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Abstract

The classical diffusion approximation to the linear Boltazmann transport
equation is known to be accurate if the underlying physical system is (i)
optically thick and (ii) scattering dominated. This approximation has been
mathematically justified by an asymptotic analysis having a scaling that is
consistent with these two conditions. Also the simplified PN (SPN ) equation
has been shown to be higher-order asymptotic correction to the diffusion
equation for the same class of the physical problems. In this study, we alter
the asymptotic scaling that yields the standard diffusion and (SPN ), N =
1, 2 approximation to obtained modified diffusion and (SPN ), N = 1, 2 ap-
proximation. A successful study in this direction yields approximations that
can be significantely more accurate for deep penetration problems, which are
not scattering-dominated and hence we skip assumption (ii) that is required
in classical approximation. This theoratical approach is valuable in madical
physics, in the study of forward-peaked (convection-dominated, convection
diffusion) radiation beams penetrating malignant cancer tumors.
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Introduction

In this thesis, we relay on an article by E. Larsen [1], where the asymp-
totic analysis is used to generate alternate forms of the SPN equations, and
derive SP1 and SP2 approximations. The diffusion and SPN (N = 1, 2, 3)
approximations are extensively used in the neutron and photon transport
problems which occur in the Nuclear Engineering field [1].
The simplified PN (SPN ) method was developed by E. Gelbard[18]-[20],
where computer resources were used to solve 3 −D diffusion problems.
For the past 50 years, spherical harmonic mathodes are considered as a stan-
dard approximation techniques to the transport equation, see [13]. Gelbard
considered a very old method as a simplification of the spherical harmon-
ics method: the simplified PN or SPN method. 1960, Gelbard presented a
simplification to the full spherical harmonics method that greatly reduced
the number of unknowns, and also provided an analysis when the method
was equivalent to the full PN equations, see [3], [4], [5]. The PN equations
in slab geometry can be written as a system of 1-D diffusion equations as
illustrated by the Gelbard’s derivation but this is not possible in general
geometry. It was by the formation of writing these 1-D equations in a 3−D
form that go along with Gelbard’s formal derivation of the simplified PN or
SPN equations.
The SPN equations were expressed as higher-order asymptotic corrections
to the diffusion approximation for the same physical type of problems in late
1990’s. In 1993 Pomraning and Larsen et al independentely, showed that
SPN equations as asymptotic correction to the standard diffusion theory.
In these studies, one can say that Gelberd’s equation helped to drive the
asymptotic equation.
Recently, the SPN equations accuracy are considered, and these are come up
for the transport equation with the higher-order asymptotic approximation
in the physical system where P1 (conventional equations) is the leading order
approximation, see [10], [13], [17]. We investigate the asymptotic analysis
to drive the diffusion and SPN approximations. To this approach, we have
used Boltzmann transport equation with dominating asymptotic scaling col-
lision term of order 0(ǫ−1), leakage term of order 0(1), which absorption and
source term of small order 0(ǫ), where ǫ is a small dimensionless parameter.
These scaling is valid for a physical system with the two above mentioned
conditions (i) optically thick and (ii) scattering dominated.
By an insignificant change in the scaling or by the general asymptotic scal-
ing we can derived the modified diffusion and SPN approximations which
is different from the standard diffusion and SPN equations. For more accu-
rate approximations the transport elements of physics are important. The
goal of this study is to show that the modified diffusion and SPN (SP1, SP2)
approximations will be significantly more accurate for the deep penetration
problems. Our fours in the asymptotic analysis is to steady state, 3 − D

anisotropically scattering particle transport in homogeneous, monoenergetic,
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optically thick medium. This study is testing the theoretical foundations
of modified diffusion and SPN (SP1, SP2) approximations equations of the
standard notation of the Boltzmann transport equations.
In Section 1, the modified diffusion equation is derived using the standard
notation of Boltzmann transport equation. Here, we study the asymptotic
scaling and expand the solution in term of the small dimensionless parame-
ter (ǫ), and we also get the standard diffusion equation.
In Section 2, we use alternate asymptotic analysis and expand the Boltz-
mann transport problem in terms of small ǫ that yields the same modified
diffusion equation as in Section 1.
Section 3 is devoted to calcultes of the exponential decay rate and try to
find the exact information about the solution and a justification about the
fact that the standard diffusion equation have a different result than that of
the transport equation.
In Section 4, asymptotic derivation of the P1 or SP1 and SP2 equations are
derived. This part is based on an asymptotic expansion of the Boltzmann
transport equation using the asymptotic scaling defined in Section 1.

1. Asymptotic expansion of angular flux

We consider the linear Boltazmann transport equation in three dimension
given by
(1.1)

Ω · ▽xψ(x,Ω) + σTψ(x,Ω) =

∫

s2

σs(Ω · Ω′
)ψ(x,Ω

′
)dΩ

′
+
Q(x)

4π
, x ∈ V.

ψ(x,Ω) = ψb(x,Ω), x ∈ ∂V , Ω·n<0,

where σT is the total cross section and σs is the scattering cross section.
Throughout this study, we shall use the following notation:

ψ(x,Ω) := angular flux (intensity).

Ω := (
√

1 − µ2 cos γ,
√

1 − µ2 sin γ, µ) = (Ω1,Ω2,Ω3), Ω ∈S2,

for −1 ≤ µ ≤ 1 , 0 ≤ γ ≤ 2π |Ω| = 1.

x := (x1, x2, x3) position.

σt := σt(x,Ω) transport cross section.

σT := σT (x,Ω) the total cross section.

σa := σa(x,Ω) absorption cross section.
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σs := σs(x,Ω) scattering cross section.

Q(x) := Isotropic internal source.

The right hand side of equation (1.1) is called the scattering term. Using
the Legender polynomials, we may expand σs as

(1.2) σs(Ω · Ω′
) =

∞
∑

l=0

2l + 1

4π
σs,lPl(Ω · Ω′

).

Here, by addition formula for Legender polynomials for the expansion of the
surface harmonic components, the lth Legender polynomial on the interval
I = (−1, 1) is defined as:

Pl(µ) = 1
2ll!

( d
dµ)l

[

(µ2 − 1)l
]

, for l ≥ 0.

The Legender polynomials {Pl} are orthogonal in the sence that:

∫ 1

−1
Pl(µ)Pk(µ)dµ =

2

2l + 1
δlk.

Where δlk is the Dirac delta function:

δlk = 0, for l 6= k and δkk = 1.

A square integrable function f(µ), defined on the interval I = [−1, 1], can
be expanded in the Legender polynomial as

f(µ) =

∞
∑

l=0

2l + 1

2
flPl(µ), for (−1 ≤ µ ≤ 1), µ ∈ I.

Where

fl =

∫ 1

−1
Pl(µ)f(µ0)d(µ),

as the Legender coefficient of f .
To proced, we define, for l ≥ 0, 0 ≤ k ≤ l, the weighted derivatives of the Pl

given by,

Pl,k(µ) = (1 − µ2)k/2d
kPl(µ)

dµk
=

(1 − µ2)k/2

2ll!

dl+k

dµl+k
·
(

(µ2 − 1)l
)

.

Next we recall the spherical harmonic functions given by;

Yl,k(Ω) = alk · Pl,k(µ)eikγ , for l ≥ 0, 0 ≤ k ≤ l.
5



RIZWANA KAUSAR

Where

al,k = (−1)
k+|k|

2

[2l + 1

4π

(l − |k|)!
(l + |k|)!

]1/2
.

With, the spherical harmonic function of order 0 given by

Y0,0(Ω) = a0,0 = (
1

4π
)1/2.

In this way we can find the spherical harmonic function of order 1, 2, 3, · · ·
We shall also need the complex conjugate of spherical harmonic functions
denoted by Y ∗

nm. It is known that Ylk(Ω) and Y ∗
nm(Ω) are orthonormal and

satisfy,



















∫

S2

Ylk(Ω)Y ∗
nm(Ω)dΩ = δlnδkm.

δln · δmk = 0 if either l 6= n or m 6= k, or
δln · δmk = 0 if both l 6= n and m 6= k.

Now, we define,

σ̄s,l(x,Ω) = (σ̂s,l) + ζlσ̂a, for l ≥ 0,

and consider the operator κ0 represanting the difference between collision
and scattering that is defined as

(1.3) κ0ψ(Ω) = σ̄s,0ψ(Ω) −
∞

∑

l=0

2l + 1

4π
σ̄s,l

∫

s2

Pl(Ω.Ω
′
)ψ(Ω

′
)dΩ

′
.

Using the addition theorem and orthogonality of the spherical harmonic
functions, as we have defined above, we obtain

(1.4)
κ0Yl,k(Ω) = (σ̄s,0 − σ̄s,l)Yl,k(Ω).
.

So, the spherical harmonic fnctions Yl,k(Ω) are the eigenfunctions of κ0, with
the eigenvalues (σ̄s,0 − σ̄s,l).

Now we assume that the physical system satisfies the following conditions:
C1) The physically system is optically thick.
C2) The typical length scale for the solution is 0(1), and typically length
scale for the solution is a distance in which ψ varies by amount 0(1) .
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The physical system has mean free path of magnitude σ−1
T and total cross

section is equal to the sum of the absorpation and scattering cross sections

(1.5) σT (x,Ω) = σa(x,Ω) + σs,0(x,Ω).

The angular flux, cross sections and internal source are continous and vary
spatially by at most, a small amount over the distance of mean free path.
We assume C1 and C2, further we assume anisotropic scattering: i.e, the
scattering has different properties in different direction that’s why it is not
forward peaked, and we have the following relation between the Legendre
coefficients of σs:s expansion,

σs,l ≤ σs,0 < 1.

Here, consider the asymptotic scaling for the angular flux defined as [6],

(1.6)



















σT (x,Ω) = σ̂T (x,Ω)
ǫ .

σa(x,Ω) = ǫσ̂a(x,Ω).

σs,l(x,Ω) =
σ̂s,l(x,Ω)

ǫ , for l ≥ 0.

Q(x)=ǫQ̂(x).

σT (x,Ω) , σa(x,Ω), Q(x) are 0(1) and ǫ is a small and dimensionless param-
eter defined by

ǫ = 1
KL.

Where L= mean free path , and K= Typical length scale for the flux ψ(x,Ω).
The collision rate is grater than absorpation. So, the infinite medium solu-
tion using asymptotic scaling is defined by, see [1];

ψ∞(x,Ω) = 1
4π (σT − σs,0)

−1Q(x).

σs,0(x,Ω) =
σ̂s,0(x,Ω)

ǫ , for l ≥ 0.

σT (x,Ω) = σ̂T (x,Ω)
ǫ .

ψ∞(x,Ω) = 1
4π [1ǫ (σ̂T − σ̂s,0)]

−1(ǫQ̂(x)).

σa = σT − σs,0.

If we use asymptotic scaling, then we get

ǫσ̂a = (1
ǫ σ̂T ) − (1

ǫ )σ̂s,0, for l ≥ 0.

ψ∞(x,Ω) = 1
4π ǫσ̂

−1
a (ǫQ̂(x)).

σa = ǫσ̂a, Q(x) = ǫQ̂(x).
7



RIZWANA KAUSAR

Where as before the asymptotic scaling, we get the infinity medium solution

(1.7) ψ∞(x,Ω) = Q(x)
4πσa

.

The physical system is optically thick, i.e, σT = 0(1
ǫ ), σa = 0(ǫ), Q(x) = 0(ǫ)

and infinite medium solution is 0(1). We insert the aymptotic scaling (1.6)
and equation(1.2) into equation (1.1), to obtain,

(1.8)











Ω · ▽xψ(x,Ω) + ǫ−1σ̂Tψ(x,Ω) =
∞

∑

l=0

2l + 1

4π
ǫ−1σ̂s,l

∫

S2

Pl(Ω · Ω′
)ψ(x,Ω

′
)dΩ

′
+ ǫ−1Q̂(x).

Using asymptotic scaling, we can rewrite the equation (1.5) as,

(1.9) σs,0(x,Ω) = σ̂T (x,Ω)
ǫ − ǫσ̂a(x,Ω),

which is of order 0(1
ǫ ) and is consistant with the scaling of σs,l, for l ≥ 1 as

defined in equation (1.6). We may rewrite equation (1.9) as

(1.10) σs,0(x,Ω) =
σ̂s,0(x,Ω)

ǫ .

Hence using also equations (1.5) and (1.10) we get

(1.11) σT (x,Ω) =
σ̂s,0(x,Ω)

ǫ + ǫσ̂a(x,Ω).

By using these asymptotic scalings and the above results we can describ the
general asymptotic scaling as,

(1.12)











σs,l(x,Ω) =
σ̂s,l(x,Ω)+ζlσ̂a(x,Ω)

ǫ − ǫζlσ̂a(x,Ω) , for l ≥ 0.

σT (x,Ω) =
σ̂s,0(x,Ω)+ζ0σ̂a(x,Ω)

ǫ + ǫ(1 − ζ0)σ̂a(x,Ω) .

Here, σs,l(x,Ω) and σT (x,Ω) are 0(1) and ζl are arbitrary constants.
The (1.12) are special cases of asymptotic scaling as defined in (1.6). Here
σa(x,Ω), Q(x) has the same scaling as in (1.6). We shall use this general as-
ymptotic scaling and (1.6) in the standard notation of Boltazmann transport
equation to get the modified diffusion equation. The arbitrary constants of
this general asymptotic scaling defined as follow:
If: ζ0 = 1 and ζl = 0, for l ≥ 1, then, according to general asmptotic
scaling, we get the standard scalings defined previously in equations (1.6)
and (1.10). If: ζl = 0, for l ≥ 0. then, by the general asmptotic scaling,
we get equations (1.6),(1.10) and (1.11) and we have all arbitary constants
of order 0(1). Now, here we have two cases for optically thick physical sys-
tem: one is subcritical case and the other one characterises near critical case
[6,7]. In subcritical case the largest eigenvalue is less then 1 and in the near
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critical case λ0(x) is equal to 1, thus φ0 = φ0(Ω), Now

(1.13) κ0φ0(Ω) = φ0(Ω),

where φ0(Ω) is the eigenfunction of κ0 with eigenvalue is 1. As we defined
before through the equations (1.3) and (1.4), zero eigenvalues are leading
to,

κ0φ0(Ω) = 0.

When subcritical and near critical condition are satisfied, we can write ψ in
powers series expansion in ǫ as

(1.14) ψ(x,Ω) =
∞
∑

m=0

ǫmψ(x,Ω).

Now inserting the (1.6) and (1.12) into the equation (1.1), we get

(1.15)



























Ω ▽x ψ(x,Ω) +
( σ̄s,0(x,Ω)

ǫ
+ (1 − ζ0)ǫσ̂a

)

ψ(x,Ω) =
∞
∑

l=0

2l + 1

4π

( σ̄s,l(x,Ω)

ǫ
− (ζlǫσ̂a)

)

∫

S2

Pl(Ω · Ω′
)ψ(x,Ω

′
)dΩ

′

+ ǫQ̂(x)
4π .

where

σ̄s,l(x,Ω) = σ̂s,l + ζlσ̂a, for l ≥ 0.

Inserting the (1.14) into (1.15) and identify the coefficients of equal powers
of ǫ, Then we this obtain for m ≥ 0,

(1.16)















































σ̄s,0ψm(x,Ω) −
∞

∑

l=0

2l + 1

4π
σ̄s,l

∫

S2

Pl(Ω,Ω
′
)ψm(x,Ω

′
)dΩ

′
=

−Ω▽xψm−1(x,Ω) − (1 − ζ0)σ̂aψm−2(x,Ω)

−σ̂a

∞
∑

l=0

2l + 1

4π
ζl

∫

S2

Pl(Ω.Ω
′
)ψm−2(x,Ω

′
)dΩ

′
+ δm,2

Q̂(x)

4π
.

If m = 0, then

(1.17) σ̄s,0ψ0(x,Ω) −
∞
∑

l=0

2l + 1

4π
σ̄s,l

∫

S2

Pl(Ω,Ω
′
)ψ0(x,Ω

′
)dΩ

′
= 0,

where we have used ψ−2 = ψ−1 = 0. Equation (1.17) has the general solu-
tion by the spherical harmonic functions properties and equations (1.3) and
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(1.4) are defined previously. If for an equation of the form

(1.18) κ0ψ = 0.

Then, we have only the general solution

(1.19) ψ(Ω) = AY0,0(Ω) = A · 1√
4π

= A
√

4π · 1
4π = C · 1

4π .

where C is a constant. So by (1.18) and (1.19), we get the general solution
of (1.17) as:

(1.20) ψ0(x,Ω) = φ0(x)
4π .

where φ0(x) is arbitrary. For m = 1 using (1.16) and (1.20), we get:

(1.21)



















σ̄s,0(x,Ω)ψ1(x,Ω) −
∞
∑

l=0

2l + 1

4π
σ̄s,l

∫

S2

Pl(Ω,Ω
′
)ψ1(x,Ω

′
)dΩ

′
=

−Ω▽x
φ0(x)
4π .

Using the equation (1.13), we have the general solution in the form

(1.22) ψ(Ω) = C
4π + ( 1

σ̂t
)(Ω).

Where σ̂t = σ̄s,0 − σ̄s,1. Then, the general solution of the equation (1.21)
will be of the form

(1.23) ψ1(x,Ω) = φ1

4π − ( 1
3σ̂t

)Ω · ▽x
φ0(x)
4π .

Where φ1 is arbitary. If we put m = 2 in equation (1.16) and also use the
results for m = 0 and m = 1, then by (1.20) and (1.23), we get

(1.24)



























σ̄s,0ψ2(x,Ω) −
∞

∑

l=0

2l + 1

4π
σ̄s,l

∫

S2

Pl(Ω,Ω
′
)ψ2(x,Ω

′
)dΩ

′
=

−Ω · ▽x

[φ1

4π
−

( 1

3σ̂t
Ω

)

▽x (
φ0

4π
)
]

− σ̂a
φ0(x)

4π
+
Q̂(x)

4π
.

We denote −Ω ▽x [φ1

4π − 1
3σ̂t

Ω ▽x (φ0

4π )], by J .

The resultant equation (1.24) , has a solvability condition, because the right
hand side of this equation vanishes after taking the integration over the unit
sphere (S2). Also using the identities from J , as those introduced in equa-
tion (1.22), we get
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(1.25)



















∫

S2

Ω · ▽x(φ1(x))dΩ = 0.

∫

S2

Ω · ▽x
1

3σ̂t
Ω · ▽x(φ1(x))dΩ = 4π▽x

( 1

3σ̂t

)

▽ φ0(x).

Then (1.25) and (1.24), yield

(1.26) 0=▽x

( 1

3σ̂t
▽x

)

φ0(x) − σ̂aφ0(x) + Q̂(x).

Multiplying (1.26) by ǫ, also using general aymptotic scaling defined in
(1.13), and rearrange the terms we get the equation

(1.27) −▽x

( ǫ

3σ̂t
▽x

)

φ0(x) − ǫσ̂aφ0(x) = ǫQ̂(x).

Now using the scaling (1.6) and (1.12) and then in terms of non-asymptotic
scaling this is written as:

(1.28) −▽x

( 1

3(σt + ηdσa)
▽x

)

φ0(x) − σaφ0(x) = Q(x).

Where ηd is a diffusion parameter and if it is equal to zero in (1.26) then,
we get the convential diffusion equation or standard diffusion equation.

(1.29) −▽x (Dd▽x)φ0(x) − σaφ0(x) = Q(x).

Where Dd is a diffusion coeffients of order 0(ǫ3). The equation (1.28) is
known as the modified diffusion equation, which is also called as P1 equa-
tion.

2. Asymptotic Expansion of Boltazmann Equation

We can find simplified PN equations by expanding the linear Boltazmann
transport equation, instead of its solution, see in [14],[18]. For this approach,
we take the standard notation of linear Boltazmann transport equation (1.1)
togather with (1.2):

(2.1)

Ω · ▽xψ(x,Ω) + σTψ(x,Ω) =

∞
∑

l=0

2l + 1

4π
σs,l

∫

s2

Pl(Ω · Ω′
)×

ψ(x,Ω
′
)dΩ

′
+ Q(x)

4π , x ∈ V.
11
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We can also write the equation in asymptotic scaling forms as defined pre-
viously in equation (1.4) and get (2.1) reformulated as

(2.2)

Ω · ▽xψ(x,Ω) + σ̂T (x,Ω)
ǫ ψ(x,Ω) =

∞
∑

l=0

2l + 1

4π
· σ̂s,l(x,Ω)

ǫ
×

∫

s2

Pl(Ω · Ω′
)ψ(x,Ω

′
)dΩ

′
+
ǫQ̂(x)

4π
.

Now, we define the scalr flux and current as

(2.3) φ0(x) =

∫

s2

ψ(x,Ω)dΩ,

and

(2.4) φ1(x) =

∫

s2

Ωψ(x,Ω)dΩ,

respectively. Let now

(2.5) Pψ(x,Ω) = 1
4π

∫

s2

ψ(x,Ω
′
)dΩ′.

than, applying the operators P and I − P on equation (2.2), we get the
balance equation:

(2.6) ▽xφ1(x) +
1

ǫ

[

σ̂T (x,Ω) − σ̂s,0(x,Ω)
]

φ0(x) = ǫQ̂(x)

and

(2.7)

(I − P )Ω ▽x ψ(x,Ω) +
σ̂T (x,Ω)

ǫ

(

ψ(x,Ω) − 1

4π
φ0(x)

)

=

1

ǫ

∫

s2

(

∞
∑

l=1

2l + 1

4π
σ̂s,lPl(Ω · Ω′

)
)

ψ(x,Ω)dΩ
′
.

If we define the Laplace operator L by

(2.8) Lψ(x,Ω) = σ̂Tψ(x,Ω) −
∫

s2

∞
∑

l=1

2l + 1

4π
σ̂s,lPl(Ω · Ω′

)ψ(x,Ω
′
)dΩ

′

Then inserting (2.8) in (2.7), we get

(2.9) Lψ(x,Ω) + ǫ · (I − P )Ω ▽x ψ(x,Ω) = σT

4π φ0(x).

Here, L is the same as the collision operator that have O(1
ǫ ) terms in equa-

tion (2.2), where the summ over L does not include l = 0 term of the
scattering operator.
Thus, if scattering is isotropic L reduces to a simple multiplicative operator.

12
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Here, L−1 exists and is of order 0(1). Thus equation (2.9) can be rewriten as:

[I+ǫL−1(I − P )Ω · ▽x]ψ(x,Ω) = 1
4πφ0(x),

i.e.

ψ(x,Ω) + ▽xψ(x,Ω)
(

ǫL−1(I − P )Ω
)

=
1

4π
φ0(x),

and hence

(2.10) ψ(x,Ω) = [I + ǫL−1(I − P )Ω · ▽x]−1φ0(x)

4π
.

This equation (2.10) inserted into te current equation (2.4), implies that

(2.11) φ1(x) =
1

4π

∫

s2

Ω[I + ǫL−1(I − P )Ω · ▽x]−1dΩφ0(x).

Hence, using equation (2.11) in the Balance equation (2.6), we end up with

(2.12)



















( 1

4π

)

·
∫

s2

Ω · ▽x[I + ǫL−1(I − P )Ω · ▽x]−1dΩφ0(x)

+
1

ǫ
(σ̂T − σ̂s,0)φ0 = ǫQ̂(x).

Equations (2.6) and (2.11) make an exact system of equations for the current
φ1 and the scalar flux φ0. However, equation (2.12) can be more simplified
for immediate use, so we approximate it by expanding for ǫ << 1 and the
result is then

φ1 ≈
∞

∑

l=0

ǫlLlφ(x),

where the oprator L is defied by

Lφ(x) = 1
4π

∫

s2

Ω · ▽x[I + ǫL−1(I − P )Ω · ▽x]−1φ0(x)dΩ.

(2.13) Lφ(x) =

∞
∑

l=0

(−1)l

4π

∫

s2

Ω · ▽x[L−1(I − P )Ω · ▽x]lφ0(x)dΩ,

and

(2.14) Lφ(x) =

∞
∑

l=0

(−1)lLlφ0(x),

where

Ll =
1

4π

∫

s2

Ω · ▽x[L
−1(I − P )Ω · ▽x]ldΩ.

The first few of the operators Ll can be easily evaluated using the equa-
tion (2.14).

13
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Now, we define some spherical harmonic functions which we shall need to
proceed our expansion:

A constant is proportional to the spherical harmonic function of order 0.

For 1 ≤ i ≤ 3, each of the 3 funtions,

(2.15) ωi ≡ Ωi,

is a linear combination of spherical harmonic funtions of order 1.

For 1 ≤ i, j ≤ 3, each of these 9 functions

(2.16) ωi,j ≡ ΩiΩj − 1
3δi,j .

is a linear combination of spherical harmonic functions of order 2.

For 1 ≤ i, j, k ≤ 3, each of the 27 functions below

(2.17) ωi,j,k ≡ ΩiΩjΩk − 1
5(Ωiδj,k + Ωjδki + Ωkδi,j),

is a linear combination of sphrical harmonic fuctions of order 3.
Therefore, with L defined by the equation (2.9) L−1 can be written as

(2.18)







L−1(I − P )ωi = (σ̂T − σ̂s,1)
−1ωi.

L−1(I − P )ωi,j = (σ̂T − σ̂s,2)
−1ωi,j.

L−1(I − P )ωi,j,k = (σ̂T − σ̂s,3)
−1ωi,j,k.

Equation’s ((2.15)-(2.18)) are used to derive the following results.
Let

(2.19)























Ω · ▽ =

3
∑

i=1

Ωi▽i.

Ω · ▽ =

3
∑

i=1

ωi▽i. (ωi ≡ Ωi)

Then,

(2.20) L−1(I − P )Ω · ▽ =

3
∑

i=1

(σ̂T − σ̂s,1)
−1ωii.

14
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













































Ω · ▽(L−1(I − P )Ω · ▽) =

3
∑

i,j=1

(Ωj▽j)((σ̂T − σ̂s,1)
−1ωi▽i).

Ω · ▽(L−1(I − P )Ω · ▽) =

3
∑

i,j=1

(Ωjωi)(▽j(σ̂T − σ̂s,1)
−1▽i).

Ω · ▽(L−1(I − P )Ω · ▽) =
3

∑

i=j=1

(ωi,j +
1

3
δi,j)(▽j(σ̂T − σ̂s,1)

−1▽i).

(2.21)











Ω · ▽(L−1(I − P )Ω · ▽) =

3
∑

i=j=1

Ωi,j(▽j(σ̂T − σ̂s,1)
−1▽i)+

(▽ · 1
3(σ̂T − σ̂s,1)

−1▽).

Using equations (2.19)-(2.21), in equation (2.13) , we get,

(2.22) L0 = 1
4π

∞
∑

l=0

∫

s2

Ω · ▽dΩ = 0.

(2.23) L1 =
1

4π

∫

s2

Ω · ▽(L−1(I − P )Ω · ▽)dΩ.

(2.24) L1 = ▽ · 1

3
(σ̂T − σ̂s,1)

−1▽.

Here, we may say that σT − σs,1 is equal to the transport cross section and
defined by

σt = σT − σs,1.

σ̂t

ǫ
=
σ̂T

ǫ
− σ̂s,1

ǫ
.

Then multiplying by ǫ, we get equation (2.24) in the following form:

(2.25) L1 = ▽ · 1

3σt
▽.

Equations (2.22) and (2.24) are exact for homogeneous and heterogeneous
media. These equation introduced in equation (2.13), togather with asymp-
totic scalings defined in (1.12) and (1.6), and inserted in equation (2.12),
gives:

−▽ ·
( 1

3(σt + ηdσa)
▽

)

φ0(x) +
1

ǫ
(σ̂T − σ̂s,0)φ0(x) = ǫQ̂(x).

15
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(2.26) −▽ ·
( 1

3(σt + ηdσa)
▽

)

φ0(x) + (ǫσ̂a)φ0(x) = ǫQ̂(x) + 0(ǫ3).

Without aymptotic scaling this equation would be in the form

(2.27) −▽ ·
( 1

3(σt + ηdσa)
▽

)

φ0(x) + σaφ0(x) = Q(x) + 0(ǫ3).

Omitting 0(ǫ3) term, the equation (2.27) is the same as the modified dif-
fusion equation approximation that is find in Section 1. But here we get
this equation by the asymptotic expansion of the Boltazmann transport
equation. The standard diffusion approximation is obtained if diffusion pa-
rameter ηd = 0:

(2.28) −▽ (Dd▽)φ0(x) + σaφ0(x) = Q(x),

where Dd = 1
3σt

is a diffusion coefficient in standard diffusion equation.

Equation (2.28) is the same as the modified diffusion result which we previ-
ously drived in Section 1.
In next Section, we shell disscuse about exponential decay rate, in which
calculating the exponential decay rate of the solution we try to find exact
information about the solution and also that the standard diffusion equation
has a different solution than that of the transport equation.

3. Exponential Decay Rate

We consider the planar geometry tranport eqaution and if we also assume
linear anisotropic scattering, then the transport equation given in the plane
geometry is defined by

(3.1)















µ▽x ·ψ(x, µ) + σTψ(x, µ) =
σs,0

2

∫ 1

−1
ψ(x, µ

′
)dµ

′
+

3σs,1

2 µ

∫ 1

−1
µ

′
ψ(x, µ′)dµ′.

Equation (3.1) has a solution that osccilates exponentially in space [19 , 20]
and is given by

(3.2) ψ(x, µ) = Cb(µ)e−σT Ntrx.

Where C and Ntr are constants, b(µ) is unknown and normalized as:

(3.3) b0 =

∫ 1

−1
b(µ

′
)dµ

′
= 1.

16
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Inserting (3.2) into the equation (3.1), we get























−µCb(µ)NtrσT e
−σT Ntrx + σTCb(µ)e−σT Ntrx =

σs,0

2

∫ 1

−1
Cb(µ

′
)e−σT Ntrxdµ

′
+

3σs,1

2
µ

∫ 1

−1
Cµ

′
b(µ

′
)e−σT Ntrxdµ

′
.

(3.4) −µb(µ)Ntr + b(µ) = 1
2

σs,0

σT

∫ 1

−1
b(µ

′
)dµ

′
+

3

2

σs,1

σT
µ

∫ 1

−1
µ

′
b(µ

′
)dµ

′
.

Here, we defined some quantities, which we have use in what follows:

(3.5) b1 =

∫ 1

−1
µ

′
b(µ

′
)dµ

′
.

(3.6) s =
σs,0

σT
=scattering ratio.

(3.7) µ̄0 =
σs,1

σT
=mean scattering ratio.

Inserting (3.6) and (3.7) in the equation (3.4), we get

(-µNtr + 1)b(µ) = 1
2s

∫ 1

−1
b(µ

′
)dµ

′
+

3

2
µ̄0µ

∫ 1

−1
µ

′
b(µ

′
)dµ

′
.

Then, using (3.3) and (3.5) yields

(3.8) (−µNtr + 1)b(µ) =
1

2
s+

3

2
µ̄0µb1.

We integrate (3.8) over µ ∈ (−1, 1), to get

∫ 1

−1
b(µ)(−µNtr + 1)dµ =

1

2

∫ 1

−1
(s+ 3µ̄0µb1)dµ.

Performing this integration we have

(3.9) -Ntrb1 + 1 = s., b1 = 1−s
Ntr

.

Now, we insert the value of b1 from (3.9) into the equation (3.8), to obtain:

b(µ)(1 − µNtr) =
1

2

(

s+ 3µ̄0(
1 − s

Ntr
)µ

)

.

This gives

(3.10) b(µ) =
1

2
·
(s+ 3µ̄0(

1−s
Ntr

)µ)

(1 − µNtr)
.
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Here, we may state that equation (3.10) defines b(µ) in term of Ntr. By the
normalization relation (3.3), we have that,

1 =
1

2

∫ −1

−1

(s+ 3µ̄0(
1−s
Ntr

)µ)

(1 − µNtr)
× (1 + µNtr)

(1 + µNtr)
dµ.

In other words,

(3.11) 1=

∫ 1

0

(s+ 3µ̄0(1 − s)µ2)

(1 − µ2N2
tr)

dµ.

This is as dispersion law. Thus, the modified diffusion equation correspond-
ing to the equation (3.1) is given by:

(3.12) 1
3(σt)

· ▽2
xφ(x) + σaφ(x) = 0.

Where the transport cross section σt = σa,1 + ηdσa. if ηd = 0 then we have
a diffusion equation.
Equation (3.12) has the exponential solution defined as:

(3.13) φ(x) = Ce−σT Ndx.

Where using (3.13) Nd satisfies

(3.14) σa − σ2
T N2

d

3σt
= 0.

Using equations (3.5)-(3.7) into (3.14) for solving N2
d value, we obtained:

N2
d = 3

(

1 − σs,1

σT

)(

1 − σs,0

σT

)

+ 3
(

ηd +
σs,1

σT

)(

1 − σs,0

σT

)2
,

i.e.

(3.15) N2
d = 3(1 − µ̄0)(1 − s) + 3(ηd + µ̄0)(1 − s)2.

By the standard diffusion theory ηd = 0 and Nd does not satisfy (3.11) thus
Ntr 6= Nd.

So by the above result i.e. Ntr 6= Nd, we may say that the standard dif-

fuion equation has different exponential solution as compared to the trans-

port eqaution.

This is the main reason why the solutions of standard diffusion

eqaution for deep panetration shielding problems can be highly

inaccurate, which is a strong reason why it is not used in these

types of applications.
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The modified SP3 equations corresponding to equation (3.1), are given by

(3.16)















1
3σt

· ▽2
x(φ(x) + 2φ2(x)) + σaφ(x) = 0.

9

35(σT + ηsp3
σa)

· ▽2
xφ2(x) + σTφ2(x) =

4

5
σa(x).

The equations (3.16) have exponentially varying solutions respectively given
below:

(3.17)

{

φ(x) = Ce−σT Nsp3
x.

φ2(x) = Cβe−σT Nsp3
x.

Where C is a given constant. The exponentially varing solutions inserted
into the modified SP3 equations (3.16), and resultant equations, yields the
system of equations

(3.18)























( 1

3(1 − sµ̄0)

)

(1 + 2β) + (1 − c) = 0.

( 9N2
sp3

35[1 + ηsp3
(1 − s)]

+ 1
)

β =
2

5
(1 − s).

From the equation (3.18), we can determin the valuse of N2
sp3

,
where we put ηsp3

= 0, then we get the value of Nsp3
does not satisfy the

(3.11) and (3.15) thus Ntr 6= Nsp3
. So, this is the reason, why it does not

contain the exponential decay rate of solutions for the standard diffusion
and SP3 equations of Boltazmann transport equation and standard SP3

equations are not acurate for the deep penetration problems that are not
approximate Boltazmann equations.
The term Ntr is more important. If we take Nd = Ntr, Nsp3

= Ntr in modi-
fied diffusion equation (3.12) and modified SP3 equations (3.16), and solve
these equations for ηd, ηsp3

then we get the following resultant values:

σ2
TN

2
tr = 3σa,1σa + 3ηdσ

2
a.

This implies that

ηd =
σ2

T N2
tr

3σ2
a

− σa,1σa

σ2
a

.

(3.19) ηd = 1
σa

(

σ2
T

N2
tr

3σa
− σa,1

)

.

Here, ηsp3
is given by:

(3.20) ηsp3
=
σT

σa

[ 9N2
tr(σ

2
TN

2
tr − 3σaσa,1)

35[σT (σT + 4
5σa)N2

tr − 3σaσa,1]
− 1

]

.
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Using scattering ration (3.6) and mean scattering ration (3.7) in the equa-
tions (3.19) and (3.20), we get:

(3.21) ηd =
1

1 − s

( N2
tr

3(1 − s)
− (1 − µ̄0s)

)

.

(3.22) ηsp3
=

1

1 − s

[ 9N2
tr(N

2
tr − 3(1 − s)(1 − sµ̄0))

35[(1 + 4
5(1 − s))N2

tr − 3(1 − s)(1 − sµ̄0)]
− 1

]

.

Finally, we get the modified diffusion equation and modified SP3 equations
as:

(3.23) −▽x Dd,exp ▽ φ(x) + σaφ(x) = 0.

and

(3.24)











▽x
1

3σa,1
▽ (φ(x) + 2φ2(x)) + σaφ(x) = 0.

▽Dsp3,exp ▽ φ2(x) + σTφ2(x) =
2

5
σaφ(x).

Where Dd,exp and Dsp3,exp are diffusion and SP3 coefficients.
The modified diffusion equation (2.23) contains the first nonzero spatial
moment < x0φ > and Ntr. It does not contain the second nonzero spatial
moment < x2φ >. The modified SP3 (2.24) contains first three spatial mo-
ments which are < x0φ >, < x2φ > and < x4φ >, as well as Ntr, and does
not contain fourth nonzero spatial moment < x6φ >. We can also confirm
theorically that for the modfied diffusion and modified SP3 equations, the
parameters ηd and ηsp3

are of order one 0(1) as s→ 1 (E. W. Larsen, 2011).
Thus in this part, we have derived exponentially decay rate for modified
diffusion and modified SP3 equations that are defined in (3.23) and (3.24),
these are the special cases of modified asymptotic diffusion and SP3 equa-
tions which we have obtained previously.

4. Asymptotically Derived SP1 and SP2 Approximation

In this section, we shall derive the SP1 or P1 and SP2 approximation by
using the standard notation of Boltazmann transport equation and asymp-
totic scaling that were defined in Section 1, equation (1.6), see [10], [13].
Consider:

(4.1)

Ω · ▽xψ(x,Ω) + σ̂T

ǫ ψ(x,Ω) =
1

4π

( σ̂s,0

ǫ

)

∫

S2

ψ(x,Ω
′
)d2Ω

′
+ ǫ

Q̂(x)

4π
, x ∈ V .

Since

σs,0 = σT − σa,
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in asymptotic scaling

(4.2)
σ̂s,0

ǫ
=
σ̂T

ǫ
− ǫσ̂a.

Inserting (4.1) in (4.2), we get

(4.3)



















Ω · ▽xψ(x,Ω) +
σ̂T

ǫ
ψ(x,Ω) =

1

4π

( σ̂T

ǫ
− ǫσ̂a

)

∫

S2

ψ(x,Ω
′
)d2Ω

′
.

+
ǫQ̂(x)

4π
.

Multiplying equation (4.3) by ǫ
σ̂T

, we obtain

ǫ
σ̂T

Ω · ▽xψ(x,Ω) + ψ(x,Ω) = 1
4π

(

I − ǫ2 σ̂a

σ̂T

)

∫

S2

ψ(x,Ω
′
)d2Ω

′
+

1

4π
ǫ2
Q̂(x)

σ̂T
.

We may simplify the above relation as:

(4.4)
(

I +
ǫ

σ̂T
Ω · ▽x

)

ψ(x,Ω) =
1

4π

[(

1 − ǫ2
σ̂a

σ̂T

)

φ0 + ǫ2
Q̂(x)

σ̂T

]

.

Here, φ0 is the scalar flux which was defined in Section 2.

(4.5) ψ(x,Ω) =
(

I +
ǫ

σ̂T
Ω · ▽x

)−1 1

4π

[(

1 − ǫ2
σ̂a

σ̂T

)

φ0 + ǫ2
Q̂(x)

σ̂T

]

.

Integrating (4.5) over Ω and we get Peierls integral equation for the scalar
flux:

∫

S2

ψ(x,Ω)d2Ω =
[ 1

4π

∫

S2

(

I + Ω · ▽x
ǫ

σ̂T

)−1
d2Ω

][(

1 − ǫ2
σ̂a

σ̂T

)

φ0 + ǫ2
Q̂(x)

σ̂T

]

.

This yields

(4.6) φ0 =
[

1
4π

∫

S2

(

I + Ω · ▽x
ǫ

σ̂T

)−1
d2Ω

][(

1 − ǫ2
σ̂a

σ̂T

)

φ0 + ǫ2
Q̂(x)

σ̂T

]

.

In equation (4.6) the integral operator expanding in powers of dimensiona-
less parameter ǫ , can be writen as:

(4.7) φ0 =
[

∞
∑

l=0

ǫ2lL2l

][

(1 − ǫ2
σ̂a

σ̂T
)φ0 + ǫ2

Q̂(x)

σ̂T

]

,
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where, the laplace operator L2l is defined as

(4.8) L2l = 1
4π

∫

S2

( 1

σ̂T
(Ω · ▽)

)2l
d2Ω.

Next, we shell find some equations, which are needed to close our derivation.
Inserting l = 0, 1, 2 in (4.8), we get the values of L0, L2, L4 respectively as
follow:

L0 = 1
4π

∫

S2

d2Ω.

(4.9)
⇒

L0 = 1
4π4π = I.

L2 =
1

4π

∫

S2

( 1

σ̂T
(Ω · ▽)

)2
d2Ω.

Since

∫

S2

ΩiΩjd
2Ω =

4π

3
δij .

L2 =
1

3

3
∑

i,j=1

δij

( 1

σ̂T

∂

∂xi

1

σ̂T

∂

∂xj

)

.

(4.10)
⇒
L2 =

1

σ̂T
· ▽

( 1

3σ̂T
▽

)

.

L4 =
1

4π

∫

S2

( 1

σ̂T
(Ω · ▽)

)4
d2Ω.

Since

∫

S2

ΩiΩjΩkΩld
2Ω =

4π

15
[δijδkl + δikδjl + δikδjk].

1

15

3
∑

i,j,k=1

[δijδkl + δikδjl + δikδjk]
( 1

σ̂T

∂

∂xi

1

σ̂T

∂

∂xj

1

σ̂T

∂

∂xk

1

σ̂T

∂

∂xl

)

.

L4 =
1

5

( 1

σ̂T
· ▽

)( 1

σ̂T
· ▽

)( 1

σ̂T
· ▽

)( 1

σ̂T
· ▽

)

.
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L4 =
9

5

( 1

σ̂T
· ▽

)( 1

3σ̂T
· ▽

)( 1

σ̂T
· ▽

)( 1

3σ̂T
· ▽

)

.

Since by using (4.10) in above equation, we get

(4.11) L4 =
9

5
L2

2.

Using (4.9)-(4.11) in (4.7), we need just first three even terms in laplace
operator series expansion explicitely and we can rewrite (4.7) as

(4.12) φ0 = [I + ǫ2L2 + ǫ4L4]
[

(1 − ǫ2
σ̂a

σ̂T
)φ0 + ǫ2

Q̂(x)

σ̂T

]

+ 0(ǫ6).

Inverting the operator on the right hand side of (4.12), we get

⇒[I − ǫ2L2 − ǫ4L4]φ0 =
[(

1 − ǫ2
σ̂a

σ̂T
)φ0 + ǫ2

Q̂(x)

σ̂T

]

+ 0(ǫ6).

Thus we obtained the successive relations

⇒φ0 − ǫ2L2φ0 − ǫ4L4φ0 = φ0 − ǫ2
σ̂a

σ̂T
φ0 + ǫ2

Q̂(x)

σ̂T
+ 0(ǫ6).

⇒−σ̂T ǫ
2L2φ0 − σ̂T ǫ

4L4φ0 = −ǫ2σ̂aφ0 + ǫ2Q̂(x) + 0(ǫ6).

⇒ǫ2[−σ̂TL2φ0 − σ̂T ǫ
2L4φ0] = ǫ2[−σ̂aφ0 + Q̂(x) + 0(ǫ4)].

(4.13) −σ̂TL2φ0 + σ̂T ǫ
2L4φ0 + σ̂aφ0 = Q̂(x) + 0(ǫ4).

Using (4.13), we can drive P1 or SP1 equation since P1, SP1 are similar and
by neglecting the 0(ǫ2) in (4.13) then multiplying by ǫ, and using (4.10) and
the asymptotic scaling (1.6), we get SP1 or P1 equation as:

(4.14) −▽ ·
( 1

3σt
▽

)

φ0 + σaφ0 = Q(x).

For SP2, we neglect the 0(ǫ4) in (4.13), to get

−σ̂TL2φ0 + σ̂T ǫ
2L4φ0 + σ̂aφ0 = Q̂(x).

−L2φ0 + ǫ2L4φ0 =
Q̂(x) − σ̂aφ0

σ̂T
.
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Now using (4.11), we get

−L2φ0 + ǫ2
((9

5

)

L2
2

)

φ0 =
Q̂(x) − σ̂aφ0

σ̂T
.

i.e.

(4.15) −L2

(

I + ǫ2
9

5
L2

)

φ0 =
Q̂(x) − σ̂aφ0

σ̂T
.

Operating on equation (4.15) by
(

I − ǫ2 9
5L2

)

and neglecting 0(ǫ4), we get

resulatant equation as

−L2φ0 =
(

I − ǫ2
9

5
L2

)Q̂(x) − σ̂aφ0

σ̂T
.

−L2φ0 =
Q̂(x) − σ̂aφ0

σ̂T
+

(

ǫ2
9

5
L2

) σ̂aφ0 − Q̂(x)

σ̂T
.

−L2

[

φ0 + ǫ2
9

5

( σ̂aφ0 − Q̂(x)

σ̂T

)]

=
Q̂(x) − σ̂aφ0

σ̂T
.

−σ̂TL2

[

φ0 + ǫ2
9

5

( σ̂aφ0 − Q̂(x)

σ̂T

)]

+ σ̂aφ0 = Q̂(x).

Using (4.11), we obtained

(4.16) −▽
( 1

3σ̂T
▽

)[

φ0 + ǫ2
9

5

( σ̂aφ0 − Q̂(x)

σ̂T

)]

+ σ̂aφ0 = Q̂(x).

Equation (4.16), multiplied by ǫ and by the asymptotic scaling in (1.6),
yields

(4.17) −▽
( 1

3σt
▽

)[

φ0 +
9

5

(σaφ0 −Q(x)

σt

)]

+ σaφ0 = Q(x).

Equation (4.17) is known as the SP2 approximation equation.
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5. Conclusion

In this study, expansion the theoretical foundation and extensibility of ap-
plication of the diffusion and SPN (SP1, SP2) approximations for the steady-
state linear transport equation. These diffusion-based methods are well-
defined and have been used from last 50 years; to reproduce with the equa-
tion for optically thick system with the weak absorption. These are classical
methods and are not precise for the strong absorbing deep penetration sys-
tems or regions, which happen in the shielding problems. In this analysis it
has been found that the classical diffusion-based methods are the more ac-
curate for the these type of problems by the modifications of the methods,
and the resulted approximations are similar to the classical approximate
equations. So, for conclusive low-order spatial moments are preserving for
the large fissile regions, it is more adequate to use the standard diffusion and
SPN approximations for the transport solution. The transport exponential
decay rate and less one moment as we have done in Section 4 are preserving
for the deep penetration regions and is best used of the modified diffusion or
SPN equations for the transport solution. When ǫ is small it means that the
scattering dominates absorption and the physical system is optically thick,
then the asymptotic approximations are the most accurate ones.
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