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INTRODUCTION
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In recent years, a new class of equations has acquired great significance in mathemati-

cal physics in connection with the rapid development of neutron physics and its associated

studies. These are the so-called kinetic (transport) equations which describe the process

of neutron transport in a substance. These equations are linear, integro-differential equa-

tions in partial derivatives of the first order. Much of the efforts in transport theory are

devoted to searching for methods that generate accurate results. In the stationary case

they have the form

3X
i=1

vi
∂N

∂xi
+ α(P, | v |)N =

1

4π

Z
θ(P, v, v0)N(v0, P 0)dv0 + F (v, P ), (1.1)

where the unknown function N(v, P ) is the density of neutrons moving with velocity

v = (v1, v2, v3) at the point P = (x1, x2, x3).

With equation (1.1) we associate the boundary conditions

N(v, P ) = F1(v, P ), P ∈ Γ, (v, n) < 0. (1.2)

For simplicity we assume that the region G where neutron transport occurs is convex

and bounded by a piece-wise smooth surface Γ. In (1.2) n is the outwards drawn normal

vector at the point P to the boundary Γ.

The transport equations (1.1) describe different physical process in particle transport.

Besides the above mentioned process of neutron scattering in a substance we have also

such processes as the dispersion of light in the atmosphere, the passage of γ-rays through

a dispersive medium, the transport of radiation in stellar atmospheres, etc.

Thus these equations have wide application in physics, geophysics and astrophysics.

A detailed solution of the equations for neutron transport can be found, for example,

in an article by Davison [20].

Equation (1.1) is, in substance, Boltzmann’s linearized transport equation for the

distributed of molecules.

Since the problem (1.1) and (1.2) has an extremely complex structure different approx-
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imations to it have acquired importance as simplifications. Among the approximation

theories we have, for example, multigroup approximation, age theory, the diffusion ap-

proximation, etc. However, approximate methods are not always sufficiently precise in

practice. Therefore it is useful to examine the accuracy of the various approximations,

particularly those constructed directly by the use of modern computer techniques. The

construction of methods of solution and their substantiation demand, however, a prelim-

inary qualitative study of the problem and, first of all, of such aspects of it as existence,

uniqueness, the continuous dependence of the solution on the data of the problem, spec-

tral properties, in particular, the properties of eigenvalues and eigenfunctions, variational

principles, etc. Moreover, these things are mathematically interesting in themselves, since

they are connected with the new class of problems which describe much more complex

physical processes.

Thus the question arises of constructing a rigorous mathematical theory for trans-

port equations. Among the mathematical works dealing with transport equations, the

method proposed by Chandrasekhar [19] solves analytically the discrete equations , (SN

equations), the spherical harmonics method [22] expands the angular flux in Legen-

dre polynomials, the FN method [26] transforms the transport equation into an integral

equation. The integral transform technique like the Laplace, Fourier and Bessel also have

been applied to solve the transport equation in semi-infinite domain [24], [25], the SGF

method [7], [8] is a numerical nodal method that generates numerical solution for the SN

equations in slab geometry that is completely free of spatial truncation error. The LTSN

method [48] solve analytically the SN equations employing the Laplace Transform tech-

nique in the spatial variable (finite domain). Recently, following the idea encompassed

by the LTSN method, we have derived a generic method, prevailing the analyticity, for

solving one-dimensional approximation that transform the transport equation into a set

differential equations.

The version of this generic method are known as LTSN [5], LTPN [50], LTWN [16],

LTChN [17], LTAN [18], LTDN [9].
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The analytical character of this solution, in the sense that no approximation is made

along its derivation, constitutes its main feature. The idea encompassed is threefold:

application of the Laplace Transform to the set of ordinary equations resulting from

the approximation, analytical solution of the resulting linear system depending on the

complex parameter s and inversion of the transformed angular flux by the Heaviside

expansion technique.

We remark that the second step was accomplished by the application of the procedures

that we shall describe further ahead. For the LTSN approach, exploiting the structure

of the corresponding matrix, the inversion was performed by employing the definition

of matrix inversion [5]. On the other hand, for the remaining approaches, the matrix

inversion was performed by the Trzaska’s method [46].

The series expansions method has been largely used in the solution of the differential

equation. In particular, Legendre Polynomials [22] and the Walsh function [43] expansion

have been employed to solve the one-dimensional linear transport.

During the following ten to fifteen years much effort, both native and foreign, has been

expended on theoretical-physical and mathematical, particularly numerical, methods of

approximate solution of the transport equations1 especially an important work has been

done in the context of multidimensional transport problems, based on analytical and

numerical approaches, Fourier transforms [52] or the discrete-ordinates method and the

transverse-integrated equations [39]. Even commercial codes are available [42]. However,

we consider it still today a big challenge in the particle-transport theory in the sense of

obtaining procedures that can be applied to a wide range of problems as well as getting

high quality computational results As a rule the problems considered were of a practical

nature and it was necessary to get answers quickly, albeit crudely. The methods used

were either of minor importance or were not properly examined. Thus, pursuing the

objective of attaining solutions, based on analytical procedures, for the multidimensional

1A detailled bibliographical index of publications related to these subjects can be found in the mono-
graphs [36], [20], [19].
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transport problems, in this work we use the spectral method [27] to decompose the

multidimensional problem into a set of one-dimensional problems, whose can then be

solved by one of the well-known methods such as the PN method [20], the FN method

[26], the discrete-ordinates method [19], [39], the LTSN method and the other ones

employ the Laplace transform [49] and so on.

According to Gottlieb and Orszag [27], spectral methods involve representation the

solution to a problem as a truncated series of known functions of the independent vari-

ables. The determination of the expansion coefficients is, of course, a fundamental issue

in this method and we can then recall some approximation to this end. But in regard

to that, one should prefer to use orthogonal basis such that those coefficients could be

determined by orthogonality properties.

The purpose of this thesis is to meet this problem to some extent, using the spectral

method .

The principal results contained in this work, aside from those of part II and III, were

published in our earlier papers [1]. We note also the works of Cardona [17] and Vilhena

[47], which concern spectral investigations and the examination of solutions to stationary

problems. These articles have some points in common with ours, however none overlap.

An outline of this thesis is as follows: In the part I of this thesis we present a new

approximation for the one-group linear transport equation with anisotropic scattering

in a slab, using Chebyshev polynomials. To this end, the angular flux is expanded

in a truncated series of Chebyshev polynomials in the angular variable. Replacing this

expression in the transport equation and taking moments like in the PN method [22], leads

to a new approximation. The resultant first-order linear differential system is solved for

the spatial function coefficients by application of the Sumudu transform technique.

The inversion of the transformed coefficients is performed also analytically, using

Trzaska’s method and the heaviside technique.

In part II of this work is devoted to study a convergence of a combined spectral

and (SN) discrete approximation for a multidimensional, steady state, linear transport
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problem with isotropic scattering. The procedure is based on expansion of the angular

flux in a truncated series of the Chebyshev polynomials in spatial variables that results

in the transformation of the multidimensional problems into a set of one-dimensional

problems. The convergence of this approach is studied in the context of the discrete-

ordinates equations based on a special quadrature rule for the scattering integral. The

discrete-ordinates and quadrature errors are expanded in truncated series of Chebyshev

polynomials of degree≤ L, and the convergence is derived assuming L ≤ σt−4πσs where
σt and σs are total- and scattering cross-sections respectively.

Appendix I is devoted to certain properties of the Chebyshev and Legendre polynomi-

als that are frequently used in this thesis, in Appendix II we derive the spectral equations

in three dimensional setting.

For the convenience of the reader most of the ideas and results of Sumudu transform

an Trzaska’s method are consolidated in Appendix III and IV.
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Part II

SOLVING THE

ONE-DIMENSIONAL NEUTRON

TRANSPORT EQUATION USING

CHEBYSHEV POLYNOMIALS

AND SUMUDU TRANSFORM.
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Chapter 2

Introduction

As is well known, the study of a given transport equation is a quite important and

interesting in transport theory. Various methods have been developed to investigate,

and special attention has been given to the task of searching methods that generate

accurate results to transport problems in the context of deterministic methods based on

analytical procedures, for the multidimensional transport problems, one of the effective

methods to treat linear transport equation is the spectral method [38] [36] [28] etc...,

whose basic goals is to find exact solution for approximations of the transport equation,

several approaches have been suggested.

According to Gottlieb [27], spectral method involve representation the solution to a

problem as a truncated series of known functions of the independent variables, of course

there exist other method to determine the coefficients of expansion, but in regard to that,

we should prefer to use orthogonal basis such that those coefficients could be determined

by orthogonality properties. Thereby, the orthogonal functions and polynomial series

have received considerable attention in dealing with various problem. The main char-

acteristic of this technique is that reduces this problems to those of solving a system of

algebraic equations, thus greatly simplifying the problem and making it computational

plausible.

Chebyshev spectral methods for radiative transfer problems are studied, e.g., by Kim
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and Ishimaru in [34] and by Kim and Moscoso in [35] and by Asadzadeh and Kadem in [1]

and by Kadem [30] [31] [32] [33]. For more detailed study on Chebyshev spectral method

and also approximations by the spectral methods we refer the reader to monographs by

Body [13] and Bernardi and Maday [11].

In this part we present a new approximation for the one dimensional transport equa-

tion, using Chebyshev polynomials [40] combined with the Sumudu transform. The

approach is based on expansion of the angular flux in a truncated series of Chebyshev

polynomials in the angular variable. By replacing this development in the transport

equation, this which will result a first-order linear differential system is solved for the

spatial function coefficients by application of the Sumudu transform technique [10].

The inversion of the transformed coefficients is obtained using Trzaska’s method [46]

and the Heaviside expansion technique.

To our knowledge, the combination of the Chebyshev polynomials and the Sumudu

transform solve the linear transport equation has not been considered before.
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Chapter 3

Analysis

Let us consider the following mono-energetic 3−D transport equation:

Ω.∇(r,Ω) + σtΨ(r,Ω) =
Z
4π

σs(Ω,Ω
0)Ψ(r,Ω0)dΩ0 +

1

4π
Q(r) (3.1)

where

r = (x, y, z) = spatial variable, (3.2)

Ω = (η, ξ) = angular variable, (3.3)

and

σs(µ0) =
∞X
k=0

2k + 1

4π
σskPk(µ0) = differential scattering cross section, (3.4)

with µ0 = Ω.Ω0 and Pk = the kth Legendre polynomial.
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Chapter 4

Planar Geometry

We consider a planar-geometry problem with spatial variation only in the x−direction:

Q(r) = q(x), (4.1)

Ψ(r,Ω) =
1

2π
Ψ(x, µ) (4.2)

Eq. (3.1) simplifies to

µ
∂Ψ

∂x
(x, µ) + σtΨ(x, µ) =

Z 1

−1
σs(µ, µ

0)Ψ(x, µ0)dµ0 +
q(x)

2
, (4.3)

with

σs(µ, µ
0) =

∞X
k=0

2k + 1

2
σskPk(µ)Pk(µ

0). (4.4)

So we consider Eq. (4.3) with 0 ≤ x ≤ a and −1 ≤ µ ≤ 1, and subject to the boundary
conditions

Ψ(x = a, µ) = 0, (4.5)

and

Ψ(x = 0, µ) = f(µ), (4.6)
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where f(µ) is the prescribed incident flux at x = 0; Ψ(x, µ) is the angular flux in the µ

direction; σt is the total cross section; σsl, with l = 0, 1, ..., L are the components of the

differential scattering cross section, and Pk(µ) are the Legendre polynomials of degree k.

Theorem 4.1. Consider the integro-differential equation (4.3) under the boundary

conditions (4.5) and (4.6), then the function Ψ(x, µ) satisfies the following first-order

linear differential equation system for the spatial component gn(x)

NX
n=0

α1n,mg
0
n(x) +

σtπ

2− δm,0
gm(x) =

LX
l=0

2l + 1

2
σslα

2
m,l

NX
n=0

α3n,lgn(x) +
q(x)

2

where

α1n,m :=
Z 1

−1
µTn(µ)

Tm(µ)√
1− µ2dµ,

α2n,l :=
Z 1

−1
Tn(µ)Pl(µ)dµ,

α3n,l :=
Z 1

−1
Tn(µ)Pl(µ)√
1− µ2 dµ,

and gm(x) are the coefficients of the expansion of the Ψ(x, µ).

To prepare for the proof of the Theorem (4.1) we need the following result

Proposition 4.2. Let

Tn+1(x)− 2xTn(x) + Tn−1(x) = 0

and

Pl+1(x) = 2xPl(x)− Pl−1(x)− [xPl(x)− Pl−1(x)] /(l + 1)

be the recurrence relations for the Chebyshev and the Legendre polynomials, respectively.

We have for l > 2 and k = 2, 3

αkn,l+1 :=
2l + 1

2l + 2

h
αkn+1,l + αkn−1,l

i
− l

l + 1
αkn,j−1
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Hence, in particular for l = 0 and 1 the coefficients α2n,l and α3n,l assume the values

α2n,l =

 0 if n+ l odd,
2

(1+l)2−n2 if n+ l even,

and

α3n,l =
πδn,l
2− δl,0

Proof

It easy to see that

α1n,m =
πδ|n−m|

2(2− δn+m,1)

For k = 2 by the multiplication of the Chebyshev and the Legendre recurrence formulas

we have

2l + 1

2l + 2
[Pl(µ)Tn+1(µ) + Pl(µ)Tn−1(µ)]− l

2µ (l + 1)
Pl−1(µ) [Tn+1(µ) + Tn−1(µ)]

it is known that

Tn+1(µ) + Tn−1(µ) = 2µTn(µ)

after doing some algebraic manipulations and integrating over µ ∈ [−1, 1] on the resulting
equation we get

α2n,l+1 =
2l + 1

2l + 2

h
α2n+1,l + α2n−1,l

i
− l

l + 1
α2n,j−1

The case k = 3 is treated similarly but in this case we multiply the resulting expression

by 1√
1−µ2 and integrate over µ ∈ [−1, 1] we get the desired result.

Proof of Theorem 4.1

Expanding the angular flux in the µ variable in terms of the Chebyshev polynomials

[40] leads to

Ψ(x, µ) =
NX
n=0

gn(x)Tn(µ)√
1− µ2 (4.7)

with N = 0, 2, 4, ..., where the expansions coefficients gn(x) should be determined.
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Here Tn(µ) are the well known Chebyshev polynomials of order n which are orthogonal

in the interval [−1, 1] with respect to the weight w(t) = 1/√1− t2.
After replacing Eq. (4.7) into Eq. (4.3) it turns out

NX
n=0

{µg0n(x) + σtgn(x)} Tn(µ)√
1− µ2 =

LX
l=0

2l + 1

2
σslPl(µ)

NX
n=0

gn(x)
Z 1

−1
Pl(µ

0)
Tn(µ

0)√
1− µ02dµ

0 +
q(x)

2
(4.8)

using the orthogonality of the Chebyshev polynomials [40], multiply the Eq. (4.8) by

Tm(µ), consideringm = 0, 1, ..., N, and integrated in the µ variable in the interval [−1, 1] .
Thus we get the following first-order linear differential equation system for the spatial

component gn(x)

NX
n=0

α1n,mg
0
n(x) +

σtπ

2− δm,0
gm(x) =

LX
l=0

2l + 1

2
σslα

2
m,l

NX
n=0

α3n,lgn(x) +
q(x)

2
(4.9)

where

α1n,m =
πδ|n−m|

2(2− δn+m,1)
, (4.10)

α2n,l =
Z 1

−1
Tn(µ)Pl(µ)dµ, (4.11)

α3n,l =
Z 1

−1
Tn(µ)Pl(µ)√
1− µ2 dµ, (4.12)

with δn,m denoting the delta of Kronecker. Here the coefficients α2n,l and α
3
n,l are evaluated

by the multiplication of the Chebyshev and Legendre recurrence formulas and integration

of the resulting equation (See proposition 2 from Appendix I).

So that we have

αkn,l+1 :=
2l + 1

2l + 2

h
αkn+1,l + αkn−1,l

i
− l

l + 1
αkn,j−1 (4.13)

for l > 2, and k = 2, 3.
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While for l = 0 and 1 the coefficients α2n,l and α3n,l assume the values

α2n,l =

 0 if n+ l odd,
2

(1+l)2−n2 if n+ l even,
(4.14)

and

α3n,l =
πδn,l
2− δl,0

(4.15)

we rewrite Eq. (4.9) in matrix form

A.
dg

dx
(x) +Bg(x) = C(x) (4.16)

where g(x) = Col. [g0(x), g1(x), ..., gN(x)] and A and B are squared matrices of order

N + 1 with the components

(A)i,j = α1i−1,j−1, (4.17)

(B)i,j =
πσt

2− δ1,j
δi,j −

LX
l=0

2l + 1

2
σslα

2
i−1,l

NX
n=0

α3j−1,l (4.18)

and

C(x) =
q(x)

2
= Col. [C0(x), C1(x), ..., CN(x)] . (4.19)

we notice that this equation has the well known solution [44]

g(x) = e−A
−1Bxg(0) +

Z x

0
e−A

−1B(x−ξ)C(ξ)dξ, (4.20)

that depends on vector g(0). Having established an analytical formulation for the expo-

nential appearing in equation (4.20), the N + 1 unknown components of vector g(0) for

the boundary problem (4.3) can be readily obtained applying the boundary conditions

(4.5) and (4.6) in the solution given by Eq. (4.7) and multiplying this expression by the

Chebyshev polynomial Tm(µ), considering m = 0, 2, 4, ..., N − 1, and integrating in the

18



interval [−1, 1] , this procedure gives

NX
n=0

gn(0)
Z 1

−1
Tn(µ)Tm(µ)√

1− µ2 dµ =
Z 1

−1
g(µ)Tm(µ)dµ (4.21)

and
NX
n=0

(−1)ngn(a)
Z 1

−1
Tn(µ)Tm(µ)√

1− µ2 dµ = 0. (4.22)

To derive an analytical formulation for the exponential of matrix A−1B, appearing in

equation (4.20), let us solve the homogeneous version of equation (4.16), namely

A.
dg

dx
(x) +Bg(x) = 0 (4.23)

Now, following the idea of applying the Sumudu transform to equation (4.23) so by

applying Theorem 4 Appendix III, we obtain an algebraic linear system that has the

solution

G(u) [uB +A] = R (4.24)

with

R = A.g(0), (4.25)

Where G(u) = S [g(x)] denotes the Sumudu transform of the vector g(x) (See Appendix

III). Solving equation (4.24) that has the solution

G(u) = [uB +A]−1R (4.26)

by Trzaska’s method [46] the inverse of matrix [uB +A] is readily obtained indeed

[uB +A]−1 =
MX
k=1

1

u− skPk (4.27)

where the coefficients sk denote the eigenvalues of matrix B−1A and the matrices Pk are

the ones resulting from the application of Trzaska’s method (See Appendix IV). The
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inversion of the transformed vector G(u) is executed by the Heaviside expansion tech-

nique. Following this procedure, we obtain an analytical expression for the exponential

of matrix B−1A [49].

e−B
−1Ax =

MX
k=1

Pke
skx. (4.28)

We substitute Eq. (4.28) into Eq. (4.20) then the transformed vector g(x) by the

Heaviside technique to get

g(x) =
MX
k=1

eskxPkR+
MX
k=1

Pk

Z x

0
esk(x−ξ)C(ξ)dξ, (4.29)

Replacing gn(0) and gn(a) by its values given by equation (4.20) in equation (4.21) and

(4.22), it turns out

NX
l=1

"
MX
k=1

PkRl +
MX
k=1

Pk

Z x

0
eA

−1BξC(ξ)dξ

# Z 1

−1
Tn(µ)Tm(µ)√

1− µ2 dµ =
Z 1

−1
g(µ)Tm(µ)dµ (4.30)

and

NX
l=1

"
MX
k=1

Pke
skaRl +

MX
k=1

Pk

Z x

0
e−A

−1B(sk−ξ)C(ξ)dξ

# Z 1

−1
Tn(µ)Tm(µ)√

1− µ2 dµ = 0 (4.31)

with m = 0, 2, 4, ..., N − 1, where Rl design the element of the unknown vector R.
After solving the linear system (4.30), (4.31) for the components of the vector R, the

angular flux given by equation (4.7) is completely determined.
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Chapter 5

Specific Application of the Method

Consider the three-dimensional neutron transport equation written as

µ
∂

∂x
Ψ(x, µ, θ) +

q
1− µ2

"
cos θ

∂

∂y
Ψ(x, µ, θ) + sin θ

∂

∂z
Ψ(x, µ, θ)

#

+σtΨ(x, µ, θ) =
Z 1

−1

Z 2π

0
σs(µ

0
, θ

0 → µ, θ)Ψ(x, µ
0
, θ

0
)dθ

0
dµ

0
+ S(x, µ, θ) (5.1)

where we assume that the spatial variable x :=(x, y, z) varies in the cubic domain Ω :=

{(x, y, z) : −1 ≤ x, y, z ≤ 1} , and Ψ(x, µ, θ) := Ψ(x, y, z, µ, θ) is the angular flux in the

direction defined by µ ∈ [−1, 1] and θ ∈ [0, 2π].
We seek for a solution of (5.1) satisfying the following boundary conditions:

For the boundary terms in x; for 0 ≤ θ ≤ 2π,

Ψ(x = ±1, y, z, µ, θ) =
 f1(y, z, µ, θ), x = −1, 0 < µ ≤ 1,

0, x = 1, − 1 ≤ µ < 0.
(5.2)

For the boundary terms in y and for −1 ≤ µ < 1,

Ψ(x, y = ±1, z, µ, θ) =
 f2(x, z, µ, θ), y = −1, 0 < cos θ ≤ 1,

0, y = 1, − 1 ≤ cos θ < 0.
(5.3)
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Finally, for the boundary terms in z; for −1 ≤ µ < 1,

Ψ(x, y, z = ±1, µ, θ) =
 f3(x, y, µ, θ), z = −1, 0 ≤ θ < π,

0, z = 1, π < θ ≤ 2π.
(5.4)

Here we assume that f1(y, z, µ,φ), f2(x, z, µ,φ) and f3(x, y, µ,φ) are given function.

Expanding the angular flux Ψ(x, y, z, µ,φ) in a truncated series of Chebyshev poly-

nomials Ti(y) and Rj(z) leads to

Ψ(x, y, z, µ, θ) =
IX
i=0

JX
j=0

Ψi,j(x, µ, θ)Ti(y)Rj(z). (5.5)

insert Eq. (5.5) into (5.1) Multiplying the resulting expressions by Ti(y)√
1−y2 ×

Rj(z)√
1−z2 , and

integrating over y and z we obtain I × J one-dimensional transport problems, viz

µ
∂Ψα,β

∂x
(x, µ,φ) + σtΨα,β(x, µ,φ) =

Z 1

−1

Z 1

−1
σs(µ

0
,φ

0 → µ,φ)Ψα,β(x, µ
0
,φ

0
)dφ

0
dµ

0
+G

α,β
(x;µ,φ) (5.6)

where

G
α,β
(x;µ, η) = S

α,β
(x, µ,φ)−

q
1− µ2

×
cosφ IX

α=i+1

Aα
i Ψα,j(x, µ,φ) + sinφ

JX
β=j+1

Bβ
j Ψi,β(x, µ,φ)

 , (5.7)

with

S
α,β
(x, µ,φ) =

(2− δα,0) (2− δβ,0)

π2

Z 1

−1

Z 1

−1

Z 1

−1
Tα(µ)√
1− µ2dµ

Tα(y)Tβ(z)q
(1− y2)(1− z2)

S(x, y, z, µ,φ)dzdy

(5.8)

Aα
i =

2− δα,0
π

Z 1

−1
d

dy
(Tα(y))

Ti(y)√
1− y2dy (5.9)

Bβ
j =

2− δβ,0
π

Z 1

−1
d

dz
(Tβ(z))

Tj(z)√
1− z2dz. (5.10)
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The corresponding discrete ordinates equation [19] is then

µm
∂Ψα,β

∂x
(x, µm,φm) + σtΨα,β(x, µm,φm) =

MX
n=1

ωnΨα,β(x, µm,φm) +Gα,β
(x;µm,φm)

(5.11)

and also we expand Ψα,β(x, µm,φm) in a truncated series of Chebyshev polynomials i.e.

Ψα,β(x, µm,φm) =
MX
k=0

Ck(x,φm)Tk(µm)q
1− µ2m

(5.12)

bringing the equation (5.12) in equation (5.11) to get

µm
∂

∂x

 MX
k=0

Ck(x,φm)Tk(µm)q
1− µ2m

+ σt

 MX
k=0

Ck(x,φm)Tk(µm)q
1− µ2m

 =
MX
n=1

ωn

 MX
k=0

Ck(x,φm)Tk(µm)q
1− µ2m

+G
α,β
(x;µm, ηm) (5.13)

with

G
α,β
(x;µm, ηm) = Sα,β

(x, µ,φ)−
q
1− µ2

×
cosφ IX

α=i+1

Aα
i

MX
k=0

Ck(x,φm)Tk(µm)q
1− µ2m

+ sinφ
JX

β=j+1

Bβ
j

MX
k=0

Ck(x,φm)Tk(µm)q
1− µ2m

 , (5.14)

multiply the equation (5.13) par Tl(µm) and integrate over µm ∈ [−1, 1] we find

µm
∂

∂x

MX
k=0

Ck(x,φm)
Z 1

−1
Tk(µm)Tl(µm)q

1− µ2m
dµm + σt

MX
k=0

Ck(x,φm)
Z 1

−1
Tk(µm)Tl(µm)q

1− µ2m
dµm =

MX
n=0

ωn
MX
k=0

Ck(x,φm)
Z 1

−1
Tk(µm)Tl(µm)q

1− µ2m
dµm +

Z 1

−1
G

α,β
(x;µm, ηm)Tl(µm)dµm (5.15)

with

Z 1

−1
G

α,β
(x;µm, ηm)Tl(µm)dµm =

Z 1

−1
S
α,β
(x, µm,φm)Tl(µm)dµm−cosφm

q
1− µ2m

IX
i=α+1

Aα
i
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×
MX
k=0

Ck(x,φm)
Z 1

−1
Tk(µm)Tl(µm)q

1− µ2m
dµm + sinφm

q
1− µ2m

JX
j=β+1

Bβ
j

×
MX
k=0

Ck(x,φm)
Z 1

−1
Tk(µm)Tl(µm)q

1− µ2m
dµm (5.16)

where

Aα
i =

2− δα,0
π

Z 1

−1

Z 1

−1
d

dy
(Tα(y))

Ti(y)√
1− y2Tl(µm)dydµm (5.17)

Bβ
j =

2− δβ,0
π

Z 1

−1

Z 1

−1
d

dz
(Tβ(z))

Tj(z)√
1− z2Tl(µm)dzdµm (5.18)

by using the properties of Chebyshev polynomials to equation (5.16) to get

Z 1

−1
G

α,β
(x;µm, ηm)Tl(µm)dµm =

Z 1

−1
S
α,β
(x, µm,φm)Tl(µm)dµm −

"
π

2− δm,0

q
1− µ2mCk(x,φm)

#

×
 IX
i=α+1

Aα
i cosφm +

JX
j=β+1

Bβ
j sinφm

 (5.19)

then the equation (5.11) becomes

µm
∂Cm
∂x

+

σt − MX
m=0

q
1− µ2m

 IX
i=α+1

Aα
i cosφm −

JX
j=β+1

Bβ
j sinφm

Cm

=
π

2− δm,0

Z 1

−1
S
α,β
(x, µm,φm)Tl(µm)dµm. (5.20)

after written in vector and matrix notation and regrouping the coefficients Cm together

in Eq. (5.13), we can derive the following differential equation

∂Cm
∂x

+DCm = Em (5.21)
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where Dm = 1
µm
Bm and Em = 1

µm
Am with

Am :=
π

2− δm,0

Z 1

−1
S
α,β
(x, µm,φm)Tl(µm)dµm (5.22)

Bm :=

σt − MX
m=0

q
1− µ2m

 IX
i=α+1

Aα
i cosφm −

JX
j=β+1

Bβ
j sinφm

 (5.23)

the solution of differential equation for the vector Cm is thus constructed as follows:

Cm(x) = e
−DxCm(0)−

Z x

0
e−(x−ξ)DEm(ξ)dξ (5.24)

equation (5.24) depend on vector Cm(0). Having established an analytical formulation for

the exponential appearing in equation (5.24), the unknown components of vector Cm(0)

for the boundary problem (5.1) can be readily obtained applying the boundary conditions

(5.2), (5.3) and (5.4).

To derive an analytical formulation for the exponential of matrix D, appearing in

equation (5.24), we use the Sumudu transform.

5.1 Study of the Spectral Approximation

now we expand

Ψα,β,N(x,φm) =
(N)X
m=0

C(N)m cos(mφm) (5.25)

where C(N)m is the approximation to the coefficient Cm by the consideration of the trun-

cated series Ψα,β,N .

From spectral analysis, we know that when a function is infinitely smooth and all

its derivatives exist, then the coefficients appearing in its sine or cosine series go to zero

faster than 1/n. Moreover, if the function and all its derivatives are periodic, then the

decay is faster than any power of 1/n.

However, as indicated by Canuto et al. (1988) [15], in practice this decay cannot be
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observed before enough coefficients that represent the essential structures of the function

are considered.

In the calculation, one can test the convergence of the cosine truncated series defined

in equation (5.25) by evaluating

sup
k

" | ΨN+1(k)−ΨN(k) |
ΨN(k)

#
≤ ² (5.26)

where ² is the required precision. In general, the few first coefficients of the series are

enough to generate the angular flux.

If N is the chosen value, we can write

C(N)m = 0 for all n > N, (5.27)

Combining therefore equations (5.27) and (5.24) we shall now describe the necessary

algorithm to obtain all the cosine coefficients C(N)m

Step 0: N = 0; for n = N = 0

C
(0)
0 (x) = e

−A−1BxC(0)0 (0)−
Z x

0
e−A

−1B(x−s)A0(x)dx, (5.28)

with

A0 := π
Z 1

−1
S
α,β
(x, µ0,φ0)Tl(µ0)dµ0 (5.29)

which is well known, and thus C(0)0 (x) is completely determined. To finish the step, we

apply equation (5.25) to obtain the first approximation to the angular flux, i.e., Ψ0.

Step 1: N = 1; for n = 0,

C
(1)
0 (x) = e

−A−1BxC(1)0 (0)−
Z x

0
e−A

−1B(x−s)A1(x)dx, (5.30)

with

A1 :=
π

2

Z 1

−1
S
α,β
(x, µ1,φ1)Tl(µ1)dµ1 (5.31)
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for n = 1

C
(1)
1 (x) = e

−A−1BxC(1)1 (0)−
Z x

0
e−A

−1B(x−s)A1(x)dx, (5.32)

with

A1 :=
π

2

Z 1

−1
S
α,β
(x, µ1,φ1)Tl(µ1)dµ1 (5.33)

Bringing the approximated solution for C(0)0 obtained at step 0 inside equation (5.32)

and iterating with equation (5.28), we obtain immediately the approximated coefficients

C
(1)
0 and C

(1)
1 . To finish the step, we evaluate through equation (5.25) the new approxi-

mation Ψ1 and perform the precision condition defined in equation (5.26). If equation

is verified, the calculation is stopped; if not, we go to step 2 and to likewise until the

convergence condition in equation (5.26) is fulfilled.

With the above algorithm, we only need knowledge of the operator e−A
−1Bx (the

problem was solved previously by using the Sumudu transform.)
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Chapter 6

Conclusion

The Chebyshev spectral method combined with Sumudu transform should be general

enough to consider higher spatial dimensions in a way similar to that presented in this

paper, although we have not investigated this idea thoroughly. We will be consider-

ing more complicated geometries in future studies, during which we will ascertain this

method’s usefulness for larger spatial dimensional problems. In preparation for these

problems, we are currently investigating the effectiveness of spectral methods combined

with Sumudu transform in solving the linear system of differential equation analytically.

An adaptation of the method for the convergence of the spectral solution within

the framework of the analytical solution to study and prove convergence by using the

discrete ordinates method is relatively new. The methods employing Sumudu transforms

represent very interesting new ideas for studying the convergence of many numerical

methods and can be extended easily to general linear transport problems. In fact only

some preliminary results have been obtained. In this context we intend to study the

existence and uniqueness of its solution by using C0 semigroup approach. Our attention

will be focused in this direction.
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Part III
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Chapter 7

Introduction

In this part we develop spectral approximation for two and three dimensional, steady

state, linear transport equation with isotropic scattering, in bounded domain. The pro-

cedure is based on the expansion of the angular flux in a truncated series of Chebyshev

polynomials in the spatial variables. We study the convergence of this method in two

dimensional case, where we use a special quadrature rule to discretise in the angular

variables, approximating the scalar flux. The similarity of the spectral method to the

finite element method is evident: the bases functions have a constant norm and the pro-

cedure is to represent the approximate solution as a linear combination of finite number

of basis functions (truncated series of Chebyshev polynomials) and then use a variational

formulation. The main difference is that: the finite element bases functions are locally

supported, whereas the Chebyshev polynomials are global functions. See also [12] for

further details.

In [47] this approach, with no convergence rate analysis, is considered for a truncated

series of general orthogonal polynomials. The detailed study in [47] is carried out for the

Legendre polynomials, where an index mix caused that a significant drift term is argued

to be of lower and therefore its contribution is not included in the estimates.

We apply this procedure using Chebyshev polynomials with, e.g., the advantage of

having constant weighted-L2 norms, and give a full convergence study including estimates

30



of the contribution from the whole drift term. The final estimations via an inverse itera-

tive/induction argument, based on an estimate derived from some elementary properties

of Chebyshev polynomials in Appendix I. In our knowledge convergence rate analysis, in

this setting, is not considered in the literature.

Related problems, in different setting, are studied in the nuclear engineering literature,

see, e.g., reference in Vilhena et al [47]. Barros and Larsen [6] carried out a spectral

nodal method for certain discrete-ordinates problems. Chebyshev spectral methods for

radiative transfer problems are studied, e.g., by Kim and Ishimaru in [34] and by Kim

and Moscoso [35]. In, e.g., astrophysical aspects, spectral methods are considered for

relativistic gravitation and gravitational radiation by Bonazzola et al [12]. A multi-

domain spectral method is studied by Grangclément et al [29], for scalar and vectorial

Poisson equation. C++ software library, developed for multi-domain, is available in

public domain (GPL), http://www.lorene.obspm.fr. For more detailed study on

Chebyshev spectral method and also approximations by the spectral methods we refer

the reader to monographs by Boyd [13] and Bernardi and Maday [11].

An outline of this part is as follows: In Section 8 we derive the truncated spectral

equations in 2 dimensions. In Section 9 we prove that a certain weighted-L2 norm for

the error in the discrete-ordinates approximation of the spectral solution is dominated

by that of a quadrature approximation. In Section 10 we construct a special quadrature

rule and derive convergence rates for the quadrature error. Combining the results of

Section 9 and 10, we conclude the convergence of the discrete-ordinates for the spectral

method. Appendix I is devoted to certain properties of the Chebyshev polynomials, that

are frequently used in the paper, and also the proof of a crucial estimate used in the

approximation of the contribution from the drift term. Finally in Appendix II we derive

the spectral equations in a three dimensional setting.
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Chapter 8

The Two-Dimensional Spectral

Solution.

Consider the two-dimensional linear, steady state, transport equation given by

µ
∂

∂x
Ψ(x, y, µ,φ) +

q
1− µ2 cosφ ∂

∂y
Ψ(x, y, µ,φ) + σtΨ(x, y, µ,φ)

=
Z 1

−1

Z 2π

0
σs(µ

0
,φ

0 → µ,φ)Ψ(x, y, µ
0
,φ

0
)dφ

0
dµ

0
+ S(x, y, µ,φ) (8.1)

in the rectangular domainΩ = {x := (x, y): − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1} and the direc-
tion in D = {(µ, θ) : −1 ≤ µ ≤ 1, 0 ≤ θ ≤ 2π}. Here Ψ(x, µ,φ) is the angular flux,
σt and σs denote the total and the differential cross section, respectively, σs(µ

0
,φ

0 → µ,φ)

describes the scattering from an assumed pre-collision angular coordinates (µ
0
, θ

0
) to a

post-collision coordinates (µ, θ) and S is the source term. See [39] for the details.

Note that, in the case of one-speed neutron transport equation; taking the angular

variable in a disc, this problem would corresponds to a three dimensional case with all

functions being constant in the azimuthal direction of the z variable. In this way the

actual spatial domain may be assumed to be a cylinder with the cross-section Ω and the

axial symmetry in z. Then D will correspond to the projection of the points on the unit

sphere (the ”speed’) onto the unit disc (which coincides with D.) See, [2] for the details.
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Given the functions f1(y, µ,φ) and f2(x, µ,φ), describing the incident flux, we seek

for a solution of (8.1) subject to the following boundary conditions:

For 0 ≤ θ ≤ 2π, let

Ψ(x = ±1, y, µ, θ) =
 f1(y, µ,φ), x = −1, 0 < µ ≤ 1,

0, x = 1, − 1 ≤ µ < 0.
(8.2)

For −1 < µ < 1, let

Ψ(x, y = ±1, µ, θ) =
 f2(y, µ,φ), y = −1, 0 < cos θ ≤ 1,

0, y = 1, − 1 ≤ cos θ < 0.
(8.3)

Expanding the angular flux Ψ(x, µ, θ) in terms of the Chebyshev polynomials in the y

variable, leads to

Ψ(x, µ, θ) =
IX
i=0

Ψi(x, µ, θ)Ti(y). (8.4)

Below we determine the first component, i.e., Ψ0(x, µ, θ) explicitly, whereas the other

components, Ψi(x, µ, θ), i = 1, ...I, will appear as the unknowns in I one dimensional

transport equations: We start to determine Ψ0(x, µ, θ), by inserting (8.4) into the bound-

ary conditions (8.3) at y = ±1, to find that:

Ψ0(x, µ, θ) = f2(x, µ,φ)−
IX
i=1

(−1)iΨi(x, µ, θ), 0 < cos θ ≤ 1, (8.5)

Ψ0(x, µ, θ) = −
IX
i=1

Ψi(x, µ, θ), − 1 ≤ cos θ < 0. (8.6)

where −1 ≤ x ≤ 1, −1 < µ < 1, and we have used the fact that for the Chebyshev

polynomials T0(x) ≡ 0, Ti(1) ≡ 1 and Ti(−1) ≡ (−1)i. See Appendix I.
If we now insert Ψ from (8.4) into (8.1), multiply the resulting equation by Tk(y)√

1−y2 ,

k = 1, ..., I, and integrate over y we find that the components Ψk(x, µ, θ), k = 1, ..., I,
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satisfy the following I one-dimensional equations:

µ
∂

∂x
Ψk(x, µ, θ) + σtΨk(x, µ, θ)

Z 1

−1

Z 2π

0
σs(µ

0
,φ

0 → µ,φ)Ψk(x, µ
0
,φ

0
)dθ

0
dµ

0
+Gk(x, µ, θ) (8.7)

The same procedure with the boundary condition (8.2) at x = −1, and (8.4) yields

Ψ(−1, y, µ, θ) = f1(y, µ,φ) =
IX
i=0

Ψi(−1, µ, θ)Ti(y). (8.8)

Now multiply (8.8) by Tk(y)√
1−y2 , k = 1, ..., I, and integrate over y we find that

Ψk(−1, µ, θ) = 2

π

Z 1

−1
f1(y;µ, θ)

Tk(y)√
1− y2dy. (8.9)

Similarly, (note the sign of µ below), the boundary condition at x = 1 is written as

IX
i=0

Ψi(1,−µ, θ)Ti(y) = 0 0 < µ ≤ 1. (8.10)

Multiplying (8.10) by Tk(y)√
1−y2 , k = 1, ..., I and integrating over y, we get

Ψk(1,−µ, θ) = 0 0 < µ ≤ 1, 0 ≤ θ ≤ 2π. (8.11)

We can easily check that Gk in (8.7) is written as

Gk(x, µ, θ) = Sk(x, µ, θ)−
q
1− µ2 cos θ

IX
i=k+1

AkiΨk(x, µ, θ) (8.12)

where

Aki =
2

π

Z 1

−1
d

dy
(Ti(y))

Tk(y)√
1− y2dy (8.13)
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and

Sk(x, µ, θ) =
2

π

Z 1

−1
S(x, y, µ, θ)

Tk(y)√
1− y2dy. (8.14)

Note that the solutions to the one-dimensional problems given through the equation

(8.7)-(8.14) define the components Ψk(x, µ, θ), for k = I, ..., 1, in this decreasing order

to avoid the coupling of the equations. Once this is done, the angular flux given by

(8.4) is completely determined. Here we have used the convention
PI
i=I+1 ... = 0. Hence

the starting GI(x, µ, θ) ≡ SI(x, µ, θ). Note also that although the solution, developed

in here, rely on specific boundary conditions the procedure is quite general in the sense

that the expression for the first component, Ψ0(x, µ, θ), keeps the information from the

boundary conditions in the y variable, while the other components are derived based on

the boundary conditions in x.
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Chapter 9

Convergence of the Spectral

Solution.

In the sequel we focus on the two dimensional, steady state linear transport process with

isotropic scattering, i.e., σs(µ
0
,φ

0 → µ,φ) ≡ σs = constant. For this problem we show,

using a weighted-L2 norm, convergence of the spectral solution defined for the spatial

variables. More specifically we show that: in a certain weighted-L2 norm, the (truncated)

discrete ordinate approximation error for the spectral solution is dominated by that of

a special quadrature approximation error. The study of convergence of this quadrature

approximation is the matter of the next section.

Assuming isotropic scattering, the equation (8.1) is written as

µ
∂

∂x
Ψ(x, µ, θ) +

q
1− µ2 cos θ ∂

∂y
Ψ(x, µ, θ) + σtΨ(x, µ, θ)

= σs

Z 1

−1

Z 2π

0
Ψ(x, µ

0
, θ

0
)dθ

0
dµ

0
+ S(x, µ, θ) (9.1)

for x ∈ Ω := {(x, y): − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1} , µ ∈ [−1, 1] and θ ∈ [0, 2π] . the
study of the problem with the anisotropic scattering is a rather involved task. See, e.g.,

[4] for an approach involving anisotropic scattering. Consider now the discrete ordinate
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(SN) approximation of the equation (9.1): for m = 1, ...,M, let

µm
∂

∂x
Ψm(x) + ηm

∂

∂y
Ψm(x) + σtΨm(x) = σs

MX
n=1

ωnΨn(x) + Sm(x), (9.2)

where

ηm =
q
1− µ2m cos θm (9.3)

and Ψm(x) := Ψm(x, y) is the angular flux in the directions defined by µm and ηm and

associated with the quadrature weights ωm. Finally Sm(x) is the corresponding inhomo-

geneous source term defined in the discrete directions (µm, ηm) ∈ [−1, 1]2 .
We assume a quadrature mesh (µm, ηm) 6= (0, 0) ,

 µ1 < µ2 < .... < µM ,

η1 < η2 < ... < ηM,
(9.4)

satisfying the following conditions:

ωm ∼ 4π/M,
MX
m=1

ωm ∼ 4π, m = 1, ...,M (9.5)

Further, we assume that the discrete-ordinates equation (9.2) satisfy the same boundary

conditions, in the discrete directions, as the continuous one, i.e., (9.1) (as stated in Section

8). We shall prove that, under certain assumptions, the solution of the equation (9.2)

would converge to that of the equation (9.1) as N →∞.
To this approach we define the error in the approximate flux by

²m(x) = Ψ(x, µm, ηm)−Ψm(x), m = 1, ...,M, (9.6)

and the truncation error in the quadrature formula as

τ(x) =
Z 1

−1

Z 2π

0
Ψ(x;µ0, θ0)dµ0dθ0 −

MX
n=1

ωnΨ(x, µm, ηm). (9.7)
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Subtracting the discrete-ordinates equation (9.2) from the continuous equation (9.1) in

the discrete directions, for each m = 1, ...,M, an equation relating the discrete-ordinates

approximation error to the quadrature error, viz,

µm
∂²m(x)

∂x
+ ηm

∂²m(x)

∂y
+ σt²m(x) = σs

MX
n=1

ωn²m(x) + σsτ(x). (9.8)

We expand both the approximation and the quadrature errors in a truncated series of

Chebyshev polynomials in y,

²m(x, y) =
LX
l=0

²lm(x)Tl(y), (9.9)

τ(x, y) =
LX
l=0

τ l(x)Tl(y) (9.10)

and define the l − th moments of the errors by

°°°²l°°° = "
2− δl,0

π

Z 1

−1

MX
m=1

ωm(²
l
m(x))

2dx

#1/2
(9.11)

°°°τ l°°° = "
2− δl,0

π

Z 1

−1
(τ l(x))2dx

#1/2
. (9.12)

Remark. Note that (9.9) and (9.10) involve further, truncated, approximations of τ(x),

in (9.7) and the solution ²(x) of (9.6). We keep using the same notation as before the

truncation. Also, despite the recent truncation in y, we use equalities in (9.9), (9.10), as

well as in the subsequent relation below.

The main result of this paper is as follows:

Theorem 9.1. Let L = O(σ) where σ = σt − 4πσs, then for l = 0, 1, ..., L

°°°²l°°°→ 0, as M →∞.

In the remaining part of this section we show that, for ωm ∼ 4π/M, m = 1, ...,M
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the L2 norm of the truncated spectral error
°°°²l°°° , counted in a reverse order on l =

L,L− 1, ..., 0, is dominated by that quadrature error
°°°τ l°°° .

The next section is devoted to proof of the following result:

Theorem 9.2. For ωm ∼ 4π/M, m = 1, ...,M, if Ψ ∈ L2(µ, θ), then

°°°τ l°°°→ 0, as M →∞.

To prepare for the proof of the Theorem 9.1, we substitute (9.9) and (9.10) into the

equation (9.8) to get

µm

LX
l=0

d²lm(x)

dx
Tl(y) + ηm

LX
l=0

²lm(x)
dTl
dy
(y) + σt

LX
l=0

²lm(x)Tl(y)

= σs
MX
n=1

ωn
LX
l=0

²ln(x)Tl(y) + σs
LX
l=0

τ l(x)Tl(y), (9.13)

Multiplying (9.13) by Tj(y)√
1−y2 , j = 0, ..., L and integrating over y yields

π

2− δj,0
µm
d²jm(x)

dx
+ ηm

LX
l=0

γj(l)²
l
m(x) +

π

2− δj,0
σt²

j
m(x) =

π

2− δj,0
σs

MX
n=1

ωn²
l
m(x) +

π

2− δj,0
σsτ

j(x), (9.14)

where

γj(l) =
Z 1

−1
dTl(y)

dy
(y)

Tj(y)√
1− y2dy. (9.15)

Finally, we multiply the equation (9.14) by ²jm(x) and integrate over x to obtain

π

2− δj,0
µm

Z 1

−1
²jm(x)

d²jm(x)

dx
dx+ ηm

LX
l=0

γj(l)
Z 1

−1
²jm(x)²

l
m(x)dx

+
π

2− δj,0
σt

Z 1

−1

h
²jm(x)

i2
dx (9.16)
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=
π

2− δj,0
σs

MX
n=1

ωn

Z 1

−1
²jm(x)²

j
n(x)dx+

π

2− δj,0
σs

Z 1

−1
²jm(x)τ

j(x)dx

Now we rewrite the first term in equation (9.16) as

µm

Z 1

−1
²jm(x)

d²jm(x)

dx
dx =

µm
2

h
(²jm(−1))2 − (²jm(1))2

i
. (9.17)

Note that (µm(²
j
m(1))

2 − (²jm(−1))2) > 0. Indeed, for µm > 0, using the boundary condi-
tion ²m(−1, y) = 0 and the identity

²jm(x) =
2− δj,0

π

Z 1

−1
²m(x, y)Tj(y)

1√
1− y2dy, (9.18)

we find that ²jm(−1) = 0. The same is valid for x = 1, when µm < 0. Consequently,

2− δj,0
π

ηm

LX
l=0

γj(l)
Z 1

−1
²jm(x)²

l
m(x)dx+ σt

Z 1

−1

h
²jm(x)

i2
dx

≤ σs
MX
n=1

ωn

Z 1

−1
²jm(x)²

j
n(x)dx+ σs

Z 1

−1
²jm(x)τ

j(x)dx (9.19)

To proceed we multiply the inequality (9.19) by ωm and sum over m to obtain

σt

Z 1

−1

MX
m=1

ωm
h
²jm(x)

i2
dx ≤ σs

Z 1

−1

"
MX
n=1

ωn²
j
m(x)

#2
dx

+σs

Z 1

−1

"
MX
m=1

ωm²
j
m(x)

#
τ j(x)dx (9.20)

−2− δj,0
π

MX
m=1

ωm

"
ηm

LX
l=0

γj(l)
Z 1

−1
²jm(x)²

l
m(x)dx

#

:= I + II + III.

The crucial part is now to estimate the γ−term III using the elementary properties of

the Chebyshev polynomials. We start with the simpler terms I and II :
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Lemma 9.3. With ωm ∼ 4π/M, m = 1, ...,M, we have, for j = 0, ..., L, that

| I |≤ 4πσs2− δj,0
π

°°°²j(x)°°°2

| II |≤ √4πσs2− δj,0
π

°°°²j(x)°°° °°°τ j°°° (9.21)

Proof. We use the elementary relation

(a1 + a2 + ...+ aM)
2 ≤M

³
a21 + a

2
2 + ...+ a

2
M

´
,

to write "
MX
m=1

ωm²
j
m(x)

#2
≤M max

1≤m≤M
| ωm |

MX
m=1

ωm
h
²jm(x)

i2
. (9.22)

integrating (9.22) over x and using ωm ∼ 4π/M we get

Z 1

−1

"
MX
m=1

ωm²
j
m(x)

#2
dx ≤ 4π

Z 1

−1

MX
m=1

ωm
h
²jm(x)

i2
dx, (9.23)

and hence the first estimate follows recalling (9.11). As for the second estimate, applying

the Cauchy-Schwarz inequality, (9.23), (9.11) and (9.12) we get

Z 1

−1

"
MX
m=1

ωm²
j
m(x)

#
τ j(x)dx

≤
Z 1

−1

"
MX
m=1

ωm²
j
m(x)

#2
dx

1/2 × µZ 1

−1

¯̄̄
τ j(x)

¯̄̄2
dx
¶1/2

(9.24)

√
4π

"Z 1

−1

MX
m=1

ωm
³
²jm(x)

´2
dx

#1/2
×
s

π

2− δj,0

°°°τ j°°°
≤ √4π π

2− δj,0

°°°²j°°° °°°τ j°°° ,
which gives the desired estimate for II and the proof is complete.

Next using the proposition 3 from the Appendix I we estimate the contribution from
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the γ-term III and derive the following key estimate:

Proposition 9.4. For k = 0, 1, 2, ..., L, we have the recursive estimates

°°°²L−k°°° ≤ kX
j=0

³
1− (−1)j+k

´
σ

(L− j)
°°°²L−j°°°+ √4πσs

σ

°°°²L−k°°° . (9.25)

Hence, in particular the starting estimate, for k = 0, is:

°°°²L°°° ≤ √4πσs
σ

°°°τL°°° . (9.26)

With these estimates we can easily prove our main result:

Proof of Theorem 9.1. Proposition 9.4 and Theorem 9.2 give the desired result.

Proof of Theorem 9.4. By the Proposition 3 (see Appendix I) we have that

γj(l) = 0, for j ≥ l, (9.27)

whereas for j ≤ l,

γj(l) =

 0 for j + l even

lπ for j + l odd.
(9.28)

Therefore if we start with j = L, then γj(L) = 0 and hence (9.20) combined with the

definition (9.11) and Lemma 9.3 yields

σt
π

2

°°°²L°°°2 ≤ 4πσsπ
2

°°°²L°°°2 +√4π °°°²L°°° °°°τL°°° . (9.29)

Now rearranging the terms and recalling that σ := σt − 4πσs we obtain (9.26).
The proof of (9.25) is a reversed inductive argument as follows:

For j = L− 1 we have that γj(L) = γL−1(L) = Lπ, whereas γL−1(l) = 0, for l < L.

Hence, using (9.27) we get

LX
l=0

γj(l)²
l
m(x) =

LX
l=0

γL−1(l)²
l
m(x) = γL−1(L)²

L
m(x) = Lπ²

L
m(x). (9.30)
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Thus using the Cauchy-Shwarz inequality

| III |=| −2− δj,0
π

MX
m=1

ωm

"
ηm

Z 1

−1

LX
l=0

γL−1(l)²
l
m(x)²

L−1
m (x)dx

#
|

≤ 2

π
Lπ

Z 1

−1
|
MX
m=1

ηmωm²
L
m(x)²

L−1
m (x) | dx

≤ 2L(max
m
| ηm |)

"Z 1

−1

MX
m=1

ωm
h
²Lm(x)

i2
dx

#1/2
× (9.31)

"Z 1

−1

MX
m=1

ωm
h
²L−1m (x)

i2
dx

#1/2

2L

r
π

2

°°°²L°°°rπ

2

°°°²L−1°°° = Lπ °°°²L°°° °°°²L−1°°° .
Inserting in (9.20) and using also (9.11) and Lemma 9.3, with j = L− 1, we get

σt
π

2

°°°²L−1°°°2 ≤ 4πσsπ
2

°°°²L−1°°°2 +√4πσsπ
2

°°°²L−1°°° °°°τL−1°°°
+Lπ

°°°²L°°° °°°²L−1°°° , (9.32)

or equivalently using the notation σ = σt − 4πσs,

σ
°°°²L−1°°° ≤ 2L °°°²L°°°+√4πσs °°°²L−1°°° . (9.33)

The same procedure applied to j = L − 2 yields γj(L) = γL−2(L) = 0, (note that here

j + L is even), γL−2(L− 1) = (L− 1)π and γL−2(l) = 0, for l < L− 1. Thus

LX
l=0

γL−2(l)²
l
m(x) = γL−2(L− 1)²L−1m (x) = (L− 1)π²L−1m (x), (9.34)

so that, as in the previous step

σ
°°°²L−2°°° ≤ 2(L− 1) °°°²L−1°°°+√4πσs °°°τL−2°°° . (9.35)
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Similarly since for j = L − 3; we have γL−3(L) = Lπ, γL−3(L − 1) = 0, γL−3(L − 2) =
(L− 2)π and γL−3(l) = 0 for l < L− 2, we get

LX
l=0

γL−3(l)²
l
m(x) = γL−3(L− 2)²L−2m (x) + γL−3(L)²

L
m(x)

= 2(L− 2)²L−2m (x) + 2L²Lm(x), (9.36)

which using the same procedure as before yields

σ
°°°²L−3°°° ≤ 2L °°°²L°°°+ 2(L− 2) °°°²L−2°°°+√4πσs °°°τL−3°°° . (9.37)

Now the formula (9.25) is proved by an induction argument.
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Chapter 10

The Quadrature Rule and Proof of

Theorem 9.2.

In this section we construct a special quadrature mesh satisfying the conditions in (9.5)

and prove the Theorem 9.2 in this setting. This would provide us the remaining step

in the proof of the Theorem 9.1 and complete the convergence analysis. We also derive

convergence rates for the quadrature error (9.7) where we identify the angular domain

D = {(µ, θ) : −1 ≤ µ ≤ 1, 0 ≤ θ ≤ 2π} , (10.1)

by fD = ½
(µ, η) : −1 ≤ µ, η ≤ 1, η =

q
1− µ2 cos θ.

¾
(10.2)

Then the quadrature (cubature) rule, for the multiple integral in (9.1) can be constructed

using (10.2) as in (9.7), see [23]. To derive convergence rates, below we construct an

equivalent rule, directly discretizing D given by (10.1), and with a somewhat general

features: Z 2π

0

Z 1

−1
Ψ(x, µ, θ)dµdθ ∼X

∆

ωkjΨ(x, µ, θ), (10.3)
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where ∆ := {(µk, θj), k = 1, ...,K and j = 1, ..., J, J ∼ K} ⊂ D is a M = JK, discrete

set of points in D consisting of the Gauss quadrature points µk ∈ [−1, 1] associated
with the equally spaced θj =

2π
J
, j = 1, ..., J, and weights ωkj = AkWj where Wj =

2π
J
,

j = 1, ..., J, and Ak are given below. Thus the error in (10.3) can be split into two

decoupled quadrature error:

| eM(Ψ) |:=|
Z 2π

0

Z 1

−1
Ψ(x, µ, θ)dµdθ −X

∆

ωkjΨ(x, µk, θj) |

≤
Z 2π

0
|
Z 1

−1
Ψ(x;µ, θ)dµ−

KX
k=1

AkΨ(x, µk, θ) | dθ

+
KX
k=1

Ak

| Z 2π

0
Ψ(x, µk, θ)dθ −

JX
j=1

WjΨ(x, µk, θj) |
 (10.4)

:=
Z 2π

0
| eK [Ψ(x; θ)] | dθ +

KX
k=1

Ak | eJ [Ψ(x, µk)] |,

with the obvious notations for the two quadrature errors:

eJ [Ψ(x;µ)] :=
Z 2π

0
Ψ(x, µ, θ)dθ −

JX
j=1

WjΨ(x, µ, θj), (10.5)

eK [Ψ(x;µ)] :=
Z 1

−1
Ψ(x;µ, θ)dµ−

KX
k=1

AkΨ(x, µk, θ), (10.6)

Below we derive error estimates for the quadrature rules (10.5) and (10.6), with optimal

convergence rates with respect to the assumed regularity of Ψ in µ and θ.

Lemma 10.1. Let eJ [Ψ] denote the error in (10.5), with J equally spaced quadrature

points θj ∈ [0, 2π] . Suppose that | ∂rΨ(x,µ,θ)
∂θr

| is integrable on [0, 2π] , then

| eJ [Ψ] |≤ Cr
Jr

Z 2π

0
| ∂

rΨ(x, µ, θ)

∂θr
| dθ, (10.7)

where Cr is independent of J and Ψ.

Lemma 10.2. Let eK [Ψ] denote the error on K-point Gaussian quadrature approxi-
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mation of the integral of Ψ on µ ∈ [−1, 1] . Suppose that (1−µ2) | ∂rΨ(x,µ,θ)
∂θr

| is integrable
on [−1, 1] , then

| eK [Ψ] |≤ Cs
Ks

Z 1

−1
| ∂

sΨ(x, µ, θ)

∂µs
| .(1− µ2)s/2dµ, (10.8)

where Cs is independent of K and Ψ.

We postpone the proofs of these lemmas and first derive of the proof of Theorem

9.2 from them. For the transport equation (9.1), in polygonal domains, the regularity

requirements in the lemmas 10.1 and 10.2 are proved for r = s = 1 in [2]:

Proposition 4.3. Let ∂Ψ
∂θ
∈ L1 [0, 2π] and ∂Ψ

∂µ
∈ Leω1 [0, 2π] , where eω := (1− µ2)1/2.

Then for the quadrature error τ(x) of the approximation (4.3) we have,

kτkL2(Ω) ≤ C
µ
1

J
+
1

K

¶
kgkH(Ω) , (10.9)

where g is the right hand side of (9.1), i.e. g = σs eΨ+ S with eΨ = R 1
−1
R 2π
0 Ψ, and H1(Ω)

is the usual L2-based Sobolev space of order one on Ω.

Now we are ready to derive our final error estimate:

Proof of Thorem 9.2. We multiply (9.10) by Tk(y)√
1−y2 , k = 0, ..., L integrate over y ∈

[−1, 1] and use the Cauchy-Shwarz inequality to get for l = 0, ..., L,

τ l(x) =
2− δl,o

π

Z 1

−1
τ(x)

Tl(y)√
1− y2dy

≤ 2− δl,o
π

"Z 1

−1
τ(x)2

Tl(y)√
1− y2dy

#1/2 "Z 1

−1
τ(y)2

Tl(y)√
1− y2dy

#1/2
(10.10)

=

"
2− δl,o

π

Z 1

−1
τ(x)2

Tl(y)√
1− y2dy

#1/2
.

Now recalling (9.12) it follows that

kτk ≤ 2− δl,o
π

"Z 1

−1

Z 1

−1
τ(x)2

dy√
1− y2dydx

#1/2
≤ C kτkL2(Ω) . (10.11)
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Combining with (10.9), recalling also M ∼ J1/2 ∼ K1/2 we get the desired result.

Remark. The convergence rate in the Lemmas 10.1 and 10.2, as well as the rates

in Proposition 10.3, can be improved up to the optimal order O(J2−²) ∼ O(K2−²), ²

arbitrarily small, for the neutron transport equation, in polygonal domains using, e.g.,

post processing procedure cf. Asadzadeh [3].

Now it remains to verify the estimates in Lemmas 10.1-10.2.

Proof of Lemma 10.1. We assume that Ψ is 2π-periodic in θ and in the quadrature

formula Z 2π

0
Ψ(x, µ, θ)dθ ∼

JX
j=1

WjΨ(x, µ, θj), (10.12)

approximate Ψ by trigonometric polynomials in θ. Then we can easily check that: on

matter how we choose the quadrature points θj and weights Wj, the formula (10.12) can

not be exact for trigonometric polynomials of degree J, (see, e.g., [37] for the details).

It turns out that the highest degree of precision J − 1 is achieved just for our simplest
quadrature formula: equally spaced nodes θj =

2πj
J
and constant weights Wj =

2π
J
,

j = 1, 2, ..., J. Thus we have

Z 2π

0
Ψ(θ)dθ ∼ 2π

J

JX
j=1

Ψ
µ
(j − 1)2π

J

¶
. (10.13)

We can easily verify (10.13) is exact for the functions eimx,m = 0, 1, ..., J − 1. Further a
trigonometric polynomial of degree J , with the Fourier series expansion

Tj(x) ≡ a0
2
+

JX
j=1

(aj cos jx+ bj sin jx), (10.14)

having 2J + 1 degrees of freedom (a0, aj, bj, j = 1, ..., J) corresponds to an algebraic

polynomials of degree 2J. Thus (10.13) is exact for algebraic polynomials of degree 2J−1,
so that for Ψ ∈ Cr [0, 2π] , r = 2J, (Ψ is 2J times continuously differentiable in θ), using

Taylor expansion up to degree 2J − 1, in both sides of (10.12), we obtain the desired
result.
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Lemma 10.2 is a special case of the classical result due to DeVore and Scott (Theorem

3 in [21], Proposition 10.4 below): Consider, for positive integer s, the function space

Ψ ∈ Y sω :=
n
u ∈ L1loc (]−1, 1[) : kukω,s <∞

o
(10.15)

with ω being a weight function and

kukω,s =
Z 1

−1

h
| u(µ) | + | u(s)(µ) | (1− µ2)s

i
ω(µ)dµ, (10.16)

where u(s) is interpreted as a weak derivative.

Proposition 10.4. (DeVore and Scott). Let eK [Ψ] denote the error in K-point

Gaussian quadrature approximation of the integral of Ψ on [−1, 1] . Suppose that (1 −
µ2)s | ∂sΨ(x,µ,θ)

∂µs
| (weak derivative) is integrable on [−1, 1] , i.e., Ψ ∈ Y s1 , where s is any

positive integer such that 1 ≤ s ≤ 2K. Then

| eK [Ψ] |≤ Cs
Z 1

−1
| ∂

sΨ(x, µ, θ)

∂µs
| min

("√
1− µ2
K

#s
, (1− µ2)s

)
dµ, (10.17)

where Cs is independent of K and Ψ.

Proof of Lemma 10.2. This follows, evidently, from the Proposition 10.4.

Below we review a procedure, based on analyzing the Peano kernel for the quadrature

error (10.6), and establish the bound (10.8) for s = 1, see [2] or [21]. This would suffices

to justify the use of Proposition 10.3. The full proof of (10.8), or (10.17), for s ≥ 1 is
treated as in [21]. Consider the Gauss quadrature rule

Z 1

−1
Ψ(x;µ, θ)dµ ∼

KX
k=1

AkΨ(x, µk, θ), (10.18)

where

µk := − cosαk, αk ∈
"
(2k − 1)π
2K + 1

,
2kπ

2K + 1
,

#
, k = 1, ...K, (10.19)
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are zeros of Legendre polynomials and

Ak :=
Z 1

−1

Y
l 6=k

x− xl
xk − xldx, k = 1, ...K, (10.20)

are the integrals of the associated Lagrange interpolation polynomials. Now using the

Peano kernel theorem we can write

eK [Ψ] =
Z 1

−1
Λ(ζ)Ψ0(ζ)dζ, (10.21)

where Λ(ζ) = eK [Hζ ] , | ζ |≤ 1 and Hζ is the Heaviside function

Hζ(µ) :=

 0, µ < ζ,

1, µ ≥ ζ
(10.22)

it follows that

Λ(ζ) = 1− ζ − X
µk>ζ

Ak =
X
µk<ζ

Ak − ζ − 1. (10.23)

By the Chebyshev-Markov-Stieltjes (cf. [45] p. 50) inequality we have

1 + µk ≤
KX
k=1

Ai ≤ 1 + µk+1, k = 1, ..., K. (10.24)

Thus with −1 = µ0 < µ1 < ... < µK < µK+1 = 1 we get for k = 1, ..., K that

µk−1 − µk ≤ Λ(µk−) ≤ 0 ≤ Λ(µk+) ≤ µk+1 − µk. (10.25)

Since Λ vanishes on each interval
h
µk−1, µk

i
and has the slope one almost everywhere, we

have

max
n
| Λ(µ) |: µ ∈

h
µk−1, µk

io
≤ µk − µk−1, k = 1, ...,K. (10.26)
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To bound µk − µk−1, we define Ik := [αk−1,αk] , then

µk − µk−1 = cosαk−1 − cosαk =
Z αk

αk−1
sinαdα

≤ (αk − αk−1)max
α∈Ik

{sinα} ≤ 3π

2K
max
α∈Ik

{sinα} . (10.27)

Now since (sinα) /α is decreasing in [0,π] , using (10.19) we get

sinα ≤
"

α

αk−1

#
sinαk−1 ≤

"
αk
αk−1

#
sinαk−1 ≤ 4 sinαk−1, α ∈ Ik, (10.28)

for k = 2, ..., K. By the symmetry properties of αj (cf. [45]) we also get

sinα ≤ 4 sinαk−1, α ∈ Ik, k = 2, ..., K. (10.29)

Thus for k = 2, ..., K,

max
α∈Ik

{sinα} ≤ 4min
α∈Ik

{sinαk−1} ≡ 4min
α∈Ik

n√
1− cos2 α

o
. (10.30)

Hence, combining (10.27) and (10.30), and using (10.19) we have for k = 2, ..., K,

µk − µk−1 =
6π

K
min
α∈Ik

n√
1− cos2 α

o
=
6π

K
min
α∈Ik

½q
1− µ2

¾
. (10.31)

Thus, by (10.26), for µ ∈ [µ1, µN ] ,

| Λ(µ) |≤ 6π
√
1− µ2
K

. (10.32)

The corresponding estimate for µ ∈ [−1, µ1] and µ ∈ [µ1, 1] is (see [21]):

| Λ(µ) |≤ π
√
1− µ2√
2K

. (10.33)
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Summing up we have shown

| eK [Ψ] |≤ 6π
K

Z 1

−1
| ∂Ψ
∂µ

| .
q
1− µ2dµ. (10.34)

This proves (10.8) for s = 1. For further details we refer to [2] and [21].
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Chapter 11

Concluding remarks.

We believe that the idea of using the spectral method for searching solutions to the

multidimensional transport problems, in addition to leads us to a solution for all values of

the independent variables, is promising for two reasons: first the proposed decompositions

reduce the solution of the multidimensional problem into a set of one-dimensional ones

that have well established deterministic solutions. Furthermore, in the framework of the

analytical solution it may be possible to study and to prove the convergence, that implies

numerical stability, and the estimation of the error for the proposed solution. Of course

the question left to be answered concerns the investigation of the approximating basis

functions to be considered in the expansion as well as other aspects like computational

implementations and performances. This is an important issue to be investigated from

now. In regard to that, just some preliminary results were obtained by application of the

spectral method.
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Part IV

APPENDIX I: Elementary

properties of Chebyshev polynomials

and Legendre polynomials
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Chebyshev polynomials are weighted orthogonal polynomials defined by

Tn(x) = cos(n arccos(x)), (11.1)

with the weight function ω(x) = 1√
1−x2 . Thus Chebyshev polynomials are a subclass

of Jacobi polynomials, where the Jacobi weights ωJ = (1 + x)a(1 − x)b, a, b > −1 are
restricted to a = b = −1/2. It follows that

Z 1

−1
Ti(x)Tj(x)ω(x)dx =


0 i 6= j
π/2 i = j 6= 0
π i = j = 0.

(11.2)

Hence

k Ti kω= π

2− δi,0
, i = 0, 1, .... (11.3)

Tn(x) is a polynomial of degree n, orthogonal to all polynomials of degree≤ n − 1. On
differentiating Tn(x) = cosnβ with respect to x(= cosβ) we obtain a polynomial of

degree n− 1 called the Chebyshev polynomials of second kind:

Un−1 =
1

n
T 0n(x) =

sinnβ

sinβ
, x = cosβ. (11.4)

Further we can easily verify the following properties (see [41] for the details):

For even (odd) n only even (odd) powers of x occur in Tn(x).

Tn(−x) = (−1)nTn(x). (11.5)

1

2
+ T2(x) + T4(x) + ...+ T2k(x) =

U2k(x)

2
, k = 0, 1, ..., (11.6)

T1(x) + T3(x) + ...+ T2k+1(x) =
U2k+1(x)

2
, k = 0, 1, ..., . (11.7)
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We have also the recurrence relations for the Chebyshev polynomials.

Tn+1(x)− 2xTn(x) + Tn−1(x) = 0 (11.8)

Un+1(x)− 2xUn(x) + Un−1(x) = 0 (11.9)

and for the Legendre polynomials

Pn+1(x) = 2xPn(x)− Pn−1(x)− [xPn(x)− Pn−1(x)] /(n+ 1) (11.10)

Below we formulate and prove the formulae (4.10), (4.11), (4.12).

Proposition 1 Let

Tn+1(x)− 2xTn(x) + Tn−1(x) = 0 (11.11)

and

Pl+1(x) = 2xPl(x)− Pl−1(x)− [xPl(x)− Pl−1(x)] /(l + 1) (11.12)

we have for l > 2 and k = 2

α2n,l+1 :=
2l + 1

2l + 2

h
α2n+1,l + α2n−1,l

i
− l

l + 1
α2n,j−1 (11.13)

where

α2n,l+1 :=
Z 1

−1
Tn(µ)Pl+1(µ)dµ (11.14)

and for l > 2 and k = 3

α3n,l+1 =
2l + 1

2l + 2

h
α3n+1,l + α3n−1,l

i
− l

l + 1
α3n,j−1 (11.15)

where

α3n,l+1 :=
Z 1

−1
Tn(µ)Pl+1(µ)√

1− µ2 dµ (11.16)

proof. for k = 2
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by the multiplication of the Chebyshev and the Legendre recurrence formulas we have

2l + 1

2l + 2
[Pl(µ)Tn+1(µ) + Pl(µ)Tn−1(µ)]− l

2µ (l + 1)
[Pl−1(µ)Tn+1(µ) + Pl−1(µ)Tn−1(µ)]

(11.17)

we can rewrite this equation as

2l + 1

2l + 2
[Pl(µ)Tn+1(µ) + Pl(µ)Tn−1(µ)]− l

2µ (l + 1)
Pl−1(µ) [Tn+1(µ) + Tn−1(µ)] (11.18)

it is known that

Tn+1(µ) + Tn−1(µ) = 2µTn(µ) (11.19)

after doing some algebraic manipulations and integrating over µ ∈ [−1, 1] on the resulting
equation we get

α2n,l+1 =
2l + 1

2l + 2

h
α2n+1,l + α2n−1,l

i
− l

l + 1
α2n,j−1 (11.20)

The case k = 3 is treated similarly but in this case we multiply the resulting expression

by 1√
1−µ2 and integrate over µ ∈ [−1, 1] we get the desired result.

Below we formulate and prove the property that has been essential in deriving the

basic estimate in section 9 (proposition 9.3):

Proposition 2 Let

γj(l) =
Z 1

−1
dTl(y)

dy
(y).

Tj(y)√
1− y2dy, (11.21)

we have that

γj(l) = 0 for j ≥ l, (11.22)

and for j < l,

γj(l) =

 0 j + l even

lπ j + l odd.
(11.23)
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Proof. The first assertion is a trivial consequence of the fact that Tj is orthogonal to all

polynomials of degree ≤ j − 1. As for the second assertion we note that

T 0j(x) = lUl−1(x).

Thus if l is odd then l − 1 is even, say l − 1 = 2k, hence using (11.6)

γj(l) = 2l
Z 1

−1

·
1

2
+ T2(x) + T4(x) + ...+ Tl−1(x)

¸
.
Tj(y)√
1− y2dy

=

 0 j odd, i.e., j + l even

2l π
2−δj,0 j even, i.e., j + l odd.

(11.24)

The case l is even is treated similarly and using (11.7) and the proof is complete.
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Part V

APPENDIX II: the

three-dimensional spectral solution.
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We extend now the approach presented in Section 8 to the transport process in three

dimension,

µ
∂

∂x
Ψ(x, µ, θ) +

q
1− µ2

"
cos θ

∂

∂y
Ψ(x, µ, θ) + sin θ

∂

∂z
Ψ(x, µ, θ)

#

+σtΨ(x, µ, θ) =
Z 1

−1

Z 2π

0
σs(µ

0
, θ

0 → µ, θ)Ψ(x, µ
0
, θ

0
)dθ

0
dµ

0
+ S(x, µ, θ) (11.25)

where we assume that the spatial variable x :=(x, y, z) varies in the cubic domain Ω :=

{(x, y, z) : −1 ≤ x, y, z ≤ 1} , and Ψ(x, µ, θ) := Ψ(x, y, z, µ, θ) is the angular flux in the

direction defined by µ ∈ [−1, 1] and θ ∈ [0, 2π],
We seek for a solution of (11.25) satisfying the following boundary conditions:

For the boundary terms in x; for 0 ≤ θ ≤ 2π,

Ψ(x = ±1, y, z, µ, θ) =
 f1(y, z, µ, θ), x = −1, 0 < µ ≤ 1,

0, x = 1, − 1 ≤ µ < 0.
(11.26)

For the boundary terms in y and for −1 ≤ µ < 1,

Ψ(x, y = ±1, z, µ, θ) =
 f2(x, z, µ, θ), y = −1, 0 < cos θ ≤ 1,

0, y = 1, − 1 ≤ cos θ < 0.
(11.27)

Finally, for the boundary terms in z; for −1 ≤ µ < 1,

Ψ(x, y, z = ±1, µ, θ) =
 f3(x, y, µ, θ), z = −1, 0 ≤ θ < π,

0, z = 1, π < θ ≤ 2π.
(11.28)

Here we assume that f1(y, z, µ,φ), f2(x, z, µ,φ)and f3(x, y, µ,φ)are given function.

Expanding the angular flux Ψ(x, y, z, µ,φ)in a truncated series of Chebyshev polyno-

mials Ti(y)and Rj(z) leads to

Ψ(x, y, z, µ, θ) =
IX
i=0

JX
j=0

Ψi,j(x, µ, θ)Ti(y)Rj(z). (11.29)
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We repeat the procedure in Section 8 and insert Ψ(x, y, z, µ, θ) given by (11.29) into

the boundary condition in (11.27), for y = ±1. Multiplying the resulting expressions by
Rj(z)√
1−z2 and integrating over z, we get the components Ψ0,j(x, µ, θ) for j = 0, ...J :

Ψ0,j(x, µ, θ) = f
j
2(x, µ, θ)−

IX
i=1

(−1)jΨi,j(x, µ, θ); 0 < cos θ ≤ 1, (11.30)

and

Ψ0,j(x, µ, θ) = −
IX
i=1

Ψi,j(x, µ, θ); − 1 ≤ cos θ < 0. (11.31)

Similarly, we substitute Ψ(x, y, z, µ, θ) from (11.29) into the boundary conditions for

z = ±1, multiply the resulting expression by Ti(y)√
1−y2 , i = 0, ...I and integrating over y,

to define the components Ψi,0(x, µ, θ) : For −1 ≤ x ≤ 1, −1 < µ < 1,

Ψi,0(x, µ, θ) = f
i
3(x, µ, θ)−

JX
j=1

(−1)jΨi,j(x, µ, θ); 0 ≤ θ < π, (11.32)

Ψi,0(x, µ, θ) = −
JX
j=1

Ψi,j(x, µ, θ); π < θ ≤ 2π, (11.33)

where

fβ2 (x, µ, θ) =
2− δ0,j

π

Z 1

−1
f2(x, z, µ, θ)

Rj(z)√
1− z2dz (11.34)

f i3(x, µ, θ) =
2− δi,0

π

Z 1

−1
f3(x, y, µ, θ)

Ti(y)√
1− y2dy. (11.35)

To determine the components Ψi,j(x, µ, θ), i = 1, ...I, and j = 1, ...J, we substitute

Ψ(x, µ, θ), from (11.29) into (11.25) and the boundary conditions for x = ±1.Multiplying
the resulting expressions by Ti(y)√

1−y2 ×
Rj(z)√
1−z2 , and integrating over y and z we obtain I×J

one-dimensional transport problems, viz

µ
∂Ψi,j

∂x
(x, µ, θ) + σtΨi,j(x, µ, θ) = Gi,j

(x;µ, θ)

Z 1

−1

Z 1

−1
σs(µ

0
, θ

0 → µ, θ)Ψi,j(x, µ
0
, θ

0
)dθ

0
dµ

0
(11.36)
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with the boundary conditions

Ψi,j(−1, µ, η) = f i,j1 (µ, θ), (11.37)

where

f i,,j1 (µ, θ) =
4

π2

Z 1

−1

Z 1

−1
Ti(y)Rj(z)q
(1− y2)(1− z2)

f1(y, z, µ, θ)dzdy, (11.38)

and

Ψi,j(1,−µ, θ) = 0, (11.39)

for 0 < µ ≤ 1, and 0 ≤ θ ≤ 2π. Finally

Gi,j(x;µ, θ) = Si,j(x, µ, θ)−

q
1− µ2

cos θ IX
k=i+1

AkiΨk,j(x, µ, θ) + sin θ
JX

l=j+1

BljΨi,l(x, µ, θ)

 , (11.40)

with

Si,j(x, µ, θ) =
4

π2

Z 1

−1

Z 1

−1
Ti(y)Rj(z)q
(1− y2)(1− z2)

S(x, µ, θ)dzdy, (11.41)

Aki =
2

π

Z 1

−1
d

dy
(Tk(y))

Ti(y)√
1− y2dy (11.42)

Blj =
2

π

Z 1

−1
d

dy
(Rl(y))

Rj(z)√
1− z2dz. (11.43)

Now, starting from the solution of the problem given by equations (11.36)-(11.43) for

ΨI,J(x, µ, θ), we then solve the problems for the other components, in the decreasing

order in i and j. Recall that
PI
i=I+1 ... =

PJ
j=J+1 ≡ 0. Hence, solving I × J one-

dimensional problems, the angular flux Ψ(x, µ, θ) is now completely determined through

(11.29).

Remark: If we have to deal with different type of boundary conditions, we have

to keep in mind that the first components Ψi,0(x, µ, θ) and Ψ0,j(x, µ, θ) for i = 1, ..., I

and j = 1, ..., J will satisfy one-dimensional transport problems subject to the same of
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boundary conditions of the original problem in the variable x.
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Part VI

APPENDIX III: the SUMUDU

transform.
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The Sumudu transform is a new integral transform [51], which is a little known and

not widely used whose defined for the functions of exponential order. So we consider

functions in the set A, defined by

A =
n
f(t) | ∃M, τ 1, and/or τ 2 > 0, such that | f(t) |< Me|t|/τj , if t ∈ (−1)j × [0,∞)

o
(11.44)

For a given function in the set A, the constant M must be finite, while τ 1 and τ 2 need

not simultaneously exist, and each may be infinite. Instead of being used as a power to

the exponential as in the case of the Laplace transform, the variable u in the Sumudu

transform is used to factor the variable t in the argument of the function f. Specifically,

for f(t) in A, the Sumudu transform is defined by

G(u) = S [f(t)] =



R∞
0 f(ut)e−tdt, 0 ≤ u ≤ τ 2,

R∞
0 f(ut)e−tdt, − τ 1 ≤ u ≤ 0.

(11.45)

Albeit similar in expression, the two parts in the previous definition arise because in the

domain of f, the variable t may not change sign. For further details and properties of

Sumudu transform we refer to [10] and [51].

Theorem 3 Let n ≥ 1, and let Gn(u) and Fn(u) be the Sumudu and Laplace transform
of the nth derivative of f (n)(t), of the function f(t), respectively. Then

Gn(u) =
G(u)

un
−
n−1X
k=0

f (k)(0)

un−k
(11.46)

proof. By definition, the Laplace transform for f (n)(t) is given by

Fn(s) = s
nF (u)−

n−1X
k=0

sn−(k+1)f (k)(0). (11.47)
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Therefore

Fn

µ
1

u

¶
=
F ( 1

u
)

un
−
n−1X
k=0

f (k)(0)

un−(k+1)
. (11.48)

Now, since Gk(u) = Fk(1/u)/u, for 0 ≤ k ≤ m, we have

Gn(u) =
G(u)

un
−
n−1X
k=0

f (k)(0)

un−k
=
1

un

"
G(u)−

n−1X
k=0

ukf (k)(0)

#
(11.49)

In particular, this means that the Sumudu transform of the second derivative of the func-

tion f is given by

G2(u) = S
h
f
00
(t)
i
=
G(u)

u2
− f(0)

u2
− f

0
(0)

u2
. (11.50)
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APPENDIX IV: the TRZASKA’S

method.
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Trzaska’s method consist to compute the inverse of regular matrix M(s) = sA0 − A
called the linear matrix pencil [14] where only A0 is singular, or both A0 and A are

singular. Nonsingular systems are considered as a particular case of singular systems.

We expand the linear matrix pencil inverse as follows

M−1(s) =
D(s)

d(s)
=

P1
s− p1 +

P2
s− p2 + ...+

Pn−1
s− pn−1 + Pn (11.51)

where d(s) = detM(s) and D(s) =adj M(s) denote the determinant and the adjoint

matrix of regular matrix pencil M(s), respectively and P1, P2, ..., Pn called the partial

matrices.

To develop an efficient formula for the determination of the matrix D(s) and char-

acteristic polynomial d(s), we apply the Cayley-Hamilton theorem to M(s), so that we

have

Mn(s) + a1(s)M
n−1(s) + ...+ an−1(s)M(s) + an(s)I = 0 (11.52)

where I and 0 denote the n× n unit matrix and zero matrix respectively.
It follows from Eq. (11.52) that

I = − 1

an(s)

h
Mn(s) + a1(s)M

n−1(s) + ...+ an−1(s)M(s)
i

(11.53)

Premultiplying both sides of Eq .(11.53) by M−1(s), gives

M−1(s) = − 1

an(s)

h
Mn−1(s) + a1(s)Mn−2(s) + ...+ an−1(s)I

i
(11.54)

This equation states that the inverse of the linear matrix pencil M(s) can be expressed

in terms of its successive integer powers of n− k (k = 1, 2, ..., n) orders premutiplied by
the corresponding coefficients ak−1(s), a0(s) = 1. The coefficients ak(s), (k = 0, 1, ..., n)

can be represented in the following form

ak(s) = ak,ks
k + ak,k−1sk−1 + ...+ ak,1s+ ak,0 (11.55)
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where ak,l are real numbers with l = 0, 1, ..., k such that

ak,k =
1

k
trace

"
Mk,k +

k−1X
l=1

al,lMk−l,k−l

#
, k = 1, 2, ..., n (11.56)

ak,0 = −1
k
trace

"
Mk,0 +

k−1X
l=1

al,0Mk−l,0

#
, k = 1, 2, ..., n (11.57)

ak,l = −1
k
trace

Mk,l +
k−1X

h=1,j<h
q=1,r<q

ah,jMq,r

 , k = 1, 2, ..., n (11.58)

with h+ q = k and j + r = 1 < k.

The matrix Mk,l will be compute by using the Matrix Pascal Triangle [46].

For example, the coefficients of the polynomials a3(s) can be computed by applying

the above rules as follows

a3,3 = −1
3
trace (M3,3 + a1,1M2,2 + a2,2M1,1) (11.59)

a3,2 = −1
3
trace (M3,2 + a1,0M2,2 + a1,1M2,1 + a2,1M1,1 + a2,2M1,0) (11.60)

a3,1 = −1
3
trace (M3,1 + a1,0M2,1 + a1,1M2,0 + a2,0M1,1 + a2,1M1,0) (11.61)

a3,0 = −1
3
trace (M3,0 + a1,0M2,0 + a2,0M1,0) . (11.62)

Moreover the kth power of the linear matrix pencilM(s) can be expressed in the following

manner

Mk(s) = skMk,k + s
k−1Mk,k−1 + ...+ sMk,1 +Mk,0 (11.63)

tacking into account Eqs. (11.55) and (11.56) we can state that

D(s) = sn−1Dn−1 + sn−2Dn−2 + ...+ sD1 +D0 (11.64)
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and Dk (k = 0, 1, 2, ..., n− 1) is a n× n constant matrix determined by

Dk =Mn−1,k +
k−1X

h=1,j<h
q=1,r<q

ah,jMq,r (11.65)

with k = 0, 1, 2, ..., n− 1 and h+ q = k.
The partial matrices P1, P2, ..., Pn in expression (11.51) are independent of s and are

expressed by

Pk = qk
h
pn−1k Dn−1 + pn−2k Dn−2 + ...+ pkD1 +D0

i
(11.66)

where

qk = − [ .an (pk)]−1 with k = 1, 2, ..., n− 1 (11.67)

and
.
an (pk) =

"
d

ds
an(s)

#
s=pk

(11.68)

Thus knowing D(s) and d(s) we can easily find the matrices P1, P2, ..., Pn.

For k = n, we have

Pn = Dn−1 (11.69)

Thus for all matrices, P1, P2, ..., Pn we give the following fundamental equation:



P1

P2

.

.

.

Pn−1


=



q1 0

0 q2

.

.

. 0

0 qn−1


×
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×



I p1I . . . pn−11 I

I p2I . . . pn−12 I

. . . . . .

. . . . . .

I pn−1I . pn−1n−1I





D0

D1

.

.

Dn−1


(11.70)

Pn = Dn−1 (11.71)

or in more compact form

[P ] = [diag qk]
n−1
1 [V ] [D] , Pn = Dn−1 (11.72)

where [V ] denotes the Kronecker product of the Vandermonde and unit matrices of

appropriate dimensions. For further details we refer to [46].
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Part VIII

Illustrative Examples
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EXAMPLE 1

Consider the matrices

A0 =


1 0 0

0 0 0

0 0 1

 , A =

2 −1 0

0 1 1

1 −1 0


the linear matrix pencil M(s) = sA0 −A (is regular).

M−1(s) = − 1

a3(s)

h
s2D2 + s

1D1 +D0
i

where

a3(s) = a3,3s
3 + a3,2s

2 + a3,1s+ a3,0.

Applying (11.60) and the rule of the Matrix Pascal Triangle we obtain

D2 =M2,2 + a1,1M1,1 + a2,2I =


0 0 0

0 −1 0

0 0 0



D1 =M2,1 + a1,1M1,0 + a1,0M1,1 + a2,1I =


1 1 0

0 −2 −1
0 1 1



D0 =M2,0 + a1,0M1,0 + a2,0I =


−1 0 1

−1 0 2

1 −1 −2


and

a3,3 = 0, a3,2 = 1, a3,1 = −3 a3,0 = 1,
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so that

a3(s) = s
2 − 3s+ 1 = −d(s).

Evaluating the zeros of a3(s), we obtain p1 = 1
2
(3 +

√
5) and p2 = 1

2
(3−√5). Now using

expression (8.1), we obtain the following partial, fraction expansion of the linear matrix

pencil inverse:

M−1(s) =
P1

s− p1 +
P2

s− p2 + P3

where by Eqs. (11.70), we have

 P1
P2

 =
 q1 0

0 q2


 I p1I p21I

I p2I p22I



D0

D1

D2



=



−1
2
−
√
5
2
−3
2
−
√
5
2
−1

1 1
2
+
√
5
2

−1
2
+
√
5
2

−1 −1
2
−
√
5
2

1
2
−
√
5
2

............ .............. ..............

1
2
−
√
5
2

3
2
−
√
5
2

1

−1 −1
2
+
√
5
2

1
2
+
√
5
2

1 1
2
−
√
5
2

−1
2
−
√
5
2


and

P3 =


0 0 0

0 −1 0

0 0 0


EXAMPLE 2.

This example deals with a singular system with the following singular matrices A and

B

A =

 1 2

2 4

 , B =

 1 1

3 3
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The matrix pencil takes the form

M(s) = s

 1 2

2 4

−
 1 1

3 3


this matrix pencil is regular, so that by applying (11.55), (11.56), (11.57), (11.58) and

(11.54), we obtain

a2(s) = s and M−1(s) =
P1
s
+ P2

where

P1 =

 −3 1

3 −1

 and P1 =

 4 −2
−2 1

 .
EXAMPLE 3.

Consider the nonsingular system where

A = I, B =


3 −1 1

2 0 1

1 −1 2


the matrix pencil takes the form

M(s) = s


1 0 0

0 1 0

0 0 1

−

3 −1 1

2 0 1

1 −1 2


so that

M−1(s) =
1

d(s)

h
s2D2 + sD1 +D0

i
=

P1
s− p1 +

P2
s− p2 +

P3
s− p3
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where −d(s) = a3(s) = a3,3s3 + a3,2s2 + a3,1s+ a3,0 applying (11.55) and the rule of the
Matrix Pascal Triangle we obtain

a3,3 = −1, a3,2 = 5, a3,1 = −8, a3,0 = 4,

Evaluating the zeros of a3(s) = −s3+5s2−8s+4 = 0⇐⇒ a3(s) = −(s−1)(s2−4s+4) =
0⇐⇒ s1 = s2 = 2; s3 = 1 so p1 = p2 = 2 and p3 = 1

D2 =M2,2 + a1,1M1,1 + a2,2I =


1 0 0

0 1 0

0 0 1

 ,

D1 =M2,1 + a1,1M1,0 + a1,0M1,1 + a2,1I =


−2 −1 1

2 −5 1

1 −1 −3

 ,

D0 =M2,0 + a1,0M1,0 + a2,0I =


1 1 −1
−3 5 −1
−2 2 2

 ,

we compute the partial fraction matrices P1, P2 and P3 by expression (11.72), we get

P1 =


1 0 0

1 0 0

1 −1 1

 , P2 =

1 −1 1

1 −1 1

0 0 0

 , P3 =

0 0 0

−1 1 0

−1 1 0

 .
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Résumé. 
Il y a beaucoup de littérature disponible qui traite la résolution l'équation de 
transport stationnaire bidimensionnelle à tel point qu’il nous est pratiquement 
impossible de les mentionner toutes. En revanche, la littérature concernant la 
convergence et l'estimation de l'erreur est rarissime. Dans cette thèse nous 
concentrons notre attention dans cette direction. Dans la première partie nous 
étudions l'expansion spectrale en polynôme de Chebyshev combinée avec les 
transformations de Sumudu pour résoudre, analytiquement, l'équation de 
transport neutronique dans des milieux isotropique mono-dimensionnels. 
Ensuite nous nous intéressons à l’étude de la convergence de la solution 
spectrale ainsi qu’à l’estimation de son erreur en dimension deux moyennant 
une règle de quadrature spéciale en discrétisant les variables angulaires, ce 
qui nous permettra d’approximer le flux scalaire. Finalement l'équation 
spectrale est prouvée en dimension 3. 
 
Mots et phrases clés : Convergence, équation de transport linéaire, 
dispersion isotopique , méthode spectrale de Chebyshev, méthode de 
l’ordonnée discrète. 
Classification AMS 1991: 65N35, 65D32, 82D75,40A10,41A50. 
___________________________________________________________ 
Abstract. 
There is much literature available regarding the subject of solving  the two-
dimensional steady-state transport equation that it would be impossible to 
mention all of them. Nevertheless, the literature concerning convergence and 
the estimative of the error is scarce. Therefore in this thesis we focus our 
attention in this direction. In the first part we study the spectral Chebyshev 
polynomial expansion combined with the Sumudu transform leading to solve, 
analytically , the neutron transport equation in isotropic one-dimensional 
media. Next we study the convergence as well as an estimative of error for 
the spectral solution of the isotropic two-dimenssional discrete ordinates 
problem where a special quadrature rule is used to discretize in the angular 
variables, approximating the scalar flux. Finally the spectral equation is 
derived in a three dimensional setting.  
 
Key words and phrases : Convergence analysis, linear transport equation, 
isotropic scattering, Chebyshev spectral method, discrete-ordinates method. 
1991 AMS Subject Classification: 65N35, 65D32, 82D75,40A10,41A50. 
_____________________________________________________ 

 .ملخص
 ألى درجة أنه لا يمكننا سردها آلها 2آثير من الأبحاث تطرقت و بشكل وافي عن حلول معادلة التنقل دات البعد 

 . تكاد تكون منعدمةو تقدير خطأها بينما الأبحاث التي  تتطرق الى دراسة تقارب الحلول
عادلة التنقل دات البعد  في هده الأطروحة نرآز أهتمامنا في هدا الأتجاه ففي الجزء الأول منها نتطرق الى حل م

ثم نهتم بدراسة تفارب الحل الطيفي و آدا .  تحليليا باستعمال نشر آثير حدود تشبيشاف مع تحويلات سومودو1
 . 3أخيرا نبرهن المعادلة الطيفية في البعد .  باستعمال قاعدة تربيعية خاصة2لك تقييم الخطأ في البعد 
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