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Abstract

On fully discrete finite element schemes for the Fermi and Fokker-
Planck pencil-beam equations.
This study concerns the Fokker-Planck equation and its asymptotic limit
the Fermi pencil-beam equation in two-space dimensions (x, y), where x
is aligned with the beams penetration direction and y together with the
scaled angular variable z = tan µ correspond to a bounded and symmetric
transversal cross-section.

We consider the forward-backward degenerate, convection dominated, convection-
diffusion problem. For this problem we want to study some fully dis-
crete numerical schemes using the standard Petrov-Galerkin finite element
methods ( for discretization of the transversal domain, combined with the
backward Euler, Crank Nicolson) and discontinuous Galerkin methods (
for discretization in the penetration variable).

In our numerical studies we show convergence results for the standard fi-
nite element method as a certain weighted L2 norm which where obtained
in [1]. Numerical implementations are presented for some examples with
the data approximating Dirac delta-function to confirm the expected per-
formance of the standard finite element scheme.
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1 Introduction for model problem
We consider beam of electron or proton particles entering in an object from the
origin (x, y, z) = (0, 0, 0) in the direction of positive x axis. We study monoen-
ergetic Fermi model problem with a closed form exact solution which is a model
for the calculation of the dose (energy deposited per unit mass):

Wx + zWy = εWzz (x, y, z) ∈ Ω = Ix × I⊥
Wz(x, y,±z0) = 0 for (x, y) ∈ Ix × Iy,
W (0, x⊥) = f(x⊥) for x⊥ ∈ I⊥

W (x, x⊥) = 0 on Γ−β (0, x⊥).

(1)

The problem is formulated for the flux W . Equation (1), known as pencil-beam
equation, is an asymptotic expansion of the Fokker-Planck equation, which in
turn is an asymptotic limit of the linear Boltzmann equation. Both equations
are used in transport process and relay on forward peaked scattering [2]. In
this thesis we have studied some approximations and fully discrete schemes, for
numerical solutions of Fermi and Fokker-Planck equations in both two and three
space dimensions, which was developed for a model for the transport of photon
or electron particle beams used to treat cancer.

It is very important to calculate the proper amount of dose used in radiation
therapy. High amount of dose can destroy healthy tissue and create undesired
side effects. One may calculate the exact amount of dose of photon and elec-
trons using a Monte-Carlo algorithm [3].

Pencil-beam models mostly use methods based on Fermi-Eyges equation in ra-
diative transfer theory, see [4] and [5] for details. These models first used for
electron radiation [6] and later on for proton particle beams, see [7] and [2].

We focus in our work on the numerical implementations (in using general finite
element method) for the equation (1).

2 Radiation cancer therapy

2.1 Introduction to radiotherapy
Generally there are two types of radiotherapy: the external and the internal
radiotherapy.

External radiotherapy:

In this way of treatment a certain machine gives high energy radiation such
as x-rays to the cancer part of body and a small area of normal tissue surround-
ing it.
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Internal radiotherapy:

In this type of radiation therapy the patients will obtain liquid source of radia-
tion in their body through injection into a vein.

This thesis concerns the study related to the external radiotherapy, which from
now on we will refer to as radiotherapy. Radiation therapy is used as one of the
most common treatments for different types of cancer. Usually x-rays, γ-rays,
electron beams, or protons are used in radiotherapy. Cancer cells are treated
by sending high doses of radiation to them. Growth of cancer cells in body is
faster than normal cells.
Radiotherapy helps to stop cancer cells from growing and dividing by affecting
inside of cells. It makes small breaks in DNA of cancer cells. It could affect
normal cells around them as well. But usually normal cells recover faster and
are not damaged as much as cancer cells. Beam accelerator machine creates ra-
diotherapy beams using electricity. Two features are important in radiotherapy
of cancer treatment. One is the local treatment which means that it could be
used for particular part of the body. The other aspect is being less harmfulness
to the healthy tissue.

2.2 Brief history of radiotherapy
The Radiation-therapy was discovered within 3 years after the time a German
physics professor, Wilhelm Rontgen, gave a lecture on X-rays in 1895 called
"Concerning a New Type Of Ray". At the first time it was experienced as a
cancer treatment by a doctoral student, Emil Grubbé, in Chicago. After three
years two Swedish doctors used radiotherapy to treat different cancer types in
neck and head which brought Nobel Prize for Röntgen in 1901. Besides the fast
growth of radiotherapy field, in early 1900s cancer cure scientists came to the
conclusion that radiotherapy could be dangerous and harmful because it could
cause cancer itself. It was making some patients worse due to lack of knowledge
in proper dose amount to skin so the medical society began considering it as
a dangerous method of treatment. In that time X-ray was used by physicians
around the world for diagnostics.

2.3 Mathematical view of radiotherapy
In mathematical modeling, an important aspect that should be discussed is
calculation of radiation dose which gives information about energy absorbed
per unit mass in tissue layers. As result of this calculation is the dose function
helps radiation oncologists to know amount of radiation to give to tumor in
order to destroy it.
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3 Algorithms for Model Problem

3.1 Finite element spaces
We consider a radiation beam which is incidented at the center of the symmetric
domain D⊥ = Dy ×Dz = [−y0, y0]× [−z0, z0] for (y0, z0) ∈ R2

+ and penetrating
in the direction of the positive x-axis. Then the computational domain Ω of
our study is a three dimensional slab with (x, y, z) ∈ Ω = Ix × D⊥ where with
x ∈ Ix such that Ix = [0, L]. For the rectangular domain D⊥ we take a mesh
size h in y and z direction. We discretize D⊥ with finite element approximation
on a quasi-uniform triangulation. We let β = (1, z, 0) and define the inflow and
outflow boundaries as,

Γ−β := x⊥ ∈ Γ := ∂D⊥ : n(x⊥) · β < 0 , (2)

and

Γ+
β := x⊥ ∈ Γ := ∂D⊥ : n(x⊥) · β > 0 , (3)

respectively. Here Γ = ∂Ω is boundary of the domain Ω , and n(x⊥) is the
outward unit normal to the boundary Γ at x⊥ ∈ Γ. We now introduce a discrete
finite dimensional function space Vh,β ⊂ H1

β(D⊥) with

H1
β(D⊥) =

{
v ∈ H1(D⊥) : v = 0 on Γ−β {(0, x⊥)}

}
, (4)

such that, for ∀v ∈ H1
β(D⊥) ∩Hr(D⊥)

inf
χ∈Vh,β

‖v − χ‖j ≤ Chα−i‖v‖α, j = 0, 1, and 1 ≤ α ≤ r. (5)

Here r being an integer > 1 where j is the number of derivatives and Hs(D⊥)
is the L2 based Sobolev space with all its derivatives of order ≤ s being in L2

[8]. An example of such a spaces Vh,β is a set of sufficiently smooth piecewise
polynomials P (x⊥) of degree ≤ r, satisfying the boundary condition in our
model problem 

ux + zuy = εuzz, (x, y, z) ∈ Ω = Dx ×D⊥
uz(x, y,±z0) = 0 for (x, y) ∈ Dx ×Dy,

u(0, x⊥) = f(x⊥), for x⊥

u(x, x⊥) = 0 on Γ−β (0, x⊥).

(6)

Proceeding further we introduce a bilinear form A : H1
β ×H1

β as

A(u, v) = (ux, v)⊥ + (zuy, v)⊥, ∀ u, v ∈ H1
β(I⊥). (7)

Now the continuous variational formulation for the problem is defined as:
find a solution u of (6) such that,{

A(u, χ)⊥ + (εuz, χz)χ = 0 ∀χ ∈ H1
β(D⊥),

u(0, χ⊥) = f(x⊥).
(8)
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Let ũ ∈ Vh,β be an interpolant of the solution u of (6) defined by

A(u− ũ, χ) = 0 ∀ χ ∈ Vh,β . (9)

Now the discrete variational formulation problem is to find uh ∈ Vh,β such that,{
(uh,x, χ)⊥ + (zuh,y, χ)⊥ + (εuh,z, χz)⊥ = 0 ∀χ ∈ Vh,β ,
uh(0, x⊥) = fh(x⊥),

(10)

where fh(x⊥) is the finite element approximation of f . Here the scalar product
(u, v)⊥ is defined as (u, v)⊥ =

∫
D⊥

u(x⊥)v(x⊥)dx⊥ and the norm is defined as

‖u‖L2(I⊥) = (u, u)
1/2
⊥ . Further the mesh size h should be chosen such that

h2 ≤ ε ≤ h. (11)

3.2 The standard finite element discretization
In fully discrete scheme we derive algorithms for standard Galerkin and semi-
streamline diffusion methods for discretization of I⊥ combined with Discontinu-
ous Galerkin and backward Euler methods discretizing Ix. We start introducing
the bilinear form for model problem (6) with w = u

a(w, v) = (wβ , v)⊥ + δ(wβ , vβ)⊥ + (εwz, vz)⊥ + δ(εwz, (vβ)z)⊥ (12)

b(w, v) = δ(w, vβ)⊥ + (w, v)⊥ (13)

and write the continuous problem: find the solution w ∈ H1
β(I⊥) such that,

b(wx, v) + a(w, v) = 0, ∀ v ∈ H1
β(I⊥). (14)

Let Vh,β represents the discrete solution by separation of variables

wh(x, y, z) =
M∑
i=1

ξi(x)φi(y, z). (15)

Here M ∼ 1/h. Letting v = φj for j = 1, 2, . . . ,M and inserting wh from
(15) instead of w in (14) we get the discretization method,

M∑
i=1

ξ′i(x)b(φi, φj) +

M∑
i=1

ξi(x)a(φi, φj) = 0 j = 1, 2, . . . ,M (16)

equation (16) in matrix form can be written as

Bξ′(x) +Aξ(x) = 0. (17)
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Here B = (bij) with bij = b(φi, φj) and A = (aij) with aij = a(φi, φj). Using
the backward Euler we discretize ξ in the x direction to get the fully discrete
scheme,

B(ξnh − ξn−1
h ) + knA · ξnh = 0. (18)

For the problem (6) which can be recognized as backward Euler

[B + knA]ξnh = B · ξn−1
h (19)

Other fully discrete schemes can be obtained depending on the choice of the
discretization method in the direction of x.

3.2.1 Characteristic Galerkin

We start by letting {xn}, n = 0, 1, . . . , N , be an increasing sequence starting at
initial point x0 = 0, and for each n we have corresponding sequence of triangu-
lations {τn} of Sn := {xn} × Iy × Iz into triangular elements. We let Vn being
the space of continues piecewise linear functions on Sn.

By letting the convection cofficient ε = 0 in the model problem (6) to solve
characteristic Galerkin method can be formulated as:

{
find Wh,n ∈ Vn such that for n = 0, 1, . . . , N∫
Iy×Iz W

h,n(x⊥)v(x⊥)dx⊥ =
∫
Iy×Iz W

h,n−1(x⊥ − Inxβ)v(x⊥)dx⊥,
(20)

In (20) Inx = xn − xn−1; Wh,0 = f, and Wh,n = JnknW
h,n−1 such

that knWh,n−1(x⊥) = Wh,n−1(x⊥ − Inxβ). Here Jn : L2(Iy × Iz) → Vn is L2

projection, with (Jnw, v) = (w, v),∀ v ∈ Vn,

3.2.2 Characteristic Streamline Diffusion Method

We begin by constructing an oriented phase-space mesh to obtain streamline
diffusion method: let {M̂n} = {K̂} for n = 1, 2, ...., N, be a subdivision of slab
Sn = Inx × Iy × Iz using a finite element mesh, in Inx = (xn−1, xn). Further
for K̂ elements let V̂n be a space of continuous piecewise polynomials of degree
at most k. For k = 1 and for small ε the streamline diffusion method for the
problem (6) can be formulated as:

find Ŵh
n ≡ Ŵh|Sn ∈ ν̂n such that for n = 1, 2, . . . , N∫

Sn
(β̂ · ∇Ŵh)(v + δ(vx + β · ∇⊥v))dxdx⊥ +

∫
Sn
ε∇⊥Ŵh · ∇⊥vdxdx⊥

+
∫
I⊥
Ŵh,n

+ vn+dx⊥ =
∫
I⊥
Ŵh,n
− vn+dx⊥, ∀ v ∈ V̂n

(21)
with vn±(x⊥) = lim∆x→0v(xn ±∆x, x⊥), where δ(vx + β.∇⊥v) is the modifica-
tion in streamline diffusion, and δ ∼ h. In the presence of shock the term with
ε is involved in order to capture the shock [1]. The Characteristic Streamline
Diffusion method can be derived by making a special choice of finite element
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subdivision where M̂n = {K̂} is given by tetrahedral element oriented along the
characteristic streamline diffusion method.

K̂ = {(x, x̄⊥ + (x− xn)β) : x⊥ ∈ K ∈Mn, x ∈ Inx } space

Sn = {K} is a triangulation as above and V̂n is given as

V̂n = {v̂ ∈ C(Sn) : v̂(x, x⊥) = v(x⊥ + (x− xn)β) v ∈ Vn}.
Here V̂n consists on continuous functions v̂(x, x⊥) on Sn with v̂ be a constant
along characteristics x⊥ = x̂⊥ + xβ parallel to the sides of the tetrahedral
elements K̂n.With this special choice we notice that if v̂ ∈ V̂n then v̂x+β.∇⊥v̂ =
0. Then the streamline diffusion method to solve problem (6) can be written in
the reduced form{
find Ŵh ∈ V̂n such that for n = 1, 2, . . . , N,∫
Ln
ε ∇⊥Ŵh · ∇⊥v dxdx⊥ +

∫
I⊥
Ŵh,n

+ vn+ dx⊥ =
∫
I⊥
Ŵh,n
− vn+ dx⊥ ,∀ v̂n ∈ V̂n.

(22)

10



4 Results
In this section we will discuss the numerical results using different numeri-
cal techniques described in section (3). We begin by discretizing the domain
I⊥ = Iy × Iz using continuous piecewise linear continuous. Then we show the
results for Standard Galerkin and Semi-Streamline Diffusion, and continuous
Galerkin approximation. Then we use backward Euler Method (18) for the case
of standard Galerkin approximation for Ix. Jump discontinuities are allowed
in both Semi-Streamline diffusion(SSD) and SD characteristic schemes. I⊥ is
discretized by using continuous Galerkin method for the model problem (6). In
x direction we discretized by using discontinuous Galekin approximation with
piecewise constants denoted as dG(0).

4.1 Exact solution
The closed form of the solution of our model problem (6) is

w(x, y, z) = (
√

3/(πεx2)) exp (−2(3(y/x)2 − 3(y/2)z + z2)/(εx)). (23)

The equation (23) gives us the exact solution to compare our computed solu-
tion and see how close we are to the exact solution. We computed the error
e = ‖wh−w‖ using different norms ‖ · ‖L2(Ω), ‖ · ‖L1(Ω) and L∞, and present re-
sults in section (4.4). This particular physical problem has applications in many
fields of material science, astrophysics, electron microscopy and also radiation
cancer therapy.

We start by presenting the meshing which we used here, then initial data, com-
puted solution and norms of error which we have calculated for this thesis work.

Figure 1: The exact solution of (23)Fermi pencil beam obtained for x =1.
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Figure (1) shows that the closed form exact solution of (23) when x = 1 gives us
the more strength of electron beam, but cover less area. Figure (3) show that
when x = 2 this gives us the less strength of beam but with more area to be
treated, we will see this in the next two figures.

Figure 2: The exact solution of (23) Fermi pencil beam obtained at x =2.

Figure 3: The exact solution of (23) Fermi pencil beam obtained at x =3.

The difference in solutions obtained at x = 1 and x = 2 in figures (1) and (3)
respectively is that the area covered with the beam at x = 2, is comparatively
much larger than the area covered at x = 1.
All these exact solutions were derived from the two dimensional models, but
we get similar results in three dimensional models as well which we will see in
section (4.4).
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4.2 Geometry

Table 1: Geometry used in two dimensional model

Property Value
Space dimension 2
Number of domains 1
Number of boundaries 4
Table 2: Geometry statistics

Name Value
position 0, 0
Base Center
Side length 2
Side length 2
Table 3: Position

Type Units
Length unit m
Angular unit Radian

Table 4: Units

Figure 4: Example of a three dimension geometry which we used for getting our
numerical results in 3d.

In 3D, we consider a cube of size {2, 2, 2}. The position of cube is {1, 0, 0}. The
total number of boundaries in this case is 6 and domain is 1. Number of edges
are 12 and the number of vertices 8. The length unit is meter and the angular
unit is radian.

4.3 Meshing
Whenever we use the finite element method, it is important to keep in mind
that the accuracy of solution is linked to the mesh size. As mesh size decreases
towards zero (leading to a model of infinite size), we move toward the exact so-
lution for the equations we are solving. However, since we are limited by finite
computational resources, we have to rely on an approximation of the real solu-
tion. The goal of simulation, therefore, is to minimize the difference (“error”)
between the exact and the approximated solution, and to ensure that the error
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is below some accepted tolerance level.

In order to apply the finite element method, we used here different types of
meshing on COMSOL to get the desired numerical results: Uniform mesh and
refinement of the mesh in the center. We choose the free type of meshing
to create the triangular mesh. How we choose the geometric entity level and
domain on which we want to apply the mesh is explained in tables following
the mesh examples. Here are the few examples which we used for our model
problems in Figure 6 and Figures 7

Figure 5: Uniform mesh on the whole domain D with built in extra-fine mesh
size,

Property Value
Minimum element quality 0.3414
Average element quality 0.9185
Triangular elements 26440
Edge elements 108
Vertex elements 4

Table 5: Mesh statistics for the mesh on figure (5).

When to form mesh elements (free triangles in two dimensions and tetrahedral
in 3 dimensions) to form a piecewise linear approximation of the function the
exactness of the approximation relay on the size and shapes of the element. In
FEM the modification of the stiffness matrix also depends on the size and the
shapes of the element. To compute the large sparse matrix system obtained
by the finite element method LU factorization is used by Comsol. To get the
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desired results the minimum element quality should be more than 0.1 and from
the above table we can see our average element quality is very high and the
minimum element is 0.3414. And we do not have any element which has quality
less than 0.1.

Element quality

By default, poor quality elements are those elements having one or more of the
following:

• Ratio of maximum side length to minimum side length is larger than 10.

• Minimum interior angle is smaller than 20 degree.

• Maximum interior angle is larger than 120 degree.

To measure the element quality following formula where used.
The element quality q for triangle is obtained by

q =
4
√

3A

h2
1 + h2

2 + h2
3

(24)

where A denote the area and h1, h2, h3 the side-lengths.
For a tetrahedron the quality measures is evaluated using the formula

q =
72
√

3V

(h2
1 + h2

2 + h2
3 + h2

4 + h2
5 + h2

6)
3
2

(25)

where V denotes the volume, and the h:s are the edge lengths.
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Figure 6: We used "fine" mesh size with one refinements in -0.25 to 0.25 and
then another refinement from -0.5 to 0.5, finally a refinement from -0.75 to 0.75.

The original mesh of (6) is refined as follows: we have very small elements in
the domain D1 = [-0.5; 0.5] × [-0.5; 0.5] and large elements in the domain D2

= [-0.75; 0.75] × [-0.75; 0.75] and rest of the domain D/(D1;D2) is not refined.

Property Value
Maximum element size 0.074
Minimum element size 2.5E-4
Resolution of curvature 0.25
Maximum element growth rate 1.25
Size Name Finer

Table 6: Mesh statistics

Maximum element size — limits how big each mesh element can be.

Minimum element size — limits how small each mesh element can be.

Maximum element growth rate — limits the size difference of two adjacent
mesh elements (lower value → finer mesh).
Curvature factor — limits how big a mesh element can be along a curved bound-
ary (lower value → finer mesh).
Resolution of narrow regions — controls the number of layers of mesh elements
in narrow regions (higher value → finer mesh).
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Figure 7: We did not use any refinement and use a uniform mesh on whole
domain with built in fine mesh size and in three dimensions

In most of our implementations in 3d we have used the extra fine mesh size
in which we have tetrahedral elements: 396552 and number of nodes are 8837.
From figure (7) we can see that most of the low quality elements are located on
the diagonal elements.
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4.4 Numerical Implementation
We will justify what we defined in theory part, with our implementation which
we did in COMSOL Multiphysics using LIVE LINK MATLAB. The parameters
used in implementations are rely on the theory of chapter 3. We start with
the discretization of the domain I⊥ = Iy × Iz using CG(1) method: continuous
Galekin with piecewise linears combined with the backward Euler method in
x. We choose small ε and δ ∼ h. Most of our graphical results are obtained
using ε = 0.002. Our mesh size h varies from 0.04 to 0.004. As we mentioned
at meshing section, sometime we define different mesh size for different areas.
Previous results in [9] , have an oscillatory behavior of computed solution for
CG method, and layer behavior for SG method. To remove these oscillations
one can use L2 projection method is in [9] for current of pencil beam.

We have used the parameter α in initial conditions to avoid the singularities,
e.g. at (0, 0). Note also that the exact solution (23) has singularities at origin.
This makes difficult to implement the numerical schemes as it is. The computed
solution depends on the initial conditions, therefore it is not adequate to com-
pare the computed results with (23), as the initial conditions were not exactly
the same with ones we start with.

4.4.1 2D numerical examples using Maxwellian initial conditions

The FEM solution wh(x, y, z) with Maxwellian initial condition is shown in
Figure (8). We used linear (p = 1) Lagrange elements to solve the problem,
which means that the FEM solution wh(x, y, z) is a flat patch (linear functions)
on each triangle of the mesh.

Figure 8: Computed FEM solution of model problem (6) with Maxwellian initial
conditions
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For the two dimensional model in COMSOL with Maxwellian initial condition
we have used the function f = exp(−((x2 + y2) + α)) . We used α in function
is to control the formation of layer which appeared at point (x, y) = (0, 0).
The numerical values for the parameters α= 0.19 and the time step was taken
kn = 0.01. The number of degree of freedom is 180481 (plus 804 internal DOFs).
The diffusion coefficient is {{0, 0}, {0, 0.002}} and the convection coefficient is
taken as {0.1, 0}, damping or mass coefficient is zero. The physical memory
used is : 1.06 GB and the virtual memory: 1.19 GB.

Figure 9: We have the exact solution of our model with same data we used to
calculate the approximated solution

The mesh refinement is performed using free triangulation with the maximum
element size h = 0.134 and the minimum element size 0.0006 consisting of
three iterations in the domain from -0.2 to 0.2 in x-direction and -.2 to 0.2 in y-
direction. Number of triangles are 7384 with number of nodes defined according
to the formula for linear triangular elements. The minimum element quality is
0.3485 and the average element quality is 0.9224, which is much higher then the
lower element quality 0.1 at which solution does not converge.
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Figure 10: The above plot shows the behavior of error e = ‖w − wh‖L2
in this

physics.

Convergence plot, which shows the error estimate decreasing between Newton-
Raphson iterations.

Figure 11: Convergence plot, which shows the relation between reciprocal of
time step size vs time step

Time for computing the FEM solution in two dimensional model with Maxwellian
initial conditions is 22 seconds.
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3D numerical examples with maxellian initial conditions

Example 1
The FEM solution of our model problem calculated with three dimensional
stationary model and the solution view in three dimensional slabs. The function
used in three dimesional form is f = exp(1/(y2 + z2 + α)) and α used in this
model is 0.16.
Linear Lagrange shape function represents to control the material density in
our model, the solution contains the sensitivity of the objective function with
respect to the discrete density value at each node point in the mesh. Because
each node influences the density in a small surrounding region, the size of which
varies from node to node, the individual sensitivities are not directly comparable
to each others.

Figure 12: View of solution for model problem (6) with Maxwellian initial con-
ditions 1. Here we have shape function being a Lagrangian and element order
is quadratic.

Parameters used to obtain solution are as fellows. Number of nodes 541357 (with
24470 internal DOFs). The diffusion coefficient {{0, 0, 0}, {0, 0, 0}, {0, 0, 0.002}}
and the convection coefficient is taken as {1, 0.02 × z, 0}, damping or mass
coefficient is zero.
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Figure 13: Exact solution of our model problem (23) view in 3d for comparing
the results.

Time for generating solution is 100 s or (1 minute and 40 seconds), physical
memory: 11.17 GB and virtual memory: 12.43 GB. The tetrahedral elements
are 396552 triangular elements are 11884 and edge elements are 348. For the
size of mesh here we used maximum element size 0.07 and minimum element
size 0.003.
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3D numerical examples with maxellian initial conditions.

Example 2
Numerical results obtained by Maxwellian initial condition in three dimensional
model with height expression are shown here.

Figure 14: The solution for model problem (6) with Maxwellian initial condi-
tions. Here we choose Lagrangian test function of the second order.

Number of degrees of freedom and the rest of the parameters (h, β, and α)are
the same as in example (4.4.1). The time to generate the solution is 95 second
or (1 minute and 35 seconds).

Figure 15: Exact solution of our model problem (23) in example 2.
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4.4.2 Convergence study

In finite element method a finer mesh generally gives a more accurate solution.
However, as a mesh is made finer, the computation time mostly increases. So
one gets a mesh that satisfactorily balances accuracy and computing resources.
One way to do this is to perform a mesh convergence study.

Here we denote our finite element solution by wh and the exact solution by
w. Then the error can be bounded by mesh size h. Having a bound for the
norm of the error as ‖w−wh‖ ≤ Chq, where C is a constant independent of the
mesh size, and q denotes the order of the convergence of the FEM. Generally
we have q = 1 for the linear convergence, q = 2 for the quadratic convergence,
and for faster convergence even higher values. We consider FEM error studies
in the L2 norm defined by

‖w‖L2(Ω) = (

∫
Ω

{w(x)}2)1/2. (26)

For p=1 (the polynomial degree), i.e. the linear approximation we have a bound
of the form ‖w − wh‖L2(Ω) ≤ Ch2 known as a priori bound where w needed to
be in H2(Ω).

Because our PDE has a known solution w we may compute the norm of the
error as

‖w − wh‖L2(Ω) ≤ Chp+1. (27)

We start with initial mesh (coarse) and perform the refinements uniformly. Each
refinement will subdivide the triangle of mesh into four triangles that mean h will
be reduced to half in each refinement. We will denote the number of refinement
by nr then the norm of error for each refinement will be Enr = ‖u− uh‖L2(Ω).
Now for each refinement we will define a table which has our computed values
number of elements in the mesh, error of finite element method, square of the
error, number of the degree of freedom

Number of
refinement Element Vertices DOF en = ‖w − wh‖L2

e2
n en/en+1

0 272 157 157 8.278e-03 6.853e-05 0.00
1 1088 585 585 2.105e-03 4.431e-06 3.93
2 4352 2257 2257 5.290e-04 2.799e-07 3.98
3 17408 8865 8865 1.325e-04 1.754e-08 3.99
4 69632 35137 35137 3.313e-05 1.097e-09 4.00

Table 7: Table for Lagrange elements when p=1

24



(a) Error view with no refinement (b) error view with 1 refinement

(a) Error view with 2 refinements (b) error view with 3 refinements

(a) Error view with 4 refinements (b) error view with 5 refinements

The figures above show how our error decreases graphically after each refine-
ment. The results above are for the linear elements.

In the tables below we have calculated errors, i.e. the difference between all
computed solutions which we get using all four initial conditions applying the
considered finite element methods. In tables 13, 9 and 8 we calculated the errors
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in L1 , L2 , L∞ and L̃2, norms where L̃2 is the weighed L2 norm, are define as

‖W‖L̃2
=

1

3

∑
Mi

|Mi|
3∑
j=1

(W (ζij))
2

1/2

, (28)

where |Mi| is the area of the mesh triangles and ζji are the middle points of
edges of the mesh triangles Mi.

L∞ Maxwellian Hyperbolic Dirac-I DiracII
SSD 0.46 0.48 0.4 17
CSD 0.42 0.53 0.11 22
CG 0.33 0.52 0.28 16

Table 8: Error e for different initial conditions used for FEM approximation in
the L∞ - norm.

4.4.3 Hyperbolic initial conditions

Solving Fermi pencil-beam equation with hyperbolic initial data f = 1√
x2+y2+α

.

The function defined here is for two dimensional model and α= .19. Number of
degree of freedom the model is solved for is: 180481 (plus 804 internal DOFs)
and solution time is 22 s. The diffusion coefficient is {{0, 0}, {0, 0.002}} and the
convection coefficient is taken as {0.2× y, 0}, the damping or mass coefficient is
zero.

Figure 19: Above is the approximate solution with hyperbolic initial condition.

The mesh used here has maximum element size h = 0.134 and the minimum
element size 0.0006 with three refinements in the domain from -0.2 to 0.2 in
the x-direction and from -.2 to 0.2 in the y-direction. Number of triangles are
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7384 with number of edge elements 120 and the vertex elements are 4. And the
physical memory is 1.06 GB and virtual memory is: 1.19 GB.

Figure 20: Here we have the exact solution of our model with the same data
that we used to calculate the approximate solution

L2 Maxwellian Hyperbolic Dirac-I DiracII
SSD 0.24 0.18 0.19 18
CSD 0.21 0.10 0.11 9.6
CG 0.19 0.22 0.21 14

Table 9: Error for different initial conditions used for FEM, to compute the
error in L2.

Finite Element convergence study for p = 2

Number of
refinement Element Vertices DOF en = ‖w − wh‖L2 e2

n en/en+1

0 272 157 585 2.706e-04 7.322e-08 0.00
1 1088 585 2257 3.427e-05 1.175e-09 7.90
2 4352 2257 8865 4.307e-06 1.855e-11 7.96
3 17408 8865 35137 5.398e-07 2.913e-13 7.98
4 69632 35137 139905 6.755e-08 4.564e-15 7.99

Table 10: Table for Lagrange elements when p=2

If we compare the tables (7) and (10) we can see that Lagrange elements of
quadratic order (p=2) give more smoother numerical solution.
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(a) Error view with no refinement (b) error view with 1 refinement

(a) Error view with 2 refinements (b) error view with 3 refinements

(a) Error view with 4 refinements (b) error view with 5 refinements

The figures above show how our error decreases graphically after each refine-
ment. The results above are with the quadratic order that mean p = 2.
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4.4.4 Dirac initial conditions

(a) Lagrange and element order linear. (b) Discontinuous Lagrange and element
order linear.

(a) Computed solution at x = 1.5 of the model problem (6) with the Dirac initial
conditions I, function f = 1/(y2 + z2 + α) and (α= 0.1) used in function is to
avoid singularities at (y, z) = (0, 0).

(b) Computed solution with discontinuous Lagrange elements at x = 1.5 of the
model problem (6).

Figure 25: Exact solution .
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Finite element convergence study for p = 3

Number of
refinement Element Vertices DOF en = ‖w − wh‖L2

e2
n en/en+1

0 272 157 1285 1.484e-05 2.204e-10 0.00
1 1088 585 5017 9.289e-07 8.629e-13 15.98
2 4352 2257 19825 5.799e-08 3.363e-15 16.02
3 17408 8865 78817 3.620e-09 1.311e-17 16.02

Table 11: Table for Lagrange elements for p=3

(a) Error view with no refinement (b) error view with 1 refinement

(a) Error view with 2 refinements (b) error view with 3 refinements

The figures above show how our error decreases graphically after each re-
finement. The results above are for p=3.
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Finite element convergence study for p = 4

Number of
refinement Element Vertices DOF en = ‖w − wh‖L2 e2

n en/en+1

0 272 157 1285 3.361e-07 1.130e-13 0.00
1 1088 585 5017 1.063e-08 1.129e-16 31.63
2 4352 2257 19825 3.341e-10 1.116e-19 31.81
3 17408 8865 78817 1.047e-11 1.097e-22 31.90

Table 12: Table for Lagrange elements when p=4

(a) Error view with no refinement (b) error view with 1 refinement

(a) Error view with 2 refinements (b) error view with 3 refinements
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Figure 30: convergence study with respect to the element order

In the figure above we have number of nodes (elements) on the X-axis and the
error on Y-axis. From the figure we can see that increasing the number of
elements yields faster convergence. This can also be seen from the results for
p = 1 and p = 2 in above figure.

Dirac initial condition solution view in three dimension.

For the three dimensional Dirac initial condition the function used is defined as
f = 1/(y2 + z2 +α) where α is introduce in order to avoid the effect of singular
point.

Figure 31: The solution for model problem (6) with Dirac initial condition 1.
Here we have shape function as being polynomial of quadratic order.
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We choose α=0.002. Number of degrees of freedom is 541357 (plus 24470 inter-
nal DOFs).
The diffusion coefficient is {{0, 0, 0}, {0, 0, 0}, {0, 0, 0.002}} and the convection
coefficient is taken as {1, 0.02× z, 0}, damping or mass coefficient is zero. Time
generating a solutions is 100 seconds or (1 minute and 40 seconds) physical
memory is 11.17 GB and virtual memory is 12.43 GB. The number of tetra-
hedral elements are 396552, triangular elements are 11884, and edge elements
are 348. For the size of mesh here we used maximum element size 0.07 and
minimum element size 0.003.

Figure 32: Exact solution of our model problem (23) and the exact solution in
3d.

Three dimensional solution of Dirac initial condition with height.

Next we test the environment as in above case of Dirac initial condition assum-
ing f = 1/(y2 + z2 + α) with the same assumptions, however we change the
convection coefficient from {1, 0.02× z, 0} to {1, 0.1× z, 0}.
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Figure 33: The solution for model problem (6) with Dirac-Initial conditions.
Here we have shape function as being polynomial of Quadratic order.

Figure 34: Exact solution of our model problem (23) and the exact solution in
2d, obtained from 3d model.

4.4.5 Modified Dirac initial conditions

For modified Dirac i.c. in two dimensional model we defined the function as
f = (1/

√
x2 + y2 + α) × 10. The diffusion coefficient for two dimension as

{{0, 0}, {0, 0.002}} and the convection coefficient is taken as {0.1, 0}.
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Damping or mass coefficient is zero.

Figure 35: Above is the solution of model problem (6) with modified Dirac
initial conditions. And below is the exact solution with the same mesh size.
Here we have Lagrange shape function nd linear elements.

Figure 36: Above is the solution of model problem (6) with the Dirac initial
conditions II. And below is the exact solution with same mesh size. Here we
have shape function Lagrange and linear elements.
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Modified Dirac initial condition results in three Dimensions

To compute the solution with modified Dirac i.c. in three dimensional model
we defined the function f = (1/

√
y2 + z2 + α)× 10. The diffusion coefficient in

triangulation is {{0, 0, 0}, {0, 0, 0}, {0, 0, 0.002}} and the convection coefficient
is taken {1, 0.02× z, 0}, damping or mass coefficient is zero.

Figure 37: Solution for model problem (6) with Dirac initial condition. Here we
have shape function as being polynomial of quadratic order.

The mesh used to obtain the above results has a step size h = 0.025 in y and
z variable. In x direction the step size was chosen as k = 0.0005 so the total
nodes we have solved is 6,561,000.

Figure 38: Exact solution of our model problem (23) and the exact solution in
3d.
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The time to generated solution is 103 s or (1 minute and 43 seconds) physical
memory: 11.25 GB and virtual memory is 12.51 GB.

Modified Dirac initial conditions solution with height.

Numerical results obtained for Dirac initial condition in three dimensional model,
with height expression are shown bellow. The result is for α = 0.002 with the
same number of degrees of freedom as above.

Figure 39: Solution for model problem (6) with Dirac-I initial conditions. Here
we choose shape function as polynomial of quadratic order.
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Figure 40: Exact solution of our model problem (23) and the exact solution in
2d, obtained from 3d model.

In Table below we have computed the L∞ norms for error between exact
and computed solution in table (13) we used Discontinuous Galerkin

L1 Maxwellian Hyperbolic Dirac-I DiracII
SSD 0.23 0.46 0.21 13
CSD 0.19 0.31 0.31 12.3
CG 0.28 0.28 0.33 13.21

Table 13: Error for different initial conditions used for FEM, in the L1 setting.

5 Conclusion
Finite element method is commonly used as numerical method for solving the
partial differential equations especially for elliptic PDEs and in our case for
convection dominated convection-diffusion problem. We considered different al-
gorithms for pencil beam model based on Fermi and Fokker Planck equations.
These numerical schemes are derived for Galerkin methods such as Standard
Galerkin, Semi-Streamline Diffusion, Characteristic Galerkin and for Charac-
teristic Streamline Diffusion.

We choose certain initial data for implementations and illustrate the results of
different algorithms. We demonstrated our results for beam problems in two
and three dimensional models. As our aim is to remove the oscillatory behavior
with hyperbolic initial conditions and the formation of layers in a solution with
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maxwellian initial condition, we performed computations decreasing the coeffi-
cient of the convection term. But keeping in mind that still it will be convection
dominated energy transfer problem.

We begin our computations with semi streamline diffusion and characteristic
streamline diffusion methods. Our examples of section (4.4) justify that these
are more stable and accurate compared to the standard Galerkin and charac-
teristic Galerkin methods, for all types of initial data. As for convergence our
tables of section (4.4) show that the solutions with Dirac initial condition are
more suited in case of characteristic streamline diffusion method. We can also
see using figures that Maxwellian initial condition gives accurate results in char-
acteristics streamline diffusion scheme, while semi streamline diffusion method
gives an accurate solution with hyperbolic initial conditions.

We can conclude that the oscillatory behavior obtained in [10] are appearing
for problems with non-smooth initial data. In this work we removed these
oscillations by modifying L2 projections, and decreasing the dominance of the
coefficient of convection term. The oscillations are also controlled by taking the
small steps in the penetration variable.
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Appendices
A Code
The models developed in Comsol Multiphysics and the Live Link Matlab code
are available, and one can get help for them by email and my email address is,
mianaseer@gmail.com

Matlab code obtained from COMSOL model with some changes.
Main Matlab file for running the file generated from COMSOL model.

A.1 Main file for running code

% se t the maximum number o f r e f inement s
nrefmaximum = 3 ;

% se t the order o f the Lagrange e lements used
p = 3 ;

% p r e a l l o c a t e v e c to r s :
nElem = ze ro s ( nrefmaximum+1 ,1) ;
Npts = ze ro s ( nrefmaximum+1 ,1) ;
nDoF = ze ro s ( nrefmaximum+1 ,1) ;
normsq = ze ro s ( nrefmaximum+1 ,1) ;
e r r = ze ro s ( nrefmaximum+1 ,1) ;
Rr = ze ro s ( nrefmaximum+1 ,1) ;
Qr = ze ro s ( nrefmaximum+1 ,1) ;

% obta in square o f the norm of the FEM er r o r
% on the re f inement l e v e l r :
f o r r=0:nrefmaximum

[ e , nElem , nVertex , nnDofs ]= fe rmi fo rmat lab ( r , p ) ;
%[e , nElem , nVertex , nnDofs ]=maxwil l ian_3d_surface ( r , p ) ;
normsq ( r+1)=e ;
nElem( r+1) = nnElem ;
Npts ( r+1) = nVertex ;
nDoF( r+1) = nnDofs ;

end

f o r r=0:nrefmaximum
er r ( r+1) = sq r t ( normsq ( r +1)) ;
i f r>=1

Rr( r+1)=e r r ( r )/ e r r ( r +1);
Qr( r+1)=log (Rr( r+1))/ log ( 2 ) ;

end
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end
f p r i n t f ( ’ Lagrange Elements with order p = %2d and nrefmaximum . . . \ \
. . .= %3d \n ’ , p , nrefmaximum)
f p r i n t f ( ’ r N_e N_v DoF enorminfsq enorminf Rr
Qr\n ’ )
f o r r = 0 : nrefmaximum
f p r i n t f ( ’%5d %5d %5d %5d %11.3 e %15.3 e %9.2 f %9.2 f \n ’ , r , nElem( r +1) , . . \\

. . . Npts ( r +1) ,nDoF( r+1) ,normsq ( r+1) , e r r ( r +1) ,Rr ( r +1) ,Qr( r+1))
end

Matlab program from COMSOL model build in two dimensions.
A.2 Matlab Model Code

f unc t i on [ e , nElem , nVertex , nDofs ] = Dirac_l inear1 ( nre f , p )
% Dirac_l inear1 .m
%
% Model exported on Nov 10 2014 , 22 :01 by COMSOL 4 . 4 . 0 . 2 4 8 .

import com . comsol . model .∗
import com . comsol . model . u t i l .∗

model = ModelUti l . c r e a t e ( ’Model ’ ) ;

model . modelPath ( ’C: \ Users \Naseer \Desktop ’ ) ;

model . modelNode . c r e a t e ( ’ comp1 ’ ) ;

model . geom . c r e a t e ( ’ geom1 ’ , 2 ) ;

model . mesh . c r e a t e ( ’mesh1 ’ , ’ geom1 ’ ) ;

model . phys i c s . c r e a t e ( ’ c ’ , ’ CoefficientFormPDE ’ , ’ geom1 ’ , { ’u ’ } ) ;

model . study . c r e a t e ( ’ std1 ’ ) ;
model . study ( ’ std1 ’ ) . f e a t u r e . c r e a t e ( ’ s tat ’ , ’ Stat ionary ’ ) ;
model . study ( ’ std1 ’ ) . f e a t u r e ( ’ s tat ’ ) . a c t i v a t e ( ’ c ’ , t rue ) ;

model . geom ( ’ geom1 ’ ) . f e a t u r e . c r e a t e ( ’ sq1 ’ , ’ Square ’ ) ;
model . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ sq1 ’ ) . s e t ( ’ s i z e ’ , ’ 2 ’ ) ;
model . geom ( ’ geom1 ’ ) . f e a t u r e ( ’ sq1 ’ ) . s e t ( ’ base ’ , ’ center ’ ) ;
model . geom ( ’ geom1 ’ ) . runPre ( ’ f i n ’ ) ;
model . geom ( ’ geom1 ’ ) . run ;

model . phys i c s ( ’ c ’ ) . f e a t u r e ( ’ c feq1 ’ ) . s e t ( ’ da ’ , 1 , ’ 0 ’ ) ;
model . phys i c s ( ’ c ’ ) . f e a t u r e ( ’ c feq1 ’ ) . s e t ( ’ be ’ , 1 , { ’y ’ ’ 0 ’ } ) ;
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model . phys i c s ( ’ c ’ ) . f e a t u r e ( ’ c feq1 ’ ) . s e t ( ’ f ’ , 1 , ’ 0 ’ ) ;
model . phys i c s ( ’ c ’ ) . f e a t u r e ( ’ c feq1 ’ ) . s e t ( ’ c ’ , 1 , 1 , ’ 0 ’ ) ;
model . phys i c s ( ’ c ’ ) . f e a t u r e ( ’ c feq1 ’ ) . s e t ( ’ c ’ , 1 , 4 , ’ 0 . 0 0 2 ’ ) ;
model . phys i c s ( ’ c ’ ) . prop ( ’ ShapeProperty ’ ) . s e t ( ’ order ’ , 1 , p ) ;
model . phys i c s ( ’ c ’ ) . f e a t u r e . c r e a t e ( ’ d ir1 ’ , ’ Dir ichletBoundary ’ , 1 ) ;
model . phys i c s ( ’ c ’ ) . f e a t u r e . c r e a t e ( ’ z f l x2 ’ , ’ ZeroFluxBoundary ’ , 1 ) ;
model . phys i c s ( ’ c ’ ) . f e a t u r e . c r e a t e ( ’ i n i t 2 ’ , ’ i n i t ’ , 2 ) ;
model . phys i c s ( ’ c ’ ) . f e a t u r e ( ’ d ir1 ’ ) . s e l e c t i o n . s e t ( [ 1 4 ] ) ;
model . phys i c s ( ’ c ’ ) . f e a t u r e ( ’ z f l x2 ’ ) . s e l e c t i o n . s e t ( [ 2 3 ] ) ;
model . phys i c s ( ’ c ’ ) . f e a t u r e ( ’ i n i t 2 ’ ) . s e l e c t i o n . s e t ( [ 1 ] ) ;
model . phys i c s ( ’ c ’ ) . f e a t u r e ( ’ i n i t 2 ’ ) . s e l e c t i o n . a l l ;
model . phys i c s ( ’ c ’ ) . f e a t u r e ( ’ i n i t 2 ’ ) . s e t ( ’ u ’ , 1 , ’ a1 ’ ) ;

model . v a r i ab l e . c r e a t e ( ’ var1 ’ ) ;
model . v a r i ab l e ( ’ var1 ’ ) . s e t ( ’ a1 ’ , ’ 1/( x^2+y^2+.0081) ’ ) ;

model . mesh ( ’mesh1 ’ ) . f e a t u r e . c r e a t e ( ’ f t r i 1 ’ , ’ FreeTri ’ ) ;
model . mesh ( ’mesh1 ’ ) . f e a t u r e ( ’ s i z e ’ ) . s e t ( ’ hauto ’ , ’ 9 ’ ) ;

model . s o l . c r e a t e ( ’ so l1 ’ ) ;
model . s o l ( ’ so l1 ’ ) . study ( ’ std1 ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e . c r e a t e ( ’ st1 ’ , ’ StudyStep ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ st1 ’ ) . s e t ( ’ study ’ , ’ std1 ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ st1 ’ ) . s e t ( ’ studystep ’ , ’ s tat ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e . c r e a t e ( ’ v1 ’ , ’ Var iab les ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ v1 ’ ) . s e t ( ’ cont ro l ’ , ’ s tat ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e . c r e a t e ( ’ s1 ’ , ’ Stat ionary ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ s1 ’ ) . f e a t u r e . c r e a t e ( ’ fc1 ’ , ’ FullyCoupled ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ s1 ’ ) . f e a t u r e ( ’ fc1 ’ ) . s e t ( ’ l i n s o l v e r ’ , ’ dDef ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ s1 ’ ) . f e a t u r e . remove ( ’ fcDef ’ ) ;
model . s o l ( ’ so l1 ’ ) . attach ( ’ std1 ’ ) ;

model . r e s u l t . c r e a t e ( ’ pg1 ’ , 2 ) ;
model . r e s u l t ( ’ pg1 ’ ) . s e t ( ’ data ’ , ’ dset1 ’ ) ;
model . r e s u l t ( ’ pg1 ’ ) . f e a t u r e . c r e a t e ( ’ sur f1 ’ , ’ Surface ’ ) ;
model . r e s u l t ( ’ pg1 ’ ) . f e a t u r e ( ’ sur f1 ’ ) . s e t ( ’ expr ’ , ’u ’ ) ;

model . s o l ( ’ so l1 ’ ) . runAl l ;

model . r e s u l t ( ’ pg1 ’ ) . run ;
model . r e s u l t ( ’ pg1 ’ ) . run ;
model . r e s u l t ( ’ pg1 ’ ) . f e a t u r e ( ’ sur f1 ’ ) . f e a t u r e . c r e a t e ( ’ hght1 ’ , ’ Height ’ ) ;
model . r e s u l t ( ’ pg1 ’ ) . run ;
model . r e s u l t . c r e a t e ( ’ pg2 ’ , ’ PlotGroup2D ’ ) ;
model . r e s u l t ( ’ pg2 ’ ) . run ;
model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e . c r e a t e ( ’ sur f1 ’ , ’ Surface ’ ) ;

43



model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ sur f1 ’ ) . s e t ( ’ expr ’ , ’ ( ( s q r t ( 3 ) / ( p i ∗ . 0 0 2∗1 . 5^2 ) ) . . \ \
. . ∗ exp ((−2∗(3∗(( x/1)^2)−3∗(x/2)∗y+y^2))/(0 .002∗1 .5) ) ) −u ’ ) ;
model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ sur f1 ’ ) . s e t ( ’ d e s c r a c t i v e ’ , ’ on ’ ) ;
model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ sur f1 ’ ) . s e t ( ’ descr ’ , ’View o f e r ror ’ ) ;
model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ sur f1 ’ ) . s e t ( ’ t i t l e t y p e ’ , ’manual ’ ) ;
model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ sur f1 ’ ) . s e t ( ’ t i t l e ’ , ’ view o f e r ror ’ ) ;
model . r e s u l t ( ’ pg2 ’ ) . f e a t u r e ( ’ sur f1 ’ ) . f e a t u r e . c r e a t e ( ’ hght1 ’ , ’ Height ’ ) ;
model . r e s u l t ( ’ pg2 ’ ) . run ;
model . r e s u l t . numerica l . c r e a t e ( ’ int1 ’ , ’ IntSur face ’ ) ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . s e t ( ’ expr ’ , ’ ( ( ( s q r t ( 3 ) / ( p i ∗ . 0 0 2 ∗ 1 . 5 ^ 2 ) ) . . . \ \
. . . ∗ exp ((−2∗(3∗(( x/1)^2)−3∗(x/2)∗y+y^2))/(0 .002∗1 .5) ) ) −u )^2 ’ ) ;
model . r e s u l t . t ab l e . c r e a t e ( ’ tb l1 ’ , ’ Table ’ ) ;
model . r e s u l t . t ab l e ( ’ tb l1 ’ ) . comments ( ’ Sur face I n t e g r a t i on 1 . . . . \ \
. . . ( ( ( ( s q r t ( 3 ) / ( p i ∗ . 0 0 2 ∗ 1 . 5^ 2 ) ) ∗ . . . \ \
. . . exp ((−2∗(3∗(( x/1)^2)−3∗(x/2)∗y+y^2))/(0 .002∗1 .5) ) ) −u )^2 ) ’ ) ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . s e t ( ’ tab le ’ , ’ tb l1 ’ ) ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . s e tRe su l t ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . s e l e c t i o n . a l l ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . s e t ( ’ d e s c r a c t i v e ’ , ’ on ’ ) ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . s e t ( ’ descr ’ , ’ Error ’ ) ;
model . r e s u l t . t ab l e . c r e a t e ( ’ tb l2 ’ , ’ Table ’ ) ;
model . r e s u l t . t ab l e ( ’ tb l2 ’ ) . comments ( ’ Sur face I n t e g r a t i on 1 . . . \ \
. . . ( ( ( ( s q r t ( 3 ) / ( p i ∗ . 0 0 2 ∗ 1 . 5^ 2 ) ) ∗ . . . \ \
. . . exp ((−2∗(3∗(( x/1)^2)−3∗(x/2)∗y+y^2))/(0 .002∗1 .5) ) ) −u )^2 ) ’ ) ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . s e t ( ’ tab le ’ , ’ tb l2 ’ ) ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . s e tRe su l t ;
e=model . r e s u l t . numerica l ( ’ int1 ’ ) . getReal ( ) ;
i f ( n r e f > 0)
model . mesh ( ’mesh1 ’ ) . f e a t u r e . c r e a t e ( ’ r e f1 ’ , ’ Ref ine ’ ) ;
model . mesh ( ’mesh1 ’ ) . f e a t u r e ( ’ r e f1 ’ ) . s e t ( ’ numrefine ’ , n r e f ) ;
model . mesh ( ’mesh1 ’ ) . run ;
model . mesh ( ’mesh1 ’ ) . f e a t u r e . c r e a t e ( ’ r e f2 ’ , ’ Ref ine ’ ) ;
model . mesh ( ’mesh1 ’ ) . f e a t u r e ( ’ r e f2 ’ ) . s e t ( ’ boxcoord ’ , ’ on ’ ) ;
model . mesh ( ’mesh1 ’ ) . f e a t u r e ( ’ r e f2 ’ ) . s e t ( ’ numrefine ’ , n r e f ) ;
model . mesh ( ’mesh1 ’ ) . f e a t u r e ( ’ r e f2 ’ ) . s e t ( ’ xmin ’ , ’ −0 .5 ’ ) ;
model . mesh ( ’mesh1 ’ ) . f e a t u r e ( ’ r e f2 ’ ) . s e t ( ’ xmax ’ , ’ 0 . 5 ’ ) ;
model . mesh ( ’mesh1 ’ ) . f e a t u r e ( ’ r e f2 ’ ) . s e t ( ’ ymin ’ , ’ −0 .5 ’ ) ;
model . mesh ( ’mesh1 ’ ) . f e a t u r e ( ’ r e f2 ’ ) . s e t ( ’ ymax ’ , ’ 0 . 5 ’ ) ;
model . mesh ( ’mesh1 ’ ) . run ;

model . s o l ( ’ so l1 ’ ) . study ( ’ std1 ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e . remove ( ’ s1 ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e . remove ( ’ v1 ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e . remove ( ’ st1 ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e . c r e a t e ( ’ st1 ’ , ’ StudyStep ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ st1 ’ ) . s e t ( ’ study ’ , ’ std1 ’ ) ;
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model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ st1 ’ ) . s e t ( ’ studystep ’ , ’ s tat ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e . c r e a t e ( ’ v1 ’ , ’ Var iab les ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ v1 ’ ) . s e t ( ’ cont ro l ’ , ’ s tat ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e . c r e a t e ( ’ s1 ’ , ’ Stat ionary ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ s1 ’ ) . f e a t u r e . c r e a t e ( ’ fc1 ’ , ’ FullyCoupled ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ s1 ’ ) . f e a t u r e ( ’ fc1 ’ ) . s e t ( ’ l i n s o l v e r ’ , ’ dDef ’ ) ;
model . s o l ( ’ so l1 ’ ) . f e a t u r e ( ’ s1 ’ ) . f e a t u r e . remove ( ’ fcDef ’ ) ;
model . s o l ( ’ so l1 ’ ) . attach ( ’ std1 ’ ) ;
model . s o l ( ’ so l1 ’ ) . runAl l ;

model . r e s u l t ( ’ pg1 ’ ) . run ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . s e t ( ’ tab le ’ , ’ tb l2 ’ ) ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . appendResult ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . s e t ( ’ tab le ’ , ’ tb l2 ’ ) ;
model . r e s u l t . numerica l ( ’ int1 ’ ) . appendResult ;
e=model . r e s u l t . numerica l ( ’ int1 ’ ) . getReal ( ) ;
end
xmi = model . s o l ( ’ so l1 ’ ) . xmeshInfo ;
nDofs = xmi . nDofs ;
nElem = model . mesh ( ’mesh1 ’ ) . getNumElem ;
nVertex = model . mesh ( ’mesh1 ’ ) . getNumVertex ;
f i g u r e ;
mphplot (model , ’ pg1 ’ )
f i l ename = [ ’ model_p ’ , i n t 2 s t r (p ) , ’_r ’ , i n t 2 s t r ( n r e f ) , ’ _sol ’ , ’ . jpg ’ ] ;
p r i n t ( ’−djpeg100 ’ , f i l ename ) ;
f i g u r e ;
mphplot (model , ’ pg2 ’ )
f i l ename = [ ’ model_p ’ , i n t 2 s t r (p ) , ’_r ’ , i n t 2 s t r ( n r e f ) , ’ _err ’ , ’ . jpg ’ ] ;
p r i n t ( ’−djpeg100 ’ , f i l ename ) ;
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