right) \quad \begin{array}{l}
\text { Kernel for } \\
\text { bipartition } \\
\text { model }
\end{array} \\
& C .(x . \mu . E)=S .(x . \mu . E) . \quad i=0.1 . \cdots m .
\end{aligned}
$$

Biparititions sriodel

Eipentrition rriodel

$$
\begin{align*}
& =-\varphi A(x, E)+\delta(x) \delta\left(E-E_{0}\right), l>m \\
& \text { FT } \\
& -\frac{\partial}{\partial E}\left[L(E, \Delta) A_{l}(x, E)\right]+\mu_{a} \frac{\partial A_{l}}{\partial x}-\frac{1}{2} \frac{\partial^{2}}{\partial E^{2}}\left[\Omega_{c} A_{l}(x, E)\right]+\varphi_{r} A_{l}(x, E) \\
& =\sum_{l=m+1}^{\infty} D_{l l} \varphi_{l} A_{l}(x, E)+\delta(x) \delta\left(E-E_{0}\right), l \leq m \\
& -\frac{\partial \rho_{t} N_{l}}{\partial E}+\left[\frac{l+1}{2 l+1} \frac{\partial N_{l+1}}{\partial x}+\frac{l}{2 l+1} \frac{\partial N_{l-1}}{\partial x}\right] \tag{FD}\\
& =\frac{1}{2} \frac{\partial^{2} \Omega_{t} N_{l}}{\partial E^{2}}-\varphi_{l} N_{l}+\frac{N_{A} D}{A} \int_{E+\varepsilon}^{E_{0}} A_{l}\left(x, E^{\prime}\right) \sigma_{r}\left(E^{\prime}, E^{\prime}-E\right) d E^{\prime}+S_{l}
\end{align*}
$$

Fiesulits by Sicl-sseti'sod

Fiesulis by Sicl-rnetriod

Fiesulis by Sicl-rretinod

Fiesults by Sid-rnethod

Fiesults by Sid-rnethod

Fiesulis by Sid-rretinod

Fiesults by Sid-rnethod

Fiesults by Sid-rnethod

Fiesulis by Sid-rnethocl

- Energy deposition
- 3D pencil beam model
- Inhomogeneous medium and irregular geometry
- Ion transport
- More finite element methods
- Error estimates
- C. BORGERS (Tufts University)
E. W. Larsen (Univ. of Michigan, Ann Arbor)
- G. C. Pomraning (UCLA)
- Lawrence H. Lanzl (University of Chicago, the Manhattan Project)
- David Jette (Dep. of Med. Phy., Rush-Presbyterian-St Luke's Medical Center, Chicago, Illinois)
- Anders Brahme (Karolinska Institute)
- Zhengming Luo (Sichuan University)
- Mohammad Asadzadeh (CTH)

Thank you very much for your listening!

