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Motivations

1 person in 3 will develop some form of
cancer in their life time.

1 person in 5 will die from that cancer.

Cancer is the second leading cause of death,
but exceeds all other diseases in terms of
years of working life lost.

About half of all cancer patients receive
radiation therapy.
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Motivations

Any improvements to radio therapy will bene-
fit a great number of people.
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Radiation Oncology

Use of radiation to kill diseased cells

The ultimate goal:
Destroy the tumor with minimal damage to the normal
tissue.

Electrons, photons (X-ray), protons, neutrons
. . .
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Radiation Oncology
They typically deliver 4 to
5MeV electron beams.
Electron therapy is used to
treat superficial tumor.
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Radiation therapy planning

Calculate dose, or energy deposited per unit mass.

3D image of the tumor and surronding tissue.

choose a set of beams (intuitively).

calculate the dose.

generate a graph showing the dose volume distribution.

Decision weither the chosen set is optimal.
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Electron beams: Physical and clinical aspects

Interactions, ionization.

Energy deposition.
Collisional losses

Radiative losses

Biological effects.
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Electron beams: Mathematical models

Variants of Boltzmann transport equation.

The Fermi pencil beam equation.
Determine quatitatively the broadening of
the beam.
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The monoenergetic transport equation

let Q̃ := [0, L] × R × R be a homogeneous slab.

ω·∇Xψ(X, ω)+σt(X)ψ(X, ω) =

∫

S2

σs(X, ω·ω′)ψ(X, ω) dω′ in Q̃×S2,

(0)

and associated with the boundary conditions







ψ(L, y, z, ω) = 0 if ξ < 0,

ψ(0, y, z, ω) = 1

2π
δ(1 − ξ)δ(y)δ(z) if ξ > 0,

(0)
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The monoenergetic transport equation

with X = (x, y, z) ∈ Q̃, ω = (ξ, η, ζ) ∈ S2. describing the spreading of

a pencil beam of particles normally incident at the boundary (0, y, z) of

the slab Q̃. ψ is the density of particles at the point X moving in the

direction of ω. σt is the total cross section, whereas σs is the scattering

cross section.
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The Fermi pencil beam equation

Derived from the Fokker-Planck equation.















ω0 · ∇xψF = σ∆ηζψ
F ,

ψF (0, y, z, η, ζ) = δ(y)δ(z)δ(η)δ(ζ), if ξ > 0,

ψF (L, y, z, η, ζ) = 0, if ξ < 0,

(0)

here ω0 = (1, η, ζ), where (η, ζ) ∈ R × R and ∆η,ζ = ∂2/∂η2 + ∂2/∂ζ.
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A model problem



























ux + zuy = εuzz, (x, x⊥) ∈ Q,

uz(x, y,±z0) = 0, for(x, y) ∈ Ix × Iy,

u(x,±y0, z) = 0, Γ−

β̃
\ {suppf},

u(0, x⊥) = f(x⊥),

(0)

where Γ−

β̃
:= {(x, x⊥) ∈ ∂Q : β̃ · n < 0}, β̃ = (1, z, 0), and x⊥ ≡ (y, z) is

the transversal variable. Further, n := n(x, x⊥) is the outward unit
normal to Γ at (x, x⊥) ∈ Γ.
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A model problem

Our model problem corresponds to a forward-

backward (z changes the sign), convection dom-

inated (ε is small), convection-diffusion equation

of degenerate type (convection in (x, y) and diffu-

sion in z).
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Standard Galerkin

Find uh ∈ Vh,β , such that







(uh,x, χ)⊥ + (zuh,y, χ) + (εuh,z, χz)⊥ = 0, ∀χ ∈ Vh,β ,

uh(0, x⊥) = fh(x⊥),
(0)

where fh is a finite element approximation of f . The mesh size h is
related to ε according to:

h2 ≤ ε ≤ h.(0)
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A Semi Streamline Diffusion Method

The test function has the form v + δvβ with δ ≥ ε,
β = (z, 0), vβ = β · ∇⊥v and ∇⊥ = (∂/∂y, ∂/∂z),
and v satisfies the boundary conditions.

(ux + uβ − εuzz, v + δvβ)⊥ = (ux, v)⊥ + δ(ux, vβ)⊥ + (uβ, v)⊥ + δ(uβ, vβ)⊥ + (εuz, vz)⊥ + δ(εuz, (vβ)z)⊥ = 0.(0)
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The fully discrete problem

We split the SSD variational formulation as follows:

a(u, v) = (uβ , v)I⊥ + δ(εuβ , uβ)I⊥ + (εuz, vz)I⊥ + δ(εuz, (vβ)z)I⊥ ,(-1)

b(u, v) = δ(u, vβ)I⊥ + (u, v)I⊥ ,(-1)

and rewrite the problem as







find a solution u ∈ H1
β(I⊥) such that

b(ux, v) + a(u, v) = 0, ∀v ∈ H1
β(I⊥).

(-1)
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The fully discrete problem

We consider the "space-time-discrete" ansatz

uh(x, y, z) =

M
∑

i=1

ξi(x)φi(y, z),(-1)

where M ∼ 1/h. We replace v by φj for j = 1, · · · ,M . This gives the
discretization method

M
∑

i=1

ξ′i(x)b(φi, φj) +

M
∑

i=1

ξi(x)a(φi, φj), j = 1, · · · ,M.(-1)

Or in matrix form,

Bξ′i(x) +Aξi(x) = 0.(-1)
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The fully discrete problem

Now we discretize in x using Backward Euler to get

B(Un
h − Un−1

h ) + knAU
n
h = 0.(-1)

B = (bij) is the matrix with entries bij = b(φi, φj) and A = (aij) with

entries aij = a(φi, φj).
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Characteristic schemes

The idea is exact transport + projection.
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Characteristic schemes



























Jx + zJy = εJzz, (x, x⊥) ∈ Q,

Jz(x, y,±z0) = 0, for(x, y) ∈ Ix × Iy,

J(x,±y0, z) = 0, Γ−

β̃
\ {suppf},

J(0, x⊥) = f(x⊥),

(-1)

where Q is a bounded domain
Q ≡ Ix × Iy × Iz = [0, L] × [−y0, y0] × [−z0, z0],
Γ−

β̃
:= {(x, x⊥) ∈ ∂Q : β̃ · n < 0}, β̃ = (1, z, 0), x⊥ ≡ (y, z) is the

transversal variable and n := n(x, x⊥) is the outward unit normal to Γ

at (x, x⊥) ∈ Γ.
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Characteristic schemes

L(J) := Jx + β · ∇⊥J − ε∆⊥J = 0,(-1)

where ε ≈ Cσ. ∆⊥ := ∂2/∂y2 + ∂2/∂z2 is the transversal Laplacian
operator, and β ≡ (z, 0).
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Characteristic Galerkin

For n = 1, 2 . . . , N







find Jh,n ∈ Vn such that
∫

Iy×Iz

Jh,n(x⊥)v(x⊥) dx⊥ =
∫

Iy×Iz

Jh,n−1(x⊥ − h̄nβ)v(x⊥) dx⊥,

(-1)

where h̄n = xn − xn−1 and Jh,0 = f .

Numerical Algorithms for Electron Beams – p.23



Characteristic Galerkin

Jh,n = PnTnJ
h,n−1,(-1)
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Characteristic Streamline Diffusion

For n = 1, 2, . . . , N , find Ĵh ≡ Ĵh|Sn ∈ V̂n such that

∫

Sn

(Ĵh
x +β·∇⊥Ĵ

h)(v+δ(vx+β·∇⊥v)) dxdx⊥+

∫

Sn

ε̂∇⊥Ĵ
h·∇⊥v dxdx⊥+

∫

I⊥

Ĵh,n
+ vn

+ dx⊥ =

∫

I⊥

Ĵh,n
− vn

+ dx⊥, ∀v ∈ V̂n,

(-1)

where vn
±(x⊥) = lim∆x→0 v(x± ∆x, x⊥),

ε̂ = max(ε,F(ChαR(Ĵh))/Mn, with

R(Ĵh) = |Ĵh
x + β · ∇⊥Ĵ

h| + |[Ĵh]|/h̄.(-1)
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Characteristic Streamline Diffusion

The streamline diffusion modification is given by δ(vx + β · ∇⊥v). If β is
approximated by piecewise constants on each slab, the streamline
diffusion modification will disappear in the CSD-method.
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Characteristic Streamline Diffusion

For n = 1, 2, . . . , N , find Jh,n ∈ Vn such that
∫

I⊥

ε̂∇⊥J
h,n·∇⊥v dxdx⊥+

∫

I⊥

Jh,nv dx⊥ =

∫

I⊥

TnJ
h,n−1v dx⊥, ∀v̂ ∈ Vn,

(-1)

where Jh,0 = f and ε̂ = F(Chα
n|Jh,n − TnJ

h,n−1|)/Mn.
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Characteristic Streamline Diffusion

We introduce

(P̂nw, v) = (ε̂∇⊥P̂nw,∇⊥v) = (w, v), ∀v ∈ P̂n,(-1)

to get

Jh,n = P̂nTnJ
h,n−1.(-1)

Numerical Algorithms for Electron Beams – p.28



Implementation

DOLFIN
user level.
module level.
kernel level.
Object Orientedness.
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Implementation

Exact Solution.

J(x, y, z) =

√
3

πεx2
e−2(3(y/x)2−3(y/2)z+z2)/(εx).(-1)
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Implementation

Exact Solution.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.05

0.1

0.15

0.2

0.25

Numerical Algorithms for Electron Beams – p.31



Results

Initial conditions used
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Results

Exact solution at x = 1.0
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Results

Computed solution using CSD.
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Results

Formation of layers.
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Results

Oscillatory bahaviour.
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Results

Streamline Diffusion and Characteristic
Streamline Diffusion are stable and accurate
methods for similar problems.
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